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  Abstract— An electric vehicle (EV) aggregator, as an agent between power producers and EV owners, participates 

in the future and pool market to supply EVs’ requirement. Because of uncertain nature of pool prices and EVs’ 

behavior, this paper proposed a two stage scenario-based model to obtain optimal decision making of an EV 

aggregator. To deal with mentioned uncertainties, the aggregator’s risk aversion is taken into account using 

conditional value at risk (CVaR) method in the proposed model. The proposed two stage risk-constrained decision 

making problem is applied to maximize EV aggregator’s expected profit in an uncertain environment. The 

aggregator can participate in the future and pool market to buy required energy of EVs and offer optimal 

charge/discharge prices to the EV owners. In this model, in order to assess the effects of EVs owners’ reaction to the 

aggregator’s offered prices on the purchases from electricity markets, a sensitivity analysis over risk factor is 

performed. The numerical results demonstrate that with the application of the proposed model, the aggregator can 

supply EVs with lower purchases from markets. 

 

Keywords— Aggregator, Conditional Value at Risk (CVaR), Electric Vehicle, future market, Pool market. 

 

 
Abbreviation 

EV Electric vehicle. 

VaR Value-at-risk. 

CVaR Conditional VaR . 

 

Nomenclature 

f  Index of forward contracts, running from 1 to FN . 

j  Index of blocks in the forward contracting curves, running from 1 to JN . 

dschchi /  Index of blocks in the charge/discharge price-quota curves, running from 1 to dschchiN / . 

t
 

Index of time periods, running from 1 to TN . 

  Index of scenarios, running from 1 to N . 

F
tC

 
Cost of purchasing from forward contracts in period t ($). 

),( tC P   Total cost of trading in the pool. 

P
tE   The energy traded in scenario  and period t. 

dschchR
tE /_
  Energy supplied/bought by/from the aggregator in period t (MWh) in scenario ω. 
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F
fP  Power contracted from forward contract f (MW). 

F
fjP

 Power contracted from block j of forward contracting curve of forward contract f (MW). 

dschchR
i

/_  
Selling/buying price associated with block i of the charge/discharge price-quota curve ($/MWh), 

Limited to dschchR
i

/_
1 . 

  Auxiliary variable used to calculate the CVaR ($). 


 Auxiliary variable related to scenario ω used to calculate the CVaR ($). 

dschch
dschichv /

/  
Binary variable. 1 if the selling/buying price offered by the aggregator to the EVs belongs to block i of 

the price quota curve, being 0 otherwise. 
P
t  Electricity pool price in scenario  and period t. 

td
 Duration of period t (h). 

dschchR
tiE

/_
  

Energy associated with block i of the charge/discharge price-quota curve in period t and scenario ω 

(MWh). 

F
fjP  

Upper limit of the power contracted from block j of the forward contracting curve of forward contract 

f (MW). 
dschchR

i
/_

min,
 Minimum selling/buying prices associated with block i of the price-quota curve of EVs ($/MWh). 

F
fj  Price of block j of the forward contracting curve of forward contract f ($/MWh). 

  Confidence level used in the calculation of the CVaR. 

  Weighting factor used to materialize the tradeoff between expected profit and CVaR. 

prob  Probability of occurrence of scenario ω. 

tF  Set of forward contracts available in period t. 

  
Set of scenarios. 

 

I. INTRODUCTION 

An electric vehicle (EV) Aggregator participates in electricity market to supply EVs’ charging 

needs. During a medium-term planning time period, an aggregator may meet the unknown pool 

prices and EVs charge/discharge behaviors. Because these uncertain parameters can affect the 

aggregator participation in electricity market, they should be taken into account in the 

aggregator’s decision making process. The medium-term decision making of the aggregator has 

been also formulated in some literatures to include the optimal involvement in the future market 

through forward contracts and pool markets  [1]- [2] as well as the optimal setting of 

charge/discharge prices to the EV owners to maximize the expected profit from electricity 

dealing in different risk level of profit variation  [3]- [4]. In    [5], joint day-ahead scheduling and 

real-time regulations have been considered to investigate the uncertainties from electricity price 

and household device usages. Authors in  [6] have proposed a new model for participation of 

electric vehicle parking lots in both energy and reserve markets in order to compensate 

renewable power production and load uncertainties. A framework with considering optimal 

