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Abstract

The use of immune algorithms is generally a time-intensive process—especially for problems with numerous variables. In the
present paper, we put forward a distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm that
is implemented using the message passing interface (MPI). The proposed algorithm comprises three layers: objective, group and
individual layers. First, to address each objective in a multi-objective problem, a subpopulation is used for optimization, and an
archive population is used to optimize all the objectives. Second, the numerous variables are divided into several groups. Finally,
individual evaluations are allocated across many core processing units, and calculations are performed in parallel. Consequently,
the computation time is greatly reduced. The proposed algorithm integrates the idea of immune algorithms, which explore sparse
areas in the objective space, and uses simulated binary crossover for mutation. The proposed algorithm is employed to optimize
the 3D terrain deployment of a wireless sensor network, which is a self-organization network. In our experiments, through compar-
isons with several state-of-the-art multi-objective evolutionary algorithms—the cooperative coevolutionary generalized differential
evolution 3, the cooperative multi-objective differential evolution, the multi-objective evolutionary algorithm based on decision vari-
able analyses and the nondominated sorting genetic algorithm III—the proposed algorithm addresses the deployment optimization
problem efficiently and effectively.

Keywords: decision variable analysis (DVA), cooperative coevolution (CC), large-scale optimization, message passing interface
(MPI), wireless sensor networks (WSNs), 3D terrain deployment

1. Introduction

In the wireless sensor network (WSN) deployment optimiza-
tion procedure [1], wireless sensor nodes can be optimized via
self-organization [2] to maximize the Coverage, optimize the
Connectivity Uniformity and minimize the Deployment Cost.
With the rapid development of sensor and wireless communi-
cation technologies, WSNs have been applied to various fields.
The work of [3] presented an air temperature monitoring appli-
cation for WSNs. Shen et al. [4] described the wireless sensor
nodes for a medical service. Zhang et al. [5] illustrated the
WSN k-barrier coverage problem. Zhou et al. [6] researched
the energy issue, regarding which clustering and data compres-
sion were studied. Zhang et al. [7] utilized mobile sinks to
alleviate the communication burden.

In addition, the response of the human immune system
to antigens can be viewed as a process of self-organization.

∗Corresponding authors.
E-mail addresses: p.yang@ljmu.ac.uk (Po Yang), caobin@scse.hebut.edu.cn
(Bin Cao)

Based on this concept, the clonal selection algorithm (CLON-
ALG) [8], which can be used for global optimization problems
(GOPs) and multi-objective optimization problems (MOPs) [9],
was proposed. Other nature-inspired algorithms also follow the
self-organizing procedure. For example, Xue et al. [10] de-
scribed the self-adaptive artificial bee colony algorithm, which
is different from the immune algorithm.

In the real world, many problems require several (usu-
ally conflicting) objectives to be considered simultaneously.
Multi-objective evolutionary algorithms (MOEAs) [11, 12, 13]
are capable of producing a plurality of solutions during one
run, which is convenient for approximating the Pareto front
(PF). For NP-hard problems, evolutionary algorithms (EAs)
[14, 15, 16, 17] can usually converge to near-optimal solutions
using limited computational resources [18] within a reasonable
time compared to brute force and deterministic methods.

The first multi-objective immune algorithm (MOIA) was
proposed in [19]. In this study, the immune algorithm (IA) was
integrated into the genetic algorithm (GA) to improve the selec-
tion of individuals for evolution. Gong et al. [20] presented the
nondominated neighbor immune algorithm (NNIA), which se-
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lects a small quantity of nondominated individuals in a sparse
area for cloning, recombination and mutation. In [21], sim-
ulated binary crossover (SBX) and differential evolution (DE)
were combined and applied to cloned individuals in a hybrid
evolutionary framework for MOIAs called HEIA, which per-
formed well for both unimodal and multimodal problems.

