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Abstract—In this paper, the formation control problem of
unmanned surface vehicles (USVs) is investigated. Unlike the
classical formation control problem where the reference signal is
required to be second-order differentiable with respect to time,
we consider a more general autonomous dynamic system as
the reference system. A novel adaptive fuzzy output regulation
approach is presented to solve the formation control problem,
where a set of regulator equations using only approximation
information and a distributed observer are constructed to obtain
the feedforward information of the reference system. Based upon
this, a distributed adaptive fuzzy control law is designed by using
the backstepping technique. It is shown that USVs can effectively
achieve the desired formation with the tracking error being
adjusted as small as possible. Simulation studies demonstrate
that the proposed formation control law is effective and efficient.

Index Terms—formation control, output regulation, adaptive
fuzzy control, unmanned surface vehicle

I. INTRODUCTION

Benefiting from their prominent characteristics such as
large-scale distribution, multi-task parallelism, economy, etc.,
unmanned surface vehicles (USVs) have attracted much atten-
tion in recent years. Formation control is one of the important
research topics of USVs, and it can be potentially applied
in ocean environment surveillance, dynamic networking of
marine vessels and seabed mapping [1].

Recently, many researchers have devoted much effort to in-
vestigate the formation control problem of USVs. For example,
in [2], a formation control algorithm based on terminal sliding
mode observer was proposed, where the dynamics of USVs are
required to be known precisely. In [3], a guidance system was
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needed to supply desired reference signals, based upon which
a universal consensus control law for all formation reference
points was proposed to make USVs achieve desired formation.
In [4], the USVs were subject to uncertain kinematics and
unknown dynamics induced by model uncertainties and ocean
disturbances, and a modular adaptive control method was
proposed to design the formation control algorithm. In [5],
neural network was applied to approximate the unknown
dynamics of USVs, and a line-of-sight formation algorithm
was proposed. In [6], the formation control problem of fully-
actuated USVs was studied, and a consensus-based adaptive
control law under bidirectional communication topology is
proposed based on potential function.

To the best of our knowledge, the existing formation con-
trol approaches are dependent on a given reference signal
which must be second-order differentiable with respect to
time. However, in many practical systems, e.g., motion target
tracking without the trajectory known in advance, the existing
approaches cannot be easily extended to cope with the forma-
tion control problem of USVs. To be more general, this paper
considers the case where the reference trajectory for USVs
is generated by an autonomous system. To make the problem
more practical, we also assume that the dynamics of USVs are
subject to unknown nonlinearity and disturbances. A novel
adaptive fuzzy output regulation approach is then presented
to solve the formation control problem under the aforemen-
tioned circumstances. It is shown that the proposed formation
approach can not only be used for tracking an autonomous
dynamic system by USVs, but also be applied to solve classical
tracking problems with second-order differentiable reference
signals as in [3], [5], [7].

Throughout this paper, Rp denotes the space of real p-
vectors. ‖ · ‖ denotes the 2-norm, and λmax(·) and λmin(·)
are the maximum and minimum eigenvalues of a matrix,
respectively. Define col(x1, · · · , xn) = [xT1 , · · · , xTn ]T , and
let A = diag(A1, · · · , An) denote a diagonal matrix with



diagonal elements being A1, · · · , An. The symbol =: is used
to define an equation.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Review of Graph Theory

It is convenient to describe the communication network of
a multi-USV system by a graph G(V, E ,A), where the vertex
set V = {1, · · · , n} describes the indexes of USVs, the edge
set E ⊆ {(i, j) | i, j ∈ V, i 6= j} denotes the communication
links between USVs, and A = [aij ] is the adjacency matrix
with aij > 0 if USV i can receive information from USV
j and aij = 0 otherwise. The set of neighbors of USV i
is defined as Ni = {j ∈ V | (i, j) ∈ E}. In this paper,
without loss of generality, the communications between USVs
are assumed to be unidirectional, and thus graph G is a directed
graph. A path is a finite sequence of distinct edges in the form
of (i1, i2), (i2, i3), · · · , (ik−1, ik), and vertex ik is said to be
reachable from vertex i1. A graph contains a spanning tree if
there exists a vertex (which is called the root) that can reach
every vertex of the graph.

