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ENGLISH SUMMARY 

This industrial PhD study is motivated by the many challenges experienced by practitioners of building design. 

The design team must meet increasing requirements for energy demand and indoor environment, while addressing 

demands for aesthetics, functionality, and building costs. Especially in the early design stages, it is difficult to 

guide decision-makers in improving building performance. The early design begins with the initial drafts of 

building form and room layout and finishes with the transition to the detailed project stages. These early stages are 

characterized by large uncertainties and considerable design freedom, and, moreover, wide-ranging changes occur 

frequently. Decision-making are influenced by multiple stakeholders, e.g. building owners, architects, and 

engineers, which have diverse ideas and demands. Simulation-based support for this design team often relies on 

deterministic simulations in a time-consuming, evaluative manner. The ambition with this project is to facilitate 

proactive and holistic guidance which points out the most important parameters and identifies favorable parts of 

an enlarged solution space. 

Initial draft of educational building Schematic design of residential building 

  

EFFEKT architects BIG architects 

The PhD study has led to the development of a novel simulation framework, and various tools, that help overcome 

the above challenges. The many variable design parameters span a high-dimensional design space which is 

assessed by thousands of statistically chosen building performance simulations (BPS). This allows the design team 

to identify a high-performing solution space instead of just assessing a single design and adjusting it in a manual 

trial-and-error approach until minimum criteria is met. The proposed method expands the “architectural freedom” 

and helps avoid inappropriate decisions leading to poor, or costly, performance.  

Interactive plot for design space exploration 

 

Interactive visualizations have been implemented to encourage multi-actor collaboration and design space 

exploration. These interactive plots makes it easier to change various design parameters and observe, in real-time, 

their effects on performance and consequences for other designs. The method was applied to the preliminary design 

of a 15.000 m² educational building. Based on 5.000 simulations, the design team pursued the maximum window-

to-wall-ratio and observed a need for renewables, i.e. the amount of photovoltaics to balance the energy frame. To 

avoid renewables, the design team could immediate find a suitable window-to-wall-ratio and at the same time 

notice the consequences for insulation level and room reflectance to meet energy and daylight requirements. 
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A crucial element of the proposed simulation framework is the use of sensitivity analysis. At a given design stage, 

such analysis calls attention to the most influential design parameters and it shows insignificant parameters which 

can be ignored during design meetings. Sensitivity analysis can also reveal interdependent design parameters that 

should be treated with care since optimizing on one them depends on the choices, or values, of the others. During 

a multi-collaborator design meeting related to a 24.000 m² residential building, sensitivity analysis helped stress 

the importance of the balconies’ heat losses which therefore received the necessary attention. 

Relative parameter sensitivity for two performance criteria 

  

The above concepts rely on the use of Monte Carlo simulations aided by sensitivity analysis and fast metamodels. 

The variability of design parameters is defined using probability distributions, from which thousands of 

combinations are chosen, using quasi-random sampling, to represent the global design space. This PhD study 

advocates a paradigm shift from the traditional, deterministic simulations to this extended, stochastic approach. 

The reader is encouraged to visit the website buildingdesign.moe.dk for more examples and to get a hands-on 

experience with design space exploration using interactive visualizations. 

https://buildingdesign.moe.dk/
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DANSK RESUME 

Nærværende ErhvervsPhD-studium er motiveret af en række udfordringer, som opleves af aktører inden for 

bygningsdesign. Designteamet skal opfylde stadigt stigende krav til energiforbrug og indeklima, samtidig med 

man skal imødekomme ønsker til arkitektur, funktionalitet og bygningsomkostninger. Særligt i de tidlige faser er 

det vanskeligt at vejlede beslutningstagere i forhold til at forbedre bygningens performance. Med angivelsen tidligt 

design refereres til en række overlappende faser startende fra den indledende konceptuelle skitseringsfase til og 

med forprojektet, hvor detaljeringsniveauet præciseres tilstrækkeligt til myndighedsgodkendelse. Disse tidlige 

faser er kendetegnet ved mange usikkerheder og stor designmæssig frihed og der forekommer ofte væsentlige 

ændringer i designet. Beslutninger vedrørende bygningens design og performance er influeret af adskillige 

interessenter, såsom bygherrer, arkitekter og ingeniører, der typisk har forskellige ideer og ønsker. 

Beslutningstagningen støttes ofte af tidskrævende iterative bygningssimuleringer. Denne tilgang har en 

evaluerende, bagudskuende karakter frem for proaktivt at anvise vejen mod bedre løsninger. Hensigten med 

nærværende studium er at anvende helhedsorienterede bygningssimuleringer til guide beslutningstagningen mere 

proaktivt og dermed identificere favorable designvalg og forbedre bygningens performance.  

Skitse af uddannelsesinstitution (konkurrence) Illustration af beboelsesbygning (forprojekt) 

  

EFFEKT architects Bjarke Ingels Group 

PhD-studiet har ført til udviklingen af en ny simuleringsmetodik, samt diverse værktøjer, der hjælper til at 

imødekomme de ovennævnte udfordringer. De variable parametre udgør tilsammen et multidimensionalt design 

rum, som undersøges ved tusindvis af simuleringer af bygningens performance. Herved kan designteamet 

identificere et stort løsningsrum med høj performance. Dette ses i kontrast gængs praksis med evaluering af et 

specifikt design, der derefter tilpasses i en iterativ ”trial-and-error” tilgang indtil minimumskravene opnås. Den 

foreslåede metode udvider den arkitektoniske frihed og hjælper til at undgå dårlige beslutninger, der fordyrer 

byggeriet eller fører til utilstrækkelig performance. 

Interaktivt plot til udforskning af et 10-dimensionelt designrum med tre performance kriterier 

 

Som en del den foreslåede designmetode avendes interaktive visualiseringer, der tilskynder forskellige fagpersoner 

at samarbejde til at analyse og udforske designrummet. Sådanne interaktive plots gør det lettere at afprøve 

designstrategier og strakt observere deres betydning for performance og vurdere, hvorvidt en specifik strategi 

begrænser det tilbageværende løsningsrum. Designmetoden blev anvendt ved udarbejdelsen af et 

konkurrenceforslag til en 15.000 m² uddannelsesinstitution. På baggrund af 5.000 simuleringer søgte designteamet 

den maksimalt tilladte vinduesandel i facaden, hvilket ville nødvendiggøre brug of solceller for at opfylde 
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energirammen. Ved at bruge det interaktive plot til at sortere simuleringerne kunne teamet straks finde et mere 

passende spænd for vinduesandelen, hvorved solceller kunne undgås. Samtidigt fremgik det af plottet, hvilke 

konsekvenser den moderate vinduesandel uden solceller ville have for isoleringsmængde og indvendig reflektans 

for at overholde kravene til energiramme og dagslys.  

Et vigtigt element i den foreslåede designmetode er anvendelse af følsomhedsanalyse. I hvert stadie vil sådan en 

analyse kunne påpege de mest betydningsfulde designparametre samt de ubetydelige parametre, der kan ses bort 

fra under designmøder. Følsomhedsanalyse kan også afsløre indbyrdes afhængige designparametre, der kræver 

særlig opmærksomhed, da optimering af en af disse vil afhænge af værdierne for de øvrige. Under et møde relateret 

til et 24.000 m² boligbyggeri hjalp følsomhedsanalysen til at understrege vigtigheden af linjetabene ved de mange 

altaner. De deltagende bygherrer, arkitekter, ingeniører og entreprenører kunne så agere derefter og på et tidligt 

stadie. 

Relative følsomheder for inputparametre i forhold til to normkrav 

 

De ovenstående metoder beror på anvendelse af Monte Carlo simuleringer suppleret med følsomhedsanalyse og 

hurtige regressionsmodeller. Den omtalte variabilitet af designparametre defineres ved tæthedsfunktioner, hvorfra 

statistisk effektive metoder anvendes til at udvælge tusinde kombinationer, der repræsenterer det højdimensionale 

designrum. PhD-studiet advokerer et paradigmeskifte fra traditionelle, deterministiske simuleringer til anvendelse 

af den omtalte stokastiske tilgang. Læseren opfordres til at besøge hjemmesiden buildingdesign.moe.dk for at 

eksperimentere med udforskning af globale designrum ved brug af interaktive visualiseringer.   

 

https://buildingdesign.moe.dk/
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PREFACE 

The work presented in this thesis is part of an Industrial PhD project funded by MOE A/S and Innovation Fund 

Denmark. The work has been carried out at MOE A/S and Aalborg University in the period from July 2014 to June 

2017. The author greatly appreciates these organizations, which have made the PhD possible. 

THESIS OUTLINE 

The core of this thesis is the following collection of articles: 

Paper A “A stochastic and holistic method to support decision-making in early building design” 

Proceedings of Building Simulation 2015. 

Paper B “Building simulations supporting decision making in early design – A review” 

Renewable and Sustainable Energy Reviews. 

Paper C “Early Building Design: Informed decision-making by exploring multidimensional design space 

using sensitivity analysis” 

Energy and Buildings. 

Paper D “A comparison of six metamodeling techniques applied to building performance simulations” 

Applied Energy, revised manuscript submitted 2017. 

Paper E “Interactive building design space exploration using regionalized sensitivity analysis” 

Proceedings of Building Simulation 2017. 

Paper F “Thermal comfort in residential buildings by the millions - early design support from stochastic 

simulations” 

CLIMA 2016 - proceedings of the 12th REHVA World Congress 

Even though, the thesis is paper-based it is presented as monograph to avoid endless self-citations and unnecessary 

duplication of work. Therefore, the papers A to D have been integrated directly into the main body of the text. 

Paper E and F are located in the appendix with references in the main text. The glossary, following Chapter 5, 

provides definitions and explanations of abbreviations and terms used in this thesis. 
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GLOSSARY 

Be10 (software) Danish code-compliance software superseded by Be15.  

Be15 (software) Danish code-compliance software based on the monthly quasi-steady-state method 

described in ISO 13790 [5-6]. Developed by the Danish Building Research Institute.  

behavioural  Subset of simulations which meet user-defined constraints or filter criteria. 

BPS  Building Performance Simulation(s). 

BSim (software) Hygro-thermal bulding simulation software developed by Danish Building Research 

Institute [7]. 

deterministic  Typical simulation approach, in which a design is defined by a set of fixed inputs, i.e. 

without uncertainty or variability, and the resulting output has no variance, i.e. the 

output consists of a specific value. 

DF  Daylight Factor, i.e. a measure of daylight availability under fixed, cloudy conditions. 

early design (stages)  Design phases ranging from the initial drafts until the transition to detailed design. 

Energy frame Whole-building energy demand under predetermined conditions used for building code 

compliance in Denmark. Unit: kWh/m² floor area (primary energy). 

global Approach to explore or analyse a multidimensional input (design) space in such a way 

that this "global" space is represented equally by the sampled simulations. This contrasts 

the one-at-a-time (OAT) approach. 

h>26 °C Performance indicator for thermal comfort measured by the number of hours, in which 

the operative temperature exceeds 26 °C. 

holistic Designing with emphasis on overall building performance taking into account multiple 

building performance criteria – both qualitative and quantitative. 

non-behavioural Subset of simulations that do not meet user-defined constraints or filter criteria. 

one-at-a-time (OAT) Design space exploration and sensitivity analysis in which only one parameter is varied 

between consecutive, deterministic simulations. 

output Quantitative performance indicator obtained from building performance simulations. 

