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Abstract

This work extends the Discrete Material and Thickness
Optimization approach to structural optimization problems
where strength considerations in the form of failure criteria
are taken into account for laminated composite structures.
It takes offset in the density approaches applied for stress
constrained topology optimization of single-material prob-
lems and develops formulations for multi-material topology
optimization problems applied for laminated composite
structures. The method can be applied for both stress-
and strain-based failure criteria. The large number of local
constraints is reduced by the use of aggregate functions, and
the developed approach is demonstrated for optimization
problems involving both constant and varying thickness
laminated composites.

Keywords Discrete Material Optimization; Discrete
Material and Thickness Optimization; Failure criteria;
Laminated composites

1 Introduction

Laminated composite structures consisting of Glass or
Carbon Fiber Reinforced Polymers (GFRP/CFRP) make
it possible to achieve efficient and lightweight structural
designs due to their superior strength and stiffness charac-
teristics. The large design freedom associated with these
structures makes it attractive to apply structural optimiza-
tion techniques in the design process, and many different
approaches have been developed since the earliest works
like Schmit and Farshi (1973) in the seventies. An overview
of optimization methods for laminated composites can
be found in Ghiasi et al. (2009) and Ghiasi et al. (2010),
where the methods are divided into constant and variable
stiffness methods. One of the methods for variable stiffness
design is the family of Discrete Material Optimization
(DMO) approaches by Stegmann and Lund (2005) and
Lund and Stegmann (2005), and these parameterization
approaches are applied in this paper.

Laminated composites are built of layers of e.g. GFRP
or CFRP, and in case of sandwich structures a light-weight
∗ Email: el@mp.aau.dk

core material like PVC foam or balsa wood are placed
inside the structure. Thus, the designer can decide on
the type of material and layer (ply) thickness and in case
of fiber reinforced materials also the fiber orientation. In
many cases the material has to be oriented at given chosen
angles, e.g.,−45◦, 0◦, 45◦, and 90◦ due to design guidelines.
Thus, the design problem from the starting point is a
combinatorial problem that require integer or combinatorial
optimization. However, as it is much easier to solve
continuous optimization problems using gradient based
optimization, much work has been done using continuous
thicknesses and fiber orientations as design variables.

Due to the stiffness properties of the orthotropic ma-
terials applied for laminated composites, the optimization
problems often have multiple solutions with the same
performance. For example, fiber orientations of−45◦ and
45◦ for a unidirectional (UD) GFRP may be equally good
in many design problems. Gradient based optimization
using thicknesses and fiber orientations directly as design
variables may easily end in a local minima due to a
nonconvex design space, and the material choice problem
of selecting, e.g., GFRP, CFRP or foam material cannot
be handled by this parameterization. It is important to
note that thickness optimization of plates and shells is
an ill-posed optimization problem that needs some kind
of regularization as described for solid isotropic elastic
plates in Cheng and Olhoff (1981, 1982). For laminated
composites this is typically achieved by adding constraints
on the allowable rate of thickness variation, i.e. ply-drop
constraints, or by using a patch parameterization where
a number of finite elements in the numerical model are
enforced to have the same thickness.

A very popular method for optimization of laminated
composites is genetic algorithms (GA). Very often the
layer thickness of each material is fixed, and the fiber
orientations are limited to a set of discrete values. Then
the optimization problem is reduced to a discrete stacking
sequence problem, and Haftka, Gürdal and their coworkers
in the 1990s developed specialized GAs for stacking
sequence optimization, see e.g. Le Riche and Haftka
(1993, 1995), G̈urdal et al. (1994), Kogiso et al. (1994),
and Nagendra et al. (1996). The advantage of GAs and
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many other meta-heuristic algorithms is that they return a
number of near optimal designs with only minor variation
in performance index instead of a single design. Many other
global optimization algorithms dedicated to optimizationof
laminated composites have also been developed. Stacking
sequence optimization of laminated composite structures to
satisfy requirements on ply continuity (also referred to as
blending) has been studied by many including Gürdal et al.
(1999), Kristinsdottir et al. (2001), Liu and Haftka (2001),
Seresta et al. (2007), Liu et al. (2011), Zein et al. (2012),
Liu et al. (2015), and Zein et al. (2016). Recent work on
stacking sequence optimization including blending and ply-
drop design guidelines include Irisarri et al. (2014, 2016)
and Peeters and Abdalla (2016).

For monolithic laminates a very popular parameterization
approach is to apply lamination parameters as introduced by
Tsai and Pagano (1968). The laminate stiffnesses are linear
functions of lamination parameters, which has convexity
advantages for stiffness design problems. Furthermore, the
number of design variables is independent of the number
of layers, so the number of design variables can be reduced
significantly for laminates with many layers. The relation-
ships between in-plane and out-of-plane lamination param-
eters are available for a number of cases, such that gradient
based optimization can be performed efficiently using
lamination parameters, see e.g. Miki and Sugiyama (1993),
Hammer et al. (1997), G̈urdal et al. (1999), Herencia et al.
(2008), and Bloomfield et al. (2009).

Liu et al. (2000) presented a two-step (global and bot-
tom) strategy for minimizing the mass of composite wing
panels subject to strain and buckling constraints, and
similar bi-level approaches have been applied by many
including Herencia et al. (2008), IJsselmuiden et al. (2009)
and Liu et al. (2011). In the first step the laminate is
parameterized using lamination parameters, and a number
of industry layup rules can be imposed on the feasible
region for the lamination parameters, for example by
restricting the design space to symmetric and balanced
laminates. Nonsymmetric laminates may warp in response
to an applied uniform temperature change across their
thickness. This warping can occur during cool-down from
the cure temperature during manufacturing and during in-
service operations, and thus many design guidelines require
symmetric layups. The optimization problem at the global
level (first step) was solved efficiently using gradient based
optimization, and a GA was used at the bottom level
(second step) to optimize the stacking sequence in order
to meet the target values of lamination parameters coming
from the top level. A number of different approaches have
been developed for the bottom level problem in order to
obtain realizable laminate designs that satisfy structural
constraints as well as manufacturing constraints governed
by layup rules. The two-step approach may have some
drawbacks as pointed out by Zein and Bruyneel (2015)
because the stacking sequences determined at the bottom
level do not have a direct control over the thicknesses
determined at the global level. They proposed a new
algorithm such that the optimization problem is solved
without splitting it into two steps as in common practice.

The approach applied by Altair Engineering in the
commercial software OptiStruct relies on a three-phase

optimization process guiding the composite laminate de-
signs from a concept to the final ply-book details, see
Zhou et al. (2011) and Zhou and Fleury (2012). The first
phase concerns the conceptual ply layout, the second phase
determines the specific number of plies, and the last phase
determines the final stacking sequence of the laminate,
taking performance demands and manufacturing constraints
into account.

Typically strength requirements are taken into account
in the form of strain constraints when applying lamination
parameters, due to lack of information about the actual lam-
inate configuration, and the failure envelope is dependent
on ply angles and thicknesses. To overcome this problem
IJsselmuiden et al. (2008) proposed to find the region in
strain space that is safe regardless of the ply angles,
such that a conservative Tsai-Wu failure envelope in the
laminate parameter space was obtained. Unlike minimum
compliance problems, there is no analytical proof that
strength optimization with lamination parameters is convex
and thus global optimality is not assured. Khani et al.
(2011) proposed a convexifying approach, where a hybrid
approximation for the failure index was developed.