EAs are based on an iterative evolution of the population
(the solutions), which is time-consuming—especially for ex-
pensive problems. Distributed evolutionary algorithms (dEAs)
[22, 23] allocate the tedious computational burden across nu-
merous computational nodes, greatly reducing the required
time. Cloudde [24] used DEs with various parameters to op-
timize multiple populations in a distributed parallel manner,
yielding a promising performance from both the effect and effi-
ciency aspects. [25] provided a comprehensive study concern-
ing parallel/distributed MOEAs. Utilizing the multi-objective
optimization algorithm based on decomposition (MOEA/D)
[13], parallel MOEA/Ds (pMOEA/Ds) [26] [27] were pro-
posed.

With the arrival of “big data”, many complex problems have
emerged; solving such problems is both time-consuming and
storage-consuming [28, 29]. Similarly, many MOPs now have
numerous variables (e.g., more than 100 variables [30]). Some
examples include classification [31], clustering [32], and rec-
ommendation systems [33]. However, the goal of traditional
MOEAs is to solve multi-objective small-scale optimization
problems (MOSSOPs). Consequently, the traditional algo-
rithms may be incapable of tackling multi-objective large-scale
optimization problems (MOLSOPs) because of the “curse of di-
mensionality”. To optimize numerous variables, some promis-
ing approaches first separate the variables into groups and then
optimize them in a cooperative coevolutionary (CC) [34] man-
ner. For large-scale global optimization problems (LSGOPs),
many grouping mechanisms have been applied, including fixed
grouping [34], random grouping [35], the Delta method [36],
dynamic grouping [37], differential grouping (DG) [38], global
differential grouping (GDG) [39] and graph-based differential
grouping (gDG) [40]. Antonio et al. proposed the cooperative
coevolutionary generalized differential evolution 3 (CCGDE3)
method [41], which used fixed grouping.

MOLSOPs differ from LSGOPs in that no single solution
optimizes all the conflicting objectives; instead, a solution set
should be generated to approximate the PF. In MOLSOPs, vari-
ables have different properties [42], which can be classified as
follows:

1. position variables, which affect only the diversity of the
solution set;

2. distance variables, which affect only the convergence of
the solution set; and

3. mixed variables, which affect both the diversity and the
convergence of the solution set.

Therefore, position variables should be permuted to approxi-
mate the PF as comprehensively as possible. However, distance
variables should be optimized so that they can closely approach
the PF.

To identify these variable types, the multi-objective evo-
lutionary algorithm based on decision variable analyses
(MOEA/DVA) [30] utilizes a mechanism called decision vari-
able analyses (DVA). The position as well as mixed variables
are categorized as diversity-related variables, while distance
variables, as convergence-related variables. The convergence-
related variables are allocated to multiple groups that are then
optimized under the CC framework.

The use of multiple populations can impact the optimization
performance. In cooperative multi-objective differential evolu-
tion (CMODE) [43], each objective is optimized by a subpop-
ulation, and an archive is used to maintain good solutions and
optimize all objectives. This approach has yielded good exper-
imental results.

Compared to MOSSOPs, designing parallel/distributed
MOEAs for MOLSOPs will be more beneficial. In this pa-
per, we propose the distributed parallel cooperative coevolu-
tionary multi-objective large-scale immune algorithm (DPCC-
MOLSIA), which is aimed at solving MOLSOPs effectively
and efficiently.

The contributions of this paper can be summarized as fol-
lows:

1. Each objective is optimized by a subpopulation. Thus,
the exploration with respect to each objective is enhanced,
and all objectives are comprehensively optimized by an
archive. Variables are grouped according to their prop-
erties and interactions, contributing to effective optimiza-
tion.

2. The idea of the IA is introduced, more computational re-
sources are used to explore sparse areas in the objective
space, and SBX is utilized for evolution.

3. We construct a three-layer parallel structure. The evalu-
ations of individuals in different groups of multiple pop-
ulations can then be performed in parallel, which greatly
reduces the computation time.

The remainder of this paper is organized as follows: Sec-
tion 2 provides some preliminary information required for this
paper. The details of the DPCCMOLSIA are discussed in Sec-
tion 3. Then, in Section 4, we describe the experimental study
and present the corresponding analyses. Finally, Section 5 con-
cludes this paper.