Overtemperature Penalty term used in Be10/Be15, which is added to the energy demand as a way to 

punish designs, for which the building mean temperature exceeds 26 °C. Unit: kWh/m² 

floor area. 

PCP Parallel Coordinate Plot. 

performance indicator Qualitative and quantitative measures of building performance, e.g. buildability and 

energy demand. 

SA Sensitivity Analysis, i.e. study of how the uncertainty in the output of a (BPS) model 

relates to the uncertainties in the input parameters. 

stochastic Simulation approach based on Monte Carlo simulations with random or quasi-random 

sampling to represent a multidimensional input (design) space. Contrasts the 

"deterministic" approach. 

uncertainty The uncertainty of a parameter due to user behaviour, unpredictable weather, deviations 

in materials' properties, etc. (see related term "variability"). 

variability The possible range of values for a design parameter which may be assigned by the 

design team (see related term "uncertainty").
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1 INTRODUCTION 

1.1 BACKGROUND 

This thesis is part of an industrial PhD project made in collaboration between the consultancy company MOE and 

Aalborg University. The main goal is to improve the use of building simulations to assist multi-actor decision-

making during early design. Before we dive into the technicalities of building simulations and statistical methods, 

we wish to describe the role of the host company and the characteristics of building design in a Danish context. 

These settings have played a vital role for the direction and outcome of the project. We therefore introduce this 

project with a description of motivations and ambitions from the perspective of the host company. 

The primary initiator of this project is the engineering and consulting company MOE. This Danish based company 

employs more than 600 people divided into the sections buildings, energy and industry, and infrastructure [1]. 

Measured by ongoing building constructions, MOE was the largest player among engineers in the Danish marked 

anno 2016 [2]. A branch of the building section consists of engineers specialized in energy performance, indoor 

climate, and sustainability. This rapidly evolving area has experienced substantial growth and attention during the 

last decade. Worth to mention, this is the branch in which the PhD student (the author) and the company supervisor 

are employed.  

Motivational factors for the PhD project include the many challenges that face practitioners of building design and 

construction. Over the last decades, legislative directives and building codes have led to ever-stricter energy 

demands along with additional requirements for indoor climate and sustainability. This tendency is supplemented 

by the increasing popularity of holistic assessment schemes [3]. Thus, the design team needs to address a large 

number of opposing, and steadily tightened, performance criteria which makes most rule-of-thumbs and heuristics 

obsolete. These circumstances pose a particular challenge during the critical, early design stages in which the 

frequent and iterative design changes call for immediate feedback on building performance. Moreover, the early 

design is characterized by a large design freedom and great uncertainties. Building performance simulations (BPS) 

are commonly used to assess building performance but the deterministic, evaluative nature of most software makes 

it difficult to explore a multivariate design space and provide proactive and timely guidance. Finally, the complex 

relationships between design parameters and the diverse, qualitative and quantitative, objectives complicate 

decision-making in a design process with many stakeholders.  

Concurrent with these developments, MOE have had a growing need to address the emerging challenges. Potential 

solutions, to some of them, have been identified during a preliminary study as described in the following section. 

A key concept is to shift from evaluative, deterministic simulations to a more proactive and global approach by 

means of Monte Carlo simulations and sensitivity analysis [4]. This allows for a more comprehensive exploration 

of the vast design space, which helps reveal high-performing designs that satisfy the diverse requirements. Many 

obstacles remained, but these initial investigations formed the platform for the PhD study. 

The host company has great ambitions within the field of energy, indoor climate, and sustainability of buildings, 

which the industrial PhD project, and other concurrent developments, should help to achieve. One ambition is to 

become the architects’ preferred partner and consultant. A mean to do so is the extensive investigation of the 

multivariate design space, which is assumed to reveal numerous diverse solutions and thus provide more “design 

freedom” for the architect. Moreover, the intention is to provide immediate feedback and proactive guidance. The 

latter includes the ability to focus on things that matters most and ignore insignificant parameters. A holistic 

approach is ever-present and essential, since we cannot optimize on one criterion without affecting others. The 

project includes the development of novel methods, and potentially the required software, to assist during design 

competitions and in the regular design process. Finally, a desired outcome of the PhD project is to brand the host 

company as one of the industry leaders in this field of expertise and as a contributor to science. 

Special features of the industrial PhD setup involve communication form and intellectual property rights (IPR). 

Here, the company and university have different preferences. In terms of communication, the university favors 

knowledge sharing through peer-reviewed journals and conference proceedings. Teaching is appreciated but not 

mandatory for an industrial PhD. In contrast, the company encourages a more immediate exposure of potential 
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achievements through webpages, social media, and special media. This is preferably supplemented by direct 

contact with business partners and clients. Regarding IPR, the company controls the rights for developed software, 

which has affected the choice of platform and distribution.  

To round off this background presentation, we discuss some of the implications of carrying out the project in a 

Danish setting. The Danish architecture has a strong legacy and the design is often complex and experimental 

making each building a challenging endeavor. Architects, engineers, and other decision makers typically work 

together in an integrated design process. The architects focus on aesthetics, functions, and logistics; whereas 

engineers are responsible for ensuring that the design meets the requirements related to energy and indoor climate. 

Though, the responsibilities for some aspects vary to a greater extent, e.g. the assessment daylight availability and 

holistic performance. A typical approach is to ensure code compliance of the whole building energy demand using 

the mandatory software, Be15, which is based on the monthly steady state version described in ISO 13790 [5-6]. 

Parallel to this, the indoor climate is often evaluated for “critical” or “representative” rooms using dynamic 

building simulation software (e.g. BSim, IDA-ICE, or IES-VE) [7]. For this project, the performance criteria used 

in case studies reflect the Danish building code regulations and recommendations. This explains the use of 

performance metrics such as “overtemperature”, “hours above 26°C”, and daylight factor. However, we conclude 

by mentioning that the methods are universal. Presumably, they are also applicable to other research disciplines 

and industries involving multi-actor decision-making and multidimensional domains with large uncertainties.  

1.2 PRELIMINARY STUDY 

Our first article describes a preliminary study, which has formed the basis for the PhD study. The article introduces 

the use of Monte Carlo simulations to take into account the large variabilities of inputs in early design [4]. Holistic 

scoring functions combined with statistical methods provide the means to digest the large number of simulations 

and to make informed decisions to improve building performance.  

1.2.1 PAPER A 

The following article, denoted Paper A, is titled “A stochastic and holistic method to support decision-making in 

early building design”. The paper has been published in the Proceedings of Building Simulation 2015, Pages 1885 

– 1892, Dec. 2015. 
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ABSTRACT 

The use of holistic certification tools is increasing 

and requirements in legislation are continuously 

being tightened. This calls for a holistic simulation 

approach in the early design phase where input 

uncertainties are large and decisions are crucial to the 

performance. An iterative parametric method is 

proposed: 1) Assign uniform distributions to 

uncertain design inputs of interest; 2) Perform 

sensitivity analysis (SA) by the method of Morris to 

rank input by relative importance; 3) Run Monte 

Carlo simulations to explore the entire design 

domain; 4) Apply Monte Carlo filtering to identify 

preferable input domains for the most influential 

parameters. 

To enable computationally fast simulations, we 

combined calculations of energy demand and thermal 

comfort based on ISO 13790 (CEN 2008) with a 

regression model for daylight factor. We constructed 

scoring functions for the three outputs and applied 

weighting to combine the three scores into a single 

holistic score ranging from 0 to 100. 

The method was tested on a simple office building. 

An initial run of 3000 simulations was performed 

using a Quasi-Random LpTau sampling strategy for 

22 variable inputs. A filter was applied to the holistic 

score to collect the 10 % best performing 

simulations. From this collection, histograms were 

used to identify favourable and adverse input spans 

for a selection of the most sensitive parameters. 

Subsequently, two runs of each 3000 simulations 

were performed – one using the favourable input 

spans and the other using the adverse spans. The 

results showed that the distribution related to 

favourable input spans was shifted significantly 

towards higher holistic scores. The authors conclude 

that the use of a stochastic, holistic method can guide 

decision-making by identifying favourable input 

regions, and thereby increase the remaining solution 

space and overall building performance.  

INTRODUCTION 

The building design community is challenged by 

continuously increasing energy demands, which are 

often combined with ambitious goals for the indoor 

environment. By 2020, all new buildings are required 

to by “nearly zero energy” buildings in the European 

Union (European Parliament 2010). In Denmark, the 

authorities are gradually tightening the energy 

requirements by reducing energy demands by 25 % 

in 2015 and again in 2020 (Energistyrelsen 2010). 

Concurrently, thermal comfort in dwellings must be 

assessed in terms of overheating hours to achieve 

2015 classification, and daylight demands are being 

sharpened by increasing the daylight factor threshold 

in order to reach 2020 classification. To meet the 

ever-stricter demands and create high performing 

buildings, we suggest a holistic approach and 

exploration of a vast design space.  

The three objectives; energy demand, thermal 

comfort, and daylight, receive much attention due to 

the legislative requirements and their strong 

interdependencies. These objectives are especially 

difficult to address since improving one of them 

often worsens another. At the same time, the design 

team must address many less quantifiable objectives 

such as logistics, aesthetics, and function. Above all 

is the budget, which is perhaps the most important 

design constraint. Therefore, a holistic approach is 

crucial in the multi-collaborator design process, 

where decision-making involves building owners, 

architects, engineers, and contractors.  

Engineers typically rely on deterministic building 

simulations to evaluate design options, though the 

software gives little or no guidance on how to 

improve the design. Most detailed simulation 

software is used to evaluate design options to ensure 

building code compliance and has not been 

developed to take into account the large uncertainties 

and rapid change of design which are characteristic 

of early design (Petersen 2011). Instead, we suggest 

exploration of a global design space by stochastic 

methods while considering multiple objectives. This 

approach creates pro-active information that supports 

the design team in the decision-making process. 

Moreover, the approach gives more room for 

decisions across disciplines and performance 

objectives.  

Literature shows many uses of stochastic building 

simulations combined with uncertainty analysis and 

sensitivity analysis (Tian 2013). However, emphasis 

is often on uncertainties associated with user 

behaviour, weather scenarios, and physical properties 

of materials (de Wit & Augenbroe 2002)(Hopfe & 
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Hensen 2011)(Struck et al. 2009). An alternative 

approach is to focus on design variability, where 

possible ranges in design parameters are treated as 

uncertainties by applying uniform probability 

distributions (Yildiz et al. 2012). Similar approach 

was taken by Heiselberg et al. (2009), who adopted 

the method of Morris to perform sensitivity analysis 

during early design to identify inputs that have the 

largest impact on energy consumption and as a 

consequence these inputs deserved most attention 

(Heiselberg et al. 2009). In this work, we expand this 

method by adding thermal comfort and daylight to 

the objectives of interest. Moreover, we apply Monte 

Carlo filtering techniques to identify favourable 

design input spans. The proposed method is 

demonstrated for an office building.  