The definition of lamination parameters is valid for
monolithic laminates, and thus the optimization procedures
described above can only be applied for such single-
material laminates. However, de Faria (2015) extended
the definition of laminate parameters to allow for hybrid
laminates, and thus it should be possible to apply this
parameterization for multi-material laminates.

In this work the aim is to be able to optimize multi-
material laminated composites while taking failure crite-
ria into account, and the Discrete Material Optimization
(DMO) parameterization approaches are applied, as they
can be applied for any combination of materials. In the
DMO method a number of candidate materials are defined,
which could be different FRP materials oriented at given
chosen angles, e.g.,−45◦, 0◦, 45◦, and 90◦. The discrete
problem of choosing the best candidate material is con-
verted to a continuous problem that can be solved efficiently
using gradient based optimizers. Multi-material interpo-
lation functions with penalization of intermediate design
variable values are applied, and the first DMO interpolation
functions as described in detail in Stegmann and Lund
(2005) were self-balancing with the aim of obtaining a
distinct choice of material. As an alternative to the self-
balancing procedure, Hvejsel et al. (2011) introduced a
series of linear equality constraints to ensure that the sum
of weighting functions for the candidate materials would
equal unity. Here the distinct selection of a single can-
didate was achieved by a non-linear inequality constraint.
Hvejsel and Lund (2011) introduced an alternative to the
explicit non-linear constraint by proposing multi-material
variations of the well-known SIMP and RAMP interpola-
tion schemes, see Bendsøe (1989) and Stolpe and Svanberg
(2001), respectively. Blasques and Stolpe (2012) also
applied such interpolation schemes for multi-material
topology optimization of laminated composite beam cross
sections, and this parameterization approach has been
the preferred choice in our work for constant thickness
laminates since 2011. With these multi-material variations
of the SIMP and RAMP interpolation schemes, linear
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equality constraints are introduced to ensure that the sum
of design variables for the candidate materials is equal
to unity. Nonlinear interpolation functions are applied
by appropriate choice of penalization parameter in the
SIMP and RAMP interpolation schemes in order to make
intermediate design variable values unfavourable. As
an alternative, Kennedy and Martins (2013) used linear
interpolation and added a series of non-linear equality
constraints as a penalty term to the objective function,
effectively penalizing intermediate design variable values.

An alternative to these DMO interpolation functions
is the Shape Functions with Penalization (SFP) method
proposed by Bruyneel (2011) where the author applied
four node shape functions known from the finite element
method to interpolate between four material candidates
using only two design variables. The SFP method was
later extended to include three and eight node elements, see
Bruyneel et al. (2011). The SFP method was generalized
by Gao et al. (2012) by introducing the Bi-valued Coding
Parameterization (BCP) method which has no upper limit
on the number of applied material candidates. The main
advantage of SFP and BCP methods is the substantial
reduction of the number of design variables required to
do the material interpolation compared to the other DMO
interpolation schemes. Furthermore, no linear equality
constraints are needed. However, the results of the BCP
method may depend on the numbering of the candidate
materials, if the number of design variables is different from
2,4,8,16, etc. Kiyono et al. (2017) has recently proposed a
new parameterization approach named Normal Distribution
Fiber Optimization (NDFO) for fiber angle optimization.
It takes offset in the same formulation as DMO, SFP
and BCP, but only one design variable is needed to any
number of candidates. The normal distribution function
is used as a parameterization of the weighting functions,
and the formulation is straightforward to implement. A
filtering technique can be easily implemented to achieve
fiber continuity, and good convergence properties have been
reported.

As mentioned previously, for laminated composite struc-
tures thickness variations are often needed in order to opti-
mize the design. The thickness variations are accomplished
by dropping plies along the length to match varying in-plane
and bending loads. Sørensen and Lund (2013) proposed
an extension to the DMO method for simultaneously
determining an optimum thickness variation and material
distribution. The proposed method was developed for
problems concerning mass constrained minimization of
compliance. Sørensen et al. (2014) extended the work and
proposed the Discrete Material and Thickness Optimization
(DMTO) method. In the DMTO approach the DMO multi-
material interpolation schemes are extended by including
a topology (density) variable so to effectively terminate
individual plies throughout the laminate. The DMTO
method was demonstrated on a generic main spar used in
some designs of wind turbine blades where the objective
was to minimize the total mass while maintaining structural
performance by means of constraints on buckling load
factors, eigenfrequencies, and displacements.

The DMO and DMTO approaches are typically imple-
mented in in-house finite element codes with full access

to the source code, but it has recently been demon-
strated in Wu et al. (2017) how the DMO approach can
be implemented in a commercial finite element code for
compliance problems including eigenfrequency and local
displacement constraints. However, the DMO and DMTO
approaches have only been applied for structural criteria
like compliance, eigenfrequencies, buckling load factors,
and displacements. In this work it will be described how
the approaches can be extended to take strength criteria into
consideration in the optimization formulation.
The inclusion of strength criteria in structural topology
optimization problems is a challenging problem due to the
local nature of these criteria and their behaviour in the
context of topology optimization. Sved and Ginos (1968)
described how stress constraints can be violated for truss
topology optimization problems when the bar area goes to
zero, such that it can not be removed, and they discovered
singular optimal topologies. The singularity problem
is discussed in many papers, see e.g. Kirsch (1990),
Cheng and Jiang (1992), Rozvany and Birker (1994) and
Guo et al. (2001). The singularity problem may also appear
in laminate design where these singular optima are linked
to the removal of zero thickness plies from the stacking
sequence as demonstrated in Bruyneel and Duysinx (2006).
One way to avoid the singularity problem is to use an
ǫ-approach as suggested by Cheng and Guo (1997) for
truss topology optimization. Thisǫ-approach was adopted
by Duysinx and Sigmund (1998) and Duysinx and Bendsøe
(1998) for stress constrained topology optimization of
continuum structures. Due to the local nature of stress
constraints, such topology optimization problems are com-
putationally challenging due to the high number of design
variables and local constraints. In order to reduce the
computational effort Duysinx and Sigmund (1998) intro-
duced a global stress measure using two differentP-norm
methods, such that all stresses were grouped into a single
stress constraint. This reduced the computational effort by
orders of magnitude because the size of the mathematical
programming problem became much smaller and the design
sensitivity analysis was much faster due to the use of an
adjoint formulation. However, using only a single global
stress measure made it difficult to control the local stress
level. This was also observed in the work by Yang and Chen
(1996) where two different global stress measures were
investigated.
The ǫ-approach consists of solving a sequence of prob-
lems for decreasing values of theǫ relaxation parameter,
and its successful application has been demonstrated for
many different types of topology optimization problems.
An ǫ-approach that regularizes the stress singularity for
vanishing material selection and topology variables using
the DMTO parameterization and solved using a barrier
method tailored for stress-constrained mass minimization
has been developed in Kennedy (2016). In recent years
the most popular approach for stress constrained topology
optimization has been to use a SIMP type relaxation as
introduced in Bruggi (2008). In this approach a SIMP
interpolation scheme is used for stress constraints, using
suitable penalization exponents that are different from those
that interpolate stiffness parameters.
The success of stress constrained topology optimization
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relies on the application of clustering the large num-
ber of local stress constraints into a lower number of
global stress constraints. Reviews of existing results
obtained using local and global stress constraints can
be found in Le et al. (2010). It is difficult to find
a general and robust function for clustering the local
stress constraints, such that the local peak values are
controlled efficiently. The most commonly used func-
tions areP-norm functions (Duysinx and Sigmund, 1998;
Holmberg et al., 2013; Le et al., 2010) and Kreisselmeier-
Steinhauser (KS) functions (Kennedy and Martins, 2014;
Kreisselmeier and Steinhauser, 1979; Parı́s et al., 2009;
Yang and Chen, 1996). In many recent works the local and
global stress constraint approaches are combined as in the
regional stress measure approach by Le et al. (2010) and
the block aggregation approach by Parı́s et al. (2010). This
makes it possible to reduce the large number of constraints
efficiently by using global stress measures, but the number
of local stresses included in each aggregate function is
limited in order to improve the accuracy of the constraint
lumping.

