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Nomenclature 

Di KS2 maximum distance between two cumulative 
distributions for ith parameter 

Di-AB Di between cumulative distribution sets SA and SB 

Dij Di for jth repetition in the TOM method 

EE method of elementary effect (Morris’ SA)  

FF factoring fixing (SA setting based on total effects) 

FM factor mapping (SA setting) 

FP factor prioritization (SA setting based on main effects) 

FR factor ranking (SA setting based on total effects) 

J number of repetitions in TOM method 

KS2 Kolmogorov-Smirnov two-sample statistics 

N total number of Monte Carlo simulations 

Normative 
model 

Danish simulation software Be10 based on ISO 13790 
(here combined with regression model for daylight) 

Overtem-

perature 

thermal comfort penalty output in normative model 
[kWh/m² floor area] 

PCP parallel coordinate plot (for real-time analysis) 

PEAR Pearson’s product-moment correlation coefficient  

Q number of simulations in random selected subset 

RSA regionalized sensitivity analysis  

SA sensitivity analysis 

SRC standardized regression coefficients (linear regression) 

SA set of all simulations 

SB set of behavioural simulations meeting all criteria 

SN set of non-behavioural simulations 

Si first order effect (Sobol’s variance-based SA) 

ST total effect (Sobol’s variance-based SA) 

SATOR comparable SA measure based on TOR [0; 100%] 

SATOM comparable SA measure based on TOM [0; 100%] 

TOR proposed RSA method used for real-time analysis – 
both inputs and outputs 

TOM proposed RSA method to rank inputs according to 
sensitivity towards multiple outputs 

Abstract 

Monte Carlo simulations combined with regionalized 
sensitivity analysis provide the means to explore a vast, 
multivariate design space in building design. Typically, 
sensitivity analysis shows how the variability of model 
output relates to the uncertainties in models inputs. This 

reveals which simulation inputs are most important and 
which have negligible influence on the model output. 
Popular sensitivity methods include the Morris method, 
variance-based methods (e.g. Sobol’s), and regression 
methods (e.g. SRC). However, such methods only 
address one output at a time, which makes it difficult to 
prioritize and fixate inputs when considering multiple 
outputs. In this work, the primary outcome is a novel 
sensitivity method denoted TOM, which relies on 
Kolmogorov-Smirnov two-sample (KS2) statistics to 
rank inputs due to their influence on multiple outputs. A 
secondary method, denoted TOR, provides a real-time 
sensitivity measure when exploring data with the 
interactive parallel coordinate plot (PCP). The latter is an 
effective tool to explore stochastic simulations and to 
find high-performing building designs. The proposed 
methods help decision makers to focus their attention to 
the most important design parameters. As case study, we 
consider building performance simulations of a 
15.000 m² educational centre with respect to energy 
demand, thermal comfort, and daylight. 

Introduction 

Sensitivity analysis (SA) plays a valuable role in the 
field of building performance simulations. Its extensive 
applications have been reviewed in-depth by Tian 
(2013). Other works compare sensitivity methods with 
respect to accuracy, applicability, convergence, and 
visualization in relation to building performance 
(Burhenne 2013, Das et al. 2014, Nguyen & Reiter 
2015). Similar comparisons been conducted within other 
engineering disciplines (Confalonieri et al. 2010, Mara et 
al. 2017, Pianosi et al. 2016, Song et al. 2015, Yang 
2011). A textbook on SA by Saltelli et al. (2008) state 
that the purpose of SA may be the following: 

• Factor Prioritization (FP), which is used to rank 
inputs according to their individual 
contributions to output variance 

• Factor Fixing (FF) or screening, which is used 
to fixate uncertain inputs which have negligible 
contribution to output variance – even when 
considering interactions with other inputs 

• Factor Mapping (FM), which is used to identify 
input values that lead to model realizations in a 
specific output range  
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FP is a measure of the input’s individual contribution to 
output variance, which is often referred to as main 
effects or first order effects. This setting is used to 
identify uncertain inputs which, when kept fixed, will 
lead to the greatest reduction in output variance. This is 
desirable in uncertainty analysis, if the analyst wish to 
reduce uncertainty of the results. In contrast, FF is based 
on the inputs’ total effects, which is a measure of the 
variance induced by the input’s individual contribution 
along with its interactions with other inputs. If the total 
effect is small, the input makes no significant 
contribution to the variance and it may be fixated. For 
this work, we define another setting called “Factor 
Ranking” (FR), which is based on the total effects. This 
setting is used to rank inputs according their overall 
influence, which help the analyst (or multi-actor design 
team) focus on the inputs that matter and interact the 
most. 

