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Adaptive Reactive Power Control of PV Power Plants for 
Improved Power Transfer Capability under Ultra-Weak 

Grid Conditions  
Dongsheng Yang, Member, IEEE, Xiongfei Wang, Member, IEEE, Fangcheng Liu, Kai Xin,  

Yunfeng Liu, Frede Blaabjerg, Fellow, IEEE

Abstract—This paper analyzes the power transfer limitation of the 
PV power plant under the ultra-weak grid condition, i.e., when the 
Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a 
minimum SCR of 2 is required for the PV power plant to deliver the 
rated active power when operating with the unity power factor. Then, 
considering the reactive power compensation from PV inverters, the 
minimum SCR in respect to Power Factor (PF) is derived, and the 
optimized coordination of the active and reactive power is exploited. It 
is revealed that the power transfer capability of PV power plant 
under the ultra-weak grid is significantly improved with the low PF 
operation. An adaptive reactive power droop control is next proposed 
to effectively distribute the reactive power demands to the individual 
inverters, and meanwhile maximize the power transfer capacity of the 
PV power plant. Simulation results of a 200 MW PV power plant 
demonstrate that the proposed method can ensure the rated power 
transfer of PV power plant with the SCR of 1.25, provided that the 
PV inverters are operated with the minimal PF=0.9. 

Index Terms—Photovoltaic power systems, Reactive power 
compensation, Droop control, Power transmission. 

I. INTRODUCTION 

Benefiting from the significant technical advances in solar 
cells and power electronics, the costs of the utility-scale 
Photovoltaic (PV) power plants have become competitive 
with other intermittent renewable power sources [1]-[2]. 
Large scale PV power plants have been increasingly installed 
worldwide, and the accumulative global utility-scale PV 
capacity is heading towards 100 GW [3]. Due to the low 
energy densities and uneven distributions of solar resources, 
these PV power plants are deployed in remote areas or even 
desert with high solar irradiance [4]. As a consequence, the 
long-distance power transmission lines with low 
Short-Circuit-Ratio (SCR) have become the major bottleneck 
to effectively transmit the generated power to the load center 
[5]-[6]. 

To unblock the bottleneck caused by the high-impedance 
grids, power-electronic-based power transmission 
technology based on the High Voltage Direct Current 
(HVDC) system [7], and Flexible Alternative Current 
Transmission Systems (FACTS) devices, have recently been 
used to improve the power transfer capability [8]. However, 
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these solid-state power electronic equipment are featured 
with low inertia and fast dynamics. A wide frequency range 
of dynamic interactions among the HVDC systems, FACTS 
devices and grid-connected inverters of renewable energy 
sources pose new challenges to the system stability and 
power quality [9-12]. It hence becomes more appealing to 
utilize the power controllability of PV inverters for 
increasing the power transfer capacity under weak grid 
conditions, which is also more advantageous by sharply 
cutting down the cost of upgrading grid infrastructure. 

The PV power plant can be controlled as FACTS devices 
[13], which provides a cost-effective solution to damp the 
sub-synchronous oscillations [14] and improve transient 
stability of the power system [15]. The prerequisite of these 
control functions is that the excessive power capacity is 
available from the PV inverters. However, under the 
ultra-weak grid condition, i.e., the SCR of the grid is close to 
1, the available power capacity must be utilized to provide 
internal reactive power support, because delivering the rated 
active power could already be a great challenge for the PV 
power plant. Similar scenarios have been reported in the 
VSC-HVDC system [16], and the power limitations imposed 
by both the magnitude and the phase angle of the 
transmission line have been investigated. This problem could 
be more complicated when it comes to the PV power plant, 
as PV inverters usually are operated with the limited PF 
typically ranging within ±0.9/0.95 [17]-[18]. Moreover, the 
huge number of the PV inverters that are distributed over a 
vast area within the power plant further increases the 
difficulty of the power control. 