This work can be considered as an extension of
stress constrained topology optimization using density
approaches to multi-material topology optimization prob-
lems where the parameterizations applied are the DMO
and DMTO approaches for laminated composites. As
in the work of Bruggi (2008) and subsequent topology
optimization papers with stress constraints, suitable penal-
ization parameters are introduced in the parameterizations.
Combined with the use of aggregate functions for reducing
the large number of local strength values, it will be shown
how challenging optimization problems related to design of
laminated composite structures can be solved.

The analysis will be based on layered shell finite
elements using Reissner-Mindlin assumptions, i.e. first
order shear deformation theory. These finite elements are
commonly used for stress analysis of laminated composite
structures, as they give a good estimation of the overall
strain and stress distributions through-the-thickness ofthe
laminate. However, local effects and out-of-plane stresses
will not be captured accurately, and thus it is advantageous
to include design rules/manufacturing constraints that im-
plicitly limit these effects. Two manufacturing constraints
described in detail in Sørensen and Lund (2013) for the
DMTO parameterization will be applied. The first is a
constraint on the allowable rate of thickness variation, i.e. a
ply-drop constraint, so to avoid abrupt changes in stiffness
which can lead to delamination. The second is a so-called
contiguity constraint that defines an upper limit on the
number of identical contiguous plies, as larger transverse
stresses may be build-up in thick plies, again leading to a
larger risk of delamination failure.

The remaining of the paper is organized as follows.
First, the DMO and DMTO parameterizations are presented
in Section 2. This is followed by a description of the
failure analysis developed for computing effective failure
indices for the multi-material topology problem in Section
3. The gradient based optimization approach is described
in Section 4 before four different numerical examples are
presented and discussed in Section 5. Finally, Section 6
contains the overall conclusions of the work.

2 Parameterization

In the following the parameterizations applied for constant
and varying thickness laminates are described.

2.1 Design parameterization using DMO

In case of optimizing constant thickness laminates, the
design parameterization is based on the DMO formulation
by Stegmann and Lund (2005), Lund and Stegmann (2005)
and Hvejsel and Lund (2011). The laminated composite
structure is modeled by layered shell finite elements, and
the structure is divided into a number of patches, consisting
of a number of finite elements, where the same layup should
apply. A number of candidate materials,nc, are defined
for each material patchp. The candidate materials can be,
for example, a unidirectional (UD) fiber reinforced polymer
(FRP) material oriented at different chosen fiber angles
together with possible core materials in case of designing
sandwich structures as illustrated in Figure 1. The number
of layers of the laminate is denotednl.

(Foam) (GFRP)

y/90◦

x/0◦
θ

c = 1 (E1)

c = 2 (E2)

c = 3 (E3)

Figure 1: Top: Potential outcome of a tapered laminated
plate example. Bottom: Each material candidatec is
described by the constitutive matrixEc. Material candidates
can be, for example, a foam type (left) or glass fiber
reinforced polymer (GFRP) fiber mats (right), characterized
by the fiber orientationθ.

The candidate material variablesxplc are defined for all
np material patches such that

xplc =















1 if candidatec is selected in layerl of patchp

0 otherwise
(1)

The constitutive matrixEel for a given layerl in a given
shell elemente contained in patchp is thus determined by

Eel =

nc
∑

c=1

xplcEc (2a)

nc
∑

c=1

xplc = 1 ∀(p, l) (2b)

4



xplc ∈ {0; 1} ∀(p, l, c) (2c)

whereEc is the constitutive matrix associated with material
candidatec and (2b) is a resource constraint which ensures
that only one distinct material candidate can be selected.
The combinatorial problem of selecting the material can-
didate variablesxplc is converted to a continuous problem
using interpolation functions with penalization, such that
it is possible to apply efficient gradient based optimization
algorithms for solving the multi-material topology opti-
mization problem. The multi-material generalizations of
the well-known SIMP and RAMP interpolation schemes,
see Bendsøe (1989) and Stolpe and Svanberg (2001), re-
spectively, can be used as proposed in Hvejsel and Lund
(2011), see also Blasques and Stolpe (2012). Thus, the
integer problem is relaxed by treating the design variables
xplc as continuous variables, i.e. the method can be
considered as a multi-material density approach. The
constitutive properties for a given layerl in a given element
e associated with patchp are now interpolated as

Eel =

nc
∑

c=1

w(x) Ec (3a)

nc
∑

c=1

xplc = 1 ∀(p, l) (3b)

xplc ∈ [0; 1] ∀(p, l, c) (3c)

The weight functionw(x) for the multi-material generalized
SIMP scheme is given as

w(x) = xq
plc (4)

whereas for the generalized RAMP scheme it is given as

w(x) =
xplc

1 + q(1− xplc)
(5)

Here q is a penalization factor andEc the constitutive
matrix for candidatec in the given layer. Penalization
of intermediate design variable valuesxplc is necessary as
the optimizer otherwise can generate superior, but non-
physical, pseudo materials by combining the properties
of different material candidates. With these interpolation
schemes the design variablesxplc can be considered as
volume fractions of each material candidate as seen from
the resource constraint (3b). If holes are allowed in
the structure, then the resource constraint (3b) should
be changed to a less-than constraint, see examples in
Hvejsel and Lund (2011).
This generalized RAMP parameterization for multi-
material topology optimization leads to very many sparse
linear constraints due to the resource constraint (3b), and
thus it is necessary to apply an optimization algorithm that
can handle such linear constraints efficiently. Design sensi-
tivity analysis of criterion function will involve derivatives
of the constitutive properties, which are found analytically
by differentiation of (3a).

2.2 Design parameterization using DMTO

The DMO approach was extended to varying thickness
laminates in Sørensen and Lund (2013) and Sørensen et al.

(2014) where the Discrete Material and Thickness Op-
timization (DMTO) approach was developed, making it
possible to simultaneously determine an optimum thickness
variation and material distribution of the laminated compos-
ite structure. The idea is to introduce a density variable
to govern the presence of material in a given layer, and
thereby determine the thickness variation throughout the
laminate. The layerwise density variables can be defined
either on element level or by groups of elements having the
same thickness. In this work, they are defined by groups of
elements termed geometry design domains as illustrated in
Figure 2 such that

ρdl =















1 if there is material in layerl for domaind

0 otherwise
(6)

Geometry domain 1

Layer 1

Patch 1 (candidate material domain 1)

ρ11

ρ12

ρ13

ρ14

ρ15

ρ21

ρ22

ρ23

ρ24

ρ25

ρ31

ρ32

ρ33

ρ34

ρ35

ρ41

ρ42

ρ43

ρ44

ρ45

ρ51

ρ52

ρ53

ρ54

ρ55

x11c

x12c

x13c

x14c

x15c

Figure 2: Example of a patch (candidate material domain 1)
combined with 5 geometry domains. The design variables
associated with the domains are listed.

