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Abstract

The purpose of the research presented in this paper is to

develop and implement an efficient method for analytical

gradient-based sizing optimization of a support structure

for offshore wind turbines. In the jacket structure opti-

mization of frame member diameter and thickness, both

fatigue limit state, ultimate limit state, and frequency

constraints are included. The established framework is

demonstrated on the OC4 reference jacket with the NREL

5 MW reference wind turbine installed at a deep water

site. The jacket is modeled using 3D Timoshenko beam

elements. The aero-servo-elastic loads are determined

using the multibody software HAWC2, and the wave loads

are determined using the Morison equation. Analytical

sensitivities are found using both the direct differentiation

method and the adjoint method. An effective formulation of

the fatigue gradients makes the amount of adjoint problems

that needs to be solved independent of the amount of load

cycles included in the analysis. Thus, a large amount of

time-history loads can be applied in the fatigue analysis,

resulting in a good representation of the accumulated

fatigue damage. A reduction of 40% mass is achieved in

23 iterations using the CPLEX optimizer by IBM ILOG,

where both fatigue and ultimate limit state constraints are

active at the optimum.

Keywords Structural optimization; Fatigue; Gradient-

based; Adjoint method; Offshore wind; Jacket structures

1 Introduction

Wind energy is a rapidly growing source of energy. The en-

ergy is both clean and sustainable. The advances in wind

energy research and development are still driving down the

cost of energy significantly. If wind farms are situated at

high wind condition sites, the cost of energy can be com-

petitive or even better than conventional energy sources.

High wind condition sites are often located at near-

coastal or offshore areas. Near-coastal areas are occupied

∗
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and limited, while installing offshore wind turbines presents

not only high wind conditions, but also space for very large

wind farms. However, it will also lead to more expensive in-

stallation and electric infrastructure. Moreover, it will result

in larger support structures due to increased water depth,

and harsh hydrodynamic and aeroelastic loading.

Today, the dominating type of support structure for off-

shore wind turbines is the monopile. Monopiles are rela-

tively easy to install and the production price is low. When

advancing to deeper waters, frame structures are considered

better than the monopile design with respect to both cost

and structural efficiency. Recent discoveries have also shed

light on many problematic issues with monopiles. To name

a few, these are buckling of the pile tip, grout connection

failure, and water ingress spots leading to corrosion. Con-

sequently, many developers are looking into frame support

structures for deep water sites.

Two types of frame structures are generally considered

for offshore wind turbines; the tripod with three legs and

the jacket with four legs. Both types of support structures

are extensively used in the oil and gas industry. As a re-

sult, much experience and know-how exist for the design

and production of frame support structures. However, sup-

port structures for offshore wind turbines experience a much

more dynamic loading history, which may mean that some

of the design driving criteria are completely different.

The design of offshore support structures is a complex

and time-consuming task. Even more so, as final designs

need to be validated using many extremely large Design

Load Cases (DLC), representing both the Fatigue Limit

State (FLS) and Ultimate Limit State (ULS). By utilizing

modern optimization techniques in the early design phase,

the design engineers can achieve a good preliminary struc-

tural design, which has been through many numerical de-

sign iterations. Thus, in the context of structural design of

offshore support structures, it can prove very beneficial to

have reliable and efficient numerical optimization models.

Although there is an apparent advantage of such a design

tool, optimization of support structures for offshore wind

turbines is a relatively new field of study due to the large

scale of the load series.

Some of the earlier work in optimization of support struc-
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tures for wind turbines was done by [1]. They optimized an

onshore monopile subjected to several buckling constraints

by varying the average thickness of the shells, the amount

of ring-stiffeners, and the dimensions of the ring-stiffeners

using a zeroth order search algorithm. [2] used a genetic

algorithm to optimize an offshore monopile tower, achiev-

ing reduction of mass by increasing the material grade and

varying different structural parameters while enforcing both

FLS, ULS and frequency constraints. In their fatigue as-

sessment they calculated damage caused by wind and wave

loads uncoupled. Separating wind and wave loads on sup-

port structures has previously been investigated by [3], who

showed that it can potentially lead to large and unacceptable

errors in the fatigue assessment.

[4] investigated offshore tripods and jackets for ULS

conditions. They used the NREL 5 MW reference wind

turbine described in [5]. In the design loop of the support

structures they ensured that buckling and yielding criteria

were satisfied while varying the bottom leg distance. They

extended their work and considered FLS conditions accord-

ing to design standards having wall thickness as design pa-

rameters, see [6]. Their optimized design for fatigue was

heavier than their design for ULS. They furthermore pre-

sented some general design guidelines based on indications

of the change in structural properties caused by certain de-

sign alterations.

The jacket concept was extended by [7]. Here, the tradi-

tional turbine tower was replaced with a full height frame

structure. Both FLS and ULS constraints were considered

in their analysis, parametric study, and design optimization

of member thickness. In their fatigue assessment, which

was the design driving criterion, only one time-history load

was included. The loads were recalculated in each design it-

eration which is a very time-consuming process, especially

if many time-history loads are included. For this reason,

they investigated how to simplify the fatigue loads in [8].

Utilizing multivariate statistical methods they reduced a set

of 21 time-history loads to 3, while only sacrificing a maxi-

mum of 6.4% precision in the fatigue life estimation of their

models with tuned regression parameters.

[9] used a Sequential Quadratic Programming (SQP) op-

timizer, including both FLS, ULS and frequency constraints

in their optimization of the OC4 reference jacket, described

in [10]. They applied two time-history loads in their opti-

mization, where the analytical gradients were found using

the direct differentiation method. The gradients were com-

pared to both central and forward difference schemes where

significant deviations in especially extreme load and fatigue

load constraints were observed. Thus, they advised against

using finite difference schemes to approximate the gradi-

ents. They achieved a reduction of 52% mass as compared

to the original design. Their design was driven by fatigue,

but during the optimization, also buckling and compressive

constraints based on NORSOK standards were active. For a

more comprehensive overview and review of structural op-

timization of support structures for wind turbines see [11].

In this framework, the diameter and thickness of the OC4

reference jacket with the NREL 5 MW reference wind tur-

bine is optimized using analytical gradients and a Sequen-

tial Linear Programming (SLP) optimizer. FLS, ULS, and

frequency constraints based on Det Norske Veritas (DNV)

and Eurocode 3 are included. The sensitivities of the fatigue

constraints are found using the adjoint method while the

ULS and frequency sensitivities are found by direct differ-

entiation. Twelve complete time-history loads are included

in the FLS analysis, while one time-history load is included

in the ULS analysis. As the computation of the time-history

loads is extremely time-consuming, they are not updated

throughout the optimization.

The main contribution of this research is to develop and

implement an effective method of determining the fatigue

gradients for preliminary design of jacket structures for off-

shore wind turbines. In other words, we present efficient

gradient calculations using the adjoint method for problems

with few design variables, many constraints, and very large

time-history loads. Using the adjoint method is counter in-

tuitive for this kind of problem as the direct differentiation

method is generally advised over the adjoint method for

problems with fewer design variables than constraints, see

e.g. [12]. On the other hand, it has previously been shown

that using the adjoint method can be efficient for problems

with multiple loads, see e.g [13].