The in-degree of vertex i is denoted as degi =
∑n
j=1 aij ,

and the matrix D = diag{deg1, · · · , degn} is called the degree
matrix of graph G. The Laplacian matrix of G is defined to be
LG = D−A. Let λ1, · · · , λn denote the eigenvalues of LG . It
is well known that LG has exactly one zero eigenvalue denoted
by λ1 = 0 with 1n being the corresponding eigenvector, if
and only if graph G contains at least one spanning tree [8].
Furthermore, all the other eigenvalues λ2, · · · , λn of LG have
positive real parts.

B. Problem Formulation

Consider a multi-USV system consisting of n 3-DOF USVs.
The dynamics of ith USV for i = 1, · · · , n is given as follows:

η̇i = J(ψi)νi (1)
Miν̇i + Ci(νi)νi +Di(νi)νi = τi + di (2)

where ηi = [xi, yi, ψi]
T ∈ R3 is the position state vector

of coordinates (xi, yi) and heading angle (ψi) of USV i in
the earth-fixed inertial frame, νi = [ui, vi, ri]

T ∈ R3 is the
corresponding surge, sway and yaw velocities in the body-
fixed frame of USV i, τi ∈ R3 is the control input, di ∈ R3 is
the unknown time-varying external disturbances due to wind,
waves and ocean currents, and matrix J(ψi) is the 3-DOF
rotation matrix defined as follows:

J(ψi) =

 cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

 . (3)

Matrices Mi, Ci(νi) and Di(νi) are the inertia matrix, Coriolis
and centripetal matrix and damping matrix, respectively, where
Mi and Ci(νi) can be measurable but Di(νi) is hard to
be identified. Therefore, the dynamics (1)-(2) of USVs are
considered to be unknown in this paper.

The objective of this paper is to make the USVs achieve
a desired formation while tracking a reference trajectory. The
reference trajectory is governed by the following dynamics:{

ẋd = Sxd
yd = q(xd)

(4)

where xd ∈ Rm is the state and yd ∈ R3 is the output with
q(xd) being a known sufficiently smooth nonlinear function.
ηi, i = 1, · · · , n, are desired to track the trajectory yd
while keeping a desired relative distance δi with yd. Also,
we can further define the desired relative position between
neighboring USVs as δij =: limt→∞(ηi − ηj) = δi − δj ,
i ∈ V , j ∈ Ni. Then we can define the formation control
problem of the multi-USV system as follows:

Definition 1: Given the multi-USV system (1)-(2) and its
underlying communication topology G, the formation control
problem is solved if we can find a distributed control law
τi, i = 1, · · · , n, such that the following two properties are
satisfied:

Property 1: All signals in the closed-loop system are glob-
ally uniformly ultimately bounded (GUUB);

Property 2: For any initial conditions η(t0) =
col(η1(t0),· · · , ηn(t0)) and ν(t0) = col(ν1(t0), · · · , νn(t0))T ,
there exist a sufficiently small constant ε > 0 and a finite time
T (η(t0), νi(t0), ε) such that the tracking error ei = ηi−yd−δi
satisfies ‖ei‖ < ε, ∀t > T (η(t0), νi(t0), ε).

Remark 1: The reference system (4) can be an autonomous
vehicle and viewed as a leader of the multi-USV system.
Due to the limitation of sensing and communication ranges
in practical USV systems, it is meaningful to assume that
only the USVs closed enough to the reference system can get
access to its information, which arises a problem that how to
obtain the reference information for those USVs that cannot
get access to the reference system directly. Another challenge
problem significantly different from existing studies is how to
design a distributed control law to achieve a desired formation
while tracking the reference system in the form of (4) without
precise USV dynamics.

Two standard assumptions are needed.
Assumption 1: The underlying communication topology G,

which consists of the reference system and the n USVs,
contains a spanning tree with the root being the reference
system.

Assumption 2: The disturbances di, i = 1, · · · , n, are
bounded by a constant d, i.e., ‖di‖ ≤ d, i = 1, · · · , n.

C. Fuzzy Logic System

A fuzzy logic system consists of fuzzifier, fuzzy rule base,
fuzzy inference engine and defuzzifier. The fuzzy rule base
contains a number of fuzzy IF-THEN rules in the form as

Rl: IF x1 is F l1 and · · · and xr is F lr, THEN y is Gl,

where x = [x1, · · · , xr]T ∈ Rr is the input and y is the
output of the fuzzy logic system. F lj , j = 1, · · · , r and Gl are
labels of fuzzy sets characterized by appropriate membership



functions µF l
j
(xj) and µGl(y). l ∈ {1, · · · ,m} describes the

rule sequence.
We will use the same fuzzy logic system proposed as in [9],

which can be expressed as

y(x) =

∑m
l=1 ȳl

∏r
j=1 µF l

j
(xj)∑m

k=1

∏r
j=1 µFk

j
(xj)