Many research works have been reported on the flexible 
power control methods for distributed PV inverters. 
Basically, they can be grouped as centralized control 
[19]-[21] and decentralized control [22]-[23]. As for the 
centralized control, a communication network among a great 
number of distributed inverters must be established. This 
incurs additional costs and may introduce communication 
reliability problems. On the contrary, the decentralized 
controls can achieve automatic power regulation based on 
the local information. To alleviate the voltage variation 
caused by injection of the fluctuated power, the PV inverter 
can regulate its reactive power according to the local voltage 
and local active power production [24]-[27]. These control 
methods are usually developed for the PV inverters 
connected to the low voltage distribution networks, aiming to 
address the voltage fluctuations caused by the intermittent 
solar power flowed through the line impedance with a high 
R/X ratio [28]. The decentralized power controllers need to 
be carefully tuned to reach a compromise between the 
sufficient voltage support and the unnecessary reactive 
power consumption or generation [29]. 

Despite varieties of power controls have been extensively 
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investigated, the research scopes are mainly focused on the 
mitigation of voltage fluctuations at multiple nodes of 
low-voltage distribution networks [30]-[31]. As for the PV 
power plant under the ultra weak grid condition, the 
consumed reactive power on the transmission line can 
exceed half of the power rating of the whole PV plant. In this 
case, the major challenge for the PV plant lies in the 
limitation of power transfer capability rather than the power 
quality issues. In the other words, it is necessary to 
coordinate the active and reactive power of PV power plants 
to maximize its power transfer capacity, and thus to 
alleviates the requirement of oversizing PV inverters or 
installing additional expensive FACTS devices. To the best 
knowledge of the authors, this topic has remained unaddressed in 
the scientific literature. The present paper attempts to fill in 
this gap and the main contribution of this paper can be 
summarized as 1) Quantifying the relationship between the 
SCR and the PF of PV inverters for transferring the rated 
active power. 2) Coordination of the active power and 
reactive power to maximize the power transfer capacity. 3) 
An adaptive reactive power control method is proposed for 
PV power plant to automatically dispatch the reactive power 
demands on the individual inverters and meanwhile achieves 
the optimal power coordination control. In this way, the 
power transfer capacity of the PV power plant can be 
improved to the theoretical limit. Additionally, the voltage 
variation at the Point of Common Coupling (PCC) caused by 
the active power injection can be dynamically compensated. 

II. POWER LIMITATION OF PV POWER PLANT OPERATED UNDER 

UNITY POWER FACTOR 

Fig. 1 shows a typical configuration of the PV power plant. 
It contains numerous generation units and each unit contains 
a DC/DC converter for local maximum power point tracking 
(MPPT) control and a DC/AC inverter for grid-connections. 
All the generation units are connected to the PCC through 
low-voltage power cables and then fed into the high-voltage 
transmission network through the substation. To minimize 
the power loss on the low-voltage cable, the generation units 
are distributed evenly around the substation in order to 
minimize the length of the low-voltage cables. 

PCC&
Subsation ......

...

...

...

...

MPPT
Controller

Generation Unit

PV 
Inverter

DC/DC DC/AC

 

Fig. 1. The configuration of a PV power plant. 

The PV inverters are usually current-controlled to improve 
the power quality, so the whole farm can be treated as an 
ideal current source at the fundamental frequency. 
Meanwhile, the grid can be represented by its Thevenin 
equivalent circuit. Therefore, the simplified circuit of the 
whole grid-connection system can be obtained, as shown in 
Fig. 2, where ipv is the grid current injected by PV power 
plant, vpcc is the voltage at PCC, vg and Zg are the equivalent 
grid voltage and grid impedance at the PCC. Here, a resistor 
Rg and a series inductance Xg are used to model the grid 
impedance Zg that is introduced by a long transmission line 
and a step-up power transformer. 

 

Fig. 2. The equivalent circuit of grid connection system. 