In order to achieve a good representation of the fatigue

damage in the structure, a large number of time-history

loads should be included in the fatigue analysis and op-

timization. However, the computational costs of conven-

tional methods for design sensitivity analysis scale very

poorly with the amount of time-history loads applied. To

address this, an efficient method for determining the fa-

tigue sensitivities has been implemented, where the compu-

tational cost is much less sensitive to the amount of included

time-history loads.

By utilizing a linearity in the adjoint vector, it will be

shown that very few function evaluations are needed in this

framework using the adjoint method. This is achieved with-

out the use of aggregation functions such as the p-norm

method. Aggregation functions are often used to reduce a

large number of constraints, but leads to a loss in accuracy.

In addition, it is achieved without using active set strate-

gies, where constraints that are of no or very small impor-

tance are neglected. Because the gradients are evaluated

efficiently, a relatively large amount of time-history loads

can be included in the optimization.

The structure of this paper is as follows. Initially the

modeling and simulation setup will be explained. This in-

cludes details about loading conditions and modeling as-

sumptions. Next, all constraints and the derivation of fre-

quency and fatigue constraint sensitivities will be presented.

Then the optimization problem is described, where details

about the optimizer, the convergence filter, and the adap-

tive move limit strategy are given. Finally the optimization

results will be presented and analyzed, ending with a con-

clusion stating the main outcome.

2 Structure and simulation setup

The OC4 reference jacket is located at the K13 deep water

site with a mean sea level of 50 m above the seabed, see

[14]. The K13 deep water site is located in the North Sea off

the coast of the Netherlands. The transition between jacket

and tower is located 70.15 m above the seabed, where the
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transition of forces and moments is ensured using a rigid

concrete transition piece weighing 666,000 kg.

The support structure consists of interconnected circular

hollow frames. The members are joined together through

64 welded connections. More specifically, through 24 T/Y-

joints, 24 K-joints and 16 X-joints. These joints appear in

four very similar sections throughout the full height of the

jacket, see Fig. 1. The jacket is fastened to the seabed by a

grouted connection to piles penetrated into the seabed. The

grouted connection between the piles and the jacket ranges

from the seabed to 4.5 m above the seabed.

The tower and turbine are based on the NREL 5 MW

wind turbine, see [5]. Thus, the tower is 68 m tall and the

hub height is located 90.55 m above mean sea level, see

[10]. The NREL 5 MW turbine has a cut-in speed of 3 m/s

and a cut-out speed of 25 m/s. The minimum rated rotor

speed is 6.9 rpm and the maximum rated rotor speed is 12.1

rpm, which is achieved at wind speeds from 11.4 m/s to

cut-out speed. The rotor weighs 110,000 kg, the nacelle

240,000 kg, the tower 347,460 kg, and the jacket 673,718

kg.

Mean sea level

K-joint

X-joint

T-joint

Piles

Seabed

Transition piece

Section 4

Section 3

Section 2

Section 1

20.15 m

0.00 m

-45.50 m

Figure 1: The OC4 reference jacket.

2.1 Finite element model

The quasi-static structural analysis is performed using lin-

ear finite element theory. The jacket is modeled using 3D

beam elements based on Timoshenko beam theory. Each

element consists of three nodes. One node at each beam

end defines the length of the beam and the local x-axis, and

a third node is used to define the orientation in space by

defining the local x-y plane. The element has 12 degrees of

freedom and constant cross-sectional properties throughout

the length, see Fig. 2.

In the FLS and ULS analyses, the jacket is modeled using

104 elements. Each element spans from connection to con-

Node 1

Node 2

x, u1, Fx1

θx1, Mx1

y, v1, Fy1

θy1, My1

z, w1, Fz1

θz1, Mz1

u2, Fx2

θx2, Mx2

v2, Fy2

θy2, My2

w2, Fz2

θz2, Mz2

X

Z
Y

Node 3

Figure 2: The 3D Timoshenko beam element showing all

twelve degrees of freedom and the local x-y-z coordinate

system.

nection, except near the seabed and near transition piece,

where change in geometry demands additional elements.

The transition piece is simplified as a very rigid connection

using four elements. Each of the four elements are assigned

a fourth of the total transition piece weight.

In the frequency analysis, additional elements are added

to represent tower, nacelle, and rotor-nacelle assembly.

More specifically, eight elements are applied to model the

steel tower, and five elements are applied to model the na-

celle and hub. The turbine blades are not assigned any ele-

ments, but the mass is included in the finite element repre-

sentation of the hub. Thus, in the frequency analysis, a total

of 121 elements are used.

The location and magnitude of the masses are modeled

according to [10]. The rotor-nacelle assembly and the na-

celle are modelled with a very high rigidity, while the rigid-

ity of the transition piece is tuned to give a lowest natural

frequency of the structure of 0.31 Hz, which is in accor-

dance with [15]. In the frequency analysis, consistent mass

matrices are used.

In the structural analysis, the jacket is assumed fixed at

the grouted connection and free elsewhere. Damping and

geometric non-linearities are not included. Also, linear

elastic material behavior of the S355J2 steel is assumed.

In the current study unit loads have been applied at all

degrees of freedom and scaled with wind-, wave- and grav-

itational loads to efficiently find the structural response for

all time-steps by linear superposition. Thus, the inertia and

damping effects are ignored in the quasi-static analysis ap-

proach. Alternatively, mode superposition could have been

applied where the linear response can be calculated from

superposition of mode shapes.

2.2 Cost function

The jacket is optimized with respect to member diameter, d,

and thickness, t, to decrease the overall mass. Accordingly,

the objective function is given as

f (x) =

ne
∑

j=1

ρ jA j(x)l j (1)

Here x is the vector of design variables and ne is the total

number of elements. Each frame member is represented
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using one element with constant cross-sectional properties.

ρ j is the material density of element j. In like manner, A j

and l j are the cross sectional area and the length of element

j, respectively.

The members have been divided into ten symmetry

groups. Within each symmetry group, all members are as-

signed the same design variables. This is done for two

main reasons; firstly to produce a symmetric design, and

secondly to reduce the amount of different design variables.

Thus, the optimization problem is reduced to 20 design vari-

ables. The initial design variables are shown in Table 1.

The lower part of the jacket legs connecting with the piles

is not included as design variables. Typically, standardized

piling equipment is used, and thus the original dimensions

remain. Naturally, the beam representation of the transition

piece is also omitted from the optimization. For this reason,

100 elements are assigned design variables. The symme-

try groups are shown with different colors in Fig. 3, where

the gray beams represent the jacket parts excluded from the

optimization.

OC4 Reference Jacket

Z
[m

]

Y [m]
X [m]

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Group 10

Figure 3: The finite element representation of the jacket.

The colored beams represents symmetry groups, wherein

the design variables are shared. The gray beams are not

optimized.

2.3 Loading conditions

Many load cases are needed to fully validate support struc-

tures for offshore wind turbines. To name some, these could

Table 1: Original values of the design variables in meters.

Group numbers refer to symmetry groups illustrated in Fig.