, (5)

where ȳl = maxµGl(y). Define the fuzzy basis functions as

ϕl(x) =

∏r
j=1 µF l

j
(xj)∑m

k=1

∏r
j=1 µFk

j
(xj)

. (6)

Let θ = [ȳ1, · · · , ȳm]T = [θ1, · · · , θm]T and ϕ(x) =
[ϕ1(x), · · · , ϕm(x)]T , and then the fuzzy logic system (5) can
be rewritten in the form as

y(x) = θTϕ(x). (7)

This fuzzy logic system has the following property:
Lemma 1 ( [9]): Let f(x) be a continuous function defined

on a compact set Ω. Then for any constant ε > 0, there exists
a fuzzy logic system (3) such that

sup
x∈Ω
|f(x)− θTϕ(x)| ≤ ε. (8)

III. ADAPTIVE FUZZY OUTPUT REGULATION DESIGN

In this section, the formation control problem of multi-USV
systems will first be transformed into an output regulation
problem, and then a novel distributed adaptive fuzzy control
law will be presented to solve the output regulation problem.

A. Output Regulation Design

The reference system (4) can also be called as the exosystem
of the multi-USV system (1)-(2). According to the output
regulation theory [10], the formation control problem can
be conveniently transformed to solving an output regulation
problem.

Solving the formation control problem is equivalent to
making the states ηi, i = 1, · · · , n, track the reference signal
(yd+δi), i = 1, · · · , n. Hence, we can define ζdi = col(xd, δi)
and construct the following exosystem for ith USV:

ζ̇di =

[
S Om×3

O3×m O3×3

]
ζdi = S̄ζdi. (9)

Then the tracking error can be rewritten as ei = ηi− q̄(ζdi) =
ηi − yd − δi.

Let ξi = J(ψi)νi. The multi-USV system (1)-(2) can be
rewritten as follows:

η̇i = ξi
ξ̇i = C̄i(ηi, ξi)ξi + D̄i(ηi, ξi)ξi + τ̄i + d̄i
ei = ηi − q̄(ζdi)

(10)

where C̄i(ηi, ξi) = −J(ψi)M
−1
i Ci(νi)J

−1(ψi),
D̄i(ηi, ξi) = J̇(ψi)J

−1(ψi) − J(ψi)M
−1
i Di(νi)J

−1(ψi),
τ̄i = J(ψi)M

−1
i τi and d̄i = J(ψi)M

−1
i di. Thus, the

formation control problem is transformed to design a
distributed control law τ̄i such that the tracking error ei,

i = 1, · · · , n, can be regulated into a sufficiently small
neighborhood of origin, which thus becomes an output
regulation problem.

Let fi(ηi, ξi) = C̄i(ηi, ξi)ξi + D̄i(ηi, ξi)ξi. Obviously,
fi(ηi, ξi) is an unknown nonlinear function. Here, we will ap-
ply a fuzzy logic system to approximate fi(ηi, ξi) as follows:

f̂i(ηi, ξi | θ̂i) = θ̂Ti ϕi(ηi, ξi) (11)

where θ̂i is the estimate of θ∗i , which is the optimal parameter
vector defined as

θ∗i = arg lim
θ̂i

(
supηi,ξi‖f̂i(ηi, ξi | θ̂i)− fi(ηi, ξi)‖

)
. (12)

The approximation errors of the fuzzy logic system are
defined as follows:

ε∗i = fi(ηi, ξi | θ∗)− f̂i(ηi, ξi), (13)

θ̃i = θ∗i − θ̂i (14)

To solve the output regulation problem (10), the following
assumptions are further needed.

Assumption 3: There exists a positive constant ε such that
‖ε∗i ‖ ≤ ε, i = 1, · · · , n.

