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Abstract—A multiple time-scale optimization scheduling 

including day ahead and short time for an islanded microgrid is 

presented. In this paper, the microgrid under study includes 

photovoltaics (PV), wind turbine (WT), diesel generator (DG), 

batteries, and shiftable loads. The study considers the maximum 

efficiency operation area for the diesel engine and the cost of the 

battery charge/discharge cycle losses. The day-ahead generation 

scheduling takes into account the minimum operational cost and 

the maximum load satisfaction as the objective function. Short-

term optimal dispatch is based on minimizing the adjustment of 

the day-ahead scheduling and giving priority to the use of 

renewable energy.  According to the forecast of the critical and 

noncritical load, the wind speed, and the solar irradiation, mixed 

integer linear programming (MILP) optimization method is used 

to solve the multi-objective optimization functions. Simulation 

results shown that the proposed multiple time-scale optimization 

scheduling approach minimizes the battery usage and maximize 

the use of renewable energies. 

 Keywords—Islanded microgrid, multiple time-scale, multi-

objective, mixed-integer linear programming (MILP) 

I.  INTRODUCTION 

 With the development of microgrid technology, one of the 

important research topics is how to properly manage the 

distributed sources and energy storages [1]. The energy 

management system (EMS) of a microgrid is based on 

managing the output power of the distributed sources and 

energy storages based on the forecasting the solar irradiation of 

photovoltaic (PV), wind speed, and the load power in a 

microgrid. In an islanded microgrid, the power and energy 

balance should be ensured, while achieving maximum 

economic benefits and environmental friendliness.  

Due to high variability of renewable energy output power, it 

is a big challenge to settle the optimum scheduling. In addition, 

the accuracy of the renewable generation forecast in a microgrid 

is directly related to its time scale. Due to the random changes 

of the wind speed, wind power generation forecast error large, 

usually from 25% to 40% for day-ahead forecast [2]. While, 

short-term prediction of the output error can usually be reduced 

to 10% [3]. Due to the cloud-passing effects, the day-ahead 

forecast error of the output power in photovoltaic (PV) is 

usually about 20% [4], [5], and the short-term prediction of the 

output error can be reduced to 10% [6].  

At present, the research in optimal scheduling of microgrids 

contains the following aspects: (i) output and cost model of 

different generation units; (ii) optimization of scheduling time 

scale; and (iii) establishment and solution of objective 

functions.  

In terms of output and cost model of different generation 

units, the different cost models for wind turbines (WTs), PV 

arrays, diesel generators (DG) and batteries are built in [7] and 

the objective function was to reduce the operational costs of the 

microgrid. Nevertheless, although the battery storage does not 

directly produce operational costs in the every operation cycle, 

the charge/discharge processes will affect its longevity. A 

detailed analysis of the impact of the battery charge/discharge 

depth and power rates are presented in [8], [9].  

In [10], a three-level optimization frame of the day-ahead, 

short-time, and real-time scheduling is proposed. A multiple 

time-scale scheduling model of microgrid considering the 

random of wind generation is presented in [11].  

In terms of the establishment and solution of objective 

functions for a microgrid, it mainly includes single and multiple 

objective functions, and the solution method is mainly mixed 

integer linear programming (MILP) and nonlinear 

programming (NP). In [12], [13], each objective function of the 

microgrid is given different weights, which transforms the 

multi-objective function into a single-objective function by 

using MILP. NP mainly includes the particle swarm algorithm, 

improved differential evolution algorithm, bacterial foraging 

algorithm, improved genetic algorithm, and so on [14], [15], 

[16]. The main consideration includes whether there is a 

conflict between different objective functions, and the optimal 

solution is global. 

Considering the forecasting uncertainties of WTs, PV, and 

load power, the operational efficiency of the DG, and the effect 

of shiftable load on the economic operation of the microgrid, an 

optimal scheduling model of the day-ahead and short-term for 

an islanded microgrid is established. A MILP method is used to 

solve the multiple objective functions of the microgrid.  