Other purposes of SA include the study of input 
interactions (interdependencies), robustness assessment, 
and error detection. The intent of the analysis, along with 
computational effort and model complexity, is important 
when choosing among the many sensitivity methods. 
The global methods may be classified as regression-
based, screening-based, variance-based, and regionalized 
sensitivity analysis. In the following, we discuss the 
deficiencies of popular methods when guiding decision 
makers towards building design with high overall 
performance.  

Building simulations involve hundreds of inputs. When 
varying design parameters in Monte Carlo experiments, 
it is desirable to fixate the least significant inputs (FF) 
and thus simplify the analysis. For this purpose, the 
Morris method (EE) has been widely used because it is 
model independent and computationally cheap (Morris 
1991). However, its one-at-a-time sampling strategy 
cannot be used for design space exploration, which is an 
important aspect of building design. Variance-based 
methods are also popular for SA, since they are model-
independent and they can assess first order effects (for 
FP), higher order effects, and total effects (for FF). 

Higher order effects reveal input interactions. Though, 
variance-based methods have high computationally costs 
(Pianosi et al. 2016). 

Common for (perhaps all) screening-based, variance-
based, and metamodel sensitivity methods is that they 
address only one model output at a time. Hence, inputs 
contribute and rank differently for each output of 
interest. This makes it difficult to determine, which 
inputs should be kept fixed, and which inputs are the 
most important overall. In addition, their sensitivity 
measures represent the entire set of simulations, whereas 
the modeller may be interested in different parts of the 
simulated design space (FM). To address these issues, 
we propose to apply regionalized sensitivity analysis 
using two-sample Kolmogorov-Smirnov test statistics.  

In this paper, the primary objective is to rank inputs with 
respect to multiple outputs (FR). This is particularly 
helpful in holistic building design that involves multiple 
performance outputs, such as energy demand, thermal 
comfort, and daylight. The secondary objective is to 
highlight, in real-time, the parameters affected the most 
by user-defined filters (FM). The latter builds on 
previous work, in which a multi-actor design team filters 
Monte Carlo simulations, using an interactive parallel 
coordinate plot (PCP), to investigate different regions of 
the design space (see Figure 1) (Østergård et al. 2017). 
The PCP is intuitive and easy to interpret, but if the 
analysis contains more than approximately 10 
parameters, it becomes difficult to see which parameters 
have been affected by the applied filters. 

Methodology 

A precondition for our work is the Monte Carlo method. 
This is used to run a large number, N, of building 
simulations, which are explored using several SA 
methods. In the Monte Carlo workflow, the modeler first 
defines input distributions and sampling strategy. Next, 
simulations are run with respect to various outputs such 
as energy demand, thermal comfort, and daylight. The 
modeller may perform sensitivity analysis to fixate non-
significant inputs (FF). In that case, the Monte Carlo 

Figure 1: Parallel coordinate plot (PCP) with histograms showing distribution of the simulations, which remain 

after filtering. The bar plots how much the distributions have been affected by the filters (red rectangles). Each line 

in the PCP represents one simulation and is coloured according to its energy demand (green – yellow – red). 
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experiment is repeated with the reduced set of variable 
inputs. A large number of simulations must be sampled 
in order to represent a sufficiently large part of the 
multivariate design space. The modeller then ranks the 
inputs according to their combined output importance as 
explained below (FR). Finally, the multi-actor design 
team explores the design space by filtering inputs and 
outputs using an interactive parallel coordinate plot 
(FM). Figure 1 shows an example of the PCP, where 
histograms illustrate input and output distributions of 
simulations that meet the user defined filter criteria. 

