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Highlights 

 Impact of experimental LBP studied in pain-free recurrent LBP patients and controls 

 Higher baseline trunk muscle activity in patients than controls during step tasks 

 Higher experimental pain intensity in patients than controls 
 Pain-induced movement strategy changes in patients may increase LBP recurrence risk 

 

ABSTRACT  

Low back pain (LBP) patients demonstrate reorganized trunk muscle activity but if similar changes 

are manifest in recurrent LBP patients (R-LBP) during asymptomatic periods remains unknown. In 

26 healthy and 27 currently asymptomatic R-LBP participants electromyographic activity (EMG) 

was recorded from trunk and gluteal muscles during series of stepping up and down on a step 

bench before and during experimentally intramuscular induced unilateral and bilateral LBP. Pain 

intensity was assessed by numeric rating scale (NRS) scores. Root-mean-square EMG (RMS-EMG) 

normalized to maximal voluntary contraction EMG and pain-evoked differences from baseline 

(Delta-RMS-EMG) were analyzed. Step task duration was calculated from foot sensors. R-LBP 

compared with controls showed higher baseline RMS-EMG and NRS scores of experimental pain 

(P<0.05). In both groups, bilateral compared with unilateral experimental NRS scores were higher 

(P<0.001) and patients compared with controls reported higher NRS scores during both pain 

conditions (P<0.04). In patients, unilateral pain decreased Delta-RMS-EMG in m. iliocostalis and 

bilateral pain decreased Delta-RMS-EMG in all back and gluteal muscles during step tasks (P<0.05) 

compared with controls. In controls, bilateral versus unilateral experimental pain induced 

increased step task duration and trunk RMS-EMG while both pain conditions decreased step task 

duration and trunk RMS-EMG in R-LBP patients compared with controls (P<0.05).  

 

PERSPECTIVES 
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Task duration and trunk muscle activity increased in controls and decreased in R-LBP patients 

during experimental muscle LBP. These results indicate protective strategies in controls during 

acute pain while R-LBP patients showed higher pain intensity and altered strategies that may be 

caused by the higher pain intensity, but the long-term consequence remains unknown. 

 

KEYWORDS 

Lumbar spine, pain induction, motor control, recurrent low back pain, sensitization 

 

 

INTRODUCTION 

Low back pain (LBP) is the primary musculoskeletal cause of disability globally34. The majority of 

LBP patients suffer from recurrent symptoms (R-LBP)60. R-LBP is defined as individual episodes of 

LBP after minimum 1 month without preceding pain59 and has been suggested to predispose to 

persistent LBP from multiple factors47. Although the underlying mechanisms in transition from 

recurrent to persistent LBP generally remain unknown5, changes in the sensory73 and motor 

systems33 in persistent LBP patients compared with healthy controls have been proposed to play 

an important role44. In patients with persistent LBP compared with asymptomatic controls, 

increased experimental pain intensity and decreased pressure pain thresholds in the extremities53 

indicate enhanced nervous system excitability73. These changes generally are established from 

long-term or repetitive nociceptive inputs that may influence pain perception and disability61. 

However, increased cold and mechanical pain sensitivity in the back and remote anatomical 

regions in acute LBP patients compared with pain-free controls62 indicate that the somatosensory 
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system may be sensitized without long-term nociceptive input, but it is unclear if sensitization is 

manifest in currently asymptomatic R-LBP patients.  

Furthermore, acute experimental pain changes the trunk muscle activity during gait69 and 

after standing surface perturbation30,41. However, observations of alterations in the trunk muscle 

activity in persistent LBP patients compared with healthy controls during e.g. gait3,40 and stance49 

served as basis for different hypotheses about the role of motor control and function in 

development of LBP. Hip13,38 and trunk muscle dysfunction33 and instability mechanisms31 

therefore have been suggested as drivers of inappropriate motor strategies resulting in pain. In R-

LBP patients, however, alterations in the trunk muscle activity during different tasks9,10,36 have 

been observed during remission of pain. These relatively permanent changes in the motor system 

may elevate the risk of additional LBP incidences44. 