In a similar way as described for the material design
variables, the density variablesρdl are treated as continuous
variables and the constitutive properties for a given layerl
in a given elemente associated with material patchp and
geometry domaind are now interpolated as

Eel =

nc
∑

c=1

w(x, ρ) Ec (7a)

nc
∑

c=1

xplc = 1 ∀(p, l) (7b)

xplc ∈ [0; 1] ∀(p, l, c) (7c)

ρdl ∈ [0; 1] ∀(d, l) (7d)

The weight function can be computed using a generalized
SIMP scheme as

w(x, ρ) = ρq
dl xq

plc (8)

or a generalized RAMP scheme as

w(x, ρ) =
ρdl

1+ q(1− ρdl)

xplc

1+ q(1− xplc)
(9)

5



For simplicity, the same penalization factorq is applied
for material design variablesxplc and density variables
ρdl. The resulting parameterization is non-convex and
therefore the solutions obtained are typically local optima.
In order to prevent holes to appear inside the laminated
structure, i.e. interior layers with zero density, a number
of explicit constraints must be added. If the bottom layer
l = 1 must have full density, i.e. be present, a series of
constraints of the formρdl ≥ ρd(l+1) are added as described
in Sørensen and Lund (2013) and Sørensen et al. (2014)
where a number of other manufacturing constraints also are
described.

If all density variablesρdl can vary freely during the
optimization, the constraintsρdl ≥ ρd(l+1) are not sufficient for
forcing the optimization algorithm to yield a 0/1 solution.
Two different approaches have successfully been applied
for circumventing this problem, either using a dedicated
move limit strategy or a thickness filter approach as devel-
oped in Sørensen and Lund (2015). In this work the move
limit strategy described in Sørensen and Lund (2013) and
Sørensen et al. (2014) combined with a Sequential Linear
Programming (SLP) approach is documented. Basically, in
each iteration the following constraints are applied

ρd(l+1) ≤ f (ρdl,T ) , ∀d, l = 1,2, . . . , nl − 1 (10)

Here f (ρdl,T ) is a function that controls the limit on
the density variable of the contiguous upper layer based
upon the current value of the density variable below and
a threshold parameterT which is set to 0.1. The function
f (ρdl,T ) is defined as

f (ρdl,T ) =















f1 = T
1−T ρdl if ρdl < (1− T )

f2 = 1−T
T ρdl +

2T−1
T else

(11)

The function f (ρdl,T ) is illustrated in Figure 3. With
these modified constraints on the density variables, it is
possible to avoid interior holes and obtain 0/1 solutions
with the DMTO parameterization. The use of geometry
design domains with the same thickness parameterization
regularizes the thickness optimization problem and thereby
removes the mesh dependence. Adding ply-drop constraints
in the form of allowable rate of thickness variation between
geometry domains also regularizes the optimization prob-
lem.

A number of manufacturing constraints can be
considered in the DMTO approach as described in
Sørensen and Lund (2013) and Sørensen et al. (2014). For
constant thickness laminates symmetric laminates can
be enforced in the DMO approach, see e.g. Yan et al.
(2017) where other design guidelines like the 10% rule,
etc., are taken into account. For the DMTO approach
applied in this paper the thickness is reduced from the
upper layer, such that it mimics the typical manufacturing
process of, e.g., wind turbine blades where the fiber mats
are placed in a single sided mould, and the tapering is
performed on the outer layers. Enforcing symmetry around
the midplane according to the current thickness of the
laminated composite is not possible during the optimization
process with the applied DMTO approach, and thus
symmetric laminates are not enforced by the optimization

a

T

1(1− T )

1

ρd(l+1)

ρdl

f1

f2

Figure 3: Illustration of functionf (ρdl,T ) applied for
preventing voids inside the laminate.

procedure. This might be considered a disadvantage
compared to many existing bi-level optimization procedures
for monolithic laminates where symmetric laminates are
enforced in the parameterization. However, with the
DMTO approach multi-material laminates with varying
thickness can be optimized, and as it will demonstrated
by numerical examples in this paper, the DMTO approach
very often yields nearly symmetric layups as solution to the
optimization problem as such layups minimize extension-
bending couplings and yield better structural performance.

3 Failure analysis

The prediction of failure for the laminated composite
structure is based on linear static stress analysis, and for
simplicity only one load case is considered in the following,
even though most practical design cases should take several
load cases into account. The analysis is performed using
Equivalent Single Layer (ESL) 9-node isoparametric shell
finite elements, and the linear elastic static problem is
solved for displacementsD using the equilibrium equation

K D = F (12)

F is the global load vector and the global stiffness matrixK
is determined as

K =
np
∑

p=1

∑

e∈Pp

Ke

=

np
∑

p=1

∑

e∈Pp

nl
∑

l=1

∫

Ωel

BT
el

Eel Bel dΩel

(13)

Here summation denotes assembly of the local element
stiffness matricesKe where elemente belongs to the list of
elements,Pp, for patchp. Eel is the effective constitutive
matrix for layer l in elemente, and Bel is the standard
strain-displacement matrix. When evaluating an element
stiffness matrix, the effective constitutive properties for any
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layer are determined using the SIMP or RAMP schemes
in either Eq. 4, 5, 8 or Eq. 9 with weight functionswk.
In stiffness driven design, e.g. for compliance problems,
the penalization factorq is set such that the constitutive
properties are reduced for intermediate design variable
values, i.e., a below-linear penalization is used to guide the
optimizer to select discrete 0/1 valued design variables.

Next the strength of the laminated composite must be
evaluated. The layered shell elements used for the analysis
in general give good prediction of inplane stresses in
the laminated composite with linear variation within each
layer. Due to the first order shear deformation theory
applied, constant transverse shear stresses are obtained
for each layer, whereas no information is available about
transverse normal stresses. Thus, the prediction of strength
using such layered shell elements in general is acceptable,
but local effects from edges, ply drops, etc., can not be
captured with these elements and thereby by the models
applied in this work. However, the procedure described
in this paper has also been implemented using solid shell
elements, such that more detailed models can be applied, for
example in combination with adaptive remeshing of zones
of interest as documented in Johansen and Lund (2009) and
Johansen et al. (2009).

The candidate materials will initially have equal design
variables and thereby equal weight functions, and a relaxed
effective failure indexFIe f f ,el for each layerl of element
e must be establish. The failure criteria used for FRP
materials are evaluated in the material coordinate system
123, and based on the associated volume fraction of each
candidate material, an effective failure index is computed.
The approach follows the idea of Bruggi (2008) for stress
constrained topology optimization, such that suitable penal-
ization parameters different than those used for evaluating
stiffness are used when evaluating the effective failure
index.

The element strain vectorǫ xyz
el in the structural coordinate

system is computed at both the bottom and top of each layer
using

ǫ
xyz
el = Bel d (14)

whered is the element displacement vector.
In case of having a stress-based failure criterion, the

element layer stress vectorσxyz
el is computed at the bottom

and top of each layer as

σ
xyz
el = Eelǫ

xyz
el (15)

The strength prediction of candidate materials may be
evaluated using different stress- or strain-based failure
criteria, and thus stresses should vary in the same way as
strains as function of design variables. Thus, the weight
functionswσ used for computingEel in Eq. 15 are linear
functions, such that no penalization of stresses is obtained.
In this way strain- and stress-based failure criteria can be
combined and penalized consistently.