We will now briefly introduce the general concept of 
regionalized sensitivity analysis (RSA) when using 
Kolmogorov-Smirnov statistics. In the following 
subsection, we explain the novel sensitivity measures, 
TOM and TOR, which we have developed based on the 
Kolmogorov-Smirnov two-sample statistics (TOM and 
TOR are derived from the first author’s name with the 
last letter referring to Multiple and Real-time). 

The essential part of RSA is filtering (also known as 
Monte Carlo Filtering). The filtering is typically applied 
to model outputs based on specific constraints, e.g. 
maximum value for energy demand or minimum criteria 
for daylight availability. The filter criteria split the 
simulations into two groups: 1) the behavioural 
simulations meeting the filtering criteria, and 2) the non-

behavioural simulations (Saltelli et al. 2008). The reason 

for doing so is to identify input values that most likely 
will result in behavioural simulations. These behavioural 
simulations represent building designs with high 
performance. After filtering, for each parameter, there is 
a distribution of values belonging to the behavioural 
simulations and likewise for the non-behavioural 
simulations. The two-sample Kolmogorov-Smirnov test 
provides a measure of how much two distributions differ 
(Saltelli et al. 2008). This measure, denoted D, is the 
maximum distance between two cumulative distributions 
as illustrated on Figure 2. If the maximum distance is 
large for the i

th input, then this input is important in 
driving the model into the desired output range, and vice 
versa. A comparable sensitivity measure, SAKS2,i, for the 
i
th parameter is obtained from the size of Di relative to 

the summed Di’s, see equation (1). Comparison of the 
Di’s shows which inputs are important and which are 
not. 

2,
i

KS i

i

i

D
SA

D
=
∑

 
(1) 

TOM – Factor ranking for multiple outputs 

Here, we present a novel SA method denoted TOM, 
which ranks inputs according to their influence on 
multiple outputs (FR). The method builds upon the 
above concept of splitting a large set of simulations, SA, 
into two subsets, SB and SN. Key to this approach is that 
filter criteria may be applied to any number of outputs 
(and inputs) and still two subsets remain. Of course, the 
number of “behavioural” simulations decreases for each 
additional constraint. The novelty here is to do this 
“splitting” by applying filter criteria to all outputs 
without knowing actual, project-specific constraints. 
Hence, the task is to develop a strategy to define criteria 
values for all outputs in a generic way. Afterwards, we 
define a sensitivity measure SATOM based on the KS2 
statistics Di. 

In the proposed methodology, we first assign an index to 
each Monte Carlo simulation. Next, we sort each output 
in ascending order while keeping a reference to the 
simulations’ indices (Figur 3 top left). For each sequence 
of output values, we now choose a random starting point 
(corresponding to a minimum criterion) and select Q 
number of simulations above this value (see arrows on 
Figure 3). If this selection exceeds the maximum value, 

Figure 3: 10 simulations sorted for two outputs. Subsets S1,j and S2,j are randomly selected for each repetition, j. 

The subsets are illustrated with arrows, which have random starting points but same length (Q simulations). 

Figure 2: The maximum distance D between two 

cumulative distributions. 
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the remaining simulations are chosen from the lowest 
output value. These steps are repeated J times. For each 
repetition j, we obtain a subset of “behavioural” 
simulations SB,j from the intersections of the subsets S1,j 
and S2,j. For example, the simulations with indices 1, 5, 
6, 8, and 10 all occur in both subsets S1,1 and S2,1. At the 
same time, we get a subset of “non-behavioural” 
simulations, SN,j, from the difference of SB,j and SA,. 
Using two subsets, we calculate the Dij for all inputs. 
Finally, we use the average values of Dij’s to establish 
the sensitivity measure SATOM,i for all input parameters – 
equation (2). This measure indicates the i

th input’s 
relative importance with respect to all outputs. To use 
this TOM method, we first need to assess how large the 
random subsets must be and how many repetitions are 
necessary, i.e. estimate Q and J. 