Investigation of pain-evoked trunk muscle activity changes during functional motor tasks 

may contribute to further knowledge about the role of trunk muscles in LBP, and gait therefore 

has been studied extensively20. Stair ascent and descent requires higher force in the lower 

extremity and back muscles45 than overground gait and may challenge the temporal control of the 

body during movement22. However, the impact of acute or persistent LBP on the trunk muscle 

activity during stepping up and down is unexplored. During overground gait the trunk muscle 

activity in persistent LBP patients compared with controls is generally increased and the task 

velocity lower39 which has been interpreted as protective strategies68,70.  

Experimental pain in healthy participants has been used extensively to study underlying 

mechanisms in sensorimotor alterations4. Higher impact of experimental pain on the sensory 

system is often seen in patients compared with healthy participants53 and since pain induction in 

R-LBP patients during remission of LBP mirrored recalled clinical pain15, this model may effectively 
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replicate clinical LBP in an experimental setting. Most experimental pain studies are based on 

unilateral pain induction in contrast to patients that often report bilateral and high intensity pain 

after longer-lasting LBP12. A recent study showed increased LBP intensity and areas in healthy 

participants after bilateral compared with unilateral experimental LBP and correlation of pain 

intensity and the pain-evoked trunk muscle activity changes after surface perturbations41.  

The aim of this study was to compare effects of unilateral and bilateral experimental LBP on 

the trunk muscle activity and task duration during step tasks in healthy participants and R-LBP 

participants during remission of pain. In R-LBP patients compared with controls it was 

hypothesized that experimental LBP resulted in (1) longer step duration, (2) higher pain intensity 

and (3) increased trunk muscle activity and (4) that the underlying changes in hypothesis 1-3 was 

more expressed for bilateral compared with unilateral experimental LBP. 

 

MATERIALS AND METHODS  

Participants 

Mild to moderate disabled currently asymptomatic R-LBP patients and healthy control participants 

with no previous self-reported history of LBP were recruited from University College Northern 

Denmark, Aalborg University, and Aalborg University Hospital by posters and e-mail groups. 

Participants aged 18 to 50 years were included and exclusion criteria were (i) pregnancy, (ii) 

present or previous self-reported psychological disease, and (iii) present pain or unable to make 

full trunk flexion and extension from standing position without reporting pain. Additionally, R-LBP 

participants were excluded if they had radiologic verified malignancy, osteoarthritis or previous 

fractures in or related to the lumbar spine. The age range of participants was based on excluding 

adolescents and elderly54 subjects. The study was approved by the local ethics committee (N-
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20140006) and conducted in accordance with the Helsinki Declaration. Informed consent was 

obtained from each participant prior to the study.  

 

Summary of experimental protocol 

The participants completed the Oswestry Disability Index version 1 (ODI)7  which is considered a 

reliable and valid estimation of disability in LBP patients and were asked whether they suffered 

from any disability, surgery or pain17. Electromyography was recorded during maximal voluntary 

contraction values of relevant trunk muscles. Subsequently, three consecutive sessions of 10 steps 

up (ascent steps) and 10 steps down (descent steps) on a step bench were performed during 

electromyographic recordings of trunk muscles (1) at baseline, and in random order during (2) 

unilateral experimental LBP, and (3) bilateral experimental LBP. The three sessions were recorded 

with a minimum of 15 min break between sessions or until a pain free period of minimum 5 

minutes.  

 

Experimental low back pain 

Experimental LBP was induced by intramuscular injections of hypertonic saline. While the 

participants were seated on a chair in a relaxed position, the injection site at L2 level (see below) 

was cleaned with alcohol and sterile hypertonic (1.0 ml, 5.8%) or isotonic (non-painful control, 1.0 

ml, 0.9%)23 saline was injected perpendicular to the skin surface with a 25G × 28 mm needle. The 

participants were informed about the procedure but blinded to the type of injection. The Th12 

segment was identified by palpation of the ribs and counted down to L2. After this, L2 was verified 

by palpation of L4 at the line between the iliac crest bilaterally8 and L2 was estimated by counting 
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upwards. The most bulky part of m. longissimus at the L2 level was then palpated (typically 3-5cm 

from the midline) and marked bilaterally as injection sites. 