charging of EVs which allows a retailer to have different alternatives for electricity procurement 

based on bilateral contracts is proposed in  [7]. Authors of    [8] have proposed different algorithms 

to find optimal charging rates of EVs inspecting maximum aggregator’s profit. Reference    [9] has 

provided a stochastic model for optimal decision making of an aggregator while   [10] has done 

the same task using forecasting techniques for EVs’ mobility such as availability and the desired 

energy during the scheduling period. In    [11], it has been assumed that the aggregator suggests 

charge bids to day-ahead market with the objective of minimizing charging costs while satisfying 

the plug-in EVs’ flexible demand. However, vehicle-to-grid mode has not been considered and it 

has been assumed that the aggregator could influence market prices in opposite to what is 



generally expressed in the literatures. EV aggregators’ participation in energy and ancillary 

services markets has been analyzed in    [12]. Authors of  [13] have used stochastic programming 

techniques to consider uncertainties in prices via time-series models, and have utilized a 

conditional value-at-risk (CVaR) term   [14] in their formulation. A scenario-based stochastic 

framework for obtaining optimal bidding and offering of a retailer in the presence of market 

price uncertainty with considering risk aversion and risk taking decisions is discussed in  [15]. 

Plug-in EV load-serving entity with deterministic behavior of vehicles has been taken into 

account in the mentioned work. A methodology to maximize aggregator’s profits in day-ahead 

and balancing markets with considering risk aversion, has been studied in  [16]. Coordination of 

renewable energies and energy storage in energy and balancing markets has also been examined 

in  [17] to show its benefits on the risk analysis. A stochastic optimization model for optimal 

bidding strategies of EV aggregators in day-ahead energy and ancillary services markets with 

variable wind energy has been assessed in    [18]. Participation of energy producers in real-time 

and day-ahead electricity markets has been studied in   [19] and  [20], respectively. Authors in  [21] 

modeled day-ahead and real-time energy and reserve markets as oligopoly markets with 

considering several uncertainties and constraints using a two-stage stochastic programing 

approach. In  [22], the uncertainty of energy spot market prices, imbalance penalties, and wind 

power outputs have been considered to maximize the profits with considering CVaR. 

Reference  [23] has focused on the optimal bidding of an aggregator subject to the optimal power 

flow and market clearing constraints without paying attention to the risk aversion associated with 

decision making of the aggregator. In  [24], a game model has been presented to deal with the 

interactions between utilities and parking lots. The EV aggregators can participate in the 

spinning reserve market to control the variations of renewable power and load forecasting error. 

In this regard, the distribution system operator can control a fleet of EVs by charging signals in 

order to provide reserve to compensate the intermittency of renewable generation  [25]. In  [26], a 

stochastic programming approach is provided for a retailer who participates in a mixed bilateral-

pool market. So, a two-stage operational framework is presented where the retailer and 

aggregator do their medium-term planning that is made one month prior to real-time market. A 

multi-objective stochastic framework for participation in the energy and up/down spinning 

reserve markets to schedule conventional generation units, bulk energy storages, and DR 

resources along with wind integration is proposed in  [27]. Authors in  [28] represented a 

stochastic robust optimization model in which uncertainties in day-ahead market prices and in 

the driving requirements of EVs are modeled using scenarios and confidence bounds, 

respectively. A two-stage stochastic programming model to concentrate the importance of 

uncertainty and risk in scheduling of plug-in EVs has been investigated in  [29], without 

considering forward contracts. The problem of scheduling the plug-in electric vehicle 

aggregators in electricity market considering the uncertainties of market prices, EVs 

availabilities, and status of being called by the independent system operator in the reserve market 

is discussed in  [30]. In   [31], a stochastic approach has been represented for an EV aggregator 

offering regulation services to the electricity market. To this end, a predefined contract has also 

been assumed to be signed between the aggregator and the market operator which determines the 

regulation capacity to be provided by the aggregator at a predetermined price. An algorithm for 

day-ahead scheduling and a dynamic dispatch algorithm for distributing purchased energy to 

plug-in EVs has been presented in    [32]. In this algorithm, electricity prices and Plug-in EV 

charging behavior have been considered deterministic. A mathematical programming with 

equilibrium constraints has been proposed in   [33] and   [34] to optimize the aggregator’s decisions 



in energy markets. Authors in   [33] have endogenously determined the profit-optimal price level 

subject to the cost minimizing charging schedule of the EV owners, but not the discharging 

process. A stochastic mathematical program with equilibrium constraints model for making 

optimal bidding strategies for wind power producers with considering risk management is 

investigated in  [35].  