,

, ,
1 ,

J
i av

i av ij TOM i

j i av

i

D
D D SA

D=

= → =∑
∑

 
(2) 

Figure 4 illustrates how the size of the randomly picked 
subsets affects how much the randomly chosen subsets 
will intersect. If the subsets are too small, there will 
often be no intersection (Figure 4 top left). In those 
cases, the “non-behavioural” set, SB,j, will equal the total 
set of simulations, SA, and consequently all Dij’s will be 
zero. If so, the step is repeated until a non-empty 
intersection is obtained. To get the most distinctive 
maximum distances, we want the “non-behavioural” set 
to constitute roughly half the size of the total set. From 
logical reasoning and experience, it seems that for m 

uncorrelated outputs and infinitely many repetitions J, 
the number of “non-behavioural” simulations converges 
to 50% of N when defining the subset size Q as in 
equation (3). 

10.5 mQ N= ⋅  (3) 

As mentioned, we also need to estimate the number of 
repetitions, J, necessary for convergence of the distance 
Di,av’s. In the “Results and discussion” section, we show 
that the sensitivity measures converge after ~300 
repetitions for the case study. However, to recommend a 
general value for J, we need to test additional models 
with different levels of complexity and number of inputs. 

In the “Results and discussion” session, we apply the 
TOM method to several benchmark models. The results 
show that the method estimates the inputs’ total effects. 
Thus, TOM can be used for Factor Ranking, which was 
the intention of this approach. The method may also be 
used for Factor Fixing. One approach is to apply the null 
hypothesis of KS2, which checks whether the 
cumulative distributions for the subsets SB,ij and SN,ij for 

the ith input are the same at a given significance level, α. 
If the null hypothesis is accepted (for all J), the ith input 
is non-influential. However, our experience has shown it 
difficult to find a specific significance level that avoids 
type I and type II errors for different models. Instead, we 
propose to include a “dummy” input, which does not 
affect the output (Mara et al. 2017). If Di,av for the i

th 
input is similar to Ddummy,av, then the ith input must have 
limited or no influence and may be fixated. 

A final remark relates to our choice of comparison of 
cumulative distributions. For the TOM method, we 
compare the non-behavioural set, SN with the entire set, 
SA, in order to calculate Dij. Instead, we could have 
chosen to compare SB with SA or SB with SN. The 
differences are illustrated on Figure 5. However, our 
initial testing have indicated that the relative measures 
SATOM,i are almost identical, no matter which two sets 
are used to calculate Di. We have chosen to compare SN 
with SA since SB might be an empty set if there is no 
intersection of the subsets (if Q is small). 

 

Figure 5: Cumulative distributions for SA, SB, and SN for 

a uniformly distributed input, xi. 

Figure 4: Conceptual illustration of how 

intersections of randomly selected subsets change. 

Smaller subsets may have no intersection and thus no 

behavioral simulations 
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Conclusively, we have now established the RSA method, 
TOM, which ranks inputs according their importance 
towards multiple outputs. Before testing TOM on a 
building simulation case, we present another RSA 
approach, TOR, which is used to highlight important 
parameters, which have been affected the most during 
real-time Monte Carlo filtering in the PCP. 

TOR – Real-time highlight of important parameters 

This RSA method, denoted TOR, helps highlight the 
parameters affected, when users add constraints to 
simulation data in a parallel coordinate plot (PCP). The 
interactive PCP is a powerful tool to analyse multivariate 
data in “real-time”. In a building design context, the 
design team may filter the output coordinates in 
accordance with building code criteria. The remaining 
“behavioural” simulations indicate regions or limits of 
the input space that meet the criteria. For example, the 
distribution of the mean room reflectance in Figure 1 is 
highly skewed and favours high reflectance values after 
applying building code criteria. In addition, the design 
team may assess design choices by applying filters to 
input coordinates. The remaining distributions reveal the 
consequences of such design choices. In the same 
example, the design team may test if it is possible to 
avoid solar panels and at the same time have a high 
window-to-facade-ratio. Despite its strengths, the PCP 
becomes difficult to interpret when the number of 
parameters increases or when the distributions are non-
uniform. 

Here, we suggest using KS2 to assess how much the 
behavioural distributions differ from the initial 
distributions, when applying filters in the PCP. The user-
defined filters split the simulations into a behavioural set 
and non-behavioural set. Therefore, we do not need to do 
this splitting in a generic way as in the TOM method. In 
this approach, we calculate the Di’s for the distributions 
of the behavioural set, SB, and the entire set of 
simulations, SA. In real-time, we calculate and visualize 
the relative distances Di’s each time a filter is applied. 