3.

d(init) t(init)

Group 1, 3, 5, 7 & 9 0.8000 0.0200

Group 2 1.2000 0.0500

Group 4, 6 & 8 1.2000 0.0350

Group 10 1.2000 0.0400

be load cases representing regular power production, ex-

treme weather conditions, emergency shut down, parked

and fault conditions, transportation, assembly, maintenance

and repair etc. However, in this framework focus is only

on two load cases, specifically DLC 1.2 and 1.3, see [16]

and [17]. These are normally considered the governing de-

sign load cases for the support structure. The load cases

represent normal operational conditions for FLS and ULS,

respectively.

According to common practice the aeroelastic loads are

determined using multibody simulation software. In this

framework, HAWC2 (Horizontal Axis Wind turbine simu-

lation Code 2nd generation) has been used, see [18]. The

jacket and turbine used in the multibody simulation are also

based on the OC4 reference jacket and the NREL 5 MW

turbine. The forces and moments have been extracted at the

transition piece, such that they can be applied directly to the

finite element model.

The hydrodynamic loading is calculated using the Mori-

son equation, see [19]. The wave force per unit length, fw,

is given by

fw = ρwCmA(u̇ − Ẍ) + ρwu̇A (2)

+
1

2
ρwCd

(

(u + uc) − Ẋ
) ∣

∣

∣(u + uc) − Ẋ
∣

∣

∣

Here ρw = 1025kg/m3 is the density of seawater, A is the

effective cross sectional area of the beam, which for a cir-

cular tube equals the outer diameter when computing the

force per length. Cd and Cm are the drag and inertia co-

efficients, respectively. u and u̇ are the horizontal particle

velocity and acceleration and uc is the wave-current veloc-

ity. The member velocity, Ẋ, and acceleration, Ẍ, are set

to zero as the structural analysis is static. The wave forces

are calculated for vertical members and then projected onto

oblique members. The hydrodynamic loading is calculated

in 15 sampling depths. Buoyancy forces on oblique mem-

bers are disregarded in the analysis.

While the wind loads are easily added to the beam rep-

resentation of the transition piece, the hydrodynamic loads

have to be recalculated into nodal loads. This is done in

three steps; first, the loads are linearly interpolated from the

nearest sampling depths to the nodal positions of the sub-

merged element. Secondly the loads are recalculated into

normal loads, and lastly work-equivalent nodal loads are

established, see e.g. [20].

DLC 1.2 is used for fatigue calculations, where the loads

correspond to normal operation under normal sea states and

atmospheric turbulence. The multibody simulations have
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been performed using a normal turbulence model, where the

turbulence intensity and the standard deviation have been

calculated in accordance with [17] and [21]. According

to [21], the random realizations for the wave loads in both

FLS and ULS are based on the Joint North Sea Wave Obser-

vation Project (JONSWAP) spectrum, see [22]. According

to [17], multidirectional waves should be considered. How-

ever, in this framework all environmental loads are applied

aligned and acting from a constant angle.

DLC 1.3 is used for ultimate limit state calculations,

where the loads correspond to normal operation under nor-

mal sea states and extreme turbulence conditions. Thus, in

the multibody simulation, an extreme turbulence model is

used. In addition, a normal current model is added to the

wave loads according to [21]. Due to both structural and

load modeling uncertainties, a partial safety factor of 1.35

is applied to all environmental loads in this framework.

The standards suggest to produce time-history loads in

samplings from cut-in to cut-out speed, i.e. from a mean

wind speed of 3 m/s to 25 m/s. This should be done in

intervals of 2 m/s with a total sampling time of 10 min-

utes in sampling intervals of 0.02 seconds. Moreover, yaw

misalignment of ± 8 degrees should also be accounted for,

and for each setting, six random realizations should be in-

cluded. This adds up to 216 time-history loads for each of

the two included load cases. As each time-history load con-

sists of 30,000 load time-steps, this results in a total amount

of 6,480,000 load time-steps in both the FLS and ULS anal-

ysis. This amount of information is currently too much to

consider in an optimization loop, thus the amount of time-

history loads included must be reduced.

The yaw misalignment is important for blade and nacelle

design. However, the support structure may not be affected

significantly by the misalignment. For this reason the yaw

misalignment is excluded from the analysis. Furthermore,

only one random realization is included. Thus, only one 10

minute time-history load for each mean wind speed is used

in DLC 1.2, adding up to a total of 12 time-history loads

with a total of 360,000 load time-steps. For DLC 1.3, it

is believed that the most critical loading of the jacket will

occur at the highest wind speed. Again, yaw misalignment

is excluded and only one random realization is used. In

short, only one time-history load is included for ULS with

a total of 30,000 load time-steps.

3 Fatigue limit state analysis

Fatigue failure of welded structures is prone to occur in the

welded details. Thus, the fatigue damage must be inves-

tigated in every welded connection of the jacket. In fact,

the damage should be evaluated in eight equally distributed

sampling points in the cross section of the welded detail on

both the chord and brace side of the weld, see [23].

Stresses in welds can be complicated to determine as they

can be many times higher than nominal stresses. Mean

stresses are difficult to determine due to effects such as

residual stresses from the welding procedure where uneven

contraction of material during the cooling process can in-

duce very high stresses. Thus, mean effects are not included

in the traditional sense when calculating fatigue damage in

the welded details. Also, the uneven geometry at a weld

gives cause for stress concentrations. For this reason the

nominal stresses must be scaled with stress concentration

factors (S CF) in order to get a more realistic estimate of

the actual stress state in the welds. These upscaled stresses

are in the following referred to as σHotSpot. All fatigue cal-

culations are done according to [23].

3.1 Hot spot stresses

To calculate the hot spot stress in all eight local sam-

pling points, four stress concentration factors must be de-

termined; the S CF for axial loading at the saddle, S CFAS ,

for axial loading at the crown, S CFAC, for out-of-plane

bending moments, S CFMOP
, and for in-plane bending mo-

ments, S CFMIP
. For definitions of chord, brace, and sam-

pling locations see Fig. 4. The S CF depend explicitly on

many geometric parameters, including the design variables

of both brace and chord, and the type of connection. In K-

connections, the S CF can even depend on the design vari-

ables of the neighboring brace. In addition, the S CF differ

when evaluating the weld on the brace or chord side. The

aforementioned geometric parameters are converted to geo-

metric validity parameters that must lie within certain inter-

vals in order to give trustworthy stress states. These validity

parameters are explicit functions of the design variables and

are included as constraints in the optimization algorithm.

The parameters are defined in section 4.3.

1
2
3

4
5

6
7
8

x
y

z
N MIP

MOP

crown

saddle

brace
chord

Figure 4: The location of the eight hot spot stresses calcu-

lated from stress concentration factors and the stress caused

by the normal load, N, by the in-plane bending moment,

MIP, and by the out-of-plane bending moment MOP.