2. Preliminaries

2.1. MOP and Variable Properties
An MOP involves several objectives that usually conflict with

each other. Therefore, addressing an MOP comprises obtaining
a solution set that approximates the PF. For the minimization
problem, we have the following formula:

Minimize F (X) = { f1 (X) , f2 (X) , ..., fM (X)} , (1)

where X = (X1, X2, ..., XD) is a point in the solution space<D.
Here, D denotes the variable quantity, fi, i = 1, 2, ...,M, repre-
sents the objectives, and F (X) denotes the point in the objective
space<M that corresponds to X.
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Figure 1: Image of solution sets for the MOP formulated in Eq.
2, sampled by altering one variable while holding the others
constant at 0.5.

Due to the conflicts among objectives, the types of different
variables involved can be numerous; correspondingly, variables
can be classified as position, distance, and mixed variables. For
instance, consider the following MOP:

{
f1 = 0 + x1 + sin (4πx2) + ex3(x4−0.05) + x2

5
f2 = 1 − x1 − cos (4πx2) + x2

3 + x3
4 + x2

5
s.t. xi ∈ [0, 1], i = 1, 2, 3, 4, 5,

(2)

where f1 and f2 are two objectives and x1, x2, x3, x4 and x5 are
decision variables.

Fig. 1 illustrates the solution sets sampled by altering each
variable individually while holding the others constant at 0.5.
From the image, we can determine the properties of the vari-
ables: x1 is a position variable, as it influences only the diver-
sity; x2 is a mixed variable, as it influences both the diversity
and the convergence; x3 and x4 are distance variables, though
their relative positions change only slightly with variation of
the values; and x5 is a distance variable, as it influences only
the convergence.

2.2. CC

CC [34] divides a great quantity of variables into several sub-
components that are optimized separately. For fitness evalua-
tion, the target subcomponent is recombined with representa-
tives from the other components to constitute a complete solu-
tion.

2.3. Immune Algorithm

The CLONALG was proposed in [8]; its process is detailed
in Algorithm 1. In the CLONALG, an antibody denotes a can-

Algorithm 1: CLONALG

Input: number of variables: D;
number of antibodies: NAb;
number of generations: Ngen;
antibodies: POPAb;
number of antibodies to be selected: Nsel.

Output: final antibodies: POPAb;
final affinities: AFFAb.

/* Initialization */

1 G = 0;
2 Randomly initialize POPAb, AFFAb = f (POPAb);
3 Selected antibodies POPsel = φ, AFFsel = φ;
4 Reproduced antibodies POPrep = φ, AFFrep = φ;
/* Main Loop */

5 while G < Ngen do
6 Selection according to AFFG

Ab:
7 POPG

Ab → POPG
sel, AFFG

Ab → AFFG
sel;

8 Cloning according to AFFG
sel:

9 POPG
sel → POPG

rep;
10 Hypermutation:

11 POPG
rep → P̃OP

G
rep, ÃFF

G
rep = f

(
P̃OP

G
rep

)
;

12 Insertion:

13 POPG
Ab + P̃OP

G
rep → POPG+1

Ab , AFFG+1
Ab = f

(
POPG+1

Ab

)
;

14 G + +;

Algorithm 2: DPCCMOLSIA

1 Initialization;
2 Variable property and interaction analyses;
3 Variable grouping;
4 Parallelism implementation;
5 Optimization;

didate solution, the optimal solution is seen as the antigen, and
the affinity represents the fitness.

3. The Proposed Algorithm: DPCCMOLSIA

Algorithm 2 lists the main steps in the framework of the
DPCCMOLSIA. The main procedure is detailed in the follow-
ing subsections.