Saline was injected during two conditions: (1) Unilateral pain with one hypertonic saline 

injection in the dominant side immediately followed by an injection of isotonic saline in the 

contralateral side and (2) Bilateral pain with one injection of hypertonic saline in the dominant 

side immediately followed by an injection of hypertonic saline in the contralateral side. After 

completing the two injections, the participants were assisted to a standing position in front of the 

step bench to begin the step series. During the step tasks the participants were asked to rate the 

pain intensity on a verbal numeric rating scale (NRS), defined by numbers from 0 (‘no pain’) to 10 

(‘maximum pain’) after each of the 10 ascent and descent steps.  

 

Step task trials  

Each step task session consisted of series of 10 ascent followed by descent steps on a step bench 

(height 30 cm x width 90 cm x depth 35 cm) at self-selected speed before and after induction of 

experimental LBP. The participants were required to complete ascent steps by stepping onto the 

bench with the dominant foot leading, step up and stand with both feet on the bench. The descent 

steps were then completed by stepping off the bench with the non-dominant foot leading. The 

participants were instructed to stand still for approximately 2 seconds between each of the 

ascending and descending steps and before turning towards the bench for the next step after 

completing the descending steps. Between each series of 10 ascent followed by descent steps the 

participants were seated on a chair for 3 minutes or a pain-free period of minimum 3 minutes. 

The step task phases were recorded and extracted from four wireless footswitches (10 mm 

diameter, Noraxon FSR, Noraxon, USA) mounted bilaterally to the plantar surface of (i) the center 
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of the heel, and the most prominent spots on (ii) meta tarsal bone 1, (iii) meta tarsal bone 5 and 

(iv) hallux. The duration was defined as intermediate periods between foot contacts; during ascent 

steps between dominant toe off and non-dominant initial foot contact and during descent steps 

between non-dominant toe off and dominant initial foot ground contact (Fig. 1.A). The ascent and 

descent phases74 were automatically identified from the footswitch data exported to Matlab® 

2014 (Mathworks Inc.) Subsequently, the phases were visually confirmed, and excluded if onset or 

offset time was ambiguous. The duration of intermediate periods was averaged across the 10 

steps. Additionally, the difference from baseline to post pain duration was calculated (Delta-time) 

and expressed as percentage of baseline, since the velocity was self-selected. 

   

Electromyography of trunk muscles 

Surface electromyography (EMG) signals were recorded from 3 back, 3 abdominal, and 2 gluteal 

muscles from the dominant side of the trunk by self-adhesive dual surface electrodes (4x2.2 cm, 

10 mm diameter adhesives, with fixed inter-electrode distance of 1.75 cm, Noraxon USA). After 

the skin was shaved and cleaned with alcohol, electrodes were placed on the skin over the 

abdominal muscles according to previous recommendations29: m. obliquus internus (along the 

horizontal line between left and right anterior superior iliac spine, medial from inguinal ligament1), 

m. rectus abdominis (3 to 4 cm lateral to and at the level just above the navel52), and m. obliquus 

externus (along the line from most inferior point of costal margin to opposite pubic 

tubercle,cranial electrodes were placed directly below most inferior point of costal margin 2). 

Likewise, electrodes were attached to the skin over the back muscles after confirmation of the 

anatomical landmarks by palpation during submaximal contraction: m. iliocostalis (approximately 

one finger width medial from a line from posterior superior iliac spine to lowest point of lower rib 
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at L2 level, m. longissimus (approximately 2 fingers width lateral from L1 spinal process), and the 

erector spinae muscle overlying m. multifidus at the L4 level (m. multifidus, 1 cm medial and 

parallel to a line between posterior superior iliac spine, and first palpable spinous process from the 

L4 level). Finally, electrodes were attached to m. gluteus maximus (approximately middle of the 

line between the sacral vertebrae and the greater trochanter of femur), and m. gluteus medius 

(approximately middle of the line from the highest point of iliac crest to the greater trochanter of 

femur).  

EMG was recorded during maximal voluntary contractions (MVC) in standing positions with 

external manual resistance after 3 submaximal training trials for each muscle or muscle group. The 

lumbar extensor muscles were tested through spinal extension from about 30 degrees standing 

trunk flexion position65. The abdominal muscles were tested through standing trunk flexion from a 

20 degrees trunk flexion position with and without left and right-sided rotation16. The gluteal 

muscles were tested during standing in slight forward trunk flexion position56 while holding a firm 

grip in a bench with both hands. 