As S CF can be defined as the ratio between the nominal

and maximum stresses, the hot spot stresses are calculated

by superposition and scaling of the nominal stresses caused

by axial loading, σN , by in-plane bending moments, σMIP
,

and by out-of-plane bending moments, σMOP
. Thus follow-

ing [23], the eight local stresses can be calculated by

σHotSpot1
= S CFACσN + S CFMIP

σMIP
(3a)

σHotSpot2
=

1

2
(S CFAC + S CFAS )σN +

1

2

√
2S CFMIP

σMIP

− 1

2

√
2S CFMOP

σMOP
(3b)

σHotSpot3
= S CFASσN − S CFMOP

σMOP
(3c)

σHotSpot4
=

1

2
(S CFAC + S CFAS )σN −

1

2

√
2S CFMIP

σMIP

− 1

2

√
2S CFMOP

σMOP
(3d)

σHotSpot5
= S CFACσN − S CFMIP

σMIP
(3e)
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σHotSpot6
=

1

2
(S CFAC + S CFAS )σN −

1

2

√
2S CFMIP

σMIP

+
1

2

√
2S CFMOP

σMOP
(3f)

σHotSpot7 = S CFASσN + S CFMOP
σ

OP
(3g)

σHotSpot8 =
1

2
(S CFAC + S CFAS )σN +

1

2

√
2S CFMIP

σMIP

+
1

2

√
2S CFMOP

σMOP
(3h)

For both S CFMIP
and S CFMOP

in X- and K-joints, the

loading condition is assumed as applied on one brace when

determining the S CF. This assumption is conservative for

each iteration in this framework. A fixed gap between the

braces in all K-joints of 0.25 m is assumed. Also, all chords

are assumed long and slender and general fixity parameters

are chosen, as no investigative tests have been performed

on the fixity. A S CF of 3 is applied for fatigue sampling

points not in a T/Y-, X- or K-joint in all iterations. This

assumptions is made as there are too many unknowns in

determining stress concentration factors for the tubular butt

welds in the structure, such as the measure of out of round-

ness, eccentricity of the connection etc.

In the considered model 2688 fatigue sampling points are

evaluated. 512 in tubular butt welded connections, 384 in

T/Y connections, 1024 in X connections, and 768 in K con-

nections. For the initial design, the S CF values span from

1.05 to 12.15 with a mean of 4.05. For full details on how

to calculate the S CF, see [23].

3.2 Fatigue damage

Fatigue damage is caused by cyclic loading, and the dam-

age is defined as a fraction of the structures overall life. In

this framework, the fatigue damage is calculated by relating

hot spot stress amplitudes, ∆σHotSpot, with S-N curves. S-N

curves relate the number of cycles to expected failure, Ni,

at a given stress amplitude. The applied S-N curve is valid

for circular hollow tubes of S355J2 with cathodic protection

submerged in seawater, and is shown in [23]. The equation

for the S-N curve is

log Ni = log ā − m log
(

∆σHotSpotT
k
c

)

(4)

Here log ā is the intercept of the log Ni axis on the S-N curve

and m is the negative inverse slope of the curve. Since the

log-log S-N curve is piecewise linear, m and ā can vary de-

pending on the amount of cycles to failure. k is the thick-

ness exponent having a value of either 0.25 or 0.30, where

the higher value is chosen if the applied S CF has a magni-

tude larger than 10. As a conservative choice, k is set to 0.30

in all fatigue sampling points. Tc is a thickness correction

term given as:

Tc = max

{

t

tre f

, 1

}

(5)

Here t is the thickness of the member under investigation,

and tre f is a reference thickness of 32 mm.

3.3 Rainflow counting

S-N curves are derived from tests where sinusoidal stresses

are applied to a specimen. However, the jacket is subjected

to a complex, multiaxial, non-proportional loading history.

Determining the highest estimated fatigue damage under

such loading conditions would normally require multiaxial

rainflow counting techniques. However, as the fatigue dam-

age is determined using only the normal stresses, traditional

rainflow counting can be applied.

In rainflow counting, the full stress history is reduced to

a sequence of peaks and valleys. Next, stress half and full

cycles are identified. It is important that rainflow counting

is done separately in all fatigue sampling points in order to

capture the highest accumulated damage. To indicate this

dependence, a subscripted k will be added. For instance,

the hot spot stress and displacement amplitudes are indexed

as ∆σki and∆uki, where k = 1, 2, ..., 2688 is the fatigue sam-

pling point number where the counting has been performed.

i = 1, 2, ...,Nk,RF is the rainflow counter for sampling point

k, and Nk,RF is the amount of rainflow counts. The displace-

ment amplitude relates to the vector of applied load ampli-

tude, ∆Pki, by subtracting two equilibrium states from each

other

K∆uki = ∆Pki (6)

In order to efficiently solve for the displacement amplitudes,

a direct solver is used where the stiffness matrix has been

subjected to LU factorization.

The rainflow counting must be done on the hot spot

amplitude stress, as shown in (4). The hot spot ampli-

tude stresses are determined using all 360,000 load time-

steps. Damage caused by different mean wind speeds are

upscaled differently depending on the probability of occur-

rence. Consequently, stress amplitudes must not be identi-

fied across loads representing different mean wind speeds.

Therefore, it is important to perform rainflow counting sep-

arately for each mean wind speed, i.e. 30,000 load time-

steps at a time. Additionally, due to the multiaxial, non-

proportional loading, the amount of rainflows, Nk,RF , can

vary for each fatigue sampling point. In the established

fatigue analysis, the difference in the amount of rainflow

counts can easily exceed 10,000 depending on which sam-

pling point is evaluated. The amount of rainflow counts and

the positions in time are recalculated in every design itera-

tion for every fatigue evaluation point.

3.4 Accumulated damage

The accumulated damage is calculated by Palmgren

Miner’s linear damage hypothesis, given as

Dk =

Nk,RF
∑

i=1

pki

nki

Nki

≤ η, k = 1, 2, ..., 2688 (7)

Here Dk is the accumulated damage in sampling point k. pki

is a probability factor used to scale the damage to represent

the full life time, i.e. 20 years of service. The probability

for each mean wind speed is taken from the weather data

for the K13 deep water site described in [14]. The value of

the probability factor depends on the mean wind speed cur-

rently investigated and the total amount of rainflow counts.

nki is the number of stress cycles, i.e. a half or full cycle,

and η is the usage factor. It is assumed that the welds are
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located at an area that is not planned for inspection or repa-

ration during operation, thus η is set to 1/3 in accordance

with [16].

Isolating the number of cycles to failure for a given stress

state in (4) and inserting it into (7) presents the fatigue con-

straint equation for each damage sampling point, k

Dk =

Nk,RF
∑

i=1

pki

nki

ā
(

∆σkiT
k
c

)−m ≤
1

3
(8)

4 Ultimate limit state analysis

The included ultimate limit state criteria are all based on

[24] and [25] and are; buckling failure, chord face failure,

and punching shear failure.