METHODOLOGY 

The goal of our research is to develop a method that 

can be used in the iterative design process to guide 

the design team in creating high performing 

buildings. Based on the architect’s design proposal, 

the engineer builds a simulation model and performs 

stochastic calculations of energy demand, thermal 

comfort, and daylight. The simulation results are 

combined into a holistic score and analysed using 

uncertainty analysis and sensitivity analysis. The 

design team is informed about best and worst case 

scenarios and favourable spans for the most 

influential design variables. The process may be 

repeated to decrease variability or the design may 

continue to the detailed design stage. 

The development of the methodology involves the 

following tasks: i) creating a parametric simulation 

model; ii) creating holistic scoring functions; iii) 

applying suitable methods for uncertainty and 

sensitivity analysis. These efforts are described 

below. 

Idealized simulation model 

To develop, test, and evaluate the proposed method, 

we needed to construct a simulation model satisfying 

the following properties:  

 Assignment of probability density functions 

to inputs 

 Execution of Monte Carlo simulations 

 Evaluation of whole building energy 

demand, thermal comfort, and daylight 

factor for selected zones 

 Calculation detail level appropriate for early 

design  

In addition to these requirements, emphasis was on 

calculation speed in order to do thousands of 

simulations in minutes rather than hours or days.  

To calculate energy demand we chose the normative 

model Be10 used for building code compliance in 

Denmark (SBI - Danish Building Research Institute 

2014). The model is based on the simplified quasi-

steady-state monthly method provided by ISO 13790 

(CEN 2008). An advantage of this model is 

computational speed, which is measured in 

milliseconds.   

To assess thermal comfort, we use an hourly-based 

idealized model “Summer Comfort”, which is also 

developed by the Danish Building Research Institute 

on the basis of ISO 13790. The model was developed 

to evaluate operative temperature in the critical 

rooms of dwellings by calculating the number of 

hours above 26 °C and 27 °C, respectively.  

Daylight simulations are often computational heavy 

compared to energy and thermal calculations. For 

this study, we applied a simplified regression model 

based on Danish guidelines made for building code 

compliance (Johnsen & Christoffersen 2008). In this, 

daylight factor is estimated for rectangular rooms 

using pre-calculated line curves and correcting these 

to take into account shading effects, glazing 

properties, room reflectance, etc.  

To sum up, we have put together a fast, idealized 

simulation model based on Danish building code and 

practice. The required input for this model fits the 

level of detail in early building design. It enables fast 

computation of some of the most correlated 

quantifiable output; energy consumption, thermal 

comfort and daylight. We omitted other measures 

such as embodied energy and acoustics, since they 

relate more to materials which are typically specified 

at later design stages.  

Creating holistic scoring functions 

A way to encourage holistic design is to construct 

scoring functions for each output and combining 

these scores into one overall, holistic score. This 

approach is seen in several sustainability assessment 

methods including LEED, BREEAM, and DGNB. A 

holistic score eases comparison when comparing a 

large number of design options. Moreover, it helps 

interpretation of sensitivity analysis and allows more 

consistent filtering of Monte Carlo simulations. In 

this work, we apply scoring function to energy, 

thermal comfort, and daylight such that each of these 

objectives is evaluated in the range 0 – 100 points. 

Afterwards, a combined scored is constructed using a 

user-defined weighing system.  
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Energy 

In general, Danish building code differentiates 

between dwellings, hotels, et al. and offices, schools, 

et al. A function for each category is constructed as 

shown on Figure 1 (a).  Energy demands lower than 

2020 requirements results in 100 points whereas 

demands equal to 2010 requirements results in 25 

points. A penalty function allows for a slight 

overconsumption, which may be compensated for by 

adding renewables such as photovoltaics.   

 

Thermal comfort (summer) 

The scoring function for thermal comfort is based on 

EN 15251 (CEN 2007) and shown on Figure 1 (b). 

This standard divides indoor climate into four 

categories: I, II, III, and “out of category”. The upper 

limits for room operative temperature in classes I to 

III are 25.5, 26.0, and 27.0 °C, respectively. 

However, an excess of these thresholds may be 

allowed for either 3 % or 5 % of the time. 

 

Daylight 

Danish building regulations offer two ways to 

evaluate daylight in workrooms, occupiable room, 

and similar. One option is to ensure that the glass-to-

floor ratio is at least 10 % while adjusting for the 

light transmittance value of the glazing. The other 

option is to calculate the daylight factor at 

workplaces, which must be at least 2 %. To meet 

2020 requirements the daylight factor must be 3 %. 

Using these requirements, we established a scoring 

function that depends on both daylight factor and 

glass-to-floor ratio as shown on Figure 1 (c).  

Finally, the three scores are combined into a single, 

holistic score, EDT, by assigning user-defined 

weighting factors. In the case study below, we use 

weighting factors of 50, 25, and 25 % for energy, 

daylight, and thermal comfort, respectively. Similar 

approach and weighting is used by Bjørn and Brohus 

(2006) when combining energy use, atmospheric and 

thermal comfort into one score called “Eco-factor”. 

Moreover, the chosen weightings are similar to the 

ratios between the maximum score for energy, 

thermal comfort (summer), and visual comfort in the 

Danish DGNB assessment system. An additional 

property is that the holistic score becomes zero if 

either one of the scoring functions is zero. This 

prevents possible high holistic scores at the expense 

of a single objective.  

Uncertainty and sensitivity analysis  

Uncertainty and sensitivity analysis play an essential 

role in turning data from a large number of 

simulations into design information that support 

decision-making. In the proposed methodology, we 

first apply the method of Morris to rank variable 

input in accordance to sensitivity. Secondly, we 

perform thousands of Monte Carlo simulations and 

apply Monte Carlo Filtering to assess the outcome. 

The two methods may be performed individually or 

in combination depending on the scope of the 

analysis. Both methods consist of the steps described 

in Figure 2.  

 

 

Figure 2 Workflow for automated building 

simulations. 

In this work, emphasis is on early building design 

and investigation of design space. Hence, variable 

inputs are described using uniform probability 

distributions. For example, insulation thickness may 

vary from minimum 150 mm to 300 mm with even 

probability since the designer may choose this value. 

This variability analysis is in contrast to regular 

uncertainty and robustness analysis, where inputs 

Figure 1 Scoring functions for energy demand, thermal comfort, and daylight.  

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 1887 -

5



related to user behaviour, weather, and physical 

inaccuracies, often follow a normal or log-normal 

distribution.  

 

Sensitivity using method of Morris 

The method of Morris is a computational effective 

way to screen a large number of inputs in order to 

find those, which show: negligible, linear and 

additive, or nonlinear or interaction effects (Morris 

1991). Morris (1991) introduces the concept of 

elementary effect EE of a model 
1( , , )kY X X  with 

k inputs. The k-dimensional input space is discretized 

into p levels by splitting their values into p quantiles. 

Then the elementary effect for the ith input factor in a 

point X is defined as (Saltelli et al. 2008): 
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where r is the number of samples. The mean *

i

indicates the overall influence of the ith input on the 

output Y. Thus, sensitive inputs have relatively high 

values of *

i  whereas negligible inputs have low 

values. If the standard deviation is large compared to 

the mean, then the computation of EE is strongly 

affected by choice of sample point at which it is 

computed. That means this input depends on the 

values of other inputs, or the input has non-linear 

relation with the output Y.  

 

Monte Carlo simulations 

Following the screening exercise above, we want to 

explore the global design space in depth by 

performing thousands of Monte Carlo simulations. 

When doing so, we may use the same design inputs 

as before or narrow down the number of variables by 

omitting inputs with little or no influence on the 

output as indicated by the method of Morris.  

The sampling strategy is to investigate the largest 

possible design space. If design variables are divided 

into discrete values with equal probability, all 

combinations could be investigated when using full 

factorial sampling. Unfortunately, the required 

simulations grow exponentially with the number of 

design variables. Instead, we may choose between 

different sampling techniques to reduce the number 

of simulations by investigating a subspace, which is 

still representative of the entire design space. These 

methods include amongst others; fractional factorial 

sampling, Latin hybercube sampling, stratified 

random sampling and quasi-random sampling using 

low-discrepancy sequences (Saltelli et al. 2008). In 

this work, we use the low-discrepancy sequence LP 

since generation of quasi-random numbers are 

independent of the number of variables. And more 

importantly, it is possible to increase statistical 

convergence when compared to randomly generated 

numbers (Sobol’ & Shukman 1993). From the quasi-

random numbers and the uniform probability 

distributions, we construct an input matrix and run 

simulations.  

From the Monte Carlo experiment, we yield 

thousands of input-output relationships to be 

analysed using various statistical techniques.  

Scatterplots can reveal both linear and non-linear 

correlations including the strength of the correlations. 

Boxplots show minimum and maximum values, 

which correspond to best-case and worst-case 

scenarios of the current design. In addition, 

quantitative sensitivity measures can be calculated 

using Pearson’s product-moment correlation or 

Spearman’s rank correlation (Joint Research Centre 

n.d.). Finally, we can apply Monte Carlo filtering to 

achieve valuable design information as stressed out 

in the following. 

 

Monte Carlo Filtering 

A key element of the proposed methodology is to 

apply Monte Carlo Filtering to identify regions of the 

design space, which are more likely to produce 

acceptable results. Furthermore, it helps showing the 

effect of constraints for various objectives, such as 

energy demand, daylight, and thermal comfort. For a 

model ( )Y  X with k variables, such that 

1 2( , , , )kX X XX = , we split the output into two 

subspaces referred to herein as B and B  

corresponding to behavioural and non-behavioural 

results, respectively (Saltelli et al. 2008). Likewise, 

each input Xi domain is divided into two subspaces, 

( | )iX B  and ( | )iX B , depending on whether they 

produce behavioural or non-behavioural output. The 

benefits of applying Monte Carlo Filtering will 

become apparent in the case study below.   

 

Figure 3 Monte Carlo filtering of input Xi and output 

Y into behavioural and non-behavioural subspaces. 
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CASE STUDY 

Office building description 

The proposed methodology is tested on a simple, 

office building to illustrate how the method may be 

applied in praxis. Furthermore, we show how the 

gained knowledge makes it plausible to create better 

performing building design. The three stories office 

building with basement has a rectangular shape 

measuring 60 x 15 x 9.9 m. Rectangular offices 

measuring 4 x 6,25 m are situated along the 

elongated facades oriented towards south and north, 

respectively. Heat loads from persons and equipment 

are uniformly distributed with values 4 and 6 W/m² 

according to Danish building code.  

Benefits of Monte Carlo Filtering 

First, we demonstrate the effect of adding filters for 

different objectives in relation to the distribution of 

“behavioural” simulations. Using the office building 

above, we run 3000 simulation with 18 uncertain 

inputs with uniform probability distributions. Figure 

4 shows distributions of behavioural simulations 

related to a highly sensitive input – the size of the 

windows’ overhang. Without filters, we see an even 

distribution, which is due to the uniform probability 

distribution used when sampling. First, we remove 

simulations not meeting Danish energy requirements. 