The structure of this paper is as follows. Section II introduces 

the objective function and constraint condition of the day-ahead 

scheduling. Section III introduces the objective function and the 

constraint condition of the short-term scheduling. Section IV 

gives the scheduling results of the two time-scale optimization 

methods. Conclusion is given in the Section V. 
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II. OBJECTIVE FUNCTIONS OF DAY-AHEAD SCHEDULING 

AND CONSTRAINTS  

     Fig. 1 presents the structure of a 3-phase 400V islanded 

microgrid, which includes six WTs, four PV inverters, a DG, 

and a lead-acid battery set, to supply critical and non-critical 

loads.  
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Fig. 1.  Islanded microgrid structure. 

 

A. Objective functions of day-ahead scheduling 

Day-ahead scheduling is an overall time-step method that can 

be used to dispatch the output power of each generation unit in 

a microgrid, which divides the future day into 24 time periods, 

1 hour each time period, and plans in advance the output power 

of each generation unit in 24 time periods. Two goals are 

considered: 1) minimize the operational; 2) to meet the load 

supply as much as possible, that is, maximize load demand 

satisfaction. The total cost function includes the operation costs 

of each generation unit, the lack of compensation and the loss 

caused by the load shifting. The operational cost of the 

microgrid is expressed follows: 

sum invest PV

WT DG bat

Loss T-load

min( ) min(

)

COST COST COST

COST COST COST

COST COST

  

  



           (1)            

where COSTinvest represents a fixed investment of each 

generation unit converted to per day; COSTPV is the PV 

maintenance cost of per day, expressed as: 

                            
24

PV PV 2=1
( )

i
COST P i M                     (2) 

where, 

PPV(i) is the actual output power of PV of per hour, 

M2 is the maintenance cost coefficient of per kW of PV. 

In (1), COSTWT is the WT maintenance cost of per day, 

expressed as: 
24

WT WT 11
( )

i
COST P i M


                              (3) 

where,  

PWT(i) is the actual output power of WT of per hour,  

M1 is the maintenance cost coefficient of per kW of WT. 

 

The total cost of the DG is the sum of the fuel costs, 

efficiency costs, maintenance costs, and environmental 

costs. The cost function of the DG is shown in the 

following equation: 
24 24

DG DG 3 3 1 DG1 1

2 DG-rated

( ) ( ) ( ( )

+ )

i i
COST P i M E k P i

k P

 
    

   (4) 

where, 

COSTDG is the DG operation cost of per day, 

PDG(i) is the actual output power of DG of per hour, 

M3 is the maintenance cost coefficient of per kW of DG,  

E3 is the environmental cost coefficient of per kW of DG,  

PDG-rated is the rated power of DG, 

k1 and k2 are correlation coefficient. 

The values of k1 and k2 are related to DG efficiency. The 
efficiency characteristic versus different output power is as 

shown in Fig. 2. The maximum output power of DG cannot 

exceed the rated power, and the minimum output power will not 

be less than 30% of the rated power. If the output power is 

between 70% and 100% of the rated power, the DG operates in 

the high efficient area. If the output power is between 30% and 

70% of the rated power, the DG operates in low efficient area. 

In different efficient areas, the DG efficiency cost is not same, 

namely k1 and k2 take different values. 
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Fig. 2. Efficiency characteristics of DG. 

 

The battery costs include operation losses costs and 

maintenance costs, and the initial investment costs of the 

battery are converted to operational losses per discharge. 

Battery charge and discharge cycle efficiency is 90%. The 

cost function of the battery is shown as: 

 
24

41
( ) ( )bat bati

COST P i M g SoC


                                (5) 

According to the lead-acid battery model, the operation cost 

g(SoC) of its state of charge (SoC) can be expressed as: 
123 3 2

0
( ) [308.66( ) 473.55( )

129.54( ) 307.99] ( )

i

i

SoC

SoC
g SoC SoC SoC

SoC d SoC




  

 

      (6a) 

Then, the next hour SoC estimation (SoCi+1) yields to: 

1

( 1) / 90% ( 1)*90%
(1 )

96 96

bat bat

i i

P i P i
SoC SoC  

 
        (6b)             

where, 

COSTbat is the battery operation cost of per day,  

Pbat (i) is the actual output power of the battery of per hour,  

M4 is the maintenance cost coefficient of per kW of the 



battery, 

SoCi is the state of charge of per hour,  

( )g SoC  is the cost of operation loss. 