The EMG signals were filtered with a 4th order Butterworth band-pass filter (10–500 Hz) and 

sampled at 1500 Hz with a gain of 500 by a wireless transmission system with 16 bit analogue-to-

digital resolution (DTS, Noraxon USA). The EMG signals were exported to Matlab® 2014 

(Mathworks Inc.) for offline analysis. EMG data were full-wave rectified, smoothed with a 100 ms 

moving average window and mean root-mean-square (RMS-EMG) values were derived for each of 

the ascending and descending phases. 

  The EMG data from MVC recordings were full-wave rectified, smoothed with a 200 ms 

moving average window and the maximum EMG amplitude of each muscle (max-EMG) was 

identified as maximal peak EMG values over a 500 ms window with the greatest average EMG 
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amplitude within the MVC test72. The RMS-EMG of ascending and descending phases was 

expressed as percentage of the max-MVC of the individual muscle11 for analysis of the muscle 

activity between the groups at baseline. RMS-EMG after pain-induction was extracted for the 

individual ascending and descending phases during the experimental pain sessions and expressed 

as percentage of the baseline RMS-EMG values (Delta-RMS-EMG; baseline defined as 100%) for 

each phase.  

 

Statistics  

The sample size estimations were conducted a priori in GPower 3.1.9.2 based on results from 

previous studies of pain-evoked differences in trunk muscle EMG41,42. The variance of Delta-RMS-

EMG was set for 0.1 and the level of significance was set at p<0.05. With a statistical power of 

80%, a sample of 22 participants in each group were required and 26 healthy and 27 currently 

asymptomatic R-LBP participants were included.  

Statistical analyses were performed in SPSS®23.0 (IBM) and statistical significance was 

accepted at P < 0.05. Data are presented as mean and standard error of the mean (SEM). 

Participant characteristics were compared between groups by independent t-tests. Pain NRS 

scores, step phase duration, and RMS-EMG data were normally distributed as assessed by Shapiro-

Wilk's test of normality. All data were analyzed with mixed model analysis of variance (ANOVA). 

Significant results were post-hoc tested by independent t-tests for comparison between groups 

and dependent t-tests for comparison between conditions. Subsequently, the P-values were 

Bonferroni adjusted to correct for multiple comparisons.  

The NRS scores were analyzed with a four-way ANOVA with group (Control and R-LBP) as 

between and condition (unilateral and bilateral pain), step tasks (ascent and descent) and steps (1-
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10) as within factor. Step phase duration at baseline was analyzed with two-way ANOVA with 

group as between and phases (ascending and descending) as within factors. Baseline RMS-EMG 

during the ascent and descent step tasks were analyzed with two-way ANOVA with group as 

between and muscle (m. obliquus internus, m. rectus abdominis, m. obliquus externus, m. 

iliocostalis, m. longissimus, m. gluteus maximus and m. gluteus medius) as within factors. 

The difference between baseline and pain conditions for the step phase duration (Delta-

time) was analyzed with three-way ANOVA with group as between and phases and condition as 

within factors. Pearson’s correlation coefficient (r) was used to correlate Delta-time between the 

two pain conditions and correlate Delta-time with pain NRS scores for each of the two pain 

conditions. Finally, Delta-RMS-EMG during each of the ascent and descent tasks was analyzed with 

three-way ANOVA with group as between and muscle and condition as within factors.  

   

 

RESULTS  

Participant characteristics 

The study included 26 healthy participants [16 females; age 23.6 ± 4.4 years; body mass index 

(BMI) 23.8 ± 2.5 kg/m2; no disability (ODI score 0.87 ± 1.69)] and 27 patients suffering from 

recurrent mild to moderate recurrent low back pain with no present pain [12 females; age 27.4 ± 

9.9; BMI 21.9 ± 3.2 kg/m2 and low to moderate disability (mean ODI score 32.2 ± 7.7)]. There were 

no significant differences between the two groups in age (P>0.09) and BMI (P>0.23). No 

participants had present or previous self-reported psychological disease, lower extremity dysfunction, 

gait limitations, or present LBP or other musculoskeletal pain at the beginning of the experiment. 