4.1 Buckling analysis

A buckling analysis is carried out according to [24]. This is

done at the element level. All elements except the eight

elements used for modeling the transition piece and the

grouted connection are included, resulting in buckling anal-

yses of 100 elements. Each individual element, e, under

combined bending and axial compression must satisfy the

following two constraints

Be =
NED

χyNRK/γM1

+ kyy

My,ED

χLT My,RK/γM1

(9a)

+ kyz

Mz,ED

Mz,RK/γM1

≤ 1, e = 1, 2, ..., 100

Ge =
NED

χzNRK/γM1

+ kzy

My,ED

χLT My,RK/γM1

(9b)

+ kzz

Mz,ED

Mz,RK/γM1

≤ 1, e = 1, 2, ..., 100

Here NED, My,ED and Mz,ED are the design compression

force and maximum moments about the local y− y and z− z

axis, respectively. Similarly, NRK , My,RK and Mz,RK are the

design characteristic resistance force and moments of the

critical cross section. γM1 is a partial safety factor for the

global stability, where the value of 1.2 is used, see [17]. χLT

is a reduction factor due to lateral torsional buckling. How-

ever, as circular hollow beams are not susceptible to lateral

torsional buckling, χLT is set to 1. kyy, kzz, kyz and kzy are

the interaction factors. They are calculated using the alter-

native method 1, shown in Annex A of [24]. Due to the

symmetric properties of the circular hollow cross section,

kyy = kzz and kyz = kzy. χy and χz are reduction factors due

to flexural buckling. Again, because of the circular hollow

cross section they are equal. The flexural reduction factors

are calculated for each member by

χz = χy = min

[

1

Φ +
√
Φ2 − λ̄2

, 1

]

(10)

Φ = 0.5
[

1 + α(λ̄ − 0.2) + λ̄2
]

(11)

Here α is an imperfection factor, that for a circular hollow

cross section using hot finished S355J2 steel is 0.21. The

cross section class is restricted to be of class 2 or better

in this framework. This is done to reduce the amount of

ultimate limit state constraints of the welded connections,

as will be explained in detail in the next section. The non-

dimensional slenderness, λ̄, is for class 1-3 cross sections

calculated for each element as

λ̄ =

√

A fy

Ncr

(12)

Ncr is the critical Euler force and fy is the material yield

strength. It is calculated under the assumption that each

member can be viewed as a column with pinned ends. Thus,

the lowest critical Euler force is given by (see e.g. [26])

Ncr =
π2EI

L2
(13)

Here E is the Young’s modulus of elasticity, I is the area

moment of inertia and L is the length of the column consid-

ered.

The jacket is also investigated for global buckling. A lin-

ear buckling analysis using a geometric stiffness matrix that

includes shear and bending effects has been performed for

all 30,000 load time-steps included in the ULS load case.

Including the partial safety factor of 1.35 on the loads and

the partial safety factor on the buckling analysis of 1.2, no

load combination had a buckling load factor of less than

131. Since the jacket in its original topology is very safe

from failure due to global buckling, it is not included in the

optimization as a constraint. However, a linear global buck-

ling analysis is performed on the optimized design to insure

that this assumption is valid.

4.2 Chord face and punching shear failure

analysis

The limit states of the welded connections are also calcu-

lated using Eurocode 3, [25]. If the investigated members

are of cross sectional class 2 or better, and under certain di-

mensional restrictions shown in section 4.3, the connections

only need to be checked for chord face failure and punching

shear failure. Chord face failure, which can be described

as plastic failure of the chord face, is avoided by satisfy-

ing the following constraint for all brace member connec-

tions, l, that are subjected to combined bending and axial

force. There exists 24 brace members in the 24 T/Y-joints,

48 brace members in the 24 K-joints, and 64 brace members

in the 16 X-joints. In short, there are 136 chord face failure

constraints in the analysis, given by following equation

Cl =
NED

NRD

+















∣

∣

∣MIP,ED

∣

∣

∣

MIP,RD















2

+
MOP,ED

MOP,RD

≤ 1, (14)

l = 1, 2, ..., 136

Here, MIP,ED and MOP,ED are the design in-plane and out-

of-plane moments, respectively. Accordingly, MIP,RD and

MOP,RD are the design value of the resistance of the joint

expressed in internal moments, while NRD is the design

value of the resistance of the joint expressed in internal ax-

ial force. Note that for multiplanar joints reduction factors

are included. For full details of the analysis we refer to [25].
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Punching shear failure can be described as crack initia-

tion on the chord wall leading to complete failure. Punching

shear failure only needs to be checked if the brace diameter

is larger than the inner chord diameter, according to Table

7.2 and 7.5 in [25]. If this is the case, then punching shear

failure is checked by

S l =
NED

NRDpunch

+















∣

∣

∣MIP,ED

∣

∣

∣

MIP,RDpunch















2

+
MOP,ED

MOP,RDpunch

≤ 1, (15)

l = 1, 2, ..., 136

The differences from the chord face failure analysis to the

shear punching analysis are the design values of the resis-

tance of the joints expressed in internal axial force, NRDpunch
,

in in-plane moment, MIP,RDpunch
, and in out-of-plane mo-

ment, MOP,RDpunch
.

4.3 Validation constraints

For both FLS and ULS analysis, a series of validity param-

eters must be fulfilled according to the standards and rec-

ommended practice, i.e. [24], [25], and [23]. The amount

of validity parameters depends on the topology of the struc-

ture and the design variables. The amount of parameters

have been reduced utilizing the enforced symmetric design.

The parameters are included as design constraints and are

as follows

4 ≤ αp ≤ 40, αp =
2Lp

Dp

, p = 1, 2, ..., 11 (16a)

0.2 ≤ βp ≤ 1.0, βp =
dp

Dp

, p = 1, 2, ..., 11 (16b)

0.2 ≤ βB
r ≤ 1.0, βB

r =
dB

r

Dr

, r = 1, 2, ..., 9 (16c)

8 ≤ γs ≤ 25, γs =
Ds

2T s

, s = 1, 2, ..., 8 (16d)

ζt ≤ 1.0, ζt =
gt

Dt

, t = 1, 2, 3 (16e)

0.2 ≤ τr ≤ 1.0, τr =
tr

Tr

, r = 1, 2, ..., 9 (16f)

ιw ≤ 70
235

fy
, ιw =

dw

tw
, w = 1, 2, ..., 10 (16g)

Here d is the brace diameter, dB is the adjacent brace diam-

eter in K-joints, and D is the chord diameter. t is the brace

thickness and T is the chord thickness. L is the chord length

and g is the distance between the braces in K-joints. Note

that the γ-constraint is a combination of [23] and [25]. The

lower bound on the ζ-constraint is not included as it is al-

ways fulfilled. The same is true for the angular constraint

described in [23].

The amount of constraints for each validity parameter is

determined using the enforced symmetry conditions. For

instance, the amount of α-constraints has been determined

in the following way. 9 unique chord lengths exist in the

welded connections. Of these 9 unique chord lengths, 11

unique chord length to chord diameter relations can exist

with the chosen topology and design variables. Thus, 11 α-

constraints are needed in total. The ζ-constraint is required

in the SCF calculation of K-joints. As can be seen on Fig.

3, 3 levels of K-joints exist. All 4 K-joints in each level are

welded to a chord that share design variables, thus the to-

tal amount of ζ-constraints is 3. Likewise, the total amount

of constraints ensuring a cross section class of minimum

2, the ι-constraint, is 10. This is due to the simple fact,

that 10 symmetry groups exist. In a similar manner, the re-

maining amount of each validity constraint has been found.

Thus, only a total of 61 validity constraints are needed to

ensure that the entire jacket stays within the allowable va-

lidity bounds.

5 Frequency analysis

The natural frequency of the support structure is determined

by the finite element formulation of a real, symmetric, struc-

tural, eigenvalue problem, see [27].