We suggest using bar plots to visualize the relative Di’s 
and thus direct the user’s attention towards the 
parameters, which have been affected by the user-
defined constraints. Notably, this method works for both 
inputs and outputs. Moreover, it enables the modeller to 
include more parameters in the Monte Carlo method, 
which is beneficial for building simulations that contain 
many design parameters and performance criteria.  

Results and discussion 

First, we use four benchmark models to compare the 
TOM method against the well-established methods of 
Sobol and Morris. Next, we use a building case study to 
test the method when considering multiple outputs. In 
addition, this we assess how much the sensitivity 
measure, SATOM, depends on the sample size N and the 
number of repetitions J. Finally, we exemplify how to 
use the TOR approach together with the parallel 
coordinate plot. 

Benchmark models with single output 

To assess the TOM method, we apply it to two non-
linear and non-additive benchmark equations referred to 
as “Primer” (Saltelli et al. 2008) and Ishigami (Saltelli 
et al. 2000), respectively. 

               
4

1
i i

i

y W Z
=

=∑  (4) 

where ( )~ ,
i Z i

Z N µ σ , ( ),~ ,i W i iW N µ σ , 0Zµ = , 

, 0.5W i iµ = , and 1,2,3,4ii σ= = . 

           ( ) ( ) ( )2 4

1 2 3 1sin 7sin 0.1 siny X X X X= + +  (5) 

where ( )~ ,
i

X U π π− . The three SA methods require 

different sampling techniques. For TOM, we use 1.000 
and 10.000 calculations. The error bars indicate one 
standard deviation when repeating the method 50 times 
with J = 200. For Sobol’ variance decomposition, we 
apply 100.000 calculations. For Morris, the number of 

Figure 6: Results of sensitivity analysis for two benchmark models, using the TOM, Sobol’, and Morris method. 
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trajectories is adjusted, such that 1.000 calculations are 
used.  

Figure 6 shows how the sensitivity measures compare. 
The TOM method provides the same ranking of inputs as 
Sobol’ total effects, ST. However, the dummy variable is 
not zero. For the “Primer” model, the dummy has 
approximately the same size as Z1 and W1, and thus 
indicate that these may be fixated in a FF setting. This 
corresponds well with the results from Sobol’ and 
Morris. However, the Morris method wrongfully ranks 
X3 as more sensitive than X2 for the Ishigami model. For 
the “Primer” model, W3 ranks higher than Z3 when the p-
level is 6. Since the inputs in this model are normally 
distributed, it is necessary to truncate them (using three 
standard deviations) in order to apply Morris. This 
explains the dependence on p-level. Another issue of 
Morris arises when the input distributions are discrete 
due to a possible “misfit” with the p-level. In building 
performance simulations, inputs are often discrete. 

Two additional benchmark models, Sobol’s g-function 
and the Dixon-Price function, have been tested in similar 
manner. For those, the TOM method also produces the 
same ranking as the ones obtained from Sobol’s total 
effects. For all four benchmark models, we try to 
estimate the number of samples needed to achieve the 
same ranking as Sobol’. To do so, we start with a 
sampling size of 10.000 and then reduce the sample size 
in steps of 100 (until the size is 1.000 and then in steps 
of 10) until the ranking differs from Sobol’. This 
procedure has been repeated 10 times for each model. 
On average, the ranking starts to differ from Sobol’ 
when the sampling size becomes less than 800, 420, 340, 
and 960, for the four models respectively.  

In the following, we use a building performance model 
to assess the TOM method for multiple outputs.  

Building case study with multiple outputs 

As case study, we consider a 15.000 m² educational 
institution during a conceptual design stage (Figure 7). 
The design proposal contains a floor plan, but 
fenestration, shading, and more, have not been defined. 
We may describe the “variability” of these “undecided” 

design parameters using uniform distributions. For 
example, the design team have estimated the windows-

to-facade-ratio to be at least 40% and no more than 
80%. Another variable, infiltration, has been varied in 
three discrete steps corresponding to different levels of 
airtightness based on Danish building regulations. Ten 
design parameters have been defined using such 
continuous, or discrete, uniform distributions. Every 
possible combination of these variables constitutes an 
infinitely large design space. A Monte Carlo experiment 
is conducted to evaluate 5.000 different designs options, 
which is assumed to represent a sufficiently large part of 
this global design space. Quasi-random sampling is 