In this paper, the problem of optimal decision making of an EV aggregator in a medium-term 

horizon under uncertain conditions is investigated. To this end, the aggregator is envisaged to 

maximize its expected profit by trading energy in the future and pool market as well as offering 

appropriate charge/discharge prices to the EV owners. However, in this context, the aggregator 

may face varying pool prices and stochastic EVs’ behavior which can negatively affect the 

aggregator’s profit. Thus to assess the influence of the indicated uncertainties on the expected 

profit of the EV aggregator, risk management approach is used. So the main highlights of this 

paper are as bellow: 

• Proposing a two stage scenario based optimization model for optimal bidding strategy 

of an EV aggregator in a medium-term horizon, 

• Utilizing CVaR as a risk measurement index in order to evaluate EV aggregator’s 

financial risks and to inspect the influence of risk aversion in decision making process, 

• Investigating the uncertainties due to pool prices and the forecast errors of EVs 

charge/discharge behavior as a set of probabilistic time-varying power using a 

scenario-based approach. 

• Investigation the effects of EVs charge/discharge process on the energy procured by an 

aggregator for the EVs fleet by participating in the Future and pool markets. 

The remaining sections are outlined as follows: section II describes decision making 

framework and market structure. Section III presents the problem formulation of decision 

making of an EV aggregator as a two-stage stochastic programming model and section IV 

provides numerical results. Finally, relevant conclusions are drawn in section V. 

 

II. DECISION MAKING FRAMEWORK AND MARKET STRUCTURE 

 

A. Model description 

In an electricity market, decision-making of an EV aggregator can be discussed similar to that 

of a retailer; however their inherent market behavior is different  [36].Aggregators are entities 

who act independently and as a middleman combine dispersed EVs into a single purchasing 

group in order to negotiate on the behalf of individual EVs with the retailers to purchase 

electricity. Here, this agent is supposed to determine its optimal participation in the future market 

to control pool price volatility and EVs’ stochastic behavior. Moreover, from an aggregator point 

of view, the future market contracting and the designation of charge/discharge prices offered to 

the EVs are medium-term decisions, while transactions in the pool market and EVs’ participation 

level in charge/discharge services are decided in the short-term ones. The aggregator makes 

medium-term decisions at the beginning of the planning horizon while it makes short-time 

decisions during it. So, the difference between these groups of decision making is at the moment 

of their occurring. In this regard, two kinds of decisions can be introduced: here-and-now and 

wait-and-see decisions. Considering a two-stage stochastic programming model, here-and-now 

decisions are such decisions that are made in a deterministic way and without considering 



uncertainty. In a medium-term horizon, these decisions correspond to the forward contracting 

and charge/discharge prices determination. While, the decisions referred to as wait-and-see are 

made in an uncertain environment. Typically, the pool trading is supposed as a wait-and-see 

decision in medium-term. The problem of aggregator’s participation in the future and pool 

markets in order to supply EVs demand with considering the effects of EVs reaction to the 

charge/discharge prices such that it maximizes the expected profit of the EV aggregator is 

proposed here. To this aim, the following assumptions are taken in to account: 

• The aggregator provides the required energy to the EV owners in three ways: forward 

contracts, electricity pool market, and buying energy from EVs when they discharge. 

• EV owners cannot buy energy from the electricity pool directly and they only procure 

their required energy from the aggregator. 

• EV owners can discharge their EVs and sell the stored energy to the aggregator. 

• The aggregator does not sell energy to the pool and it can only purchase energy from 

pool market. 

 

B. Future Market Modeling 

Typically, an aggregator participates in the future market with forward contracts to supply a part 

of the required energy for EV owners. In this market, the aggregator buys energy at a fixed price 

before selling to the EV owners. The aggregator takes prices from forward contracts based on 

contracting curve depicted in Figure 1.  
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Figure 1.Forward contracting curve 

 

Equation (1) states the cost of purchasing energy from forward contracts in each time period t 

that depends on the contracted power F
fjP , energy price in each block of the forward contracting 

curve F
fj , and td as the duration of period t. Constraint (2) expresses that the power purchased 

from each block of the forward contracting curve is positive and is limited within a bound. 