       Parameters  and are set as the following: 

if Pbat >0, and if Pbat <0, and
      That means the charging process is free of losses and we 

must consider the operation loss of the discharging process. So 

that,  

if 1, 1i iSoC SoC    ; if 1, 0i iSoC SoC   . 

The compensation cost caused by the electricity shortage is 

shown by the following equation: 
2

LOSS

R

LOSS LOSS

W
COST A BW

W
                             (7)                     

where,  

COSTLOSS is the compensation cost caused by the 

electricity shortage;  

WT=Wc +Wn , WT is the total electricity demand; Wn is the 

electricity of the non-critical load; Wc is the electricity of 

the critical load; 

WLOSS is the difference between the total demand and the 

actual supply.  

A and B are the penalty coefficient caused by the electricity 

shortage. 

The penalty function caused by load shifting is shown in 

equation: 
2

T-Load T TCOST CP DP                 (8)             

where, 

COSTT-Load represents the penalty function caused by load 

shifting,  

PT is the switched load power, C and D are the penalty 

coefficient caused by the load shifting. 

B. Constraints 

1) Power balance function is shown in inequality equation  

WT PV DG bat T( ) ( ) ( ) ( ) ( ) ( )cP i P i P i P i P i P i             (9) 

where, Pc(i) is the average power of the critical load per hour, 

PT (i) is the average power of the total load per hour. 

    The output generation power of every hour is less than the 

total load power, greater than or equal to the critical load power. 

 

2) Energy balance function is shown in the following 

inequality: 

WT PV DG bat TcW W W W W W                    (10) 

where,  

WWT is the output energy of WTs, 

WPV is the output energy of PVs, 

WDG is the output energy of DG, 

Wbat is the output energy of batteries. 

 

3) Variable Boundaries 

The PV power is bounded by the following expressions: 

PV PVmpp0 ( ) ( )P i P i                             (11) 

  
PVmpp ( ) ( )[1 ( ( ) )] /STC AC C r STCP i P G i k T i T G         (12) 

where, 

PVmpp ( )P i  is the maximum output power of PV of per hour, 

STCP   is the maximum power under the standard test 

conditions (the irradiation is 
21kW/m  and the ambient 

temperature 298.15K), 

( )ACG i is the average irradiation of per hour, 

STCG is the irradiation under standard test conditions and its 

value is 
21kW/m ,  

k is the power-temperature coefficient and its value is -

0.0047/K, 

( )CT i  is the actual average temperature of the PV array of 

per hour, 

rT  is the reference temperature and its value is 298.15K. 

The wind power generation provided by the WT is bounded 

as follows: 

WT WTmax0 ( ) ( )P i P i                       (13) 

being, 

ci

3
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P i

P v v i v

v i v




  
 
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 

(14) 

where,
WTmax ( )P i is the maximum output power of WT of per 

hour,
civ is the cut-in wind speed, m/s;

cov  is the cut-off wind 

speed in m/s; 
rv is the rated wind speed, m/s; 

rP is the rated 

output power of WT, kW; and 
3 3

r / ( )r cia P v v  ,

3 3 3/ ( )ci r cib v v v  . 

The power generated by the DG is bounded as follows:  

DG-rated DG DG-rated DG0.3 ( ) 0P P i P or P       (15) 

where 
DG-ratedP is the rated power of DG. 

Finally, the charge/discharge power of the battery 

and the SoC are bounded by the following inequalities:  

min bat max( )P P i P                                     (16) 

0.4 1SoC                                             (17) 
where Pmin is the maximum discharging power of the battery, 

and Pmax is the maximum charging power of the battery. 

 

III. OBJECTIVE FUNCTIONS OF SHORT-TIME SCHEDULING 

AND CONSTRAINTS  

A. Objective functions of short-time scheduling 

Short-term scheduling is also overall time-step optimization 

method. The next one hour is divided into four time periods, 

each time period 15 minutes, and plans the output power of each 

generation unit of 4 time periods in advance. The objective 

functions are the minimum amount of adjustment for the day-

ahead scheduling and prioritizing the use of renewable energy 

shown as follows. 

wt pv DG batmin(Δ )=min(Δ +Δ +Δ +Δ )P P P P P      (18) 

The output power adjustment of each generation unit is 

expressed by the following equations: 



4

ave D s D

1

1
Δ | | | ( ) |

4 i

P m P P n P i P


                (19) 

4

ave s

1

1
( )

4 i

P P i


                                  (20) 

where,  

aveP  is the average output power of each generation unit of 

per hour, 

DP  is the output power of the day-ahead scheduling of per 

hour,  

𝑚 and 𝑛 are correlation coefficients, 

s ( )P i  is the output power of each generation unit of per 

15mins. 