Kφ j = λ j Mφ j, λ j = ω
2
j , j = 1, 2, ... (17)

Here K is the global stiffness matrix, M is the global mass

matrix, while λ j and φ j represent the eigenvalue and cor-

responding eigenvector, respectively. ω j is the natural fre-

quency of the structure. Note that all eigenvectors have been

M-orthonomalized. Also, the index is in ascending order

with j = 1 as the lowest frequency.

The support structure is designed to lie within the soft-

stiff range, i.e. between the rotor frequency range (1P)

and the blade-passing frequency (3P). Since the operational

speed can vary, the 1P and 3P frequencies are in fact fre-

quency bands. With a 10% safety margin the lowest eigen-

frequency must be within the frequency range between

ω1P = 0.22 Hz and ω3P = 0.31 Hz for the NREL 5 MW

reference turbine, see [14].

In the original design, two eigenfrequencies are identi-

fied within this frequency band, effectively constituting two

constraints. In addition, the third and fourth lowest eigen-

frequencies are constrained to stay above the upper limit of

the 3P frequency band, i.e. above 3 · ω1P.

6 Design Sensitivity Analysis

The derivatives of the objective function and validity range

constraints are explicitly dependent on the design variables.

Consequently, determining the design sensitivities does not

require special techniques and only the sensitivity of the

cost function will be shown in this paper for completeness.

The sensitivities of the buckling constraints, chord face

failure constraints, and punching shear failure constraints

are also independent of the state variables, i.e. the displace-

ments of the jacket, as the loads are assumed independent of

the design variables. Thus, the derivation of the ULS con-

straint sensitivities will not be shown. It must be noted that

the ULS calculations include several equations that depend

on design variables that are not continuously differentiable,

e.g. (10).

To summarize, only the sensitivities of the objective

function, the fatigue constraints, and the frequency con-

straints will be derived.
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6.1 Objective function sensitivity

The cost function defined in (1) depends explicitly on the

design variables through the cross sectional area of each

tubular member. The sensitivity is found by differentiating

the equation with respect to the design variable, xv

d f

dxv

=

ne
∑

j=1

(

ρ j

dA j

dxv

L j

)

(18)

6.2 Fatigue constraint sensitivity

The fatigue constraint, (8), is a function of the design vari-

ables and the state variables, which is also a function of the

design variables. To determine the analytical sensitivities

of such implicit functions two traditional approaches can

be used, either the direct differentiation method or the ad-

joint method. In this section, an efficient sensitivity analysis

is derived using the adjoint method.

In the adjoint method, the computational demanding ex-

pression for the solution of displacement sensitivities is

omitted using Lagrange multipliers. This is achieved by

using an augmented response function, F. This function is

given as

F =

Nk,RF
∑

i=1

(

Dki − ΛT
ki (K∆uki − ∆Pki)

)

(19)

Here Λki is a Lagrange multiplier, commonly known as the

adjoint vector. In order to obtain the sensitivity, the aug-

mented response function is differentiated with respect to

the design variable, xv

dF

dxv

=

Nk,RF
∑

i=1

(

∂Dki

∂xv

+

(

∂Dki

∂∆uki

)T
d∆uki

dxv

−
(

dΛki

dxv

)T

(K∆uki − ∆Pki)

− ΛT
ki

(

dK

dxv

∆uki + K
d∆uki

dxv

−
d∆Pki

dxv

)

)

(20)

In the differentiation, it is assumed that the amount of rain-

flow counts, Nk,RF , and the positions in time of the stress

cycles, are independent of small design changes. Utilizing

the static equilibrium equation, defined in (6), together with

the assumption that the loads are fixed, i.e independent of

design, and rearranging terms, the following expression for

the augmented response function sensitivity is obtained

dF

dxv

=

Nk,RF
∑

i=1

(

∂Dki

∂xv

− ΛT
ki

dK

dxv

∆uki

+

( (

∂Dki

∂∆uki

)T

− ΛT
kiK

)

d∆uki

dxv

)

(21)

The adjoint vector is chosen such that the displacement sen-

sitivity vanishes. To do this, the adjoint vector is found by

solving the adjoint equation, given by

K
T
Λki =

∂Dki

∂∆uki

(22)

As the global stiffness matrix is symmetric, the LU factor-

ized matrix used when solving for the displacement ampli-

tudes can be reused to efficiently solve the adjoint problem.

After determining the adjoint vector, the full derivative of

the response function, which equals the fatigue constraint

function, can be determined by

dDk

dxv

=
dF

dxv

=

Nk,RF
∑

i=1

(

∂Dki

∂xv

− ΛT
ki

dK

dxv

∆uki

)

(23)

The adjoint problem shown in (22) must be solved for each

fatigue sampling point and for every rainflow count. Thus,

the computational demanding part, i.e. solving the adjoint

problem, scales with the amount of rainflow counts for the

adjoint method. However, the number of adjoint problems

to solve can be reduced as described in the following.

Extending the adjoint problem using the chain rule of dif-

ferentiation gives

KΛki =
∂Dki

∂∆σki

∂∆σki

∂∆uki

(24)

Realizing that the partial derivative of stress with respect to

displacement does not change over load cycles for the ap-

plied linear elastic formulation, a reference adjoint vector

can be solved for each fatigue sampling point. The ref-

erence adjoint vector at a fatigue sampling point, Λ
re f

k
, is

given by

KΛ
re f

k
=
∂∆σk1

∂∆uk1

, k = 1, 2, ..., 2688 (25)

The reference adjoint vector can be calculated for any equi-

librium state, here done for the first rainflow count i = 1.

The adjoint vectors for the remaining rainflow entries can

then be found by scaling the reference adjoint vector with

the partial derivatives of the fatigue constraint with respect

to the stress amplitudes

Λki =
∂Dki

∂∆σki

Λ
re f

k
(26)

The partial derivatives of the fatigue constraints with re-

spect to the stress amplitudes are determined analytically.

By this method, the computational demanding part of the

design sensitivity analysis no longer scales with the amount

of rainflow entries but only with the number of fatigue sam-

pling points. For this reason, a large amount of load time-

steps can be included in the analysis. Note that the proposed

method is also valid when the loading is design dependent.

For the problem at hand, the amount of adjoint equations

that must be solved for a traditional approach in the initial

design is 35,448,659, whereas only 2,688 adjoint equations

need to be solved when exploiting the linear relationship.

6.3 Frequency constraint sensitivity

The eigenvalue sensitivity is found using the direct differ-

entiation approach, that is, differentiating (17) with respect

to a design variable, xv. Simple eigenvalues are assumed.

dK

dxv

φ j + (K − λ j M)
dφ j

dxv

=
dλ j

dxv

Mφ j + λ j

dM

dxv

φ j (27)
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By premultiplying (27) with φT
j
, utilizing (17), and that the

eigenmodes have been M-orthonomalized, the sensitivity

has been shown, by e.g. [28] and [29], to be

dλ j

dxv

= φT
j

(

dK

dxv

− λ j

dM

dxv

)

φ j (28)

The derivative of the global mass matrix with respect to the

design variables has been determined analytically.