applied using Sobol’s low discrepancy sequences, LPτ 
(Sobol’ & Shukman 1993). This technique reduces 
“gaps” and “clusters” in the simulated design space, and 
it reaches convergence faster than ordinary random 
sampling. We use a “simulation engine” based on ISO 
13790 to evaluate energy demand (Energy) and thermal 
comfort (Overtemperature). A regression model is used 
to assess the average daylight factor (Daylight) in a 
typical classroom. Hence, for each simulation we obtain 
three performance objectives, which are often contrary. 
That is, improving one of them often worsens one of the 
others. 

Dependency on repetitions and simulations (TOM) 

As described above, we select a random subset of “non-
behavioural” simulations J number of times. For each 
repetition, the subset is compared to the entire simulation 
set by calculating the maximum distances Dij between 
the cumulative distributions for each input, i. Here, we 
determine how many repeated samples J is required to 
reach convergence of the mean values of Dij. We 
consider three outputs and all of the 5.000 simulations 
from the case study. Thus, the number of simulations in 
the subsets, Q, is 0.79·N = 3.950 in accordance with 
equation (3). 

From Figure 8, it seems the mean values converge after 
~300 repetitions. The ranking is consistent after 25 
repetitions. Note that, equally sensitive inputs may 
occasionally change positions. The computational time 
grows linearly with both N and J. For 5.000 simulations 
with 300 repetitions, it was less than 6 seconds using a 
standard laptop with Matlab R2016a. Thus, the 
computational time is negligible compared to that of 
building performance simulations.  Figure 7: Early design draft of the educational 

institution. Illustration: EFFEKT Architects. 

Table 1: Input probability distributions for case study. 
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Figure 8: Convergence of the mean values of Dij. 

The number of simulations, N, required for SA is often 
important to the modeller, when choosing which 
sensitivity method to apply. N typically depends on the 
number of inputs, the complexity of the model, and the 
sampling strategy. In regionalized sensitivity analysis, N 
must typically be 100 times the number of inputs 
(Pianosi et al. 2016). Figure 9 illustrates how the mean 
of Dij’s converge with increasing number of simulations, 
N. The former involves only one output, whereas the 
latter involves all three outputs. With the exception of 
the dummy, the mean values seem to converge when N 
exceeds 1.000 for case a single output. This fits well 
with the aforementioned “rule-of-thumb” suggested by 
Pianosi et al. Roughly three times as many is needed in 
the case of three outputs (for this case study). Both plots 
show some fluctuations of the mean value, but the 
ranking of the most important inputs is consistent when 
N is larger than 1.000.  

Sensitivity analysis for multiple, correlated outputs 

As described earlier, the main purpose of TOM is to rank 
inputs with respect to their sensitivity towards multiple 
outputs (FR). However, a multiple output measure may 
also be obtained from ordinary sensitivity methods by 
combining the sensitivity measures for the individual 
outputs using a weighting system. In the context of 
building performance simulation, some outputs may be 
highly correlated, since the design has to comply with 
several, correlated performance indicators. Now, we 
compare sensitivity measures for the case study in the 
following steps: 

1. For each output, we rank inputs using the 
relative sensitivity measures obtained from 
SRC, Morris, and TOM. 

2. The results from the TOM method for three 
outputs are discussed. 

3. The TOM method is compared to a weighted 
SRC method in the case of 7 outputs from 
which 5 are identical (thus correlated). 

The sensitivity measures from TOM and SRC are based 
on 5.000 simulations. The number of repetitions for 
TOM is 500. For Morris, we discretize all inputs into 8 
levels and run 450 trajectories (4.950 simulations). The 
results are shown in Table 2, which also include the 
results from TOM with respect to all three outputs. 