 

B. Constraints 

1) Power balance function is represented by the following 

inequality: 

c15 WT15 PV15 DG15 bat15 T15( ) ( ) ( ) ( ) ( ) ( )P i P i P i P i P i P i        (21) 

where,  

Pc15 (i) is the average power of the critical load per 15m,  

PT15 (i) is the average power of the total load per 15m,  

PWT 15 (i) is the output power of WTs of per 15m,  

PPV 15 (i) is the output power of PVs of per 15m,  

PDG 15 (i) is the output power of the DG of per 15m,  

Pbat 15 (i) is the output power of batteries of per 15m. 

 

Note that the variable boundaries are same for the day-

ahead scheduling. 

IV. SCHEDULING RESULTS 

The cut-in, rated, and cut-off wind speed and the rated 

power of six sets of WTs is shown in Table I. The rated power 

of four sets of PVs is shown in Table II. The parameters of the 

scheduling model are shown in Table III. The total capacity of 

lead-acid battery is 96kW ∙ h. 
 

TABLE I.  WTS PARAMETERS  

 

 

 

TABLE II. PVS PARAMETERS 

PV #1 #2  #3 #4 Total 

  PrPV (𝒌𝑾) 12 10 8 10 40 

 

 

 

TABLE III.  PARAMETERS OF THE SCHEDULING MODEL 

Parameter Value 

Irradiation under standard conditions, 𝐺𝑆𝑇𝐶/(kW/𝑚2) 1 

Power-temperature coefficient, k/𝐾−1 -0.0047 

Reference temperature of PV, 𝑇𝑟/𝐾 298.15 

Maintenance cost coefficient of per kW of WT, 𝑀1 0.0296 

Maintenance cost coefficient of per kW of PV, 𝑀2 0.0096 

Maintenance cost coefficient of per kW of DG,  𝑀3 0.0946 

Maintenance cost coefficient of per kW of the 

battery, 𝑀4 

0.0832 

Environmental cost coefficient of per kW of DG, E3 0.0441 

Penalty coefficient caused by the power shortage, A, B 10, 0.5 

Penalty coefficient caused by the load shifting, C, D 0.1, 0.5 

Correlation coefficients, m, n 0.9, 0.1 

Correlation coefficient of battery charging α, β, λ 0, 0, 0 

Correlation coefficient of battery discharge α, β, λ 1, -1 , -1 

Coefficient of efficient operation of DG 𝑘1,𝑘2 0.5217, 

1.5252 

Coefficient of low efficiency operation of DG 𝑘1,𝑘2 0.6379, 

1.8649 

The initial capacity 𝑆𝑜𝐶0 of the battery 0.6 

A. Case Study 1 

      The forecasting temperature and irradiation of the next day 

are shown in Fig. 3. The forecasting wind speed of the next day 

is shown in Fig. 4. 

  
(a)   (b) 

Fig.3. Day ahead forecasting: (a) temperature and (b) solar irradiation 

 

 

Fig. 4. Day ahead forecasting wind speed. 

 

      The optimization results of day-ahead scheduling are shown 

in Table IV. The load electricity supply is shown in the Fig. 5. 

The load power shifting is shown in the Fig. 6. The output 

power of the DG in 24 hours a day is shown in Fig. 7. From the 

above simulation results we can notice that: 

(1) The actual output power is always between the critical 

load and the total load, that is, the critical load power is met. If 

the generation power is not sufficient, the non-critical load can 

be shed. 

(2) From 8:00 to 11:00 , the PVs and WTs generation cannot 

meet the load demand and the battery operation costs is lower 

than the DG, so we give priority to the use of battery. From 

20:00 to 24:00, the SoC of the battery is close to the minimum, 

the DG provides the electricity and the operation cost increases. 