For each candidate materialc of the given layer, the
strain vectorǫ xyz

el and stress vectorσxyz
el are transformed

to the material coordinate system 123 of the candidate
material using appropriate standard transformation matri-
ces, such that strain vectorǫ123

elc and stress vectorσ123
elc are

obtained. For each candidate material a failure indexFIelc is

evaluated using the preferred strain- or stress-based failure
criteria. A number of different failure criteria have been
implemented. This includes failure criteria not associated
with failure modes like Tsai-Wu and Tsai-Hill together with
criteria associated with failure modes. Here the two non-
interactive criteria maximum strain and maximum stress are
implemented together with the interactive Puck, LaRC 2-D
and LaRC 3-D criteria. For simplification only maximum
strain and maximum stress failure criteria are used for the
examples in this work. Definitions of these criteria can be
found in, e.g. G̈urdal et al. (1999), and the result is a failure
indexFIelc that must be≤ 1 in order to avoid failure.

When failure indicesFIelc have been computed for each
of the candidate materials, a resulting effective failure index
FIe f f ,el is evaluated using

FIe f f ,el =

nc
∑

c=1

wFI FIelc (16)

The weight functionswFI used for interpolation between
failure indices for the different candidate materials must
make it unfavorable to have intermediate design variable
values, i.e. a linear or above-linear interpolation is
applied. Using an above-linear interpolation the effective
failure index is increased for intermediate design variable
values, making such values disproportionately expensive.
Furthermore, combined with the below-linear interpolation
applied forwk this yields the desired relaxation of stress
based failure criteria, such that the contribution toFIe f f ,el

approaches 0 as function of a design variable approaching
0. This might not be the case ifwk = wFI .
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Figure 4: Typical choice of interpolation functionswk, wσ,
andwFI using the generalized RAMP scheme.

The main difference between using generalized SIMP
and RAMP is that RAMP has a finite gradient for a design
variable of value 0. For a SIMP scheme, see Eqs. 4 and
8, the derivative goes to infinity when a design variable
approaches 0 and 0< q < 1 in order to obtain an above-
linear interpolation. Thereby a positive lower bound on
the design variable must be used for SIMP. For the RAMP
scheme a lower bound of 0 can be applied for the design
variables, which is an advantage of RAMP. Therefore all
results presented in this work are based on the RAMP
scheme, but quite similar results are obtained with the
SIMP scheme when having a small positive lower limit
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on the design variables. A typical choice of the weight
functions wk, wσ, and wFI using the generalized RAMP
scheme is illustrated by Figure 4. The values applied for the
penalization powerq are described in detail in the following
section.

4 Optimization approach

Having established the parameterization and failure anal-
ysis approach, the optimization problem to be solved can
be established and solved using standard mathematical
programming techniques.

4.1 Design sensitivity analysis and SLP ap-
proach

The computation of gradients has been implemented using
both analytical and semi-analytical approaches based on
direct differentiation and adjoint methods. Details for these
methods of design sensitivity analysis can be found in e.g.
Haftka and G̈urdal (1992) and Tortorelli and Michaleris
(1994). Failure criteria not associated with failure modes
like Tsai-Wu and Tsai-Hill are continuous and differ-
entiable functions, so the computation of gradients of
failure indices can be performed as described in e.g.
Groenwold and Haftka (2006). The failure criteria used
in the examples in this paper are all associated with
failure modes, like the non-interactive maximum strain
and maximum stress criteria. Thus, the failure surfaces
are continuous but have nondifferentiable points at the
intersection between surfaces associated with the different
failure modes. In practice, it is very rare that such points
are reached in the evaluation of failure indices, and for the
gradient evaluation, the sensitivity is computed assuming
fixed failure mode. For example, if the analysis predicts
failure due to compressive transverse inplane stress in
the material coordinate system, then the sensitivity of the
failure index is computed for this failure mode.

The optimization problems are solved using SLP as
described in detail in Sørensen and Lund (2013) and
Sørensen et al. (2014). The DMO and DMTO parame-
terizations introduce a very large number of sparse linear
constraints, see Eqs. 3b and 7b, and thus it is an advantage
to use an optimizer that has good support for such sparse
constraints. In this work the LP optimizers in IBM ILOG
CPLEX version 12.6, see IBM ILOG (2015), and version
7.2-9 of the Sparse Nonlinear OPTimizer (SNOPT) by
Gill et al. (2005) have been applied, both with default
settings.

The presented approach results in a very large number
of failure indices that must be taken into account. For
a finite element model consisting ofne elements, each
with nl layers, the number of failure indices is 2· ne · nl.
Combined with the large number of design variables needed
for the DMO and DMTO approach, it is necessary from
a computational point of view to cluster a large number
of the local failure indices into a lower number of global
values. A number of different aggregate functions have
been implemented includingP-norm, P-mean-norm and
Kreisselmeier-Steinhauser functions. For simplicity, only

results obtained using theP-norm function are presented.
If the failure indices to include are stored asFIk, k =
1, . . . , nFI , then theP-norm functionFIPN is computed as

FIPN =















nFI
∑

k=1

(FIk)
P















1/P

(17)

The parameterP controls the level of smoothness, and the
P-norm value approaches the value of the largest failure
index from above asP→ ∞. Thus, it is desirable to select a
large value ofP, but it also makes the optimization problem
increasingly non-linear and more difficult to solve. In this
work a value of 8 is used forP in all examples.

A number of different approaches for determining the
failure indices to include in the optimization problem have
been implemented in this work. Some approaches are
purely based on sorting all failure indices, like including
a fixed number of the largest values or active set strategies
where values exceeding a given percentage of the largest
value are included. Other approaches are related to
the material and geometry patches introduced with the
parameterization, such that values from all patches are
included in the aggregate function. For all examples
presented it is specified how the failure indicesFIk are
extracted from the full set of values.

The efficiency of using global strength approaches de-
creases when a large number of values are lumped into
a single global value, but this problem can be handled
by associating a global strength measure with each ma-
terial/geometry patch used for the parameterization. The
approach then has similarities with the block aggregation
approach Parı́s et al. (2010) and the regional stress measure
approach Le et al. (2010) used for single-material structural
topology optimization problems with stress constraints.

In case of having failure indices as objective function,
i.e. solving problems with minimizing the maximum failure
index, the P-norm overestimation of the largest failure
index value in general is not a problem. However, when
failure indices are included as constraints, the overestima-
tion typically results in a design where the true failure index
constraint is not active. This is solved using the adaptive
constraint scaling scheme proposed in Le et al. (2010).
With this approach the constraint is scaled according to
the ratio of the current maximum failure index value and
the P-norm value together with history information about
the constraint scaling, see details about our implementation
in Oest and Lund (2017). This adaptive constraint scaling
scheme has the advantage that lower values ofP can be
applied, which makes the optimization problem easier to
solve.

The computational cost of including strength criteria in
the optimization problem is comparable to include buckling
constraints, i.e. it is computationally much more intensive
than solving compliance problems. Quite often stiffness is
used as a surrogate objective function for obtaining a high
strength design, but the difference between strength and
stiffness optimized designs may be significant as illustrated
by several examples in IJsselmuiden et al. (2008). Their re-
sults clearly indicate that the degree of correlation between
stiffness and strength driven designs of laminates depends
on the properties of the materials and the loading situation.
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4.2 Continuation approach

All numerical examples shown in Section 5 are solved
using a continuation approach for the generalized RAMP
scheme. Due to the non-convexity of the optimization
problem, any gradient based optimization approach is likely
to end in a local minimum. Even for stiffness topology
optimization problems using a single isotropic material and
the SIMP interpolation, a continuation approach may help
in obtaining a strong local minimum because the stiffness
penalized problem is non-convex. This is illustrated in the
recent paper by Aage et al. (2017) where a 3D compliance
optimization problem with more than 1 billion design
variables is solved. They had to slowly raise the SIMP
penalization power in steps of 0.25 from 1 to 3, distributed
over a total of 400 design iterations, in order to obtain
a strong local minimum. The same observations are
made for the density approach in this paper. Starting the
optimization problems with high penalization parameters
will quickly force the design to a sub-optimal 0/1 solution.
Applying a continuation scheme results in more design
iterations but better solutions. The sensitivity to choice
of penalization parameters for the presented approach
seems to be similar to the sensitivity observed for standard
topology optimization problems using a density approach.