Participants in the R-LBP group suffered from recurrent non-specific LBP with a minimum of two 
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annual episodes of LBP during the last three years with pain intensity ranging from 3 to 6 on a 

NRS. In 2 R-LBP participants, the first experimental pain session resulted in longer lasting soreness 

that was still present when the second experimental pain session was scheduled. One of the 

asymptomatic participants additionally felt uncomfortable after the first experimental pain session 

and all three participants were excluded from analyses (R-LBP: n=25; controls: n=25).  

 

Experimental low back pain intensity  

An interaction between group, condition, task and steps was found for the pain NRS scores (Table 

1; ANOVA: F (9,432) = 5.93, P < 0.001). Post-hoc tests showed no differences between pain NRS 

scores during ascent and descent tasks but pain NRS scores were higher in the R-LBP compared 

with the control group during both tasks during unilateral (Bonferroni: P < 0.02) and bilateral 

(Bonferroni: P < 0.04) pain. In both groups, NRS scores additionally were higher during bilateral 

compared with unilateral pain (Bonferroni: P < 0.001).   

 

Step phase duration and correlation with pain NRS scores 

The baseline step phase duration in the control group was 1536.6 ± 31.4 ms during ascent and 

1454.4 ± 24.4 ms during descent and in the R-LBP group 1591.1 ± 18.4 ms during ascent and 

1465.5 ± 14.6 ms during descent; a two-way ANOVA showed no interaction between groups and 

phases (ANOVA: F (5,240) = 1.58, P = 0.21). A three-way ANOVA of pain-induced changes in the 

step phase duration from baseline values (Delta-time) showed an interaction between groups, 

phases and conditions (Fig. 1; ANOVA: F (1,48) = 39.0, P < 0.001). Post-hoc analyses showed that 

both unilateral and bilateral pain reduced the ascent step phase duration compared with baseline 

(Delta-time) in the R-LBP group in comparison with the control group (Bonferroni: P < 0.001). 
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During bilateral compared with unilateral pain Delta-time decreased in the R-LBP group 

(Bonferroni: P < 0.05) and increased in the control group (Bonferroni: P<0.03).  

Delta-time showed low correlation with NRS scores during unilateral (r=-0.17, P=0.30) and 

bilateral (r=-0.01, P=0.23) pain but high correlation was present in Delta-time between unilateral 

and bilateral pain (r=0.73, P<0.001). 

 

Baseline muscle activity during step tasks   

At baseline, an interaction between muscles and groups was observed for the ascent (Fig. 2A; 

ANOVA: F (7,336) = 2.81, P < 0.03) and descent (Fig. 2B; ANOVA: F (7,336) = 23.27, P < 0.04) step 

tasks. Post-hoc analyses showed higher baseline RMS-EMG muscle activity in all back and 

abdominal muscles in the R-LBP compared with the control group during ascent (Bonferroni: P < 

0.02) and descent (Bonferroni: P < 0.04) step tasks. 

        

Muscle activity during painful step tasks 

A three-way ANOVA of Delta-RMS-EMG showed an interaction between groups, condition, and 

muscles for the ascent (Fig. 3; ANOVA: F (7,336) = 6.05, P < 0.01) and descent (ANOVA: F (7,336) = 

6.82, P < 0.01) step tasks. Post-hoc analyses showed that during unilateral pain Delta-RMS-EMG 

was lower in m. iliocostalis in the R-LBP compared with the control group during ascent 

(Bonferroni: P < 0.01) and descent (Bonferroni: P < 0.03) step tasks. During bilateral pain, Delta-

RMS-EMG was lower in the R-LBP compared with the control group in m. iliocostalis, m. 

longissimus, m. obl. ext. abdominis, m. gluteus medius, and m. gluteus maximus during both 

motor tasks (Bonferroni: P < 0.04) and lower in m. multifidus during ascent step tasks (Bonferroni: 

P < 0.01).  
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In the control group, bilateral compared with unilateral experimental pain resulted in higher 

Delta-RMS-EMG in m. iliocostalis, m. longissimus and m. obliquus externus during both motor 

tasks (Bonferroni: P < 0.05) and higher Delta-RMS-EMG in m. gluteus medius during ascent step 

tasks (Bonferroni: P < 0.03). In the R-LBP group, bilateral compared with unilateral experimental 

pain during both step phases resulted in higher Delta-RMS-EMG in m. rectus abdominis 

(Bonferroni: P < 0.03) and lower Delta-RMS-EMG in m. iliocostalis, m. longissimus, m. multifidus, 

m. obliquus externus, m. gluteus medius and m. gluteus maximus (Bonferroni: P < 0.01). 