Assumption 4: There exist sufficiently smooth functions
Xi(ζdi), Zi(ζdi) and Ui(ζdi) with Xi(0) = 0, Zi(0) = 0
and Ui(0) = 0 such that for any ζdi the following regulator
equations hold:

∂Xi

∂ζdi
S̄ζdi = Zi

∂Zi
∂ζdi

S̄ζdi = θ̂Ti ϕ(Xi,Zi) + Ui

0 = Xi − q̄(ζdi)

(15)

Remark 2: Assumption 4 is quite standard in output regu-
lation problem of nonlinear systems [10]. The regulator equa-
tions (15) define a center manifold M = {(ηi, ξi, ζdi) | ηi =
Xi, ξi = Zi, i = 1, · · · , n} of the multi-USV system under
the control col(U1, · · · ,Un). In classical output regulation
problem, e.g., [11]–[13], system dynamics are usually assumed
to be known such that the accurate regulator equations can be
constructed and precise feedforward information dependent on
exosystem states can be obtained. However, the dynamics of
multi-USV systems in this paper have unknown nonlinearity
and disturbances, and thus it is impossible to construct accu-
rate regulator equations. In what follows, we will present a
novel adaptive fuzzy control scheme to solve the formation
control problem using only the inaccurate regulator equations
(15). It is worth mentioning that Assumption 4 can be easily
satisfied if q̄(ζdi) is second-order differentiable along ζdi.

B. Distributed Observer Design

It is noted that state xd cannot be used for those USVs that
cannot get access to the reference system directly. As a result,
the solution of the regulator equations (15) cannot be directly
used for distributed control law design. Towards this end, a
distributed observer is necessary to be designed to estimate
xd.



The distributed observer can be given as follows:

˙̂xdi = Sx̂di + k

 n∑
j=1

aij(x̂dj − x̂di) + ai0(xd − x̂di)

 (16)

where x̂di is the estimate of xd, and ai0 > 0 if USV i can get
access to the reference system and ai0 = 0 otherwise.

Then we can obtain the following theorem.
Theorem 1: Assume that the communication topology of

the multi-USV system (1)-(2) satisfies Assumption 1. Let k >
λmax(S)

λmin(LG+Λ) , where Λ = diag(a10, · · · , an0). Then x̂di, i =
1, · · · , n, will achieve consensus to xd asymptotically.

The consensus of linear multi-agent systems like (16) has
been widely studied. The similar results can be found in [14],
[15], and thus the proof is omitted here.

Designing the distributed observer aims at constructing a
set of new regulator equations that only use local information.
Let ζ̄di = [x̂Tdi, δ

T
i ]T , and we have

∂X̄i(ζ̄di)

∂ζ̄di
S̄ζ̄di = Z̄i(ζ̄di)

∂Z̄i(ζ̄di)

∂ζ̄di
S̄ζ̄di = θ̂Ti ϕ(X̄i, Z̄i) + Ūi(ζ̄di)

∂X̂di(xd)

∂xd
Sxd = SX̂di + k

( n∑
j=1

aij(X̂dj − X̂di)

+ai0(xd − X̂di)
)

0 = X̄i(ζ̄di)− q̄(ζ̄di)

(17)

One can easily observe that the new regulator equations
(17) have solution X̄i(ζ̄di), Z̄i(ζ̄di), Ūi(ζ̄di) and X̂di = xd,
i = 1, · · · , n if Assumption 4 holds.

C. Distributed Adaptive Fuzzy Control

Now we can use X̄i(ζ̄di), Z̄i(ζ̄di), Ūi(ζ̄di) instead of
Xi(ζdi), Zi(ζdi) and Ui(ζdi) to design the distributed control
law. Backstepping technique will be applied for the adap-
tive fuzzy control design. Note that we can directly obtain
X̄i = q̄(ζ̄di) from the last equation of (17), and thus the
formation control problem will be solved if ηi can converge
to q̄(ζ̄di). Therefore, we can define two auxiliary variables
s1i = ηi − X̄i and s2i = ξi − αi, where αi ∈ R3 is a virtual
controller.

Step 1: Note that the first equation of (17) implies that ˙̄Xi =
Z̄i. The derivative of s1i along time t yields:

ṡ1i = ξi − Z̄i
= s2i + αi − Z̄i

(18)

We can choose

αi = −cis1i + Z̄i. (19)

where ci is a positive constant to be determined later.
Substituting (19) into (18) yields

ṡ1i = −cis1i + s2i. (20)

Choose a Lyapunov function candidate as follows:

V1i =
1

2
sT1is1i. (21)

We can obtain the derivative of V1i along time t as

V̇1i = −cisT1is1i + sT1is2i. (22)

The first term in the right of (22) is negative and the second
term will be handled in the next step.