In Table 2, the inputs have been sorted with respect to 
their sensitivity towards all three outputs (TOM). First, 
we consider one output at a time only. From SRC, we 
obtain the coefficients of determination, R², which are 
0.96, 0.42, and 0.96, respectively. Thus, the outputs 
Energy Demand and Daylight Factor are nearly linear 
for these idealized building performance models. We 
observe that the different methods provide the same 
ranking of the three highest ranked inputs. However, we 
do not necessarily expect the same ranking for SRC as 
for the two others, since the SRC measures are obtained 
from linear regression, and, therefore, they only include 
linear effects. The ranking of less important inputs differ 
slightly. For example, SHGC ranks 7 with SRC, 4 with 
Morris, and 5 with TOM (SRC does not capture SGHC’s 

Figure 9: Mean of Dij in steps of 10 simulations with 

respect one output, Energy demand (top), and all 

three outputs (bottom). 
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interaction effects with e.g. Win-fac-ratio). The bottom 
row shows how the dummy variable would rank for the 
TOM method. For example, the dummy would be placed 
between the fourth and fifth highest ranked inputs for 
Overtemperature and Daylight Factor. Thus, the last six 
inputs may be considered non-influential for these 
outputs according to TOM. The dummy ranks last (11) 
for Energy Demand. 

We now turn our attention to the overall ranking towards 
multiple outputs, which are shown in the leftmost 
column in Table 2. We notice that each of the 
individually most important inputs, Win-fac-ratio, Solar 

panels, and SGHC, end up on the first, second, and 
fourth place. Remarkably, Reflectance ranks third 
overall even though it only ranks second for Daylight 

Factor and it is nearly insignificant for Energy Demand 
and Overtemperature. The reason is that only a few 
inputs affect Daylight Factor and Reflectance is a major 
contributor to the variance of this output. For the case 
study, this high ranking of Reflectance stresses out its 
importance to the design team. Thus, the design team 
must consider this interior design parameter at the early 
stages even though such parameters are often not 
determined before the late design phases. For example, 
the design team may search for a lower limit for 
Reflectance from Factor Mapping (see Figure 10).  

Finally, we wish to assess how the TOM method ranks 
inputs when some of the outputs are correlated. This is 
often the case in the context of building performance, 
since the design has to comply with several, correlated 
performance indicators. Examples of such indicators are 
the number of hours with indoor temperatures above 26 
and 27 °C, the number of hours the indoor climate falls 
into different categories, and heating demand, cooling 
demand, and total energy demand. In a holistic building 
design context, it is desirable to give less weight to such 
performance indicators since we wish to optimize the 
overall performance of the building. Here, we construct 
five “artificial” and 100% correlated outputs by 
including the output Daylight Factor five times for the 
TOM analysis. We also consider the outputs Energy 

Demand and Overtemperature. For comparison, we 
create an overall “weighted-sum” measure from SRC. 
Table 3 shows the rankings obtained from the TOM 
method and the weighted-sum SRC approach (WS-SRC) 
together with sensitivity measures for the single output, 
Daylight Factor. Naturally, the percentages from WS-
SRC are close to those from SRC for Daylight Factor. In 
contrast, the TOM method puts less weight to these fully 
correlated outputs. For example, Solar panels (sensitive 
to Energy demand) ranks third and Venting (sensitive to 
Overtemperature) ranks sixth. The reason is that the 
randomly selected subsets for the correlated outputs will 
often intersect and therefore their contributions to the 
behavioural subset will often be very similar. In 
conclusion, the TOM method helps rank inputs with 
respect to multiple outputs with less weight on correlated 
outputs, which is a desirable feature in holistic building 
design.  

 

Table 3: Ranking with respect to multiple, correlated 

outputs (blue). For comparison, the sensitivity measures 

for the “duplicated output” Daylight Factor are shown 

to the right. 

 

Table 2: Sensitivity measures obtained from SRC, Morris (EE), and TOM. 
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Real-time highlight of importance (TOR)  

Now, we demonstrate how the TOR method improves 
the use of the interactive parallel coordinate plot. As 
mentioned, the PCP is very intuitive and effective when 
exploring and analysing multivariate data. However, 
changes may be difficult to observe – especially if the 
plot contains many parameters. Here, the Kolmogorov-
Smirnov maximum distances, Di’s, are based solely on 
the user-defined filter criteria. Therefore, we need not 
define subset size Q or number of repetitions J.  