3.1. Variable Property and Interaction Analyses

Variables are classified as position variables, distance vari-
ables and mixed variables according to their influences on di-
versity and convergence. At the end of this process, the posi-
tion variables and mixed variables are categorized as diversity-
related variables, and the distance variables are categorized as
convergence-related variables. For the MOP formulated in Eq.
2, x1 and x2 are classified as diversity-related variables, while
x3, x4 and x5 are classified as convergence-related variables.
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3.2. Variable Grouping
Because more than one objective exists, the interactions

among variables are obtained with respect to each objective by
adopting the idea of gDG [40]. The diversity-related variables
are separated into a single group. We group the convergence-
related variables according to the following idea: if two vari-
ables interact with each other for any objective optimized in the
present subpopulation/archive, we consider them to be interact-
ing. Take the MOP mentioned above in Eq. 2 for example,
x1 and x2 are diversity-related variables; thus, they are grouped
together. For the convergence-related variables, x3 and x4 in-
teract in f1 and act independently in f2; thus, we allocate them
to a single group in subpopulation 1 (only optimizing f1), to
separate groups in subpopulation 2 (only optimizing f2), and to
the same group in the archive (optimizing both f1 and f2). x5 is
independent from other variables for both f1 and f2; thus, it is
allocated to another separate group.

3.3. Parallelism Implementation
For MOLSOPs, especially expensive ones, parallelism can

be beneficial. The DPCCMOLSIA is a distributed parallel al-
gorithm implemented using the MPI. In the DPCCMOLSIA,
the parallel structure has three layers.

Assuming that NCPU CPU resources are available, the vari-
ables are divided into NG

i groups. Here, i = 1, 2, ...,M + 1—
the subpopulations are represented by i = 1, 2, ...,M, and the
archive is represented by i = M + 1. NP individuals exist in
each subpopulation and in the archive population. Then, we
have the following equation:

NCPU
i =

NG
i∑M+1

j=1 NG
j

× NCPU

s.t. i = 1, 2, ...,M + 1,
(3)

where NCPU
i denotes the quantity of CPUs allocated to the sub-

population i or the archive.

NCPU
i, j =

NCPU
i

NG
i

s.t. j = 1, 2, ...,NG
i ,

(4)

where NCPU
i, j is the quantity of CPUs in the charge of group j in

subpopulation i or the archive.
The evaluations of the individuals are allocated across the

multiple CPUs in each group.

NCPU
i, j,k =

NP
NCPU

i, j
s.t. k = 1, 2, ...,NCPU

i, j ,
(5)

where NCPU
i, j,k is the number of individuals that are assigned to

CPU k of group j in subpopulation i or the archive.
Therefore, based on the three-layer parallel structure, the

evaluations of the individuals in each group of all M + 1 pop-
ulations are conducted in parallel, which substantially reduces
the computation time.

To guarantee the optimization performance, information
must be shared among the groups. Hence, the communication

Algorithm 3: Evolution
Input: generation number: Ngen.
Output: final population: POP f inal.

1 for G = 1→ Ngen do
2 Evolve all variable groups in the subpopulations

(Algorithm 4) and the archive (Algorithm 5) in parallel;
3 Exchange information among the groups;

4 Gather all the individuals from all groups to generate the
final population POP f inal;

strategy should be properly designed [44, 45]; we adopt the von
Neumann topology.

3.4. Evolution Combined with the Idea of the IA

The overall evolution process is provided by Algorithm 3.
The evolution of each group in the subpopulations (Algorithm
4) or in the archive (Algorithm 5) is described in the following
subsections.

3.4.1. Subpopulations
In Line 2 of Algorithm 4, in the evolution, tour selection

is employed to choose 2 individuals from the full population.
Then, in Lines 3 and 4, we use SBX to evolve variables in the
target group and integrate them with other variables to form a
complete individual.

X̃i, j =

{
S BX

(
Xi, Xr1 , Xr2 , j

)
if j ∈ index

Xr3, j otherwise, (6)

where X̃i denotes the generated new solution, Xi is the target
parent individual, Xr1 and Xr2 are the 2 reference individuals,

Algorithm 4: Evolution of One Variable Group in Subpop-
ulations

Input: number of individuals: NP;
population: POP1.