6.4 Central finite difference validation

All sensitivities have been verified using a central finite dif-

ference scheme with a fixed perturbation. For the central

difference verification of the fatigue sensitivity, only two

mean wind speeds with a third of the load time-steps were

included due to the high computational time, while the ULS

sensitivities have been verified using the full time-history

load.

Using a fixed perturbation size of xv · 5e−7, very precise

results were achieved. In fact, the highest mean absolute

percentage error of all the fatigue constraints is only 0.54%.

This is a strong indication that the analytical gradients are

implemented correctly. However, a few gradients deviates

significantly which is studied in the following.

By investigating the behaviour of the finite difference ap-

proximated sensitivities at different sampling points, it is

found that a severe perturbation size dependency exists.

In Fig. 5 two different fatigue sensitivities are shown with

varying perturbation size. It can clearly be seen that the

perturbation size that yields accurate results at one sampling

point, will yield inaccurate results at the other. To conclude,

great care must be taken if using finite difference approxi-

mations as the gradients can vary greatly in magnitude, and

more alarmingly in sign, depending on the applied pertur-

bation.

7 Optimization problem

Having defined the objective function, the constraint func-

tions, and enforcing design variable bounds ranging from

50% to 200% of initial values, denoted xv and xv, respec-

tively, the optimization problem can be written as:

min.
x

f (x) (mass)

s.t. Dk ≤ 1/3, k = 1, 2, ..., 2688 ( f atigue)

Be ≤ 1, e = 1, 2, ..., 100 (buckling)

Ge ≤ 1, e = 1, 2, ..., 100 (buckling)

Cl ≤ 1, l = 1, 2, ..., 136 (c. f ace)

S l ≤ 1, l = 1, 2, ..., 136 (punch)

ω2
1P ≤ λ j ≤ ω2

3P, j = 1, 2 ( f req.)

(3ω1P)2 ≤ λ j j = 3, 4 ( f req.)

4 ≤ αp ≤ 40, p = 1, 2, ..., 11 (validity)

0.2 ≤ βp ≤ 1, p = 1, 2, ..., 11 (validity)

0.2 ≤ βB
r ≤ 1, r = 1, 2, ..., 9 (validity)

8 ≤ γs ≤ 25, s = 1, 2, ..., 8 (validity)
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Figure 5: Deviation from analytical sensitivities when ap-

proximating the fatigue sensitivities with a central finite dif-

ference scheme using a fixed perturbation. It is seen that the

perturbation size that yields accurate results for one sensi-

tivity, will yield inaccurate results for the other. Both fa-

tigue sampling points are on the chord side in a welded X

connection, where sampling point 2908 belong to symme-

try group 9 and sampling point 2134 belong to symmetry

group 3. x8 is the diameter in symmetry group 8.

ζt ≤ 1, t = 1, 2, 3 (validity)

0.2 ≤ τr ≤ 1, r = 1, 2, ..., 9 (validity)

ιw ≤ 70
235

355
, w = 1, 2, ..., 10 (validity)

xv ≤ xv ≤ xv, v = 1, 2, ..., 20 (bounds)

The optimization problem is solved using the Sequential

Linear Programming (SLP) method. More specifically, by

using the CPLEX optimizer by ILOG IBM. The reason be-

hind the choice of optimizer is twofold. Firstly, the op-

timizer can robustly and efficiently handle the very large

number of non-linear constraints. Secondly, there are many

conditions that can switch during optimization, e.g. thick-

ness correction and material terms in the S-N curve, flexu-

ral reduction factors for buckling etc. These functions are

not continuously differentiable, which can lead to signif-

icant changes in the Hessian during optimization using a

Sequential Quadratic Programming (SQP) optimizer. How-

ever, it must be stated that the problem is not restricted to

SLP optimizers.

Every constraint has been reformulated into less than or

equal to inequality constraints, and then scaled with respect

to the right hand side. A vector containing all constraints,

excluding design variable bounds, can thus be written as

g f (x) ≤ 0, f = 1, 2, ..., 3267 (29)

The subscript f refers to the constraint number.

7.1 Merit functions

In order to ensure that the linearized problem is always

feasible, the constraint function is reformulated into a so-

called merit function, previously applied and described in
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e.g. [30]. The merit function is given by

Φ f = g f (x) − y f ≤ 0, ∀ f (30)

Here y f is an artificial optimization variable, sometimes

referred to as a slack variable, that can always close the

gap when one or more of the real constraints are infeasi-

ble. However, to ensure that the optimizer will try to reduce

the value of the artificial optimization variable, it is added

as a penalty term to the objective function. This penalized

objective function, or merit objective function, is given by

Φ0 = f (x) + a

3267
∑

f=1

(

cy f +
1

2

(

y f

)2
)

(31)

Here c is a positive penalization constant set to 100, and a is

a scaling constant set to unity. Because all constraints have

been scaled with their respective right hand side, any pos-

sible constraint violation is penalized equally no matter the

type of constraint. Consequently, all constraints are treated

as equally important, and thereby a single penalization pa-

rameter can be applied for all constraints.

Having shown the merit objective and constraint func-

tion, the optimization problem solved using the SLP method

can be formulated as

min.
x

Φ0(x) (32a)

s.t. Φ f (x) ≤ 0, ∀ f (32b)

x(n)
v ∈ ML, ∀v (32c)

y f ∈ [0,∞[, ∀ f (32d)

In (32c) the set ML constitutes the design variable bounds.

These bounds are not static as they are updated in each

design iteration (n) using an adaptive move limit strategy

based upon the response of a convergence filter. The design

variables are still constrained within the original bounds.

7.2 Global convergence filter

A global convergence filter by [31] is applied to assist in a

stable convergence of the SLP optimizer. The convergence

filter can be described as a line search method. The search

method utilizes the current design value, a linear predic-

tion, and possible constraint violations in determining if a

new iterate should be accepted. If a new design is accepted,

the move limits are increased. However, if the design is

rejected, the move limits are decreased. The parameters ap-

plied in the filter are taken from [32]. Using the notation

from [31], they are γ = 104, β = 1 − γ, σ = 2γ, and δ = γ.

7.3 Adaptive move limit strategy

To control the progression of the SLP optimizer, the adap-

tive move limit strategy adjusts the bounds of each individ-

ual design variable. The variable limits are updated by

x(n+1)
v ∈

[

max
(

x(n)
v − ∆(n+1)

v , xv

)

, (33)

min
(

x(n)
v + ∆

(n+1)
v , xv

)]

Here ∆
(n+1)
v is the new allowable change. Effectively, the

algorithm is set to increase the default limits by 15% if a

design is accepted by the global convergence filter. How-

ever, if a design variable changes non-monotonically, i.e. in

an oscillating manner, the move limit is decreased by 50%.

Furthermore, if the new design is rejected, the move limits

are reduced by 50% for all design variables. The linearized

problem is again presented to the optimizer, but now with

reduced move limits. The new design is then reevaluated

by the global convergence filter. This procedure is repeated

until either the design is accepted or a convergence criterion

is reached. In this work, the optimization is set to stop when

either one of the two following criteria is satisfied

||x(n) − x
(n−1)||

|| x − x ||
< 10−4 or

√

(

Φ
(n−1)

0
−Φ(n)

0

)2
< 0.01 (34)

The initial allowable change is set to 10%. At any optimum,

1% infeasibility of any constraint is allowed.