Approximately one third of simulations disappear but 

the behavioural simulations are still distributed 

evenly with respect to windows’ overhang. Secondly, 

we remove simulations not meeting the thermal 

requirement of maximum 100 h above 26 °C. This 

has large impact on the distribution, which shows 

that the larger the overhang, the better.  Finally, we 

filter out the simulations with daylight factors below 

2 %. Since overhang reduces daylight, many of the 

simulations with large overhangs are removed. In this 

example, we conclude that the overhang must be in 

the range 5 – 43° and preferably more than 20°. 

Generally, the example shows the importance of a 

holistic design approach, in which we consider 

interdependent objectives simultaneously.  

Another benefit from Monte Carlo Filtering becomes 

apparent when analysing relationships between 

mutual interdependent and sensitive inputs. To 

inspect such a relationship we use a scatterplot as 

shown on Figure 5.  

 

 

Figure 5 Input-input scatterplots with and without 

filtering. 

In this case, we used filtering to select the 10 % best 

performing results using the holistic score, EDT, 

defined above. Without filtering, we see that the 

points are evenly distributed in the two-dimensional 

space. After applying the filter, we see strong 

dependency between g-value and window size as 

expected. The plot shows how much we can expect 

to reduce the g-value when increasing window size. 

If the designer chooses a combination of low g-value 

and small window percentage, there are many 

options to choose from, which mean the designer has 

lot of freedom to vary other uncertain input as well. 

The “outliers” along the boundary are also feasible 

design options but choosing such outliers will put 

constraints on other inputs, e.g. overhang and solar 

shading.  

Combining SA and Monte Carlo Filtering 

In this example, we demonstrate how Morris analysis 

followed by Monte Carlo Filtering improves building 

performance. After setting up the baseline model for 

the office, we choose 22 design parameters to which 

we assign uniform probability distributions as shown 

in Table 1. Relatively wide spans are used in order to 

investigate a very large design space. The 22 

parameters are divided into three categories: building 

form, built quality, and technical systems.  

  

Figure 4 Histograms for behavioural simulations when gradually applying filters. 
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Table 1 Input spans for 22 design parameters. 

Parameter Span Unit 

  Min Max  

11 Window-%, N 25 75 % 

12 Window-%, S 25 75 % 

13 Overhang 0 45 ° 

14 Side fins 0 30 ° 

15 Window opening 0 10 % 

16 Solar shading, Fc 0.2 1 - 

17 Mean reflectance 0.4 0.6 - 

18 Wall thickness 0.4 0.6 m 

21 Heat capacity 60 140 Wh/Km² 

22 g-value 0.3 0.7 - 

23 U-value, windows 1.0 1.6 W/m²K 

24 U-value, walls 0.10 0.15 W/m²K 

25 U-value, terrain 0.08 0.13 W/m²K 

26 U-value, roof 0.08 0.18 W/m²K 

27 Lin. heat loss, base 0.1 0.4 W/mK 

28 Lin. heat loss, windows 0.02 0.06 W/mK 

31 Mech. ventilation, qm,s 0.9 3.6 l/s m² 

32 Venting, qn,n 0.9 1.2 l/s m² 

33 Heat recovery,  0.70 0.95 - 

34 Specific fan power 1.5 2.1 kJ/m³ 

35 Lighting, stand-by 0 1 W/m² 

36 Lighting, installed 4 10 W/m² 

 

Sensitivity using method of Morris  

First, the method of Morris is used to rank the 

parameters in relation to their sensitivity and identify 

parameters that are non-linear or highly correlated 

with others.  

As input for the method of Morris we used r  = 10 

samples, p = 8 levels and M = 100 possible trajec-

tories. The method is applied for the holistic  score 

EDT as shown on Figure 6. The most influential 

parameters are: g-value, window percentage (south), 

mean reflectance, window percentage (north), 

overhang, and heat capacity. Addtionally, the plot 

reveals non-linear or correlated behavior of the 

parameters close to the standard-error-of-mean line: 

g-value, windows percentages, and solar shading. In 

contrast, the mean reflectance is the third most 

sensitive parameter but shows little correlation or 

non-linearity, which  fits well with the algorithms in 

use.  

 

Monte Carlo simulations 

Following the Morris analysis, we perform 2500 

Monte Carlo simulations using the same variable 

inputs and spans. Alternatively, we could have 

excluded the parameters showing little or no 

influence according to the sensitivity analysis. Since 

we are interested in initiatives to improve the overall 

performance of the design, we apply Monte Carlo 

Filtering to select the 10 % highest holistic scores. 

Hereafter, we create a histogram for each variable 

input to see how the 10 % best scores are distributed 

in relation to the different inputs. In Table 2 the 

parameters are ranked according to their sensitivity. 

For about 5 – 7 of the most sensitive the histograms 

show tendencies, from which we can make 

recommendations in terms of favourable input spans 

and non-favourable spans. Recommended spans are 

listed to the right in Table 2.  

As proof of concept, we performed two additional 

runs of each 3000 Monte Carlo simulations – one 

using the recommended input spans and the other 

using the adverse spans. Initial spans were 

maintained for inputs where no recommendations 

were made.  

 

Table 2 Histograms for top 10 % best performing 

simulations along with recommended spans. 

Parameters are ranked according to sensitivity. 

Parameter Initial spans Hist. Recommended 

 Min Max  Min Max 

g-value 0.3 0.7  – – 

Window-%, S 25 75 33 60 

Mean reflectance 0.4 0.6 0.5 0.6 

Window-%, N 25 75 30 65 

Overhang 0 45 – – 

Heat capacity 60 140 85 140 

Lighting, inst. 4 10 – – 

U-value, windows 1.0 1.6 – – 

Solar shading, Fc 0.2 1 0.2 0.6 

Side fins 0 30 – – 

Lighting, stand-by 0 1 – – 

Specific fan power 1.5 2.1 – – 

Heat recovery,  0.7 0.95 – – 

Wall thickness 0.4 0.6 – – 

Mech. ventilation 0.9 3.6 – – 

Window opening 0 10 – – 

Venting, qn, n 0.9 1.2 – – 

U-value, roof 0.08 0.13 – – 

Lin. heat loss, win. 0.02 0.06 – – 

Lin. heat loss, base 0.1 0.4 – – 

U-value, walls 0.1 1.5 – – 

Lighting, installed 0.08 0.13 – – 

Figure 6 Estimated means and standard deviations of 

the distributions of EE’s in relation to the EDT-

score. Line corresponds to standard-error-of-mean. 
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Distributions of the resulting holistic scores for each 

of the two runs are shown on Figure 7. 

Comparing the two runs, we observe a clear shift 

towards higher scores when using the recommended 

spans. The zero score means that at least one of the 

requirements is not met. The number of simulations 

resulting in a zero score is reduced from more than 

2000 to less than 300 simulations, which means the 

remaining design space will be increased 

significantly when following the design 

recommendations. Since we still observe zero scores 

for the recommended spans, we cannot ensure that 

requirements will be met. For example, the EDT 

score may result in zero if the design team use the 

“worst” combinations of the remaining spans such as 

high U-values combined with poor ventilation 

performance. 

Figure 8 shows scatterplots and histograms for the 

10% best performing simulations in relations to the 

three most sensitive inputs and the least sensitive 

input. In addition to showing distributions of the best 

simulations, these small multiples of plots help to 

identify direction, form and strength of important 

input-output relationships. As expected, we observe 

relatively strong positive relation between daylight 

and the two inputs: reflectance and window 

percentage. For energy consumption, there are 

moderate linear relationships with g-value and 

window percentage where large g-values and low 

window percentages reduces energy demand. 

However, some of the highest holistic scores are seen 

at lower g-values and relatively high window 

percentages. For the least sensitive input, Uterrain, we 

observe neither direction nor form.   

 

Figure 8 Scatterplots and histograms for the 10 % 

highest EDT-score related to the three most sensitive 

inputs and the least sensitive input. 

CONCLUSION 

This study showed how uncertainty analysis and 

sensitivity analysis could be applied to support 

decision-making in early building design. Emphasis 

was on addressing correlated objectives 

simultaneously – in this case energy demand, thermal 

comfort, and daylight. A holistic score was shown to 

ease comparison of designs and rank inputs after 

sensitivity on overall performance. The method of 

Morris proved useful to screen a large number of 

uncertain inputs to focus on the most influential ones 

and reveal possible correlations and non-linearity. 

Monte Carlo simulations made it possible to 

investigate a large design space defined by inputs 

with uniform probability distributions. Such 

distributions works well with subsequent Monte 

Carlo Filtering making it possible to identify 

favourable and adverse input spans for important 

inputs. In conclusion, the methodology make the use 

of building simulations more pro-active compared to 

the widespread evaluative use, that give little or no 

guidance on how to improve the building design. 

Practical implications of the proposed methodology 

include: (a) continuously identification of design 

inputs that matters most, (b) awareness of 

interdependent inputs, (c) global investigation of a 

large design space to achieve higher performing 

designs, (d) holistic approach to ease comparison that 

ensures well-balanced design, (e) handling of design 

uncertainty and variability.  

Limitations and further research 

Often the most important design objective is building 

costs, which was omitted in this study. Though, 

estimating cost when doing stochastic simulations 

may be an impossible task, since there are no unique 

way to calculate cost of variable overhangs, shading 

systems, glass quality, etc. Instead, the proposed 

method help identify feasible regions in design space, 

after which the design team use experience to 

determine what is feasible when considering cost, 

aesthetics, construction, etc.  

Figure 7 Distributions of holistic scores when using 

adverse spans (left) and recommended spans (right). 
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Using weighting factors to combine outputs into a 

single score emphasizes holistic design but the 

different choices of weighting factors may lead to 

different conclusions. As an alternative to fixed 

weighting factors, the design team may apply and 

vary filters values for each objective independently. 

Again, this will split the simulations into behavioural 

and non- behavioural regions from which favourable 

inputs spans can be identified. The filter values may 

be varied until a suitable number of behavioural 

inputs are obtained or until the desired level of 

performance is reached. When seeing the 

consequences of the filtering, the design team may 

want to change the initial requirements (filter values), 

e.g. seeking higher performance for one objective 

while accepting a slightly lower performance for 

another.  

For this study, we used idealised models where speed 

and level of detail where suitable for comparison of 

stochastic simulations in early building design. 

Further research is needed to incorporate advanced 

simulation model to improve validity of calculations 

and allow for analysis of advanced systems, 

fenestration, etc. Such effort would presumably 

require the use of computer clusters or cloud 

computing to account for the vast increase in 

computational effort.    
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1.2.2 LIMITATIONS 

Paper A has demonstrated the necessity of a holistic approach and the potential of Monte Carlo simulations 

combined with sensitivity analysis [4]. To follow up, we give some thoughts to possible limitations and 

alternative ways for communication and visualization.  

One disadvantage of the holistic approach in Paper A is the use of weights to combine performance measures 

into a combined holistic score. Defining such arbitrary weights is tricky since decision-makers often have 

different preferences. This weighting system is problematic because the weights influence both the ranking from 

sensitivity analysis and the distributions of “behavioral” simulations. Ultimately, changing the weights alters the 

recommendations. In addition, the proposed filtering approach, which was demonstrated with a “top 10%” 

threshold, does not reflect the actual criteria. Such issues may be remedied by the ability to apply user-defined, 

and project-specific, filter criteria. The method would also benefit from the ability to apply filters to model 

inputs to investigate specific regions of input space and observe the consequences of such constraints. In 

conclusion, these lessons call for flexible, interactive ways to analyze and explore the global design space. 