Output: new population: POPnew1.
/* Evolution */

1 for i = 1→ NP do
2 Select 2 reference individuals;
3 Use SBX to generate offspring i;
4 Combine the generated offspring with other variables

to construct a complete solution;
5 Perform polynomial mutation;

/* Evaluation */

6 Allocate the generated solutions to the CPU resources in
the group and perform the evaluations in the CPUs in
parallel;

7 Collect the fitness values from the CPUs;
/* Refinement */

8 Combine the generated solutions with the old population;
9 Obtain NP individuals with respect to their fitness values

of the considered objective→ POPnew1;

4



index contains the variables to be optimized by the present
group, and Xr3 is integrated with the optimized variables to form
a complete solution, which has the following form:

r3 =



i if r <
G

Ngen
r4 else if r′ < 0.5
r5 otherwise,

(7)

where G denotes the present generation number and Ngen de-
notes the maximum generation number. Here, r and r′ are ran-
dom numbers generated uniformly within [0.0, 1.0], and r4 and
r5 are two individuals selected via tour selection. Then, in Line
5, polynomial mutation is performed.

In Lines 6 and 7, to evaluate the newly generated solutions,
we use parallelism to alleviate the computational burden. This
is the third layer of the parallel structure of the DPCCMOLSIA.

Finally, in Lines 8 and 9, the NP best individuals with respect
to the considered objective are preserved.

3.4.2. Archive
Traditionally, in each generation, all individuals take part in

evolution. However, this paper introduces the idea of the IA, in
which, in each generation, we select several good individuals
and produce NP offspring, the entire process of which is illus-
trated in Algorithm 5. In detail, the selection of individuals in
Line 1 is determined by two criteria: nondominance and crowd-
ing distance. If the quantity of nondominated individuals is less
than Nsel, all of them are selected for cloning; otherwise, we se-

Algorithm 5: Evolution of One Variable Group in Archive

Input: number of individuals: NP;
population: POP2;
maximum number of individuals to be selected: Nsel.

Output: new population: POPnew2.
/* Selection */

1 Select Nsel individuals according to the Pareto dominance
and crowding distance;
/* Clone */

2 Clone the selected individuals to a total number of NP;
/* Evolution */

3 for i = 1→ NP do
4 Select 2 reference individuals;
5 Use SBX to generate the offspring i;
6 Combine the generated offspring with other variables

to construct a complete solution;
7 Perform polynomial mutation;

/* Evaluation */

8 Allocate the generated solutions to the CPU resources in
the group and perform evaluations on the CPUs in parallel;

9 Collect the fitness values from the CPUs;
/* Nondominated sorting */

10 Combine the generated solutions with the old population;
11 Obtain NP individuals according to the Pareto dominance

and crowding distance→ POPnew2;

lect the Nsel individuals that have larger crowding distances. In
the cloning process in Line 2, the quantity of replicates of each
selected individual depends on the crowding distance [21].

NC
i =

disti∑Nsel
j=1 dist j

× NP, (8)

where NC
i represents the number of replications of selected in-

dividual i and disti is its crowding distance in the population,
which is calculated as follows:

disti =
M∑

m=1
distm

i , (9)

where distm
i denotes the crowding distance of the i-th individual

with respect to objective m, with

distm
i =



∞ if (i)∗ = 1
0 if (i)∗ = NP

f̃ (i)∗+1
m − f̃ (i)∗−1

m

f̃ NP
m − f̃ 1

m

otherwise.
(10)

f̃ (i)∗
m is the f i

m sorted in descending order, and (i)∗ denotes the
new index of the i-th individual in the sorted sequence.

disti =

{
2 × distmax

i if disti = ∞
disti otherwise, (11)

where distmax
i is the maximum crowding distance. Because ∞

values are assigned to the crowding distances, to calculate NC
i ,

we have to convert them.
In Line 4 of the evolution process, we select 2 individuals

from among the Nsel selected individuals if Nsel > 2; otherwise,
the selection scope is the whole population. Then, in Lines 5
and 6, we use SBX to generate the target individual. For the in-
tegration, r4 and r5 (Eq. 7) are 2 randomly selected individuals
from the Nsel best individuals used for cloning when Nsel > 2
or from the whole population when Nsel ≤ 2. Then, in Line 7,
polynomial mutation is performed.