 

 

DISCUSSION 

This study is the first to investigate the effects of LBP provocation on trunk and gluteal muscle 

activity during step tasks between healthy controls and participants with episodic LBP but 

currently asymptomatic during assessment. In line with hypothesis 2, experimental pain resulted 

in higher pain intensity in the R-LBP compared with the control group. Contrary to expectations 

(hypothesis 3), experimental pain decreased the back muscle activity during step tasks and, 

interestingly, the rectus abdominis activity increased during bilateral pain in the R-LBP compared 

with the control group. In the control group, the back and obliquus externus abdominis muscle 

activity increased during bilateral pain compared with baseline. These differences, together with 

pain-evoked decreased step duration in the R-LBP compared with the control group, indicate 

changed movement strategies. These findings imply that previous LBP incidences may have a 

longer lasting effect on the nervous system resulting in higher sensorimotor impact of bilateral 

experimental LBP in the patient group although they were characterized by low to moderate 

disability level and were currently asymptomatic during the baseline examination.  
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Experimental low back pain model and sensory implication 

Injection of hypertonic saline is among the most studied experimental pain models24. Although 

experimental pain induction in healthy participants is accepted to replicate clinical pain, the 

aggravated sensorimotor impact of acute pain in R-LBP patients compared with controls 

supported the integration of experimental pain models in LBP patients to study the impact of R-

LBP. Recently, a group of unilateral R-LBP patients during remission of pain furthermore described 

unilateral experimental LBP as a recall of clinical pain symptom characteristics15. In persistent LBP 

patients compared with subacute LBP patients, higher prevalence of bilateral pain and higher pain 

intensity is evident12. These findings have been linked to long-lasting LBP conditions resulting in 

hyperalgesia53 and structural changes in the deep trunk muscles21. However, the increased 

response to acute pain in R-LBP patients during remission of pain in the current study showed that 

R-LBP can also induce durable spinal and supra-spinal level changes25 that may facilitate the effect 

of acute pain. Furthermore, higher pain intensity in the controls during bilateral compared with 

unilateral pain is in line with previous observations.  High pain intensity and increased referred 

pain areas have been observed in the trapezius19, masseter64 and longissimus41,42 muscles during 

bilateral experimental pain, probably caused by summation from converging inputs from 

nociceptors bilaterally27. The present study is, however, the first demonstration of spatial 

summation from bilateral hypertonic saline-induced pain in R-LBP patients during currently 

asymptomatic periods. Higher pain intensity during both pain conditions in the R-LBP group in 

comparison with the control group, additionally pointed towards interaction effects of summation 

mechanisms and facilitated central mechanisms.  
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Changes in step phase duration during pain 

No differences were observed in the baseline step phase duration between the groups in 

accordance with a previous study43. No previous studies reported pain-evoked staircase or step 

task duration. Unilateral and bilateral pain, however, prolonged the duration in the control group 

and decreased the duration in the R-LBP group during ascent steps in this study. Slower self-

selected velocity during overground gait in persistent LBP patients compared with controls and 

further decreased velocity in patients with referred leg pain and higher pain intensity58 is 

suggested to indicate protective mechanisms. Pain-evoked increased duration in the control group 

resembles clinical observations from where it has been hypothesized that patients attempt to 

reduce pain by increasing the local stability by changed muscle activity45. During stair step tasks 

compared with over-ground and level walking, the gait cycle duration and trunk stability demands, 

however, are higher, particularly during the more biomechanically demanding ascent step task55. 