Step 2: The derivative of s2i along time t gives

ṡ2i = fi(ηi, ξi) + τ̄i + d̄i − α̇i
= fi(ηi, ξi) + τ̄i + d̄i + ciṡ1i − ˙̄Zi
= fi(ηi, ξi) + τ̄i + d̄i + cis2i − c2i s1i − θ̂Ti ϕ(X̄i, Z̄i)− Ūi

(23)
Substitute fi(ηi, ξi) = θ∗Ti ϕ(ηi, ξi) + ε∗i into (23) and let

τ̃i = τ̄i − Ūi and ∆i = d̄i + ε∗i . Then we have

ṡ2i = θ∗Ti ϕ(ηi, ξi)− θ̂Ti ϕ(X̄i, Z̄i) + τ̃i + cis2i − c2i s1i + ∆i,
(24)

Since di and ε∗i are bounded, and hence ∆i is also bounded.
For simplicity, we assume that there exists a constant ∆M

such that ‖∆i‖ ≤ ∆M .
Now we are ready to give the distributed adaptive fuzzy

control law for solving the formation control problem as
follows:

τ̃i = −Kis2i − θ̂Ti
(
ϕ(ηi, ξi)− ϕ(X̄i, Z̄i)

)
(25)

˙̂
θi = γiϕ(ηi, ξi)s

T
2i − µiθ̂i (26)

where Ki, γi and µi are positive constants to be determined
later.

Remark 3: τ̃i in (25) is an intermediate controller. The real
controller τi is given as follows:

τi = J(ψi)
−1Mi(Ūi + τ̃i). (27)

Choose the Lyapunov function candidate as follows:

V2i = V1i +
1

2
sT2is2i +

1

2γi
θ̃Ti θ̃i. (28)

The derivative of (28) gives

V̇2i = −cisT1is1i + sT1is2i + sT2iθ̃
T
i ϕ(ηi, ξi) + cis

T
2is2i

−c2i sT2is1i + sT2i∆i −Kis
T
2is2i − 1

γi
θ̃Ti θ̂i

= −cisT1is1i − (Ki − ci)sT2is2i + (1− c2i )sT1is2i

+sT2i∆i + sT2iθ̃
T
i ϕ(ηi, ξi)− 1

γi
θ̃Ti

˙̂
θi

(29)

By applying Young’s inequality xT y ≤ ap

p ‖x‖
p + 1

qaq ‖y‖
q ,

(a > 0, p > 1, q > 1, (p− 1)(q − 1) = 1), we have

sT1is2i ≤
π1i

2
sT1is1i +

1

2π1i
sT2is2i (30)

sT2i∆i ≤ π2i

2 ‖∆i‖2 + 1
2π2i

sT2is2i

≤ π2i

2 ∆2
M + 1

2π2i
sT2is2i

(31)

− 1
γi
θ̃Ti

˙̂
θi = −θ̃Ti ϕ(ηi, ξi)s

T
2i + µi

γi
θ̃Ti θ̂i

= −θ̃Ti ϕ(ηi, ξi)s
T
2i + µi

γi
θ̃Ti (θ∗i − θ̃i)

= −θ̃Ti ϕ(ηi, ξi)s
T
2i + µi

2γi
θ̃∗Ti θ̃∗i −

µi

2γi
θ̃Ti θ̃i

(32)

where π1i and π2i can be any positive constants.



Substituting (30)-(32) into (29), we have

V̇2i = −
(
ci − (1−c2i )π1i

2

)
sT1is1i

−
(
Ki − ci − 1−c2i

2π1i
− 1

2π2i

)
sT2is2i − µi

2γi
θ̃Ti θ̃i

+π2i

2 ∆2
M + µi

2γi
θ̃∗Ti θ̃∗i

(33)

We can choose appropriate ci and Ki such that

βi =: ci −
(1− c2i )π1i

2
> 0, (34)

χi =: Ki − ci −
1− c2i
2π1i

− 1

2π2i
> 0. (35)

Let

κi = min(2βi, 2χi, µi), (36)

ρi =
π2i

2
∆2
M +

µi
2γi
‖θ̃∗i ‖2. (37)

Then (33) can be written as

V̇2i ≤ −κiV2i + ρi, (38)

and hence we have

V2i(t) ≤ V2i(0)e−κit +
ρi
κi
, ∀t > 0, (39)

which implies that V2i(t) is eventually bounded by ρi
κi

. Hence,
s1i, s2i and θ̃i are GUUB. Thus, one can see that Property 1
of Definition 1 can be satisfied.