Finally, in Lines 10 and 11, we combine the new individu-
als with the present population to obtain the NP best individu-
als according to the Pareto dominance and crowding distance.
When the quantity of nondominated individuals is below NP,
several dominated individuals will be preserved.

4. Experimental Research: Application to 3D Terrain De-
ployment of Heterogeneous Directional Sensor Networks

4.1. 3D Deployment Problem and Terrain Data

We use the 3D deployment problem proposed in [1], which
includes three objectives: Coverage, Connectivity Uniformity
and Deployment Cost. We also utilize the same real-world 3D
terrain data (Fig. 2), which are composed of plain (Fig. 2a),
hilly (Fig. 2b) and mountainous (Fig. 2c) terrains. These three
terrains have different characteristics that are used to verify the
proposed algorithm with respect to various conditions.

5



(a) Plain Terrain (b) Hilly Terrain (c) Mountainous Terrain

Figure 2: Illustration of 3D terrain data.

4.2. Parameter Setup

We compare the DPCCMOLSIA with the CCGDE3 [41],
the CMODE [43], the MOEA/DVA [30] and the nondominated
sorting genetic algorithm III (NSGA-III) [46] in terms of ad-
dressing the deployment optimization problem.

For all the algorithms, the optimization process is performed
24 times. The fitness evaluations (FEs) are set to 104 ×D; here,
D = 2 × 102.

To ensure fair comparison, we set the population size, NP,
to 120 with respect to all algorithms. Specifically, for the
CCGDE3, the population is split into 2 subpopulations, each of
which has 60 individuals. For CMODE, because there are 3 ob-
jectives that must be optimized, we use 3 subpopulations, each
of which has 20 individuals, and set the maximum size of the
archive to 120. For the MOEA/DVA and NSGA-III, we simply
set NP to 120. For the DPCCMOLSIA, each of the subpopu-
lations and the archive population has 120 individuals. Finally,
we select 120 individuals from all populations.

DE is used in the CCGDE3, and we set F = 0.5 and CR =

1.0. SBX and polynomial mutation are used in the MOEA/DVA,
NSGA-III and DPCCMOLSIA, and the distribution indexes are
set to ηc = ηm = 20. The probabilities of crossover and muta-
tion are set to pc = 1.0 and pm = 1.0/D, respectively.

For MOEA/DVA, the probability of selecting individuals
among the neighborhood is 0.9, the neighborhood size is 0.1 ×
NP and the replace limit is 0.01 × NP.

For DVA in MOEA/DVA, the number of control variable
analysis is NCA = 20 and the number of interdependence anal-
ysis is NIA = 6. For the variable property and interaction anal-
yses in DPCCMOLSIA, NCA = 20 and NIA = 1.

Additionally, for the DPCCMOLSIA, we set Nsel = 0.1×NP,
and the number of CPUs used is 72, while other algorithms are
serial.

4.3. Performance Indicator
Because the optimal solutions are unknown, we use the hy-

pervolume (HV) indicator [47] and visualize all the obtained
solution sets. The HV indicator translates the solution set qual-
ity into a single evaluation index. The higher the HV indicator
value, the better the optimization performance.

4.4. Results and Analyses
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Figure 3: Visualization of solutions for all terrains.

First, we demonstrate all the obtained final nondominated so-
lutions after 24 runs of each algorithm on each of the three ter-
rains in Fig. 3. Here, P − ∗ denotes the results for the plain
terrain, H −∗ denotes the results for the hilly terrain, and M −∗
denotes the results for the mountainous terrain.