The stiffness of the grid at the PCC can be depicted by the 
SCR, which can be expressed as [15]: 

2

_ _

g gSC

pv rated pv rated

V ZP
SCR

P P
   (1) 

where PSC is the short circuit power of the grid at the PCC, 

expressed as 2
SC g gP V Z , and Ppv_rated is the rated 

generation power of the whole PV plant. 
Accordingly, |Zg| can be represented by the SCR, which is 

expressed as: 
2

_

g
g

pv rated

V
Z

P SCR



 (2) 

When the PV power plant is operated under the unity PF 
condition, the phasor diagrams are shown in Fig. 3, where 

pvI , pccV  and gV  are the phasors of ipv, vpcc and vg, 

respectively. 

 
Fig. 3. Phasor diagrams when PV power plant is operated with unity PF. 

From Fig. 3, the root-mean-square (RMS) value of vpcc can 
be derived as: 

 22
pcc g g pv g pvV V X I R I      

(3) 

where Ipv is the RMS value of ipv. The active power injected 
by the PV power plant is given by: 

pv pcc pvP V I 
 

(4) 

According to (2) and (3), the curves of Vpcc vs. Ipv and Ppv 

vs. Ipv under different Rg/Xg ratios when SCR=1 can be 
obtained, as shown in Figs. 4 and 5, respectively. As seen, 
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Vpcc drops significantly at the rated Ipv injection, especially 
under the low Rg/Xg ratio. Correspondingly, the active power 
injected by PV power plant Ppv is also greatly limited. 
According to (2)-(4), the maximal of Ppv can be derived as: 
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1 1
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g g
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Z

X R

  




 

(5) 

In order to deliver the rated power into the grid, i.e., 
Ppv_max>Ppv_rated, the minimum SCR is required, and its 
expression can be derived based on (2) and (5), which is 
given by: 

 

min

2

2
2

1
1

g g

SCR

R X

 


 
(6) 

It can be seen that the PV power plant can operate under a 
lower SCR when the Rg/Xg ratio of the grid impedance is 
increased. However, since the PV power plant is usually fed 
into the high voltage transmission network with low Rg/Xg 
ratio, the power limitation is more severe. Based on (6), a 
minimum SCR of 2 can be identified when the Rg/Xg ratio 
approaches to 0. 

 

Fig. 4. Curves of Vpcc vs. Ipv under different Rg/Xg ratios when SCR=1. 

 

Fig. 5. Curves of Ppv vs. Ipv under different Rg/Xg ratios when SCR=1. 

III. POWER LIMITATION OF PV POWER PLANT OPERATED UNDER 

VARIABLE POWER FACTOR 

In order to operate PV power plant under the ultra-weak 
grid condition, the common practice is to reshape the system 

impedance using locally installed bulk FACTS devices, of 
which the operational principle is to provide the necessary 
reactive power to compensate/cancel the voltage drop of the 
original transmission line. However, to reshape the system 
impedance under the ultra weak grid condition, the required 
reactive power from FACTS device can be considerably high 
which makes the installation of FACTS device costly. 
Alternatively, the required reactive power can also be 
provided by the PV inverters themselves. 

Take Q = 0.5Prated as the example, the FACTS device with 
the power rating of 0.5Prated has to be installed for the 
external reactive power compensation. However,  PV 

inverters with the power rating of 21 0.5 1.118rated ratedP P  , 

are able to provide the same amount of reactive power with 
the rated active power output, which is more cost-effective. 
In this case, the PV power plant has to operate with variable 
PF, and its power limitation will be further discussed. Here, 
the grid impedance is assumed to be purely inductive to draw 
the worst case, i.e., Zg=jXg. 

Fig. 6 shows the phasor diagrams of the PV power plant 
and the grid with different phase angle φ, for different PF. 

cosd pvI I   is the d-axis current component which is in 

phase with pccV , and sinq pvI I   is the q-axis current 

component which is vertical to pccV . 