Finally, relation (3) describes the power purchased from each contract that is the sum of the 

powers bought from each block. 
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C. Electricity pool market modeling 

Here, it is supposed that the aggregator can purchase energy in the electricity pool in order to 

meet the energy for EV owners; however it is assumed not to sell back energy to the pool 

market. The cost of the energy traded in the pool is represented as follows  [9]: 

 
P
t

P EtC  P
t),(                                                                                                                               (4) 

where ),( tC P  , P
tE   and P

t are the total cost of trading in the pool, the energy traded and 

electricity pool price in scenario  and period t, respectively. 

 

D. Offering Charge/ Discharge Prices 

The EVs are free to react to the price signals. Here, it is assumed that EVs behave elastically 

with respect to the charging/discharging price offered by the aggregator. The elastic behavior of 

the EV owners means that if the selling (buying) price is too high (low), EVs will choose a rival 

aggregator for their electricity supply (discharge). In fact, the EV aggregator competes with the 

other aggregators for retaining the EV customers as well as acquiring new owners. The 

relationship between the offered price and a fleet of EVs supplied by the aggregator can be 

modeled through a stepwise price-quota curve. A price-quota curve determines the amount of 

electricity provided (purchased) by (from) the aggregator and the associated price. These curves 

are estimated by the aggregator before solving the decision-making problem, and therefore, they 

are input data to the problem under consideration  [37].  

Here, the aggregator’s bidding strategy for charging/discharging processes are modeled with 

price-quota curves. The buying and selling prices are bounded between their minimum and 

maximum limitations ( dschchR
i

/_
min, and dschchR

i
/_

max, ($/MWh)) and each block i illustrates the 

percentage of EVs participation that transact energy with their aggregator. As Figure 2 shows, 

when the offered charging price increases to chR
i

_
max, , the energy provided for charge will decrease 

that shows the EVs’ demand decrement. However, when charging price approaches to chR
i

_
min, , 

EVs’ demand augments as well. Opposite procedure is observed for discharge process. As 

discharge prices increases, EV owners are more willing to discharge their vehicles and obtain 

more advantage. The relationship between supplied/purchased power by the aggregator to/from 

EVs and the related prices, are given as a curve with these relations: 
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Where, chR
i

_ and dschR
i

_ are the charge and discharge prices offered to EV owners related to the 

block i of their price quota curves, respectively. dscchchR
tiE /_

  indicates the transacted energy 

between EVs and aggregator in period t and scenario ω (MWh). dschchR
tiE /_

 shows the energy 

associated with block i of the foresaid curves in period t and scenario ω (MWh). Equation (7) 

and (8) declare that both charge/discharge prices are limited between the minimum and 

maximum bounds of the blocks. Equation (9) and (10) guarantee that only one block is selected. 

Each block shows a particular offering charge or discharge price step. The offered 

charge/discharge prices depict the selected blocks. It should be noted that the aggregator can 

propose only one charge or discharge price to the owners. 
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Figure 2. Price quota curve for EVs reaction to the offered prices 

 

E. Scenario Tree of Decision Making framework 

F.  

The decision-making problem for aggregator participation in the future and pool market is 

outlined as follows: 

1) Determining forward contract and  selling price: 

At the beginning of the planning horizon, the aggregator decides the forward contracts to be used 

during the planning horizon and the selling price offered to the clients. These decisions are made 

under uncertainty on the pool prices and the EVs demands. 



2) Trading in the pool by the aggregator: 

After fixing the forward contract and the selling prices, the aggregator decides the amount of 

energy that should be purchased in the pool to supply the EVs demands, in each period of the 

planning horizon. In fact, when forward contracting and price-setting decisions are made, the 

aggregator encounters the sources of uncertainty including: future pool prices and EVs demands. 