In general, best results will be obtained by keeping the
values ofq fixed until convergence in design variables, be-
fore their values are increased in the continuation approach,
but this may yield quite many iterations. Therefore the
values ofq are updated after a fixed number of iterations.
This will be specified in the numerical examples (it is
typically 10-30). If the convergence criterion applied
is fulfilled before the final continuation step, then theq
parameter is increased, such that the final continuation
values ofq always are applied.

The values used for the penalization parameterq in
the continuation approach are listed in Table 1. Values
of q used for interpolation of mass, mass matrix for
eigenfrequency analysis, and stress stiffness matrix applied
for linear buckling analysis are also given. These values ofq
represent a good trade-off between computational cost and
quality of the solution obtained. The optimization problems
are always initialized with equal weighting of the candidate
materials as the optimization procedure otherwise typically
converge to a local minimum.

Table 1: Continuation approach used for RAMP scheme.

Weight function Values ofq Applied for
wk 1, 4, 20 Stiffness matrix
wσ 0 Stresses
wFI 0, -0.4, -0.8 Failure indices
wm 0 Mass and mass matrix
wkσ 1, 4, 20 Stress stiffness matrix

The convergence criterion of having a relative change in
design variables less than 0.1% is applied for all examples.
In order to measure the obtained level of discreteness of
the design variables, two measures of non-discreteness are
computed. The measure of density non-discreteness is

calculated as suggested by Sigmund (2007) as

Mdnd =
4
∑

d,l Vel ρel (1− ρ̃el)
∑

d,l Vel
· 100% (18)

where Vel is the layer volume of thee’th element. The
measure of candidate non-discreteness is calculated ac-
cording to Sørensen et al. (2014), and repeated here for
completeness

Mcnd =

∑

e,l Vel ρ̃
2
el

∏nc

c=1

(

1−xplc

1− 1
nc

)2

∑

e,l Vel ρ̃el
· 100% (19)

5 Numerical examples

In the following a series of numerical examples are
presented. The material properties used for all examples are
given by Table 2. The candidate materials include glass-
epoxy (GFRP) UD material, glass-epoxy biax material
(cross-ply), and PVC H130 foam.

Table 2: Properties of UD GFRP, biax GFRP and PVC
H130 foam material (ESAComp, 2016)

Property Units UDBiaxPVC 130
Young’s modulusE11 [GPa] 38.0 24.0 0.148
Young’s modulusE22 [GPa] 9.0 24.0 -
Shear modulusG12 [GPa] 3.6 3.6 -
Shear modulusG23 [GPa] 3.46 3.5 -
Shear modulusG13 [GPa] 3.6 3.5 -
Poisson’s ratioν12 - 0.30 0.11 0.45
Density̺ [kg/m3]18701870 130
Long. tensile strengthXt [MPa] 930 84 4.8
Long. compressive strengthXc [MPa] 570 260 3.0
Transv. tensile strengthYt [MPa] 33 84 -
Transv. compressive strengthYc[MPa] 110 260 -
In-plane (12) shear strengthS 12 [MPa] 70 60 2.2
Trans. (13) shear strengthS 13 [MPa] 70 35 -
Trans. (23) shear strengthS 23 [MPa] 42 35 -
Long. tensile strainǫ1t [%] 2.45 0.35 3.24
Long. compressive strainǫ1c [%] 1.5 1.08 2.03
Transv. tensile strainǫ2t [%] 0.37 0.35 -
Transv. compressive strainǫ2c [%] 1.22 1.08 -
In-plane (12) shear strainγ12u [%] 1.94 1.66 4.4
Transv. (13) shear strainγ13u [%] 1.94 1.0 -
Transv. (23) shear strainγ23u [%] 1.2 1.0 -

5.1 Fiber angle optimization of clamped
single-layer square plate with uniform
pressure

The first example illustrates how fiber angle optimization of
a clamped single-layer square plate with uniform pressure
can be performed. This example is a standard test example
where symmetric fiber angle distributions are expected
for the optimized solution, and as such it is a very
good benchmark example for testing the performance for
difference material parameterizations, i.e. DMO material
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patches. Manufacturability is not considered for this
benchmark problem. The problem is defined by Figure 5.
The candidate materials are GFRP UD with−45◦, 0◦, 45◦,
and 90◦ fiber orientations, and the objective is to minimize
the maximum failure index in the plate.

x
y

z
θ

1m

1m

Figure 5: Illustration of the clamped single-layer square
plate. The plate is subjected to a uniform pressure at its
upper surface with a magnitude of 1 MPa. The thickness of
the plate is 0.04m.

The plate is discretized with 32 x 32 9-node isopara-
metric shell finite elements, and the example is solved for
five different DMO material patches, where the plate is
divided into 2x2, 4x4, 8x8, 16x16, and 32x32 material
domains having the same fiber angle. Failure indices are
computed at the bottom and top of each layer, such that
a total number of 2,048 failure indices are computed. It
is chosen to include the two largest values of each patch
in the P-norm function used for computing the aggregated
global strength measure. The number of failure criteria
nFI included thereby varies for each parameterization. The
penalization parameterq varies according to Table 1, and
it is changed after every 10 iterations. The optimization
problem is solved using SLP using a 10% adaptive move
limit strategy as described in Sørensen et al. (2014). The
results obtained when failure indices are computed using
the maximum strain failure criterion are presented in
Table 3. In order to compare the DMO solutions with
the fiber angle distribution obtained with continuous fiber
angle optimization (CFAO), the 32x32 parameterization,
i.e. when fiber angles can vary within each element, is also
solved with CFAO.

Table 3: Tabular overview of results of all parameterizations
for the single-layered clamped plate example when using
the maximum strain failure criterion. The maximum failure
index is for the final (rounded) 0/1 design. #It denotes the
total number of iterations.

Parameterization NFI max FI Mcnd [%] #It

2 x 2 DMO patches 8 0.682 96.15 16
4 x 4 DMO patches 32 0.292 0.00 46
8 x 8 DMO patches 128 0.288 0.00 39
16 x 16 DMO patches 512 0.244 0.02 88
32 x 32 DMO patches 2048 0.235 0.07 152
Elementwise CFAO 2048 0.167 - 93

From Table 3 it is seen that most of the discretizations
converge to a 0/1 solution, except for the 2 x 2 DMO

patch problem which is simply parameterized too coarsely.
This optimization problem fulfills the convergence criterion
of having a relative change in design variables less than
0.1% after 16 iterations, even though the measure of
candidate non-discretenessMcnd is more than 96%. The
maximum failure index listed in the examples is always
computed for the (rounded) 0/1 design. In general, the
number of iterations needed increases with the number of
design variables. This is expected for such strength related
optimization problems as they are much more difficult to
solve than compliance problems.

(a) 2x2 DMO patches (b) 4x4 DMO patches

(c) 8x8 DMO patches (d) 16x16 DMO patches

(e) 32 x 32 DMO patches (f) Continuous angles

Figure 6: Optimized fiber angle distributions for single-
layer clamped plate examples. The FE model consists of
32 x 32 9-node shell elements.