 
Fig. 6. Phasor diagrams using distributed reactive power compensation 

According to Fig. 6, the output active power is given by: 

 

 

22

22 cos sin cos

pv pcc d

g g d g q d

g g pv g pv pv
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(7) 

In order to deliver the rated power to the grid, i.e., 
Ppv>Ppv_rated, the following inequality should be satisfied: 

2

_

cos
1 cos sin 1g g pv

pv pv
g g pv rated

X X I
I I

V V I


 

              

 

(8) 

Considering Zg=jXg, (2) can be rewritten as: 

_ _

1g g

g pv rated pv rated

X V

V P SCR I SCR
 

 

 

(9) 

Substituting (9) into (8), yielding: 
2

(pu) (pu)
(pu)

cos sin
1 cos 1pv pv

pv

I I
I

SCR SCR

 


          

 (10) 
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where Ipv(pu)=Ipv/Ipv_rated is the per unit value of injected grid 
current. Therefore, the minimum SCR with respect to Ipv(pu) 
and φ can be derived as: 

 
 

22 2
(pu) (pu) (pu)

min 2

(pu)

sin cos cos 1

1 cos

pv pv pv

pv

I I I
SCR

I

  



 



 (11) 

Considering φ=arccos(PF), the curves of SCRmin vs Ipv(pu) 
under different PFs can be drawn as shown in Fig. 7. The PV 
power plant can be operated under a lower SCR as the PF 
reduces. Therefore, a minimum of 0.9 PF can be preserved 
for PV power plant to operate under the ultra-weak grid 
condition with SCR close to 1. 

F

ig. 7. SCRmin curves vs Ipv(pu) under different PFs 

IV. COORDINATION OF ACTIVE POWER AND REACTIVE POWER OF 

PV PLANTS 

For a given SCR condition, it is desirable to reduce the 
current rating of PV inverters when transferring the same 
rated active power. Or, put it in another way, to maximize 
transfer capability of active power given the same current 
rating. Moreover, practical constraint from PCC voltage 
should also be taken into consideration. So the coordination 
of active power and reactive power is mandatory. 

To better address this issue, the minimum Ipv(pu) in respect 
to φ and SCR can be derived according to (10), which is 
expressed as: 

   
2

22 2
2

(pu) _min

2 tan 2 tan 4
cos

2pv

SCR
SCR SCR SCR SCR

I

 


   
  

(12) 

where φ should satisfy: 
2

2atan
2

SCR

SCR
     

 (13) 

Otherwise, it is impossible to deliver the rated power into 
the grid. Moreover, another constraint on the power factor 
angle φ results from the limitation of the PCC voltage. 
Assuming that Vpcc<kVg, where k is voltage limitation 
coefficient, then, 

 22 cos sinpcc g g pv g pv gV V X I X I kV    
 

(14) 

Dividing Vg at both sides of the inequality (14), yields: 
2

(pu) (pu)cos sin
1 pv pvI I

k
SCR SCR

  
   
 

 

(15) 

The power factor angle φ should satisfy: 

 2 2 2
(pu)

(pu)

1
asin

2

pv

pv

I SCR k

I SCR k


  
 
   

 (16) 

Therefore, according to (12), (13) and (16), the Ipv(pu)_min 
curves with respective to PF under different SCRs can be 
depicted by Fig. 8, where k=1.05. From Fig. 8, the 
conclusion can be drawn that the reactive power should be 
produced as much as possible until the PCC voltage achieves 
its limits. In this way, the current rating of the PV inverters 
can be reduced at rated active power injection, which helps 
to improve the efficiency and alleviates the requirement of 
oversizing PV inverters. 