Moreover, we would appreciate a sensitivity analysis technique that works for multiple outputs but does not 

depend on a weighting system.  

Based on the preliminary study, we broaden our perspective by performing an extensive literature in the next 

chapter. 
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2 LITERATURE REVIEW 

2.1 SCOPE AND MOTIVATION 

In the previous chapter, we presented various challenges of building design as experienced by MOE engineers. 

The preliminary study showed potential ways to address some of the issues related to building performance. 

Throughout this PhD project, the use of building performance simulations (BPS) is assumed a prerequisite for 

aiding decision-makers in the design of buildings with high performance. The following article, denoted Paper 

B, contains a literature review of the use of BPS with emphasis on implementation during the early design 

stages. The motivation is to identify current state of knowledge and research areas that relate to challenges 

hindering the adoption of building simulations in early design [8]. The review contains a proposal for an “ideal” 

simulation framework based on identified knowledge gaps. Finally, it provides an overview of BPS software in 

the perspective of the proposed framework. 

Following Paper B, we describe the research areas to be addressed in the subsequent studies in the PhD project. 

In addition, we explain how these fit into concurrent efforts made in the host company and at Aalborg 

University. We round off with a discussion of the BPS software to be used in this project.  

2.1.1 PAPER B 

Paper B refers to the review article titled “Building simulations supporting decision making in early design – A 

review”, which has been published in Renewable and Sustainable Energy Reviews, Volume 61, Pages 187 – 201, 

2016.
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a b s t r a c t

The building design community is challenged by continuously increasing energy demands, which are
often combined with ambitious goals for indoor environment, for environmental impact, and for building
costs. To aid decision-making, building simulation is widely used in the late design stages, but its
application is still limited in the early stages in which design decisions have a major impact on final
building performance and costs. The early integration of simulation software faces several challenges,
which include time-consuming modeling, rapid change of the design, conflicting requirements, input
uncertainties, and large design variability. In addition, building design is a multi-collaborator discipline,
where design decisions are influenced by architects, engineers, contractors, and building owners. This
review covers developments in both academia and in commercial software industry that target these
challenges. Identified research areas include statistical methods, optimisation, proactive simulations,
knowledge based input generation, and interoperability between CAD-software and building perfor-
mance software. Based on promising developments in literature, we propose a simulation framework
that facilitates proactive, intelligent, and experience based building simulation which aid decision
making in early design. To find software candidates accommodating this framework, we compare
existing software with regard to intended usage, interoperability, complexity, objectives, and ability to
perform various parametric simulations.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The building design community is challenged by continuously
increasing energy demands which are often in conjunction with
ambitious goals for the indoor environment. The recast of the
European Performance of Buildings Directive (EPBD) requires all
new buildings in the European Union to be “nearly zero energy”
buildings by 2020 [1]. In addition to stricter energy demands, the
use of environmental assessment methods has increased con-
siderably [2,3]. As a result, the design team must try to optimize
on a large number of criteria, such as energy demand, indoor
environment, materials, life cycle cost, etc., which are often con-
flicting. Supporting decision making and guiding the design
towards high performance is of utmost importance in the early
design phase where decisions have the highest impact on final
performance and costs [4–6]1. Predicting the consequences of
early decisions is particularly difficult, but crucial, since adverse
decisions will reduce the remaining design space and make it
more strenuous and expensive to meet high performance goals.
For example, the design team may early on decide on a design
concept with a highly transparent facade favoring daylight (high
window-to-wall-ratio) where potential issues, concerning cooling
energy, thermal comfort, and glare, are avoided by a combination
of hybrid ventilation and automatic, external shading. If the initial
conditions later turn out to be too optimistic or unrealistic (e.g.
solar shading in use more that 80% of the time, venting needs an
air change of more than 10 h�1 to keep temperatures within
limits), it will have major impact on both cost and design to
remedy this early decision and reach ambitious goals. Despite the
potential of performing building simulations, the information
obtained from building performance simulation software is often
evaluative instead of proactive [5,7]. Even when the software is
sophisticated, accurate, and capable of assessing a wide range of
different performance indicators, it is often most suitable for code
compliance, benchmarking, and quality control. There is a lack of
tools that provide timely feedback on performance implications
and help compare and rank multiple design variations [8,5]. The
software’s ability to provide this kind of active support is some-
times referred to as “intelligence” [5,9]. In a survey among 230
architects, “intelligence” and “usability” ranked higher than
“interoperability” and “accuracy” when selecting BPS tools [5]. In
other words, the software’s ability to inform and guide the design
has the highest priority by the majority of the architects. Accord-
ing to Batueva and Mahdavi [9], less than 8 percent of more than
400 building simulations tools listed by the U.S. Department of
Energy [10] have potential for early design deployment potential.
In summary, challenges of performing building simulations at the
early stages, identified by the authors, include: lack of information,

uncertainty, vast design space, increasing levels of model resolu-
tion (level of detail), time-consuming modeling, and rapid change
of design. In general, challenges affecting all stages of building
design include: contradicting and stricter requirements, inter-
operability, limited reuse of knowledge, discrepancy between
simulations and real-life measurements, and lack of simulation
guidance.

The main focus of this review is to identify state-of-the-art
within the field of building simulations addressing the challenges
above. The review is part of a research project which aims to
develop a simulation framework that addresses all of these diverse
challenges in order to facilitate proactive, intelligent, and experi-
ence based building simulations. Another ambition of the research
is to implement such a framework in the design project as early as
possible. Below, we outline six research areas targeting at least one
of the identified challenges, and we specify how this review differs
from previous reviews related to building simulations. In chap-
ter 2, we describe how each of the six research areas approaches
the issues of BPS, and we highlight promising and trending
methods. In chapter 3, we propose an ideal framework for building
performance simulations based on our findings in chapter 2. In
continuation of this, we carry out a software review in search for
available software that fits the requirements and properties of this
“ideal” framework.

In this paper, attention is drawn to developments facilitating
improved assistance and guidance for the design team during the
early design stages. Particular interest is given to methods that
enable the designer to investigate a global design space, which is
expanded from the variability of multiple design parameters. The
reason for this is that a single building performance simulation
only evaluates a single point in the design space without taking
uncertainties and variability into account. Nor does the single
evaluation guide the designer on how to improve the design. As a
consequence, designers often perform manual or automatic,
parametric simulations varying one parameter at a time. This one-
at-a-time approach (OAT) is referred to as local analysis. In early
design, many parameters may be varied at the same time which
advocates exploration of a global design space, which presumable
can reveal higher performing design as illustrated on Fig. 1.

1.1. Research targeting early building simulations

This review covers a wide range of research addressing the
challenges related to building simulations as identified above. To
create an overview, the reviewed papers have been organized into
six larger groups of research areas – each of them targeting one or
more specific challenges as illustrated on Fig. 2. Definitions of
these intertwined research areas, and motive for their inclusion,
are as follows:

� Proactive building simulations refer to a proactive exploration
of the design space in order to guide the design rather than
evaluate design.

1 In this review, we distinguish between early design and detailed design. In
addition, the early design stage may be split into two phases: conceptual design, in
which the building concept is developed and schematic drawings are produced;
and preliminary design, where schematic drawings are refined to estimate the
main quantities for the building project (adopted from [11]).
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� Statistical methods include running large numbers of simula-
tions and applying statistical measures. As well as coping with
uncertainties, a statistical approach may facilitate exploration of
a large design space and identify important inputs and favorable
input domains.

� Holistic design includes calculation of many interdependent
performance objectives and combining the results to support
decision making. Examples of important interdependent
objectives are energy demand, thermal comfort, and daylight.

� Optimisation on performance objectives helps to automate the
exploration of a large design space and guide the design
towards high performance.

� CAD-BPS interoperability may be achieved by integration of
models, run-time coupling, and shared schemas. A common
ambition is to ensure fast and consistent modeling.

� Knowledge based methods aim to reuse and share knowledge
to reduce the time spent modeling, and they seek to improve
consistency and validity. Moreover, knowledge databases may
be used to set default values to enable simulations when the
input resolution is low (model detail).

Since the main focus of the review is simulations made in the
early design phases, we will not cover efforts in improved algo-
rithms describing building physics. Nor will we address methods
which primarily intend to improve detailed analysis or reduce
performance gaps.

1.2. Literature reviews and comparative surveys

Prior to this study, we found a considerable amount of com-
parative studies and reviews concerning building performance
simulations. These studies provide a comprehensive insight into a
specific discipline or branch of building design, such as: energy
simulation, daylight simulation, software comparison, optimisa-
tion, sensitivity analysis, etc. This review covers a more wide range
of research areas to see how the industry might benefit from the
combined efforts made across disciplines. The reader looking for a
more in-depth review of a specific topic may look into the
following:

Fig. 1. Different explorations of a 2D discretized design space. Favorable solution spaces are illustrated by simulations resulting in best (Gold) and second best (Silver) awards
according to the DGNB certification system for sustainable buildings [11] (similar to e.g. LEED Platinum and Gold certification [12]).

Fig. 2. The reviewed research areas and their relation to different challenges of performing building simulations in the early design stages and in general.
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� Kanters et al. [8]: tools and methods used by architects for solar
design.

� Hopfe et al. [13]: comparison of 6 BPS tools and potential of BPS
in conceptual design phase.

� Crawley et al. [14]: comparison of 20 building energy perfor-
mance simulation programs.

� Attia et al. [15]: survey with 249 architects and their relation to
10 BPS tools.

� Attia and Herde [16]: comparison of 10 early design
simulation tools.

� Zhao et al. [17]: review on the prediction of building energy
consumption.

� Pacheco et al. [18]: review on energy efficient design of building
� Ochoa et al. [19]: review of lighting simulation for building

science.
� Tian [20]: review of sensitivity analysis methods in building

energy analysis.
� Evins [21]: review of computational optimization methods

applied to sustainable building design.
� Machairas et al. [22]: review of algorithms for optimization of

building design.
� Bucking et al. [23]: uncertainty, sensitivity, and optimisation in

building simulation.
� Iwaro et al. [24]: criteria weighting framework and multi-

criteria decision making.
� Fumo [25]: basics and classification of whole building energy

estimations.

Primarily works after 2005 have been included.

2. Research areas

2.1. Proactive building simulations

The engineer responsible for building performance simulations
regarding energy, comfort, cost, etc., are often asked various “What
if…” questions by building owners, entrepreneurs, and architects.
These questions refer to alternative design options, such as “what
if we allow external shading”, “what if we increase window-to-
wall ratio”, “what if we combine venting and overhangs to avoid
mechanical cooling”. Since most simulation software is evaluative
in nature, such queries are difficult to give immediate replies to –

especially in the early design phase where the option space is
immense. Trying to answer such queries will often require the
simulation expert to run additionally simulations between meet-
ings or workshops. When the answers are obtained, it may already
be too late, since the design has evolved and new issues and
questions have arisen instead. Addressing this issue of time-con-
suming, iterative, and evaluative nature of building simulation,
Shady et al. [5] used the concept of “pre-design informative” BPS
that enables proactive guidance and support for decision making
during early design. According to the authors, only 1% of the then
392 tools listed on the U.S. Department of Energy homepage [26]
can be categorized as pre-design informative.