WT #1 #2 #3 #4 #5 #6 Total 

𝑽𝒄𝒊 (m/s) 4 4 3 3 3 3 — 

𝑽𝒓 (m/s) 12 12 10 10 8 8 — 

𝑽𝒄𝒐 (𝒎/𝒔) 24 24 25 24 20 20 — 

PrWT (𝒌𝑾) 10 10 8 8 7 7 50 



(3) From 19:00 to 20:00, due to the effect of the load 

shifting, the operation cost is reduced. 
 

TABLE IV. OPTIMIZATION RESULTS OF DAY-AHEAD SCHEDULING 

Time 
WT 

(kW) 

PV 

(kW) 

DG 

(kW) 

Battery 

(kW) 

Actual 

output 
(kW) 

Cost per 

hour 
(RMB) 

0:00-1:00 1.6 0 28 0 29.6 86.3   

1:00-2:00 5.6 0 0 -13.6 19.2 48.3    

2:00-3:00 4.6 0 21 0 25.6 81.7   

3:00-4:00 15 0 0 1.2 13.8 22.2    

4:00-5:00 25.8 0 0 14.3 11.5 22.6    

5:00-6:00 20 0 0 8.9 11.1 22.3    

6:00-7:00 25.6 0 0 6.7 18.9 22.5   

7:00-8:00 22.8 0 0 -8.1 30.9 32.5   

8:00-9:00 42.2 5.6 0 -10.8 58.6 42.4  

9:00-10:00 12 16 0 -6.0 34.0 35.9 

10:00-11:00 42.8 28.9 0 -3.9 75.6 55.7   

11:00-12:00 35.4 34.4 0 0 69.8 36.1   

12:00-13:00 23.2 40 0 0 63.2 26.1   

13:00-14:00 31 31.1 0 1.9 60.2 22.9    

14:00-15:00 19.8 40.1 21 0.4 80.5 82.3   

15:00-16:00 1 30. 30 0.1 60.9 87.6  

16:00-17:00 1.8 18.7 28 0.2 48.3 86.2  

17:00-18:00 3 9.6 30 -2.1 44.7 96.6   

18:00-19:00 0.6 0.9 30 0 31.5 99.6  

19:00-20:00 0 0 30 0 30.0 87.3  

20:00-21:00 0 0 30 0 30.0 87.3   

21:00-22:00 0 0 30 0 30.0 87.3  

22:00-23:00 2.6 0 30 0 32.6 87.4  

23:00-24:00 0.6 0 29 0.1 29.5 86.7 

 

 
Fig.5. Load electricity supply.  

 
Fig.6. Shifting loads. 

 
Fig.7. DG output power in 24 hours of a day. 

 

B. Case Study 2 

     The short-term scheduling result is shown in Fig. 8. A 15 

minutes period forecasting of wind speed, solar irradiation, and 

load power is used. It can be seen from Fig. 8, short-term 

scheduling can further optimize the day-ahead results, and at 

the same time can achieve the minimum amount of adjustment 

with the day-ahead scheduling and to meet the load demand. In 

addition, high priority is given to the use of renewable energy 

resources. 

 

 
Fig. 8. Short-term scheduling results.  

V. CONCLUSION 

      A two time-scale optimization scheduling of the day-ahead 

and short-time applied to islanded microgrids was presented in 

this paper. The minimum operation cost and maximum load 

supply satisfaction were included into the objective function of 

the day-ahead scheduling, considering the compensation caused 

by electricity shortage. Thus a proper load power supply plan 

can be achieved.  Further, a load shifting plan was also proposed 

to select a reasonable power consumption. The proposed 

approach can not only reduce the microgrid operational cost, 

but also increase the use the renewable energy resources.  

The minimum adjustment of the day-ahead scheduling and 

priority for the use of renewable energy are the objective 

functions of the short-term scheduling. However, due to the 

short-time forecast data may be different from the day-ahead, 

the output power of each generation unit of the microgrid may 

be adjusted according to the actual situations. The combination 

of day-ahead and short-term scheduling can improve the 

reliability of power supply, thus increasing the utilization rate 

of renewable generation units, and reducing the influence of 

renewable energy output fluctuations on the operation of an 

islanded microgrid.  
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