Figure 10 shows examples of a PCP with different filters 
applied. Bar plots show the relative sizes of the Di’s for 
the parameters with no filters applied. The 10 input 
parameters have been arranged according to the ranking 
obtained from the TOM method, such that the left-most 
inputs are the least important, and vice versa. In the 
topmost plot, we have removed all simulations, which 
have Overtemperature-values larger than zero.  This 
constraint largely affects the remaining distributions of 
SHGC (30.7%) and Window-to-facade-ratio (20.2%). In 
addition, it affects the remaining distributions for Energy 

Demand (18.7%) and Daylight Factor (17.6%).  

In the middle plot, we have added constraints to all three 
outputs in accordance with Danish building code 
regulations. Noteworthy, the TOR sensitivity measures 

do not provide the exact same ranking as the initial 
ranking from TOM, because the user-defined filters are 
different from the J random applied filters used for 
TOM. For example, Reflectance, and not Win-fac-ratio, 
has been affected the most by the filters applied to the 
three outputs in the middle plot. 

In the bottom plot, we assume the design team aims for a 
mean room reflectance larger than 0.5, because of its 
importance. Moreover, we assume the design team 
strives for a window-to-facade-ratio larger than 60%. 
The TOR measures and histograms show that this 
combination of criteria greatly affects the remaining 
distributions of values for Solar Panels and SHGC. The 
TOR measures also indicate some influence from Heat 

Capacity and U-value windows, which is harder to notice 
from the histograms.  

Conclusively, the TOR method helps decision makers 
focus on parameters that matter the most, and see the 
consequences of design choices. Especially, if the initial 
distributions are not uniform, changes are difficult to 
observe. However, when few simulations remain, the 
KS2 statistics will become inaccurate and it may be 
erroneous to draw conclusions about trends based on the 
histograms. To overcome this, metamodeling may be 
applied to create new predictions in the reduced 

Figure 10: PCP’s with user-defined filters illustrated with red rectangles. Based on TOR, bar plots indicate which 

parameters have been affected the most by the filtering. The inputs have been ranked right-to-left using TOM. 
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subspace as discussed by Østergård et al. (2017).  

Combining TOM and TOR 

TOM and TOR may both be used in a design process 
with Monte Carlo simulations. First, the modeller runs 
~1.000·m simulations and use TOM to fixate the least 
influential parameters with respect to all m outputs (FF). 
Afterwards, a very large set of simulations is run to 
represent the global design space (optionally using fast 
metamodels). Then, TOM is used to rank the inputs, e.g. 
for positioning in the PCP (FR). Finally, TOR is used to 
highlight changes during real-time exploration in the 
PCP (FM). 

Conclusion 

We have presented two novel sensitivity methods, 
denoted TOM and TOR, which help decision makers 
focus on the most important parameters during building 
design. A precondition is the use of the Monte Carlo 
method to perform thousands of simulations to explore 
the multivariate design space. In contrast to the popular 
Morris and variance-based methods, TOM and TOR can 
be used for multiple outputs and they work with random 
or quasi-random sampling.  

To test the TOM method, we used four non-linear and 
non-additive benchmark models and compared with 
Morris and Sobol’. The TOM method provided the same 
ranking of inputs as Sobol’, even when Morris did not. A 
building case study showed that TOM puts less weight 
on correlated outputs, which is preferable in holistic 
building design. The TOR method makes it easier to 
perform real-time exploration of multivariate data in the 
parallel coordinate plot. TOR highlights the parameters, 
which are most affected by user-defined criteria. This 
allows more parameters to be included in the analysis 
without the PCP becoming unmanageable. The reader 
may download Matlab code for TOM or test the 
combination of PCP and TOR on: 
http://buildingdesign.moe.dk/phd/ibpsa.html 

In future work, we wish to investigate larger case studies 
with more inputs and outputs. In addition, we will assess 
how to use the dummy variable or hypothesis tests to 
identify truly non-influenial inputs. Alternatives to the 
KS2 test, such as the Anderson-Darling test, may 
improve the accuracy of the methods (Engmann & 
Cousineau 2011). Finally, the methods may be combined 
with the regionalized sensitivity measure, PAWN, to 
detect interaction effects (Pianosi & Wagener 2015). 
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