8 Optimization results

The optimization problem is solved very efficiently using

the proposed procedure. In only 23 iterations the conver-

gence criteria are fulfilled, and the mass is reduced by 40%

while all constraints are satisfied. Only 36 function evalu-

ations of the finite element model are needed in total. The

obtained design values are shown in Table 2. The optimized

jacket contra the original jacket is illustrated on Fig. 6.

Table 2: Original and optimized design variables in meters.

Colors refer to symmetry groups illustrated in Fig. 6.

d(init) d(opt) t(init) t(opt)

Group 1 - Dark Blue 0.8000 0.5034 0.0200 0.0126

Group 2 - Red 1.2000 0.9266 0.0500 0.0315

Group 3 - Yellow 0.8000 0.5941 0.0200 0.0149

Group 4 - Green 1.2000 0.9266 0.0350 0.0223

Group 5 - Cyan 0.8000 0.5795 0.0200 0.0145

Group 6 - Blue 1.2000 0.7854 0.0350 0.0220

Group 7 - Magenta 0.8000 0.5801 0.0200 0.0145

Group 8 - Dark Red 1.2000 0.7546 0.0350 0.0255

Group 9 - Dark Yellow 0.8000 0.5680 0.0200 0.0154

Group 10 - Dark Green 1.2000 0.9661 0.0400 0.0256

The optimized design variables are not directly applica-

ble, as members are not mass produced with these dimen-

sions. Thus, the real mass reduction of the jacket is less

if rounding to available diameters and thicknesses is per-

formed.

During the optimization, one fatigue constraint became

active in just 4 iterations. At this stage in the optimization

process, the mass reduction is 35.1%. However, the opti-

mization continues to reduce the mass in a stable and robust

manner, to a total of 39.9% as compared with the initial de-

sign.

In Fig. 7, the evolution of the objective function and the

highest constraint value of all types of structural constraints

can be seen.

Several constraints are active at the optimum. Three va-

lidity constraints are active, two of equation (16a) and one

of equation (16d). While active validity constraints may not
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Figure 6: Original and optimized jacket structure. Light

gray beams are not optimized.
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Figure 7: Objective function and constraint function value

evolution during optimization. First y-axis refers to the ob-

jective function, while the second y-axis refers to all con-

straint values. A constraint is considered active at a value

of zero or higher.

represent real structural integrity issues but rather measure-

ments of the modeling credibility, they directly affect the

obtained design.

As the fatigue constraints behave highly non-linear, fa-

tigue constraints within 5% of the constraint limit will in

the following be considered active. Obviously, this consid-

eration is only an assessment made from a structural design

engineers point of view. With this definition, 17 fatigue

constraints are active at the optimum. The active fatigue

constraints are located at a variety of locations.

In Section 1 there is two active fatigue constraints. One

is located in a T/Y connection and the other is located in an

X connection. There are seven active fatigue constraints in

Section 2, where three are located in X connections and four

are located in K connections. Moreover, five fatigue con-

straints in X connections and one constraint in a K connec-

tion are active in Section 4. Lastly, two fatigue constraints

are located at butt welded connections near the transition

piece. The active fatigue constraints belong to beam ele-

ments in symmetry groups 3, 5, 9, and 10. All active fatigue

constraints in connections are active on the chord side of the

weld.

Two ULS constraints are active at the optimum. Specif-

ically, a chord face failure constraint of an element in a K

connection in Section 3 is active and a chord face failure

constraint in a T connection in the frame below Section 1

is active. No other ULS constraint are within 20% of being

active. However, due to the highly non-linear behaviour of

the ULS constraints, some may actually be very close to be-

coming active. For instance, the first active chord face fail-

ure constraint increases from a normalized constraint value

of -0.33 to being active due to a change in objective func-

tion value of only 2.8%. The active ULS constraints belong

to beam elements in symmetry groups 1 and 7.

No local member buckling constraint becomes active

during the optimization. Furthermore, the linear global

buckling analysis showed a minimum buckling load fac-

tor of 42 for all 30,000 ULS load time-steps. While linear

buckling analyses may be nonconservative, a buckling load

factor of 42 is well beyond the safe limit.

No frequency constraints become active during the opti-

mization. It must be noted that the original design conve-

niently has lower natural frequencies very near the upper

bound of the allowable frequency band between the 1P and

3P frequencies, see [15]. This allows much freedom in the

optimization loop, as a decrease in overall stiffness occurs

during the optimization.

In this framework, it is clear that a multitude of struc-

tural details are governing for the sizing design of this jacket

topology. This is true as both vertical members and X-,

K-, and T-welded connections affect the optimized design,

where both FLS and ULS are important. Also, the active

constraints are widely spread throughout the structure. Al-

though this means that a large number of non-linear con-

straints must be considered, the optimization process, at

least for this topology, is very robust and efficient.

No assessment has been made on the accuracy of the

loading conditions when the design changes. The maxi-

mum horizontal jacket top displacement during the entire

ULS analysis has increased by 0.08 m at the optimized de-

sign when compared to the initial design. As the stiffness

decreases, the dynamic effects on the aerodynamic and hy-

drodynamic loading increase. However, the turbine, the

tower, and the site conditions remain unaltered. This is still

deemed governing for the aerodynamic loading conditions

in this optimization problem. Furthermore, to support the

validity of the preliminary design, the wave and gravita-

tional loads become increasingly conservative as the outer

diameters and overall mass of the beam members decrease

during the optimization, respectively.

9 Conclusion

In this work, an efficient method of determining analyti-

cal design sensitivities of finite-life fatigue constraints has

been presented. The method is efficient for optimization

problems with many more fatigue constraints than design

variables. The effectiveness has been demonstrated on the

OC4 reference jacket, where also ultimate limit state and
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frequency constraints have been included. All design con-

straints are based on international standards. The optimiza-

tion has been solved in just 23 iterations and the obtained

design has a decrease in overall mass of 40% as compared

to the initial design. The optimization is solved using Se-

quential Linear Programming where handling the very large

number of non-linear constraints has been done in an effi-

cient and robust manner.

A large number of time-history loads representing hy-

drodynamic and aerodynamic loading have been applied in

the fatigue analysis. This is possible due to the proposed

method, where the amount of adjoint problems to be solved

in the design sensitivity analysis of the fatigue constraints,

is independent of the amount of applied load time-steps.

The optimization results indicate that the OC4 jacket is

designed overly conservative. Also, the results indicate that

the design of a jacket structure is indeed a complex task, as

different types of constraints are active at the optimum. As

the proposed optimization problem is a non-convex prob-

lem, a global optimum can not be guaranteed. However, the

active constraints are located in a variety of places which

indicates a good optimum.

In conclusion, the optimization can be efficiently used

to obtain optimized preliminary jacket designs for offshore

wind turbines subjected to wind- and wave loads. The opti-

mization considers fatigue, buckling, failure in welded de-

tails, and eigenfrequencies, when optimizing member diam-

eter and thickness, such that mass minimized jacket struc-

tures are obtained.
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