Here, it is assumed that the aggregator acts as a price-taker and the pool prices are independent 

of the aggregator’s actions. Similarly, EVs demands are also unknown to the aggregator. So, a 

stochastic programming approach is proposed to solve the uncertainty on pool prices and EVs 

demands. In this problem, uncertain pool prices and client demands are modeled with a set of 

scenarios. Each scenario comprises a vector of pool prices and EVs demands as follows:         

  TtEEScenario dschR

ti

chR

ti  __P

t ,, 
 

When the aggregator purchases energy from future market and wants to determine 

charge/discharge prices, EVs behavior and pool prices, as unknown sources to the aggregator, 

are represented by a set of scenarios. Let   introduce a group of scenarios and N state the 

number of scenarios in  . Each scenario   includes a vector of pool prices, EVs 

charge/discharge required energy and occurrence probability shown with prob . Note that the 

sum of all probabilities in all scenarios is 1. This set of scenarios is arranged in a two-stage 

scenario tree as shown in Figure 3. The purchases from future market and the charge/discharge 

prices offered to the EVs are both decided at the first stage while buying in the pool market is 

determined at the second stage. Each scenario ω in the tree represents the realizations of the 

stochastic processes involved in the vector of pool prices and EVs demands. The probability of 

occurrence associated with each scenario is the product of the probabilities associated with each 

vector. 

 

· 

· 

· 

· 

· 

Buying from 

Pool market
Buying from future 

market and selection the 

charge/discharge prices

EVs charge/discharge 

demand 

Scenario 1
Scenario 2

Scenario 125

· 

· 

Scenario 124

· 
· 
· 
· 
· 

· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 

· 
· 
· 
· 
· 

First Stage Second Stage  

Figure 3. Sequence of aggregator decision making problem. 



III. PROBLEM FORMULATION 

The aggregator tries to maximize its profit by selling electric energy to the EV owners. To this 

end, it buys energy in both pool and future market and also it can purchase energy from EVs 

when they discharge. The price of the energy in the pool in each period t is assumed to be 

unknown and is introduced as a random variable and is stated with a category of scenarios. The 

aggregator also participates in the futures market and buys energy in different forward contracts, 

f = 1, 2, … that are defined by a special price, F
f . The profit is then defined as the revenue from 

selling electricity to the EV owners minus the purchase costs of forward contracts, the electricity 

pool and discharge of EVs. A two-stage stochastic programming problem is formulated here, 

with regard to the mentioned objective taking into account the CVaR: 
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where  ,   and  are the confidence level, risk coefficient and auxiliary variable, respectively. 

The first term is the main profit objective and the second one is CVaR. The tradeoff between 

expected profit and CVaR is represented by  . Constraint (12) states the margin for the 

purchased power from block j of the forward contracts. Constraints (13)-(16) define the blocks of 

the charge/discharge price curves. Constraint (17) describes the energy balance in each period 

and scenario. Constraint (18) presents CVaR and finally, constraints (19)-(21) define the 

variables. 

 

IV. NUMERICAL RESULTS 

The mentioned formulation is tested with the electricity market data obtained from  [1]. Here, it is 

supposed to have a parking lot with 100 charging plugs and the nominal capacity of each EV is 

7.4 kWh. It is supposed that about fifty percent of these EVs will connect to the network. The 

characteristics of the forward contracts with six bidding-steps are provided in Table 1. EVs 

charge/discharge energy and pool prices are modeled using a set of scenarios defined over a 

normal distribution with forecasted mean as shown in Figure 4. The EVs loads are obtained 

from  [34] and the range of pool prices and forward payments are also extracted from  [1]. In order 

to model the forecast inaccuracies stem from the uncertain nature of pool prices and EVs charge/ 

discharge demand, normal Probability Distribution Functions (PDF) is used. In this case, the 

mean values are equivalent to the forecasted values of prices and EVs demand. Then the PDFs 

are divided into five discrete intervals with different probability levels as illustrated in Figure 4. 

The forecasted errors correspond to the mentioned uncertain resources are given by intervals 

equal to the standard deviation. The forecast error probabilities are normalized and filled out 

over the range of between 0 and 1. The generated scenarios are combined all-against-all, 

resulting in a vector of independent random variables but the size of the tree grows 

exponentially. Therefore, an effective scenario reduction algorithm proposed in  [37] is applied. 