Fig. 3 shows that the characteristics are quite different for
the different terrains. In general, for the plain terrain, all the
algorithms perform better in terms of Coverage. For the hilly
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terrain, the algorithms tend to perform well in terms of the De-
ployment Cost objective. Finally, for the mountainous terrain,
the performances of the algorithms are far inferior to their per-
formances for the other two terrains. We can comment on the
above phenomena as follows:

1. Because the plain terrain is flatter than the other two ter-
rains, it is easier to achieve better Coverage.

2. The hilly terrain has fluctuations in elevation, and the algo-
rithms tend to deploy the sensor nodes in low-lying areas,
thus guaranteeing better Deployment Cost.

3. The mountainous terrain has severe elevation changes,
which makes it much more difficult to address compared
with the other two terrains. Consequently, the algorithms
exhibit poor performances for this terrain.

In the following, we give detailed results of all algorithms
with respect to each terrain and provide corresponding perfor-
mance analyses.

4.4.1. Plain Terrain
The evolutionary curves of the HV indicator values are illus-

trated in Fig. 4.
We can see that the DPCCMOLSIA has the best perfor-

mance (0.6864839), followed by the MOEA/DVA (0.6582590),
the CMODE (0.6290526), and the NSGA-III (0.5526697); the
CCGDE3 has the worst performance (0.3539973). Moreover,
the DPCCMOLSIA has the fastest convergence speed, but
less improvement occurs in the consequent process, while the
MOEA/DVA is quite inferior in the beginning stage but im-
proves significantly in the middle stage.
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Figure 4: Evolutionary curves of HV indicator values (plain
terrain).

The visualization is shown in Fig. 5. In accordance with the
HV indicator and considering the diversity and convergence of

0

0.05

Uniformity

0.1

0.15

0.21

0.8
Coverage

0.6

0.4

0.2

0

0.1

0.2

0.3

0.4

0.5

C
o

st

CCGDE3
CMODE
MOEA/DVA
NSGA-III
DPCCMOLSIA

(a)

Coverage
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
n

if
o

rm
it

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

CCGDE3
CMODE
MOEA/DVA
NSGA-III
DPCCMOLSIA

(b)

C
o

st

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Coverage
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCGDE3
CMODE
MOEA/DVA
NSGA-III
DPCCMOLSIA

(c)

C
o

st

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Uniformity
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

CCGDE3
CMODE
MOEA/DVA
NSGA-III
DPCCMOLSIA

(d)

Figure 5: Visualization of solutions for plain terrain.
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solutions, the overall performance of the DPCCMOLSIA is the
best.

Coverage is an important factor to consider in WSN deploy-
ment problems. From the visualization, we can see that the
DPCCMOLSIA is able to obtain a very low fitness value (high
coverage rate) for the Coverage objective, which validates its
performance. Because the plain terrain is quite flat, it is easier
to optimize the objectives Connectivity Uniformity and Deploy-
ment Cost.

Overall, the performances of all the algorithms for the
plain terrain can be ordered as follows: DPCCMOLSIA >
MOEA/DVA > CMODE > NSGA-III > CCGDE3.

4.4.2. Hilly Terrain
The HV indicator value evolutionary curves for all the algo-

rithms for the hilly terrain are illustrated in Fig. 6.
The HV indicator values again reveal that the DPCC-

MOLSIA has the best performance (0.7894622), followed by
the MOEA/DVA (0.7794569), the CMODE (0.7070007), the
NSGA-III (0.6374458), and the CCGDE3 (0.4470647). The
characteristics of all the algorithms resemble those described
above for the plain terrain.
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Figure 6: Evolutionary curves of HV indicator values (hilly ter-
rain).

The visualization of the solutions are shown in Fig. 7. Gener-
ally, the DPCCMOLSIA more comprehensively approximates
the optimal PF and still guarantees good Coverage. As men-
tioned above, because the fluctuations in the hilly terrain are
relatively smaller and the flat area is larger compared to the
mountainous terrain, the algorithms obtain a relatively good
Deployment Cost.