In this paper, we will distinguish between the terms “pre-
design informative” and “proactive” simulations. The term “pre-
design informative” is applied to methods where simulations have
been carried out prior to the design stage. Examples include the
constructions of meta-models (see Section 2.2.3) and the creation
of databases from simulations of predefined rooms or building
types. “Proactive” is considered a more broad term that also
applies to methods where alternative simulations are carried out
in a structured way to guide, rather than evaluate, the design.

Petersen [7] recognizes the potential of the simulation envir-
onment to become more proactive and provide data-driven advice

along with design implications. He therefore focuses on enabling
“the support environment to generate input to the overall building
design process prior to any actual design decisions”. Petersen
introduces a novel tool that enables parametric, room-level
simulations with respect to energy consumption, air quality, day-
light, and thermal comfort. For all inputs, the user assigns a
reference value and optionally two alternative values. Along with
the reference model, the tool will then perform one-at-a-time
simulations to evaluate two variations for each of the varied
parameters. The tool was tested on three real building projects,
where the actors involved found this one-at-the-time parametric
analysis useful for decision support. Though, the extent to which
the design information was allowed to influence design decision
differed due to different opinions on the benefits from inter-
disciplinary collaboration in the conceptual design stage. This
demonstrates the importance of an open mind towards multi-
actor collaboration and towards the implementation of novel
methods and tools that may improve the design process.

Similar to Petersen's approach, Ochoa and Capeluto [27] have
developed an advice tool for the conceptual design stage of
intelligent facades based on energy and visual comfort. The tool
employs the EnergyPlus [28] engine in order to evaluate intelligent
facades and to ensure continuity with the subsequent preliminary
and detailed design phases. The many EnergyPlus inputs are
abstracted away by using presets that are determined from a few
architectural considerations concerning location, main orientation,
occupancy level, sophistication level, facade openness, surround-
ings, and building depth. In that way, the architect does not need
to assign specific input values into the simulation tool. Instead, the
designer defines relatively few properties regarding geometry and
location along with some desired design concepts. On the basis of
these properties and design intentions, the tool creates building
design alternatives that follow a set of built-in design rules. An
interesting feature is that the logic also generates an alternative
with a degree of randomness to avoid locking the designer into
one direction. In the end, the designer is presented with a list of
detailed design alternatives.

Attia et al. [5] has developed a prototype tool for net zero-
energy buildings in hot climates with the purpose to inform
designers prior to decision making. The prototype consists of a
simple and easy-to-use interface enabling parametric runs of the
EnergyPlus simulation engine. Numerous inputs for EnergyPlus
have been reduced to reflect the early design stage. This allows for
fast creation and exploration of a variety of alternatives while
using advanced, validated simulation software. The prototype
allows for simulation of a number of predefined building types and
applies sensitivity analysis to guide decision making.

The above works focus on early design integration, creation of
alternatives, and guidance of the designer. Such ambitions may
also be facilitated by means of statistical methods as described in
the following section.

2.2. Statistical methods

In this context, statistical methods refers to a design process
where the modeler runs a large number of simulations in a
structured manner and use statistical techniques to achieve design
support from the simulated data. This approach enables the
modeler to explore a large design space in a systematic way, which
potentially enlarges the solution space, and thereby improves
building performance compared to typical one-at-a-time para-
metric analysis (see Fig. 1). Statistical analysis also allows for
definition of inputs in form of possible spans, thereby addressing
the issue of non-determined or uncertain inputs that is char-
acteristic of the early design phase. Finally, statistical analyses are

T. Østergård et al. / Renewable and Sustainable Energy Reviews 61 (2016) 187–201190

18



suitable for addressing the challenges related to the probabilistic
nature of user behavior and weather.

Statistical building performance modeling consists of three
intertwined disciplines, namely uncertainty analysis, sensitivity
analysis, and multivariate analysis. Present work covers diverse
uses of statistical analysis, but the following steps are common
(see reduced workflow on Fig. 3):

1. A baseline model is created in building performance software
capable of calculating the objectives of interest.

2. Depending on the scope of the analysis, a number of input
parameters, ranging from a few to hundreds, are selected. Each
parameter is assigned with a probability density function that
reflects parameter uncertainty related to the numerical model,
boundary condition, physical property, or design variability.

3. A sample matrix is constructed from the probability density
functions. Various sampling procedures exist and their applic-
ability depends on the analysis to be performed. Sampling
procedures include random, stratified, factorial, Latin hyber-
cube, and quasi-random with low-discrepancy sequences [29].

4. For each sample a building simulation is performed and outputs
of interest are collected.

5. Results are analyzed utilizing uncertainty analysis, sensitivity
analysis, multivariate analysis, or combinations of these. The
results may also be used to create meta-models as
described below.

This workflow is often facilitated by using statistical software
packages such as SimLab [30] or the statistical programming lan-
guage R [31] in combination with building performance software
[20,32]. Increasing interest and need for such workflows drives
developers to create extensions to the building simulation envir-
onment to facilitate parametric modelling, e.g. Parametric Analysis
Tool for OpenStudio [33] and jEPlus [34]. It seems that the pro-
liferation of scripting languages, particularly interpreted and
dynamically typed languages such as Python and Ruby, makes
programming more accessible for simulation specialists who want
to perform very specific simulation tasks [35–37].

2.2.1. Uncertainty analysis
An early, comprehensive research of uncertainties related to

building simulations was conducted by MacDonald [38], who

addressed the problem of quantifying the effects of uncertainties
on the predictions derived from building simulation software.
More recent work focus on utilizing uncertainty analysis as part of
the decision making process [39–42]. Hopfe and Hensen [41]
conclude that ”the integration of uncertainties in BPS provides
evidence based decision support in design team meetings and
dialogues with building partners.” When augmented by sensitivity
analysis such integration will give an idea of the significance of
uncertainties and facilitate quality assurance of the model.
Uncertainty analysis is useful to investigate design variation and
gives insight into design robustness and possible ranges of per-
formance indicators, i.e. minimum and maximum values for
energy demand, daylight metrics, costs, etc. However, decision
making under consideration of uncertainty is not straightforward.
As exemplified by de Wit and Augenbroe [39] a decision maker
will find it difficult to decide whether or not to implement a
cooling system when such a system is required if the hours with
overheating exceeds 150 but the overheating temperatures are
represented by a probability functions that spans over this limit. To
address this issue, the authors propose implementation of Baye-
sian decision theory by setting up and comparing utility functions.
Another approach for decision-making under uncertainty is sug-
gested by Rezaee et al. [42]. They estimate the level of confidence
that option A performs better than option B by comparing output
distributions for each of the two alternatives. Thereby, the
designer gets an idea of how likely it is that one design proposal
will outperform another.

Since uncertainty is inherent in all building simulations one
might argue always to include uncertainty analysis. Even in late
retrofit design and in model calibration, the effects of occupants’
behavior and unpredictable weather impose substantial uncer-
tainty on the model’s predictions which militate against use of
deterministic calculations. Various studies applied uncertainty and
sensitivity analysis to study the effects of occupants’ behavior and
weather variability [43–48]. Brohus et al. [43] perform both a
theoretical and empirical study of energy consumption of
domestic buildings which shows occupant's behavior to be the
major contributor to the variance. Hoes et al. [44] also include
thermal analysis in an office case study and propose a methodol-
ogy for better representation of user behavior. Their results show
that no general design concept ensures robustness towards user
behavior without applying extensive oversized active systems.
According to O’Brien [45], implementation of passive systems, e.g.
fixed solar shading, may reduce both energy use and uncertainty
associated with occupant behavior. Applying uncertainty analysis
is often accomplished by assigning probability density distribu-
tions to uncertain inputs as described above. This method, how-
ever, does not work for uncertainties related to user behavior and
weather when performing whole-year simulations. To address this
issue, Rodríquez et al. [46] defines three levels of both occupant
load and weather load. By combining these, a total of nine sce-
narios are investigated which enhances the robustness of the
analysis. Furthermore, the authors apply sensitivity analysis which
shows that the ranking of influential inputs are similar for the nine
investigated scenarios.

Summing up, uncertainty analysis may aid building design in
various manners. This analysis ensures more reliability to the
results, enables exploration of large design spaces, and assesses
model quality and robustness. Though, design comparison
becomes less straightforward when considering uncertainties as
compared to evaluating deterministic calculations.

2.2.2. Sensitivity analysis
Various authors suggest to incorporate sensitivity analysis

during early design to identify the input parameters with highest
impact on building performance [40,49–52]. By identifying the

Fig. 3. Schematic flow diagram of typical implementation of statistical analyses in
a building performance simulation process.
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most influential input parameters, the design team may direct
their attention to these inputs in subsequent analyses, such as
parameter variations and optimisation, and during construction of
meta-models. Sensitivity analysis may answer “What-if” questions
by calculating regression or correlation coefficients which indicate
the size and direction of the change in performance when chan-
ging values for a certain input [40,53]. Different sensitivity analysis
techniques are described thoroughly in an often cited book “Global
Sensitivity Analysis: The Primer” by Saltelli et al. [29], while the
use of sensitivity analysis in building energy analysis is covered in
a comprehensive review by Tian [20].

Sensitivity analysis can be divided into local and global
approaches [29]. Derivative based local methods consider the
effects of uncertain inputs around a point in design space (or
baseline model) by varying one parameter at a time (OAT). This
approach requires few computations but is ill-suited for non-linear
systems [29]. Global methods consider the uncertain inputs over
the whole input space. Global methods are more versatile since
they can handle nonlinear, non-additive, and non-monotone sys-
tems and consider the effects of interactions between inputs. As an
example of a nonlinear and non-monotone system in BPS, we may
consider energy consumption as a function of windows’ g-value.
For a given model, the heating load in winter may be reduced by
increasing the g-value but only to a certain limit after which the
cooling load will increase. Yet, this relationship is highly depen-
dent on other parameters such as fenestration, solar shading,
shadows, set points, internal loads, etc. These complex relations
may be investigated by applying sophisticated, global sensitivity
analysis methods such as decomposition of variance and other
quantitative measure. Though, these approaches typically increase
the amount of computational effort accordingly. Hemsath and
Bandhosseini [52] argue that pre-design local sensitivity coeffi-
cients may aid early decision-making, and it may be extended to
global analysis in a later design optimisation stage.

Sensitivity analysis may be applied for multiple performance
indicators and thereby provide an overview of critical design
parameters in a holistic design context. Using an office test case,
Jin and Overend [53] calculated sensitivity indices for 14 facade
design variables with respect to 13 different outputs related to
energy, comfort, and cost. The resulting sensitivity coefficient
charts for three different climatic zones help allocate design time
and construction budget to the variables with highest impact on
performance.

2.2.3. Meta-modelling
A meta-model may be defined as a simplified model of a model.

In other words, if a numerical model is an abstraction of the real
world, the meta-model is yet another abstraction of that numerical
model. Meta-modelling involves analysis of input and output
relationships in order to establish a mathematical relationship
(algorithm) that is easy and fast to compute. A broad range of
techniques exist, such as Artificial Neural Network (ANN) [54],
Support Vector Machines (SVM) [55], Kriging [56], Multivariate
Linear Regression [4,57], but in general no type is optimal in all
circumstances [58].