F

ig. 8. Ipv(pu)_min curves vs PF under different SCRs 

V. ADAPTIVE REACTIVE POWER CONTROL OF PV POWER PLANTS 

To properly distribute the reactive power demand among 
the individual inverters, all the inverters can regulate its 
reactive power according to the droop control scheme, as 
shown in Fig. 9(a). It means that the PCC voltage has to be 
intentionally reduced when required reactive power is 
increased, such that individual inverters can increase their 
reactive power simultaneously according to the reduction of 
PCC voltage. In order to equally share the reactive power, 
the droop controllers of inverters are tuned the same droop 
coefficient. The output reactive power of each inverter is 
given by: 

  max

max
n pcc

Q
Q V V

V
 

  (17) 

where Vn is the nominal value of Vpcc, ΔVmax and Qmax are the 
maximum droop voltage and the output reactive power, 
respectively. 

Since terminal voltage of individual PV inverters can be 
slightly different from each other due to the voltage drops on 
the low-voltage cables, a detectable value of ΔVmax must be 
guaranteed in order to ensure the good reactive power 
sharing among different inverters. Usually, ΔVmax is set to 
5%~10% of Vn. As a result, Vpcc will inevitably fall below its 
nominal value when the PV power plant injects the active 
power, so the inverter’s current rating has to be increased in 
order to inject the same rated active power. In other words, 
the power transfer capability of the PV power plant is 
reduced due to the voltage drop at PCC, given the same 
inverter’s current rating. 
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(a) 

Vpcc

+Iqmax−Iqmax

V*(id)

0

+ΔVmax

−ΔVmax

 
(b)  

Fig. 9. Distributed reactive power control method (a) Conventional droop 
control (b) Proposed adaptive droop control 

In order to minimize the Vpcc variation, V* can be regulated 
dynamically to restore Vpcc to its nominal value. Since Vpcc 
variation is mainly caused by the injected reactive power of 
PV power plant, an adaptive law is proposed to adjust V* 
dynamically and thus to minimize the variation of the PCC 
voltage Vpcc. The control scheme of this adaptive droop 
control is shown in Fig 9(b), where Iqmax is the available 
output q-axis current at rated reactive power rejection limited 
by a minimal PFmin, given by: 

2
min

max
min

1
n

q
n

PFP
I

V PF


  (18) 

The output q-axis current iq is given by: 

 * ( )q d pcc iqi V i V D  
 

(19) 

where Diq=Iqmax/ΔVmax is the droop coefficient of q-axis current. 
According to Fig. 6, the desirable compensated voltage at PCC 

ΔVcom can be predicted given that Id is known, which is expressed by: 

 

 

22

22

com q g n g g d

n n g d

V I X V V X I

V V X I

    

  

 
(20) 

Accordingly, the required reactive current is given by: 
2

2com n n
q d

g g g

V V V
I I

X X X

 
     

 
 (21) 

Referring to (19), this reactive current can be automatically 
provided by adjusting the V* with respect to id, and the adaptive 
law for each inverter can be derived as: 

   *
d n dV i V V i    (22) 

where ΔV(id) is expressed by: 

 
2

21 1q n n
d d

iq iq g iq g

I V V
V i i

N D D NX D NX

 
       

 

 

(23) 

where N is the number of paralleled inverters in the PV 
power plant, and id=Id/N is approximated to the d-axis 
current of the individual inverter, which is readily available 
in the inverter itself.  

Since the parameter of grid impedance Xg can be obtained 
from the Transmission System Operator (TSO), or estimated 
using the online impedance measurement method [32], the 
voltage variations at PCC caused by the active power can be 
dynamically compensated based on the adaptive control law 
of (22). Even if voltage variation cannot be perfectly 
compensated due to possible parameter mismatch, the 
inherent droop scheme will be effective to deal with the 
uncompensated voltage variation in the traditional way. 

Therefore, the reactive power demands can be 
automatically dispatched on the individual inverters without 
deteriorating Vpcc, and the power transfer capacity of the PV 
power plant can be maximized.  