The generated scenarios for each variable are reduced by Roulette Wheel Mechanism and then 

the reduced scenarios associated with the variables are combined through a scenario tree. The 

confidence level α is 0.95 and the problem is solved by CPLEX 10.2 solver  [38] using GAMS 

software  [39]. 

mean  2

0.383

0.24170.2417 0.06680.0668
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Figure 4.Five segment approximation of normal distribution 

 



 
 

TABLE 1.  FORWARD CONTRACT DATA 

Contract 

# 

F
f  

(€/kWh) 

F
fP  

(kWh) 

1 

0.0650 15 

0.0630 10 

0.0650 15 

0.0630 10 

0.0650 15 

0.0630 10 

2 

0.0655 20 

0.0630 10 

0.0655 20 

0.0630 10 

0.0655 20 

0.0655 20 

 

EVs’ responses to charge/discharge prices are presented by price quota curves shown in Figure 

5 and Figure 6, respectively. The range of prices associated with the charge/discharge price quota 

curves are extracted from  [1]. The two curves depict that EVs’ charge/discharge behaviors are 

variable because of changes in the charge/discharge prices. As can be seen from Figure 5, within 

a specific price limitation, majority of EVs contribute in charge process however for higher 

prices the aggregator may lose its demand. Likewise, from Figure 6, it is observed that if 

discharge price increases, more EVs will participate in discharge service, so the aggregator can 

buy energy from EV owners with lower prices instead of purchases from electricity market with 

higher prices and in this case, it can improve its profit. As described before, an aggregator 

requests to investigate the purchases from forward contracting, pool market and discharge of 

EVs, in order to maximize its expected profit while satisfying EVs’ demand.  

In order to inspect the effects of uncertain parameters on the expected profit of the aggregator, 

risk control is considered as an important factor. In this regard, Figure 7 illustrates the variation 

of expected profit against CVaR for different values of β. As expected, the highest expected 

profit is achieved for β = 0 that shows the highest risk. The expected profit for β =15 decreases 

12.6% to obtain an increment of 21.35% in CVaR. The frontier representing the expected profit 

versus the CVaR for different values of β and shows that high values of CVaR are associated 

with lower expected profit that is resulted from different EVs reaction to charge/discharge prices. 
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Figure 5.Charge price quota curve 

 

 

Figure 6. Discharge Price quota curve 

 

Table 2 represents EVs participation in charge/discharge processes. For more risk aversion 

conditions, EVs’ demand reduces with increasing β. So the aggregator tries to buy energy from 

future market with fixed prices. Since the future prices are on average more expensive than pool 

prices, as Figure 7 shows, the aggregator’s expected profit decreases and consequently it tries to 

compensate the losses of its income. Therefore it sells energy to EVs with higher charge prices 

as β augments. The results show that with increasing β from 0 to 0.5, EVs participation in 

discharge mode increases to 32%. Also, further increase of β (up to 1), results in an increase in 

the charge price which in turn affects the contribution of EVs owners’ and the aggregator’s 

benefit. By growing β up to 5, EVs participation in charge process declines while the opposite 

happens in discharge mode. In fact, the aggregator investigates to buy more energy from EVs 

with lower prices than those offered in the market. In this regard, it saves its payments. For β=10 

and 15, it is observed that a few owners ask the aggregator for charge services (about 18% and 

15%, respectively) and the majority of customers might find another aggregator with better 

offers. It is also observed from Table 1 and Table 2 that discharge prices ( dschR
i

_ ) are lower than 

the forward contracting prices ( F
f ). In other words, it can be seen from Table 1 and Table 2 that 

the aggregator pays to EV owners with lower discharge prices than the forward ones. So, it can 

be advantageous for it to buy energy from EV owners in addition to forward contracts. As we 

know, generally, with increasing β, the aggregator tries to participate in the future market to buy 

electricity and as the result to control the volatility of pool prices. In fact, it tries to control risk 

due to the indeterminacy of pool market by participating in the future market. Here, with 

considering discharging mode for EVs, by considering more risk aversion and increasing CVaR, 

the expected profit decreases. So, the aggregator tries to propose higher charge/discharge prices 

to the EVs to avoid substantial decrement of its expected profit. 
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Figure 7. Variation of Expected Profit versus CVaR in different β 

 

Table 2.  EVs participation in charge/discharge process 

and the offered charge/discharge prices. 