In a building simulation context, a meta-model is typically
constructed from a large set of simulations made with validated,
detailed building performance software which is often computa-
tionally heavy. Alternatively, a meta-model may be constructed
from experimental or observational data. For instance, meta-
models can be constructed from large building performance
databases [56,59]. The simplified model usually consists of a lim-
ited set of inputs and outputs that are relevant for the task at hand.
The reduced set of inputs and the computationally fast algorithms
makes meta-modelling attractive for early building design where
only a few variables have been identified and the demand for fast

feedback is crucial. Due to the fast algorithms, meta-modelling
may be attractive when performing optimisation, uncertainty
analysis, sensitivity analysis, and real-time simulations. Techni-
ques based on regression analysis, sometimes considered easier
and more practical [60], enable both interpretation and prediction
[61]. Interpretation of regression coefficient helps understand
input-output relationships as well as interactions between inputs
– i.e. sensitivity analysis is easily accomplished. Additionally,
regression coefficients enable prediction of building performance
and hence provide proactive decision support.

The literature, reviewed here, concerns early building design,
retrofit analysis, and test of the meta-modeling techniques. Per-
formance indicators of interest include heating and cooling loads
[4,55–57,62,63], thermal comfort [55], indoor air quality [54],
daylight factor [60] and net cost [62]. The training set for estab-
lishing the models consist of both experimental [56,59] and
simulated data. The use of meta-modelling in a holistic context
will probably become highly laborious since individual algorithms
must be developed for each performance indicator. Furthermore, a
meta-model is only applicable in the domain of which it has been
constructed, i.e. it becomes invalid if the prerequisites change, e.g.
loads, orientation, constructions, etc. This characteristic is a con-
siderable downside worth mentioning.

2.2.4. Multivariate analysis and filtering
Several authors make use of a stochastic approach to run an

exhaustive set of simulations of the design space [33,51,64].
Applying filtering methods afterwards help identify favorable
areas of the design space that meet certain design criteria [32].
Moreover, multivariate analysis of the vast amount of data
obtained from thousands of simulations may be assisted by var-
ious visualization techniques such as scatterplots, histograms, and
parallel coordinate plots. Naboni et al. [64] demonstrate the pos-
sibilities of cloud computing by running 221.184 EnergyPlus [28]
simulations within 72 h. Using factorial sampling of 8 discrete
design variables, all combinations are considered. The method is
compared to a conventional manual approach where a practitioner
is assumed to generate and run up to 50 manually configured
simulations. When comparing time consumption, the additional
computational time of the parametric approach is balanced out by
the time spent on setting up and analyzing the manual simula-
tions. The advantage of the parametric modelling is the exhaus-
tive, global investigation of the design space and the possibility to
apply statistical analysis. By comparing Pareto fronts, the authors
show that the parametric approach may reduce both cooling and
heating needs significantly. For instance, the energy savings are
increased by 33% when choosing the best performing parametric
design as comparing to the best performing manually configured
design.

2.3. Holistic design

A building design needs to satisfy a vast range of often con-
tradicting requirements and objectives. Certification schemes such
as DGNB [11], LEED [12], and BREEAM [65] involve evaluation of
up to 100 objectives. Some may be estimated quantitatively with
simulation software while others can only be evaluated qualita-
tively. Another characteristic of the building design process is the
gradually increase in identified design parameters and objectives
[40]. For example, it is nearly impossible to calculate room
acoustics, draught, and LCA in conceptual design. Since objectives
are often correlated, a design change improving a certain objective
will affect other objectives as well. These circumstances challenge
the holistic design approach, especially in the early design phase.
As stated by Cheung et al. [35] “There is a clear need for a
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designer-focused system that can give simultaneous design
assessment on various aspects in the conceptual design stage.”

One element of holistic design in a simulation context is to
enable simultaneous calculations of as many objectives as possible.
This may be facilitated by improved interoperability by common
file exchange schemas (IFC, gbXML, etc.) or by integrating a mul-
titude of algorithms into one software platform (see Section 2.5).
Another element is to combine these diverse performance results
and extract information that supports decision making. This lies in
the extensive field of multi-criteria decision making (MCDM).

Pohekar and Ramachandran [66] and Wang et al. [67] have
made reviews on MCDM in neighboring research areas and
describe different techniques that aid decision making when
considering conflicting and multiple objectives. These methods are
based on weighting averages, priority setting (Analytical Hierarchy
Process (AHP)), outranking (ELECTRE, PROMETHEE), and fuzzy
principles [66,67]. In the field of sustainable energy decision-
making, the simple method of equal criteria weights are the most
popular followed by the more comprehensive Analytical Hierarchy
Process [67]. Similar trends may apply to the field of building
design, where weighting systems is demonstrated by Bjørn and
Brohus [68], Iwaro et al. [69], and Østergård et al. [24]. Moreover,
weighting frameworks, such as DGNB, LEED, and BREEAM, are
getting increasingly popular. These weighting systems involve
prioritization and establishment of comparable performance
measures. Such systems compel the design team to think holistic
and they reveal which objectives may be improved.

In the Analytical Hierarchy Process the decision problem is
decomposed into a hierarchy of sub-problems. Decision makers
compare these sub-problems pairwise by assigning numbers from
1 as ‘equally important’ up to e.g. 9 for ‘extremely more important’
[70]. A matrix consisting of all pairwise comparisons is used to
calculate numerical weights for all objectives in the hierarchy,
allowing diverse objectives to be compared in a consistent way.
Hopfe et al. [70] use AHP to support multi-criteria decision making
under uncertainty based on stakeholders preferences. By propa-
gating uncertainty from design parameters into probability dis-
tributions of performance indicators, much information is gener-
ated but it complicates decision making (see example in Section
2.2). Applying AHP helps rank design options where uncertainty is
included and thereby aids decision making while reaping the
benefits from uncertainty analysis. According to Iwaro et al. [24],
the majority of the subjective criteria weighting frameworks, such
as AHP, fail to consider objective information. Therefore, Iwaro
et al. suggest an integrated frame where AHP is combined with an
objective weighting approach to assess life cycle performance. The
framework was concluded to provide a robust methodology for
weighting and assessment of the sustainable performance of
residential building designs.

Another research dealing with uncertainties and multiple
objectives is that of Jin and Overend [53]. As described in
Section 2.2, the authors take into account the large uncertainties
related to early design to create façade sensitivity charts for 13
output variables describing the performance of two office sce-
narios in three geographical locations.

Holistic design promotes evaluation of a vast number of
opposing performance indicators. Since design comparison
becomes more troublesome when considering multiple objectives,
the design team may want to exclude objectives having little
importance or having large correlation with other objectives. An
example of the latter, in a Danish context, is the evaluation of
overheating hours above 26 °C and 27 °C, which are required by
building code. From a design perspective, the two measures will
show similar behavior and addressing either one of themwill most
likely have similar consequences on building design. These nearly
redundant objectives may be excluded to reduce the information

load. To identify such objectives, the following methods are listed
by Wang et al. [67]: the least mean square method, the min-max
deviation method, and the correlation coefficient method. These
methods are simple to apply and may help to focus on the most
important parameters in a holistic design process.

In this brief overview of holistic design, we have left out multi-
criteria optimisation which will be covered in the following. In
holistic design, we stress that optimisation requires caution since
building design is a high-dimensional and complex task where a
single best holistic solution (or single Pareto front) does not exists.

2.4. Optimisation

In this context, optimisation refers to the automated use of
mathematical optimisation in combination with building perfor-
mance simulations. The aim of this section is to give an overview
of trends, benefits, and challenges based on five reviews
[21,22,71–73] related to building design optimisation. A building
optimisation analysis typically consists of the following steps that
may be repeated in an iterative design process (combined from
Machairas [22] and Nguyen et al. [72]):

1. Identification of design variables and constraints.
2. Selection of simulation tool and creation of a baseline model.
3. Selection of objective function(s).
4. Selection of optimisation algorithm.
5. Running simulations until optimisation convergence is achieved.
6. Interpretation and presentation of data.

Since the turn of the millennia, publications about building
optimisation have roughly increased tenfold [21,22,72]. This
development is aided by advances in computer science in terms of
parallel and cloud computing as well as advancements in opti-
misation theory where genetic algorithms (GA) and particle
swarm optimisation are prevalent [71,72]. Based on keyword
searches in the scientific database “ScienceDirect”, Machairas et al.
[22] conclude that optimisation on HVAC and controls represent
the majority of the publications. Though, optimisation of para-
meters influencing building design has become increasingly pop-
ular during the last decade. Applying optimisation to building
design is often motivated by the stringent and often divergent
requirements of high-performance buildings. Interviews with
researchers and practitioners emphasize that optimisation of
building design is not about finding the “best” solution but rather
to find alternative solutions from automated exploration of a large
design space [71]. Arguably, “parameter variations” may be a
better term when this is the purpose of the optimisation.

Building designers seek to design buildings that perform well
on a wide range of both quantitative and qualitative measures.
While early building optimisation studies were dominantly single
objective, the trend is towards multi-objective optimisation [21].
One way to include more objectives is to apply the weighted-sum
method which reduces the optimisation problem to single-
objective at the cost of introducing arbitrary fixed weights to all
objectives. Otherwise, multi-objective optimisation consists of
quantifying trade-offs curves of solutions, known as Pareto Fronts,
where objectives cannot be improved further without worsening
others. Typically, multi-optimisation addresses only two objectives
though a few recent works applied full 3-objective optimisation
[74,75].

According to two different reviews [21,76], the common
objectives to optimize, in decreasing order, are energy, cost, ther-
mal comfort, and carbon dioxide. Often, optimisation of one or two
objectives is performed while setting constraints for other objec-
tives to make sure the constrained objectives comply with relevant
standards. Arguably, this approach is inadequate when the
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designer needs to score high in holistic assessments such as LEED
[12], BREEAM [65], and DGNB [11] where the overall score
depends on a wide range of opposing objectives. In such cases, the
weighted sum method seems more appropriate. Furthermore,
since building simulations lack qualitative measures, such as aes-
thetics, space layout, and logistics, optimisation on a few objec-
tives may be at the cost of equally important qualitative measures.

Despite the growing interest for building performance opti-
misation in academia, adoption in practice is still limited [71].
Barriers to widespread implementation consist of various issues
that need be addressed. Time-consuming computations have long
been a well-known obstacle. This may be overcome by the pro-
liferation of parallel and cloud computing or by constructing
computationally fast meta-models [21]. Another issue is the
inability of optimisation algorithms to cope with uncertainties
[21], which are especially large for early building design. Per-
forming optimisation is not trivial, and it requires knowledge and
experience to formulate the problem properly and select appro-
priate software and algorithms which calls for education of prac-
titioners [71]. Another hurdle is that available optimisation tools,
either generic2 or customized for building simulations3, require
time-consuming and error-prone linking to the simulation
software [71]. A solution for this could be full integration of
optimisation techniques into commercial software. In addition,
interviewed researchers and practitioners desired the following
features: better GUIs, parallel computing, and coupling of simu-
lation software and optimisation tools to do real-time optimisation
within BIM models [71]. Simulation experts also need to prove
legibility of optimisation to architects, building owners, and con-
tractors since building design is a multi-collaborative iterative
process where stakeholders have different areas of responsibility.