The fiber angle distributions obtained are illustrated in
Figure 6. Most of the DMO fiber angles are as expected,
except for a few angles for the 32x32 patch model. One
would expect symmetric solutions for this example as the
four candidate angles have equal weighting initially, but due
to the non-convexity of the problem a few angles converge
to a local minimum. This is also demonstrated for the
solution obtained using continuous fiber angles. The initial
fiber angles are 0◦, and the solution obtained is definitely a
local minimum. However, due to the larger design freedom
with continuous fiber angles, the maximum failure index is
lower than for the DMO solution. The distribution of failure
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indices for the bottom of the optimized plates is shown in
Figure 7. The fiber angle distributions in the corners of
the plate are different from the classical analytical grillage
solutions obtained in Rozvany (1972). This difference is
expected to be due to the assumptions in the analytical
grillage theory. The fiber angle distributions in the corners
of the plate are similar, if the objective is to minimize
compliance, whereas differences are seen in many other
parts of the plate.
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Figure 7: Maximum strain failure index at bottom of
optimized single-layer clamped plates.

A typical iteration history is shown in Figure 8 for
the model with 16x16 DMO patches. The change of
penalization power after iteration 10 and 20 is seen to
cause a large increase in the failure index value, but the
optimization algorithm converges to a distinct choice of
fiber angles.

Next the same example is solved using the maximum
stress failure criterion in order to document that both strain
and stress based failure criteria can be applied. The results
are shown in Table 4. In general, the results are very
similar to the results obtained using the maximum strain
failure criterion, except for the 8x8 patch parameterization
that ends in a local minimum. For other choices of move
limits, this problem can converge to the same fiber angle
solution as shown in Figure 6 which again illustrates the
non-convexity of the optimization problem. The sensitivity
to move limit values for the SLP algorithm is similar to the
sensitivity seen for other topology optimization problems.
The move limits have to be sufficiently small, such that the
linear approximations applied are sufficiently accurate. The
number of iterations used is more or less the same for both
criteria.
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Figure 8: Iteration history for 16x16 DMO patch model
when using the maximum strain failure index

Table 4: Tabular overview of DMO results of all parameter-
izations for the single-layered clamped plate example when
using the maximum stress failure criterion.

Parameterization NFI max FI Mcnd [%] #It

2 x 2 DMO patches 8 0.778 96.11 20
4 x 4 DMO patches 32 0.327 0.00 30
8 x 8 DMO patches 128 0.343 0.02 45
16 x 16 DMO patches 512 0.305 0.02 65
32 x 32 DMO patches 2048 0.277 0.03 131

These examples have also been solved using the general-
ized SIMP scheme with a lower limit of 10−4 on the design
variables, and the results and performance are quite similar
to the above results obtained with generalized RAMP.

5.2 Five-layer cantilever beam

The remaining examples illustrate the performance of the
DMTO approach, i.e. simultaneous determination of
thickness variation and material distribution. The first
example is another benchmark example as the solutions can
be verified by exhaustive search. Again, manufacturability
is not considered for this benchmark problem. The example
is defined in Figure 9.

F = 10N

0.1m

0.5
m

Thicknessh =
5t =

0.0
05m

x/0◦
y/90◦

Figure 9: Five-layer cantilever beam subjected to loadF
= 10 N and discretized by five 9-node shell elements. Ply
thicknesst is 0.001 m.

The objective is to minimize the maximum failure index
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of the five-layer GFRP cantilever beam, subject to the mass
constraint that 15/25 of the domain can be occupied by
material. Again the candidate materials are GFRP UD
oriented at−45◦ , 0◦, 45◦, and 90◦, but now the same
material should be selected for each layer, i.e. only one
material patch is defined. The thickness can vary for each of
the five geometry domains (here equal to the finite element
discretization), however, slope constrains are added to the
problem in order to limit the thickness changes. These slope
constraints specify that the thickness can only increase by
one layer between the geometry domains. Details about the
linear inequalities used for specifying slope constraintscan
be found in Sørensen and Lund (2013) and Sørensen et al.
(2014). The bottom layer must always exist, i.e. it
has full density. The two largest failure indices of each
geometry domain are included in the computation of the
P-norm global failure index, such that 10 failure indices are
included in total.

The result of the optimization is seen in Figure 10
(a) where layer thicknesses are scaled by a factor of 20.
The problem is also solved with the additional constraint
that no identical contiguous plies are allowed. This is
a manufacturing rule used in many cases in order to
avoid a number of layers with the same fiber angle, as
this may result in a larger build-up of transverse stresses
causing delamination. The formulation of such linear
inequality constraints for specifying limits on contiguous
plies can also be found in Sørensen and Lund (2013) and
Sørensen et al. (2014). The result of this case is shown in
Figure 10 (b). In both cases the starting design has full
density of all layers, i.e. the starting point is infeasible,
and the optimization problem is solved using the SLP
approach described in Sørensen and Lund (2013) with 10%
move limits. As in the previous example, the penalization
parameterq varies according to Table 1 and is changed after
every 10 iterations.

Angles

 0

(a) DMTO design with ply drop constraint

Angles

 45
 0
-45

(b) DMTO design with ply drop constraint and no identical
contiguous plies allowed

Figure 10: Optimized fiber angle and thickness distributions
for five-layer cantilever beam example. The thicknesses are
scaled by a factor of 20.

The solutions are found after 31 and 52 iterations,
respectively, and in both cases full convergence is obtained,
i.e. Mdnd = Mcnd = 0.0%. The two solutions shown agree
with the global integer optimum determined by exhaustive
search. For the second case, the+45◦ and−45◦ candidate
angles are equally good to select due to symmetry, so the
material choice for layer 2 and 4 can be interchanged with
the same result for the computed failure index.

It should be noted that the DMTO parameterization

yields exterior ply drops which in general should be
avoided when designing varying thickness laminates, see
e.g. Cairns et al. (1999) and Mukherjee and Varughese
(2001). However, it is outside the scope of this paper
to present DMTO parameterizations aimed at generating
interior ply drops, as the main objective is to present the
inclusion of strength criteria in existing DMO and DMTO
parameterizations.

5.3 Corner hinged eight-layer plate

Next a corner hinged eight-layer GFRP plate is considered.

F = 400N

2.0m

2.0
m

8t = 0.008m

x/0◦

y/90◦

Figure 11: Corner hinged eight-layer plate. Ply thickness is
0.001 m.

The objective is to minimize the maximum failure index
of the eight-layer GFRP plate, subject to the mass constraint
that half of the domain can be filled with material. The
bottom layer must exist, i.e. it has full density, and the
material choice should be the same for each layer in order to
ease manufacturability. It should be noted that the DMTO
parameterization applied results in exterior ply drops, which
in general should be avoided due to risk of delamination.
Thus, an improved DMTO parameterization would be
useful, if the optimized design should directly be ready for
manufacturing. However, the main aim of this paper is to
document the possibility of including failure criteria forthe
multi-material density approach, and the development of an
improved DMTO parameterization is left for future work.
As in the previous examples the candidate materials are
GFRP UD with−45◦, 0◦, 45◦, and 90◦ fiber orientations,
and for the thickness parameterization 24x24 geometry
domains are defined. The plate is discretized with a 48 x
48 mesh of 9-node shell elements, such that each geometry
domain consists of 2x2 elements. Four contiguous identical
layers are allowed, and slope constraints are specified,
such that the layer thickness can only change by one layer
between geometry domains. In total the problem has 36,864
potential failure indices computed using the maximum
strain criterion and 1,041 design variables. Failure indices
exceeding 50% of the largest failure index in a given
iteration are included in the computation of theP-norm
global failure index, taking the conditions into account that
at least 300 values and at most 1000 failure index values are
included.