Discharge 

participation 

dschR
i

_  

(€/kWh) 

Charge 

participation 

chR
i

_  

(€/kWh) 
β 

30% 0.036 24% 0.079 0 

32% 0.038 24% 0.079 0.5 

32% 0.039 22% 0.080 1 

33% 0.039 20% 0.081 5 

33% 0.039 18% 0.082 10 

33% 0.039 15% 0.084 15 

 

Moreover, as EVs demand decreases, the aggregator requires buying less energy in the future 

and pool markets as illustrated in Figure 8 and Figure 9, respectively. The reason is that the 

aggregator tries to increase the charging prices to compensate its expected profit. Since the 

aggregator lost its customers due to high offered charging prices, it requires buying less energy 

from both forward and pool markets. Also it pays the EV owners for their discharge with lower 

prices than the price of forward contracts. In this case, its expected profit would not decrease 

severely (see Figure 7). Moreover, it should be mentioned that since the aggregator can 

participate in the pool market during the day, it does not require buying high amount of energy 

from this market. In fact, if the number of EVs asking for charge services exceeds (compared to 

what is estimated) or less EVs are accessible for discharge mode, then the aggregator can attend 

pool market and purchase its required energy in order to compensate the extra energy that EVs 

require. 

To explain generally, at the beginning of the planning horizon, the aggregator decides to 

choose the forward contracts as Figure 8 shows and it gives charging/discharging price signal 

offered to the EV owners as provided in Table 2. They are both considered as here-and-now 

decisions. At the first stage, these decisions were made under uncertainty of pool prices and EVs 

demands. After fixing the forward contract and the selling/ buying prices, the aggregator decides 

the amount of energy that should be purchased in the pool to supply EVs demands, in each 

period of the planning horizon. The amount of energy that should be purchased from pool market 

in different βs is illustrated in Figure 9. Pool prices and client demands refer to wait-and-see 

decisions and are made after uncertainty is revealed. 
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Figure 8. Procured power from forward contracts versus β 

 

 
Figure 9.Variation of purchased energy in pool market versus β 

 

The obtained revenues associated with charge process accompanied with the costs of 

discharge, forward and pool purchases for different βs are provided in Table 3. With increasing 

β, as it was mentioned in Table 2, the participation of EVs in charge process is decreased. 

Accordingly, the expected revenue is reduced from 128.792€ for β=0 to 85.589€ for β=15. This 

revenue mitigation makes the aggregator sell the electricity to EVs with higher charge prices as it 

was given in Table 2. With increasing β, the aggregator offers higher discharge prices and 

consequently, its payment due to discharge process increases. However, as the average of 

discharge prices offered to the owners is not higher than charge prices and also lower number of 

EVs usually participate in discharge mode compared with charge one, the payments due to 

discharge are very lower than charge revenue. In addition, with increasing β, the payments in 

future and pool markets decrease about two times. It is because of high charge price that leads to 

loosing EVs demand. Moreover, the owners are motivated to sell back the energy of their 

batteries because of high discharge prices. To show the possibility of experiencing losses, Table 

4 illustrates the simulation results for β=15 in all scenarios with regard to aggregator’s profit. As 

it is observed, in scenarios 14 and 15, the profit values are negative which mentions financial 

losses to the aggregator. This is very probable in β=15 as the aggregator increases its proposed 

prices to the owners and consequently, it loses its revenue because of losing its customers due to 

high offered charge prices and high discharge payments. Figure 10 illustrates the expected profit 

against the standard deviation of the profit in different βs. It should be noted that the decisions 

made by the aggregator have an important effect on the variability of the profit. If the aggregator 

considers EVs involvement in charge/discharge mode instead of more purchases from forward 

contracts to increase its revenue, the volatility of its profit occurs much more in higher βs than 

that if it depends more on the future market which occurs in lower βs. In this context, as Figure 10 
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shows, with increasing β, the profit standard deviation grows up. That is because the aggregator 

considers EVs responses to the charge/discharge prices. So, the unpredictability of EVs behavior 

may influence the aggregator’s expected profit and the decisions determined by it for buying 

from forward contracts. Thus, inspecting the uncertain nature of EVs behavior for decision 

making in the forward contracts is a reason of profit volatility. 