Next, consider the tracking error as follows:

‖ηi − yd − δi‖ = ‖s1i + q̄(ζ̄di)− q̄(ζdi)‖
≤ ‖s1i‖+ ‖q̄(ζ̄di)− q̄(ζdi)‖

(40)

According to Theorem 1, x̂di will converge to xd asym-
ptotically, which implies q̄(ζ̄di) will approach q̄(ζdi) asym-
ptotically. Therefore, there always exist a sufficiently small
constant ε >

√
ρi
κi

and a finite time T (ηi(t0), νi(t0), ε) such
that

‖ηi − yd − δi‖ ≤ ε, ∀t > T (ηi(t0), νi(t0), ε). (41)

Moreover, one can observe that ε can be as small as possible
by choosing ci, Ki and γi as large as possible while µi as
small as possible.

In summary, we can conclude the main results of this paper
as follows:

Theorem 2: Consider the multi-USV system (1)-(2) satis-
fying Assumptions 1-4. Under the distributed observer (16)
and distributed adaptive fuzzy control law (25)-(27), if k >
λmax(S)

λmin(LG+Λ) and Ki, γi, µi, i = 1, · · · , n, are chosen to satisfy
(34)-(35), then the formation control problem of the multi-
USV system can be solved and the tracking error ε can be
adjusted as small as possible.

Remark 4: It is noted that the reference system (4) can
also be used to describe the typical nonlinear reference signals
studied in existing works, e.g., [7], [16]. In other words, the
proposed approach in this paper can be also directly applied
to solve the existing classical trajectory tracking problem.
Moreover, it is not difficult to see that the proposed formation

control approach can be easily extended to more general cases
that the reference system is nonlinear and can be well observed
by designing a distributed observer.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides an example of a multi-USV system
with 4 USVs. The system topology is shown in Fig. 1, where
node 0 denotes the reference system and the other nodes
denote the USVs. The system model of USVs are chosen the
same as that in [7]. Parameters are set as follows:

Mi =

 25.8000 0 0
0 33.8000 1.0948
0 1.0948 2.7600


Ci =

 0 0 c13

0 0 c23

−c13 −c23 0


Di =

 d11 0 d13

0 d22 d23

0 d32 d33


for i = 1, · · · , 4, where c13 = −25.8v − 1.0948r, c23 =
−25.8u, d11 = 0.7225+13274|u|+5.8664u2, d22 = 0.8612+
36.2823|v|, d23 = −0.1079, d32 = −0.1052 − 5.0437|v| and
d33 = 0. The disturbances di, i = 1, · · · , 4 are described by
a Gaussian white noise.

The state matrix S of the reference system is

S =

 0 0.5 0
−0.5 0 0

0 0 1

 ,
and

q(xd) =

 6− 5 cos( π
180xd1)

−0.5 + 2 sin( π
180xd2)

π
2 cos(π2xd3)

 .
The initial values are

η1 =
[

0 0.5 0.1
]T
, η2 =

[
−0.5 0.3 0.4

]T
,

η1 =
[

0.7 0.2 0.3
]T
, η2 =

[
−0.3 −0.2 0.6

]T
,

ν1,··· ,4 =
[

1 1 0.1
]T
, xd =

[
2 2 π

36

]T
.

The desired relative positions are

δ1 =
[

0 1 0
]T
, δ2 =

[
−1 0 0

]T
,

δ3 =
[

0 −1 0
]T
, δ4 =

[
1 0 0

]T
.

Control parameters are chosen as k = 2, Ki = 10, µi = 0.1,
γi = 20 and ci = 10, i = 1, · · · , 4.

The simulation results are shown in Fig. 2 and Fig. 3. Fig. 2
shows that all USVs (blue dots) track the reference trajectory
(red square) and achieve the desired formation. Fig. 3 shows
the tracking errors of USVs corresponding to their desired
positions. One can observe that all tracking errors in surge,
sway and yaw are bounded within a small neighborhood of
origin. The simulation results demonstrate that the proposed
control approach is effective and efficient.



Fig. 1. Topology of the multi-USV system

x

y

Fig. 2. Formation of the multi-USV system

Fig. 3. Tracking errors in surge, sway and yaw

V. CONCLUSIONS

In this paper, the formation control problem of USVs
with unknown nonlinearity and disturbances is investigated.

The reference system is considered to be an autonomous
system, and a novel adaptive fuzzy output regulation scheme is
proposed. It has shown that the formation control problem can
be conveniently transformed into an output regulation problem.
By comprehensively using fuzzy approximation, output regula-
tion and backstepping methods, the USVs can achieve desired
formation under the proposed control law while tracking the
reference system with the tracking errors being able to be
adjusted as small as possible. It has shown that the proposed
formation control scheme can also be applied to solve the
classical formation control problem and is thus more general.
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