Accordingly, the detailed control scheme of the individual 
PV inverter can be depicted by Fig. 10, where the current 
control is performed under the dq domain. The current 
reference in d axis is obtained by dividing the power 
command with the PCC voltage Vpcc, where the power 
command from the maximum power point tracking (MPPT) 
is replaced by the look up table to simulate the daily 
generation curve. The current reference in q axis is obtained 
by the proposed adaptive droop control that depicted by Fig. 
9(b) and Eq (23). 

L1

Q1

Q2

Q3

Q4

Q5

Q6

Vin

Cf
vpcc_abc

L2

ipv_abc

PCC

SPWM

Q1~Q6

Current 
Control

dq/abc

θ Vpcc

id

iq

Vpcc

VnDiq

V(id)
*

Pr1
Vpcc

Eq.(22) ΔV(id)

*

*

abc/dq PLL

id iq

θ

θ

id iq

 
Fig. 10. Control scheme of the proposed adaptive reactive power control. 

VI. SIMULATION AND EXPERIMENTAL VERIFICATION 

A. Description of the PV power plant 

In order to verify the effectiveness of theoretical analysis 
and the proposed adaptive reactive power control method, a 
simulation model of 200 MW PV power plant is built in 
PLECS. It contains N=5000 of PV inverters, and the key 
parameters of each inverter are shown in Table. I. 

TABLE I. 

PARAMETERS OF EACH PV INVERTER IN A PV POWER PLANT 

Symbol Meaning Value 

Vg Grid voltage (phase) 230 V 

f1 Grid frequency 50 Hz 

Pn Rated Output Power 40 kW 

Smax Maximum apparent power 44.44 kVA 

PF Power factor  −0.9~+0.9 

Im Maximum current rating (RMS)  193.2 A 
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According to (11) and the PF limitation in Table I, the 

minimum SCR for the PV power plant to ensure rated power 
injection can be obtained as SCRmin=1.254. So the PV power 
plant is operated under the SCR=1.25 to test this limitation. 
Meanwhile, the conventional droop control with 
ΔVmax=10%Vn is used for comparison. 

 

B. Simulation Results 

The daily generation curves using conventional droop 
control are shown in Fig. 11. To obtain a readable figure, 
5000 inverters are divided into 10 groups, so each group has 
a maximum current rating of Imax=500Im=96.6kA, and igroup in 
Fig. 11 denotes the output current of inverter groups. Pt and 
Qt are the total output active and reactive power of the PV 
power plant, respectively. As seen, the Vpcc is reduced to 
210V at peak hours between 11:00 and 12:30, so the actual 
power transfer capability of PV power plant is reduced 
because the larger current is needed to deliver the rated real 
power. As a result, the actual active power of PV power plant 
is limited at 187MW. With the proposed adaptive droop 
control, as shown in Fig 12, the voltage drop can be 
compensated dynamically under different output power 
levels. Therefore, more active power can be delivered given 
the same current rating Imax, and 200MW rated power can be 
approximately achieved. 

Since the proposed method needs to estimate grid 
impedance Xg to adjust V*, simulation results with ±20% 
estimation error of Xg are presented in order to examine its 
robustness. As seen in Figs. 13 and 14, due to the parameter 
mismatch, V* can be less-adjusted or over-adjusted, and the 
voltage variation can be observed at PCC. Nevertheless, it 
still works much better than the conventional droop control 
in terms of voltage regulation and power transfer capacity. 

To further demonstrate the feasibility of the proposed 
adaptive reactive power control, Figs. 15 and 16 present the 
generation curves of the adaptive droop control under the 
ordinary weak grid condition with SCR=5 and 10. As seen, 
the proposed adaptive reactive power control method works 
well for different grid conditions. 

B. Down-scaled Experimental Results 

To further verify the adaptive droop control method, the 
down-scaled experiment is carried out. The experimental 
setup is shown in Fig. 17, where the ultra weak grid is 
realized by connecting the inductors with the grid simulator, 
and control algorithms of the two inverters are implemented 
in the dSPACE1007. The circuit parameters are shown in 
Table II, where the grid voltage is intentionally reduced to 
create the ultra grid condition with SCR=1.25. 