Faster duration in the R-LBP group during ascent steps therefore may reflect a pain-evoked 

impairment of the musculoskeletal system to maintain trunk stability22. This is important, 

particularly during vertical ambulation where high back muscle activity is required to stabilize the 

trunk74 and to control the lifting of the upper body, the head and the upper extremities. However, 

during fast sagittal trunk movements less variable movement strategies in LBP patients, compared 

with controls, suggest an alternative strategy to decrease the local trunk stability demands6. Faster 

step phase duration in the R-LBP group may indicate an attempt to reduce the time spent in 

phases with high trunk muscle activity requirements. This may serve as a short-term pain-evoked 

protective mechanism, but the present findings do not show correlation between the pain 

intensity and task duration changes. However, experimental pain intensity is variable between 

participants and high correlation in Delta-time between the two pain conditions may indicate 
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individual consistent impact of acute pain independent from the pain protocol. Decreased task 

duration results in reduced motor variation50 and reduced local stability22 and although evidence is 

limited, such changes are hypothesized to increase the risk of persistent LBP33.  

 

Pain evoked muscle activity changes during step tasks 

Increased activity in all trunk muscles during the pain-free baseline step tasks in the R-LBP 

compared with the control group indicated generalized protective movement strategies. Force 

development may be attenuated by clinical51 and experimental26 pain and the normalization of 

baseline muscle activity to MVC is challenged in LBP patients14 and may have biased the findings. 

However, the R-LBP participants were currently asymptomatic during the baseline recordings and 

the observed increased trunk muscle activity is consistent with findings in persistent LBP patients. 

Concurrently increased abdominal and back muscle activity is hypothesized to unload the spine 

and increase spinal stability70. Biomechanical modelling, however, showed that spinal stabilization 

required low intensity antagonistic contraction63 and increased trunk muscle activity in persistent 

LBP patients during treadmill walking recently was interpreted as a muscle relaxation problem70. 

Similar mechanism may have caused the increased trunk activity during experimental pain in the 

current study.  

The control group demonstrated lower baseline muscle activity compared with the R-LBP group 

and both experimental pain conditions increased the activity in all muscles during the step tasks. 

Aggravated trunk muscle activity induced by acute pain may indicate adaptive movement 

strategies to avoid redundant movements in line with observations of rigid movement patterns 

during gait in persistent LBP patients40. This was further supported by increased muscle activity in 

the iliocostalis, longissimus and obliquus externus abdominis muscles in the controls during 
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bilateral compared with unilateral pain. In conjunction with increased step duration during ascent, 

these observations supported that the control group performed the step tasks through adaptive 

strategies68. This is in line with observations in persistent LBP patients70. However, the impact of 

unilateral pain on the trunk muscle activity was in contrast with the hypothesis and recent 

observations of muscle activity adaptations after surface perturbation in healthy controls during 

experimental pain41. These differences may be attributed the different motor task characteristics. 

Surface perturbation results in reactive muscle activity in a short time window36 while step tasks 

challenge the proactive motor planning46 and the use of a high step bench challenge the trunk 

stability during the entire task37. 

In contrast with the control group, R-LBP patients were affected predominantly after 

bilateral pain induction where the activity decreased in all back and gluteal muscles during both 

tasks, except of m. multifidus during descent steps. These observations were in contrast with the 

hypothesized increased trunk muscle activity in the R-LBP group that was based on assumptions 

about adaptation of pain-related alternative movement strategies to avoid motion of the lumbar 

spine66. The rectus abdominis muscle activity, however, increased in both groups, but significantly 

higher activity was observed in the R-LBP group during bilateral compared with unilateral pain. 

Contraction of the abdominal muscles is involved in increased abdominal pressure63 that is 

suggested to increase stiffness32 and unload the spine. Modelling63 and clinical48 findings 

supported, however, that the rectus abdominis muscle is not involved in abdominal pressure 

development. Furthermore, reduced low back muscle activity and concurrently high rectus 

abdominis activity may increase the pelvic stability through an alternative strategy resulting in 

posterior rotation of the pelvis35. 
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The present findings support a pain-evoked guarding strategy in the controls, particularly 

during bilateral pain in line with results from persistent LBP patients70. This may indicate that high 

intensity pain perception results in protection of the trunk by generally increased trunk muscle 

activity whereas changed strategies in R-LBP patients indicated an alternative attempt to protect 

the spine71 or reduce the activity in the pain-induced back muscles. Decreased activity in these 

important muscles during demanding step tasks requiring a high amount of potential energy 

propulsion and absorption57 may increase the mechanical load and play a role in recurrence of 

LBP44. Furthermore, increased sensory impact of acute pain indicated facilitated central pain 

mechanisms in the R-LBP patients, but it remains unknown if these changes reflected central 

changes in the motor planning related to recurrence of pain67 or short-term adaptive peripheral 

changes related to acute pain. Nonetheless, the observed changes in strategies during step tasks 

may increase the load of the lumbar structures, although the long-term consequences remain 

unknown. 