Overall, the performances of the algorithms for the hilly ter-
rain can be ordered as follows: DPCCMOLSIA > MOEA/DVA
> CMODE > NSGA-III > CCGDE3.
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Figure 7: Visualization of solutions for hilly terrain.
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Figure 8: Evolutionary curves of HV indicator values (moun-
tainous terrain).

4.4.3. Mountainous Terrain
The HV indicator value evolutionary curves of the DPCC-

MOLSIA, the MOEA/DVA, the CMODE, the NSGA-III and
the CCGDE3 for the mountainous terrain are illustrated in Fig.
8.

The DPCCMOLSIA again yields the highest HV indicator
value (0.6119342), followed by the MOEA/DVA (0.5773018),
the CMODE (0.5459146), the NSGA-III (0.4343607), and the
CCGDE3 (0.2848895). The characteristics of the different al-
gorithms are similar to those for the plain and hilly terrains.

Visualizations of the nondominated solution sets produced
by all the algorithms are illustrated in Fig. 9. Overall, the DPC-
CMOLSIA performs the best. Because the mountainous terrain
has severe altitude variations, it is much more difficult for the
algorithms to achieve a good optimization performance.

The performances of all five algorithms for the mountain-
ous terrain can be ordered as follows: DPCCMOLSIA >
MOEA/DVA > CMODE > NSGA-III > CCGDE3.

Overall, comprehensively considering all the tested terrains,
the DPCCMOLSIA is the best in terms of the optimization re-
sults; the MOEA/DVA is inferior; the CMODE is the third; the
NSGA-III is fourth; and the CCGDE3 is last.

Table 1 summarizes the computation times required by the
various algorithms. Compared to the serial algorithms, the
computation time of the DPCCMOLSIA is substantially re-
duced.

5. Conclusions and Prospects

In the present paper, we put forward a distributed parallel
cooperative coevolutionary multi-objective large-scale immune
algorithm (DPCCMOLSIA), which uses a three-layer parallel
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Figure 9: Visualization of solutions for mountainous terrain.

9



Table 1: Average Computation Time of the CCGDE3,
CMODE, MOEA/DVA, NSGA-III and DPCCMOLSIA, and
the Speedup Ratios with Respect to the DPCCMOLSIA

AVERAGE TIME CCGDE3 CMODE MOEA/DVA NSGA-III DPCCMOLSIA

Plain terrain 8.52E+03 8.99E+03 8.67E+03 9.21E+03 1.64E+021

Hilly terrain 1.29E+04 1.45E+04 1.14E+04 1.49E+04 2.37E+02
Mountainous terrain 9.64E+03 1.31E+04 1.07E+04 1.26E+04 2.30E+02

All terrains 3.11E+04 3.66E+04 3.08E+04 3.67E+04 6.31E+02

Speedup ratio 4.93E+01 5.80E+01 4.88E+01 5.82E+01 /

1 Values in bold denote better performance.

structure to substantially reduce the computation time. By de-
composing the objectives and variables, the original complex
MOLSOP is transformed into simpler, small-scale problems
that are easier to address. Via tests on real-world terrain data,
compared with several other algorithms (CCGDE3, CMODE,
MOEA/DVA and NSGA-III), the DPCCMOLSIA can achieve
better optimization results in much less time. In the future, we
plan to continue improving the DPCCMOLSIA and to test it on
additional real-world problems.
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Highlights

• To tackle multi-objective large-scale optimization problems (MOLSOPs),
the distributed parallel cooperative coevolutionary multi-objective large-
scale immune algorithm (DPCCMOLSIA) is proposed based on three
types of decompositions and integrating the idea of immune algorithm.

• The decompositions are:

1. Each objective is optimized by a subpopulation and all objectives
are comprehensively optimized by an archive;

2. Variables are divided into multiple groups;

3. The fitness evaluations of individuals in each group is allocated to
multiple CPUs.

• A three-layer distributed parallel structure is constructed based on the
decompositions, thus, the time-consuming fitness evaluations of indi-
viduals in each group of each subpopulation or the archive can be con-
ducted in parallel, significantly reducing the computation time.
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