Again all layers have full density for the initial design,
such that the starting point is infeasible. The penalization
parameterq varies according to Table 1 and is changed
after every 30 iterations. A 10% move limit is applied.
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The problem needs 58 iterations before the convergence
criterion is fulfilled. The choice of material is distinct,
i.e. Mcnd = 0.0%, while the measure of density non-
discreteness isMdnd = 3.1%. The mass constraint is active
for the optimized design, and with the parameterization
applied combined with the value of the mass constraint, a
couple of geometry domains do not obtain a distinct number
of layers. Results are shown for a rounded 0/1 design. In
this case the mass constraint is accidently still fulfilled for
the rounded design, but this is in general not the case using
simple rounding.

The choice of fiber angle and thickness distribution of the
final design is illustrated using a solid model in Figure 12
where thicknesses are scaled by a factor of 20.

Fiber
angle

90

0

a) Top view

b) Front (xz) view

c) Side (yz) view

Figure 12: Optimized design of corner hinged eight-layer
plate.

The solution resembles a cross ply laminate with varying
thickness, except that 90◦ has been selected for both layer 7
and 8. A slight asymmetry is introduced which is expected
to be due to the mass constraint. Note that the layup is
symmetric, except for the fiber angle chosen for the small
amount of material in the upper layer 8. Thus, even though
a symmetric layup is not enforced by the parameterization,
the optimization approach yields such a layup with high
performance.

Max Strain
Failure Index

 3.167E-001

 2.640E-001

 2.113E-001

 1.586E-001

 1.059E-001

 5.320E-002

 5.069E-004

Figure 13: Failure index distribution for optimized design
of corner hinged eight-layer plate.

The maximum strain failure index of the final design is
illustrated in Figure 13, again using a solid model where
thicknesses are scaled by a factor of 20. A quite uniform
distribution of the failure indices is seen, taking into account
that the same fiber angle must be chosen for each layer.

5.4 Multi-criteria optimization of main spar
from wind turbine blade

The final study is related to a complex multi-criteria
optimization example of designing a simplified main spar
from a wind turbine blade. It was studied in detail for
the DMTO formulation in Sørensen et al. (2014), and here
the example is extended with the inclusion of strength
constraints. It is outside the scope of this paper to describe
the example in detail, as it is mainly included in order
to demonstrate the behaviour of the optimization process
when many different structural criteria are included.

Ø0.86
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0
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0

0.42

0.020.02

0
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4

0.226

Root section

Distributed
load

Tip section Mid section

Figure 14: Simplified model of main spar from wind turbine
blade.

The geometry of the 25 m simplified main spar is shown
in Figure 14. The model is clamped at the circular root end
and the applied loads resemble the most critical extreme
flapwise bending situation, happening in a so-called 50
year gust scenario. The loads are taken from experimental
tests of the real wind turbine blade and are applied as
a distributed load, corresponding to a resulting load of
164.7 kN, see details in Overgaard et al. (2010). The finite
element model consists of 7,168 9-node shell elements with
20 layers everywhere. The inner geometry of the main spar
is used as reference, and ply thickness of each of the 20
layers is 0.0025 m, resulting in a maximum total laminate
thickness of 0.05 m. A total number of 448 patches are
applied for parameterization of both material and thickness.
Six different candidate materials commonly applied in the
wind turbine industry are defined. The first four candidates
represent GFRP UD plies with−45◦, 0◦, 45◦, and 90◦ fiber
orientations relative to the axial direction of the main spar.
The 5th candidate represents a GRFP biax ply and the last
candidate represents a lightweight isotropic foam material
such that a sandwich structure is a possible outcome of
the optimization problem. The problem thereby involves
62,720 design variables.

The objective is to minimize mass while fulfilling a
number of structural constraints. The lowest linear buckling
load factor must be≥ 3 and the lowest eigenfrequency must
be ≥ 1 Hz. For both eigenvalue criteria the five lowest
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values are included in the optimization problem. The tip
displacement must be≤ 1 m and the failure indices must be
≤ 1. The total number of failure indices is 286,720 failure
indices which are reduced to 448 constraints usingP-norm
functions, each consisting of the 10 largest failure index
values within each patch. Finally, a maximum number of
8 consecutive identical layers are allowed, and ply drop
constraints enforce that thickness changes between patches
is limited to the thickness of one layer.

The problem is solved with 10% move limits and the
q values are updated according to Table 1 for every 30
iterations. The iteration history is given by Figure 15. The
convergence criterion is fulfilled after 87 iterations, where
the measure of candidate non-discreteness isMcnd = 0.13%
and the measure of density non-discreteness isMdnd =

0.20%. Thus, the optimized solution is very close to a pure
0/1 design.

The lowest linear buckling load factor is 3.02, the tip
displacement is 1.00 m, and the maximum failure index
is 0.99, i.e. these three constraints are at or very close to
their allowable values. The lowest eigenfrequency is 3.38
Hz and it is never active during the optimization process.
The structural criteria are conflicting in the sense, that the
buckling load factor will be increased by having several
layers at the top and bottom of the main spar with−45◦, 45◦,
and 90◦ fiber orientations, whereas the 0◦ fiber angle (axial
direction) will be the main preferred choice for the other
structural criteria. Thus, the distribution of fiber anglesand
thicknesses is a tradeoff between conflicting criteria, and
it is quite similar to the design presented in Sørensen et al.
(2014), except that the mass is increased by approximately
100 kg to 1273 kg when failure criteria are included in the
optimization problem. Thus, the distribution of fiber angles
and thicknesses of the 448 design domains with up to 20
layers is not shown here due to the similarities with the
design presented in detail in Sørensen et al. (2014).

The iteration history given by Figure 15 illustrates how
the failure criterion constraint increases significantly when
theq penalization parameter is changed after 30 iterations.
Subsequently, the mass is increased in order to obtain a
feasible solution, and most of the design variables have
converged after 60 iterations when theq parameter is
changed to its final value. This multi-criteria design
optimization problem illustrates that failure criteria can be
successfully included in complicated laminated composite
design problems with conflicting structural criteria.

6 Conclusions

In this paper the DMO and DMTO parameterization ap-
proches for optimization of laminated composite structures
have been extended to include failure criteria. The
interpolation schemes are multi-material variations of the
well-known SIMP and RAMP interpolation schemes where
suitable penalization parameters are applied. Thus, the
work can be considered as an extension of stress constrained
topology optimization of single-material problems to multi-
material problems. The large number of local constraints
is reduced by the use of aggregate functions, and four
different design optimization problems have demonstrated

the efficiency of the approach. This includes minimiza-
tion of the maximum failure index in single- and multi-
layer plate examples, and a challenging example of mass
minimization of a main spar from a wind turbine blade,
taking strength, buckling load factors, eigenfrequency and
displacement constraints into account.

The DMTO parameterization applied results in exterior
ply drops, that produce internal and local stress concen-
trations not captured by the shell finite elements applied
as a consequence of geometric discontinuities and shear
lag. Factors that effect the performance of laminated
composite structures with ply drops include thicknesses, ply
stacking sequences, ply drop geometries and manufacturing
considerations, and a continuation of the work presented
in this paper would be to develop an improved DMTO
parameterization that can generate interior ply drops with
improved strength performance. The DMTO approach is
still a tool to be applied in the conceptual design phase
as postprocessing is needed for the final manufacturable
design.
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