 

Limitations 

Methodologically, the EMG recordings may be influenced by crosstalk between the erector spinae 

muscles18 that could result in registration of higher signals by crosstalk between activity from 

adjacent muscles. Interpretation of the pain intensity data from the present study could be 

qualified by e.g. electronic pain VAS28 and the use of pain NRS scores could be limited in detecting 

differences between groups or conditions8.  

 

Conclusion 
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During series of ascent and descent step tasks, unilateral and bilateral experimental LBP increased 

the pain intensity and decreased the step task duration and trunk and gluteal muscle activity in a 

group of recurrent LBP patients during remission of pain compared with a healthy control group. 

These results support that alterations in pain perception and motor control during experimental 

acute pain are manifest in currently asymptomatic recurrent LBP patients. The impact of pain on 

the movement strategies in patients may play a role in the recurrence of low back pain.  
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Figure 1. Gait phase definition and pain-evoked task-duration changes. (A) Ascent and descent 

phases were defined from the gait pattern for calculation of pain-induced changes in duration 

(Delta-time) during (B) ascent and (C) descent step tasks. During ascent step tasks Delta-time 

decreased in the R-LBP compared with the control group during both pain conditions (*, 

Bonferroni: P<0.001) and bilateral compared with unilateral pain decreased Delta-time in the R-

LBP (*, Bonferroni: P<0.05) and increased Delta-time in the control group (*, Bonferroni: P<0.03). 

 

Figure 2. Baseline RMS-EMG muscle activity (mean + SEM, N=25) normalized to MVC in the 

individual muscles across ascending and descending gait phases, respectively. Baseline RMS-EMG 

was higher in the R-LBP group in all back and abdominal muscles during (A) ascent (*, Bonferroni: 

P < 0.02) and (B) descent (*, Bonferroni: P < 0.04) step tasks. ILI=m. iliocostalis, LON=m. 

longissimus, MUL=m. multifidus, RAB=m. rectus abdominis, OEX=m. obliquus externus, OIN=m. 

obliquus internus, GME=m. gluteus medius and GMA=m. gluteus maximus. 

 

Figure 3. Pain-evoked Delta-RMS-EMG (mean +/- SEM, N=25) of trunk and gluteal muscles during 

step tasks. Bilateral compared with unilateral pain increased Delta-RMS-EMG in m. rectus 

abdominis (*, Bonferroni: P<0.02) and decreased Delta-RMS-EMG in the back, obliquus externus 

and gluteus muscles (*, Bonferroni: P<0.001). R-LBP compared with controls decreased Delta-

RMS-EMG in m. iliocostalis and m. obliquus externus during both tasks (#, Bonferroni: P<0.05) 

during unilateral pain and decreased Delta-RMS-EMG during bilateral pain (#, Bonferroni: P<0.02). 
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Table 1. Mean (± SEM) pain numerical rating scale (NRS) scores during ascent and descent step 

tasks after induction of unilateral and bilateral pain in the control (N=25) and the R-LBP (N=25) 

group. NRS scores were significantly higher in R-LBP compared with the control group (*, P<0.05) 

and during bilateral compared with unilateral pain condition (#, P<0.05). 

CONDITION UNILATERAL PAIN BILATERAL PAIN 

TASK ASCENT DESCENT ASCENT DESCENT 

Control 2.10 (±0.19) 2.08 (±0.20) 4.68 (±0.26)
#
 4.61 (±0.28)

#
 

R-LBP 3.59 (±0.21)* 3.57 (±0.27)* 6.04 (±0.38)*
,#

 5.99 (±0.43)*
,#
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