 
Table 3. The Expected revenues ($) and costs ($) of the aggregator for different βs 

 

 

 

 

 

 

 
Figure 10 Expected profit against profit standard deviation in different βs 

 
Table 4.  Profit in all scenarios in β=15 

Scenario Profit (€) 

51  
 301.023 303.187 305.899 298.864 296.452 

106  
 297.468 298.864 300.490 296.084 294.743 

1511  
 109.039 294.526 295.078 -74.196 -156.373 

2016  
 304.580 307.518 311.315 301.646 298.164 

2521  
 308.146 311.849 316.747 304.437 299.885 

 

Sensitivity analysis is carried out to investigate the effect of EVs discharging on the forward 

and pool purchases. In this regard, the reaction of EVs to three different cases are considered: 

base case that was shown in Figure 5 and Figure 6, case 1 which denotes 10% decrease in EVs 

participation compared to the base case, and case 2 which shows 10% increase in EVs 

participation. Table 5 shows the result of future and pool procurements, the charge/discharge 

prices offered to EV owners and their participation percentage in different β values. It is 

observed that with increasing β, the aggregator purchased lower amount of electricity from future 

and pool markets and it bought energy from EV owners. Moreover, in all three cases, it offers 

charge prices to the EV owners not more than 0.084 (€/kWh), else it may lose its customers. 

Also, in case 2 (with 10% increment in EVs participation), in β=15, about 36.3% of EVs 

discharged their vehicles and the aggregator bought the lower amount of power from future 
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β chR (€) dschC (€) FC (€) PC  (€) 

0 128.792 6.509 52.391 41.369 

0.5 128.792 7.328 51.892 41.069 

1 119.553 7.328 46.902 37.246 

5 110.043 7.756 41.663 33.273 

10 100.262 7.756 36.674 29.450 

15 85.589 7.756 29.189 23.716 



market. Thereafter, the aggregator tried to buy more energy from EVs instead of future and pool 

markets.  

 
Table 5 Sensitivity analysis of EVs reaction to discharge process 

Base Case 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_

 

charge 

participation 

(%) 

dschR
i

_  

discharge 

participation 

(%) 

 

0 34.650 617.870 0.079 24% 0.036 30% 

0.5 34.320 613.736 0.079 24% 0.038 32% 

1 31.020 557.081 0.080 22% 0.039 32% 

5 27.555 498.358 0.081 20% 0.039 33% 

10 24.255 441.702 0.082 18% 0.039 33% 

15 19.305 356.718 0.084 15% 0.039 33% 

Case 1 10% (decrease in EVs participation) 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_

 

charge 

participation 

(%) 

dschR
i

_
 

discharge 

participation 

(%) 

 

0 35.640 630.270 0.079 24% 0.036 27% 

0.5 35.376 626.963 0.079 24% 0.038 28.8% 

1 32.076 570.307 0.080 22% 0.038 28.8% 

5 25.344 455.342 0.082 18% 0.039 29.7% 

10 20.394 370.359 0.084 15% 0.039 29.7% 

15 20.394 370.359 0.084 15% 0.039 29.7% 

Case 2 (10% increase in EVs participation) 

β 
Future 

purchase 

Pool 

purchase 

chR
i

_

 

charge 

participation 

(%) 

dschR
i

_
 

discharge 

participation 

(%) 

 

0 34.155 611.670 0.079 24% 0.036 33% 

0.5 33.792 607.123 0.079 24% 0.038 35.2% 

1 30.492 550.467 0.080 22% 0.038 35.2% 

5 27.010 491.538 0.081 20% 0.039 36.3% 

10 23.710 434.882 0.082 18% 0.039 36.3% 

15 18.760 349.898 0.084 15% 0.039 36.3% 

 

V. CONCLUSIONS 

This paper proposed a two-stage stochastic programming model for effective participation of 

an EV aggregator in the future and pool markets. The optimal aggregator’s decision making 

process was considered as an optimization problem to specify the forward contract purchases and 

to offer optimal charge/discharge prices to EV owners on a medium-term planning horizon in the 

first stage. In this way, a number of prominent uncertainties such as pool prices and EVs 

behavior were also investigated in the second stage. The risk aversion of the aggregator was 

modeled by CVaR of the profit. The effects of EVs response to charge/discharge prices on the 

forward contracting and pool procurements were also inquired. It was shown that the aggregator 

tried to buy from EV owners instead of buying from forward contracts to avoid substantial 

decrement of its expected profit. Moreover, a sensitivity analysis was carried out to see the 



effects of EVs discharge mode on the forward and pool purchases. 

The results revealed that with increasing the EVs contribution in discharge process, less energy 

is needed to be purchased from forward market. Also, if the number of EVs augments, the 

aggregator should buy more energy from forward and pool market in order to supply EVs 

demand, because the obtained energy from discharging EVs might not be enough to supply the 

EVs requirements. 
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