The experimental waveforms using conventional droop 
control are shown in Fig. 18. The PCC voltage Vpcc is 
reduced to 0.92 p.u. during peak generation time, so the 
actual power of PV power plant Pt is limited to 0.95 p.u of 
the rated power and the grid current of the inverters Igt has 
achieved its maximum. With the proposed adaptive droop 
control, as shown in Fig 19, the voltage drop can be 
compensated dynamically at different output power levels. 
Therefore, more active power can be delivered given the 
same current rating, and 1.0 .p.u. rated power can be 
approximately achieved. Therefore, the experimental results 
match well with the simulation results, which further confirm 
the theoretical analysis and effectiveness of the proposed 
adaptive droop control method. 

Fig. 11. Waveforms of Vpcc, Igroup, Pt and Qt using the conventional droop 

control. 

Fig. 12. Waveforms of Vpcc, Igroup, Pt and Qt using the proposed adaptive 

droop control without parameter mismatch. 
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Fig. 13. Waveforms of Vpcc, Igroup, Pt and Qt using the proposed adaptive 

droop control with −20% parameter mismatch. 

Fig. 14. Waveforms of Vpcc, Igroup, Pt and Qt using the proposed adaptive 

droop control with +20% parameter mismatch. 

Fig. 15. Waveforms of Vpcc, Igroup, Pt and Qt using the proposed adaptive 

droop control under ordinary weak grid with SCR=5. 

Fig. 16. Waveforms of Vpcc, Igroup, Pt and Qt using the proposed adaptive 

droop control under ordinary weak grid with SCR=10. 
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Fig. 17 Photo of the experimental setup. 

TABLE II  

PARAMETERS OF GRID CONNECTED INVERTER 

Parameter Values 

Vdc Input dc-link voltage 600 V 

Vg Phase grid voltage, peak value 80 V (1 p.u.) 

f0 Fundamental frequency 50 Hz 

fsw Switching frequency 10 kHz 

L1 Inverter-side inductor 1.5mH 

C Filter capacitor 5μF 

L2 Grid-side inductor 1.5mH 

Lg Grid impedance 12.5mH (0.8 p.u.) 

Pn Rated Output Power 1 kW (1 p.u.) 

Smax Maximum apparent power 1.11 kVA (1.11 p.u.) 

Im Maximum phase current, peak vlaue  9.26 A (1.11p.u.) 

PF Power factor  −0.9~+0.9 

C1

C2

C3

Time: [4s/div]

C3: ig2 [1 p.u./div]

C1: vpcc [2/3 p.u./div]

C2: ig1 [1 p.u./div]

 
(a) 

 
(b) 

Fig. 18. Experimental waveforms using the conventional droop control. 

 

 
(a) 

 
(b) 

Fig. 19. Experimental waveforms using the proposed adaptive droop 
control. 

VII. CONCLUSION 

This paper investigates the power limitation of a PV power 
plant under ultra-weak grid condition with SCR close to 1. It 
is revealed that low R/X ratio of the transmission line will 
impose more severe power limitation on the PV power plant. 
A minimum SCR of 2 is required for the PV power plant to 
ensure the rated real power injection when it is operated with 
unity power factor. This requirement can be reduced when 
the inverters in the PV power plant can provide the reactive 
power compensation, and the minimum SCR with different 
PF is derived. Moreover, the optimized coordination of the 
active and reactive power is studied. It reveals that the power 
transfer capacity of PV power plant can be maximized by 
outputting the reactive power as much as possible until the 
PCC voltage achieves its limitation. Moreover, an adaptive 
reactive power droop control method is proposed which can 
improve the power transfer capacity of the PV power plant to 
its theoretical limitation under the ultra-weak grid condition 
with an SCR as low as 1.25. 
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