2.5. CAD-BPS interoperability

For many years, the field of data exchange and interoperability
between CAD models and building performance simulations (BPS)
has received a lot of attention among software developers and
researchers. Table 1 illustrates different ways of combining CAD
and BPS, i.e. representations of the physical world (CAD) and
analytical, numerical models (BPS). Note that the illustrations in
Table 1 only show one numerical model although there often
exists a number of such models of varying sizes. Moreover, inter-
operability may be a mix of the methods shown. For example, run-
time interoperability often only works when there exists a com-
mon file exchange format. Furthermore, one type of analysis may
be performed using an integrated, simplified algorithm for early
design support, whereas a more detailed analysis might prove
necessary in later stages. For example, detailed simulations using
CFD software.

2.5.1. Integration and direct links in early design
Improved interoperability would address several of the early

design issues identified in the introduction, e.g. time-consuming
iterative modelling, and need for rapid feedback. Since the early
design stages are dominated by architects, who create building
models using CAD software, this section focus on the features of
the integrated and run-time coupled approaches.

During the last decades, the CAD industry has evolved from 2D
drawings to 3D models and now “4D” models where more and
more semantic data is integrated into the CAD environment.
Moreover, advanced CAD software tends to integrate an

increasingly amount of analyses, such as collision control, duct
sizing, and solar analysis. In addition, various software vendors
facilitate BPS through dynamically coupled tools or add-ons.
Examples include Autodesk's Green Building Studio [78] for Revit
[79] while Graphisoft's has EcoDesigner Star [80] for ArchiCAD
[81]. Third party vendors also enable direct links to BPS through
application programming interfaces (API) to promote early design
decision support and rapid analyses. These include Sefaira [82],
IESVE [83], and OpenStudio [84] that may be linked to SketchUp
[85]. Several of these couplings rely on common file formats to do
so, i.e. IFC, gbXML, osm, etc. Various plug-ins and API's make use of
detailed software engines, such as EnergyPlus [28], Daysim [86],
and Radiance [87], which are computationally heavy and require
lots of inputs. As a consequence, most inputs are assigned to
defaults values related to specific building types. The challenge of
running time-consuming BPS, while designing in CAD, may be
overcome by applying cloud computing. Such development may
facilitate run-time analysis, enable rapid feedback, ease iterations,
and reduce amount of (re)modeling. Moreover, zoning may be set
up in the CAD environment after which changes in geometry
automatically updates zoning as well. To test such an integrated
framework, Batueva and Mahdavi [9] assessed the use of Graphi-
soft's EcoDesigner [80] which has been integrated into ArchiCAD.
The authors acknowledge the effortless interoperability but desire
more intelligence in terms of guidance and comparison features
[9].

Much of these efforts rely on software vendors to incorporate
BPS into the CAD domain, or link the two, but similar work is
carried out in the scientific community [88–92]. Jakubiec and
Reinhart [89] describe a plugin for Rhinoceros [93] which com-
bines daylight analysis, using Radiance and Daysim, with thermal
load calculations, using EnergyPlus. Muehleisen and Craig [90]
implement the ISO 13790 monthly energy model into the Open-
Studio environment, which is available as a plug-in for SketchUp.
The authors conclude that this particular plug-in is suitable for
parametric simulations and Monte Carlo analysis during early
design, because the simulation time is five orders magnitude faster
than the equivalent EnergyPlus model and the simplified algo-
rithm requires far fewer inputs.

2.5.2. Parametric geometric modelling
As exemplified by various authors [94–96], parametric model-

ing are increasingly adopted in design practice by means of tools
like Grasshopper [97], Dynamo [98], and GenerativeComponents
[99]. Concurrently, plug-ins are developed to link these tools with
BPS thereby enabling data-driven support for early stage, para-
metric, and geometric modeling. Examples of plug-ins for the
probably most widely used tool, Grasshopper, include: a) Honey-
bee which links to Radiance, Daysim, EnergyPlus, and Openstudio
[100]; b) Mr. Comfy which facilitate interactive visualizations of
thermal simulations results [91]; c) ICEbear that integrates indoor
climate, daylight, and energy performance [92]; and d) Tortuga
[101] which estimates LCA and a global warning potential based
on the Ökobau database [102]. Comprehensive libraries of appli-
cations relevant to the architecture, engineering, and construction
industries can be found on the sites aec-apps.com [103] and
Food4Rhino [104]. The ability to add several plug-ins to parametric
modeling could be a feasible way to facilitate holistic simulation
support. Though, even if plug-ins ensure smooth CAD-BPS inter-
operability during the early design phases such plug-ins may not
be suitable for detailed analysis. Therefore, it is desirable that
plug-ins make use of detailed software engines or common
exchange formats to avoid complete remodeling, and to avoid
inconsistent results, when the design evolves to detailed stages.

Despite improvements with interoperability, plenty obstacles
remain. Most of the couplings illustrated by arrows in Table 1 are

2 E.g. GenOpt, ModelCenter, modeFRONTIER, DAKOTA, iSIGHT, Matlab optimi-
sation toolbox [136].

3 E.g. BEopt, TRNOPT, MultiOpt, jEPlus þ EA, GENE-ARCH, Opt-E-Plus [136].
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uni-directional. It is very seldom that properties derived from BPS
are transferred back to architectural or BIM model. Moreover, BIM
are still challenged by the complexity of the heterogeneous BPS
data which requires user interpretation as well as extensive pre-
processing and enrichment of incomplete building information
[105,106]. Moreover, this central framework with a shared schema
has to be operated in consensus with all stakeholders, i.e. archi-
tects, engineers, and contractors [107]. Aforementioned examples
of coupled and integrated models are often limited to single user
use, since the coupled programs normally have to be installed on
the same computer. This is troublesome in a multi-actor, inter-
disciplinary collaboration where different actors possess expertise
and responsibility over different areas [105].

In conclusion, much effort is made in academia and by software
developers to improve interoperability between CAD and BPS in
the early design stages. Achieving effortless interoperability and
smooth transition between design stages will make life easier for
all parties involved.

2.6. Knowledge based input generation

Building performance software requires hundreds or thousands
of inputs which may be assigned manually by the user or by
importing data from CAD models, shared schemas (BIM), and
databases within the software. Databases may include construc-
tions, HVAC components, load and user profiles, weather data, etc.
They play an important role in terms of modelling time and
reliability. The quality and applicability of such databases depend
on their ability to address several issues such as:

� Ease of implementation.
� Scalability and updatable.
� “Best practice”, i.e. in accordance with code compliance or prior

experience.
� Flexibility, e.g. usable for both early and detailed analysis and

across different tools.
� Ability to be varied in multiple (parametric, batch, or stochastic)

simulations.
� Documentation and validity.

Vendor supplied libraries often serve as the only or main
source of information for practitioners and are often poorly
documented and difficult to share and reuse across applications
[106]. Such issues are addressed by National Renewable Energy
Laboratory that are developing a comprehensive, online, search-
able library of energy building blocks and descriptive metadata
which works for different applications [108,109], e.g. EnergyPlus

[28], OpenStudio [84], and DOE2 [110]. Flexible and extensible set
of attributes provide the opportunity to add metadata such as
U-value, cost, and images. In addition, the attributes “user ratings”
and “number of downloads” may support the selection of mate-
rials, components, and systems across fields and practitioners.

Another large online database is the “building performance
database” which contains information about physical and opera-
tional characteristics of hundreds of thousands of real commercial
and residential buildings in the U.S. [26,111]. Aimed at the vast
retrofit market, this database enables assessment of energy ret-
rofitting opportunities and helps to quantify risk related to project
performance. A statistics tool is integrated to estimate expected
changes in energy performance due to changes in component
technologies. Though, since the database primarily concerns
energy from existing buildings, the effects on indoor climate per-
formance resulting from retrofitting remain unknown.

Performing simulations in the early design phase is challenged
by lack of data. This is especially the case for detailed simulation
software that requires a high level of information. This difficulty
may be overcome by a macro-component approach where pre-
defined constructions allows for energy and LCA assessments in
the early phase using detailed software [112]. Similarly, Rodríguez
et al. [46] aggregates macro-parameters of occupancy and weather
data to enable uncertainty and sensitivity analysis in detailed
models. Hiyama et al. [113] propose a method to automatically
generate default configuration for simulations in the early stage
thereby making the design process more efficient and consistent.
The configurations are based on past experience in combination
with objectives and constraints of the current project.

Pont et al. [114] make use of semantic web technologies to
acquire and utilize building related data available on the Internet.
Semantic rules and reasoning enable restructuring of ill-structured
“web of documents” to machine-readable “web of data” by means
of interlinking data from various web sources and by re-
categorizing the data using consistent logic. Such methods can in
theory be applied to any web-based resources such as databases
and manufacturer sites. Data from different sources may be
merged into one rich library with links to original data and pro-
viding opportunity for regular updates and acquisition of new
information. This could be information about construction types,
materials’ properties, and prices,

The increasing use of uncertainty analysis and sensitivity ana-
lysis calls for development of databases that facilitate stochastic
simulations. In contrast to deterministic defaults, the designer
needs recommendations in terms of appropriate input distribu-
tions, input spans, and sampling strategies. Lee et al. [115] present
an uncertainty and risk analysis toolkit that give energy modelers

Table 1
Characteristics and examples of four different methods to combine CAD (large disk) and BPS (small disk). Categorization adopted from Petersen [7] and Citherlet [77].

Method Characteristics Examples

Integrated Numerical calculations integrated into CAD environment. Collision control, duct sizing, and solar
analysis

Run-time interoperable Links between CAD software and analytical models established by
add-on or API. Simulations performed at run-time or in a con-
currently running desktop or web edition of the BPS tool.

Grasshopper and Dynamo plugins.
SketchUp & Revit with Sefaira,
OpenStudio

File exchange Common file exchange format readable and sometimes writable
from both CAD and BPS tools – i.e. Building Information Modelling
(BIM).

Proprietary: dwg, rvt, gbXML, osm
Public: IFC, XML

Standalone (users
interpret)

Data interpreted by users. Building simulationist remodels building
or selected rooms by interpreting CAD models or drawings and
eventually presents results orally or in reports.

EnergyPlus, Radiance
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access to previously defined uncertainty distributions for a variety
of parameters and models. Furthermore, the toolkit provides
automatic identification and modification of parameters values in
simulation input files. Such efforts might make uncertainty ana-
lysis more accessible for non-specialists and help to increase the
use of UA and SA.

To sum up, databases may be employed in a variety of ways to
support and improve the building design process. When used for
setting up initial configurations for building simulations, the
practitioner must be aware of certain inherent risks: a) the con-
figuration may return results in local “optimum” causing the
designer to stop exploring a sufficiently large design space,
b) default configuration may lead to misleading baseline models if
there is a big discrepancy between database values and mea-
surements, new requirements, and codes, c) initial configurations
used in architectural design software may guide the architect in
wrong directions if these configurations are not aligned with
engineers who are responsible for code compliance in detailed
design phase.

3. Software comparison

As stated in the introduction, the motivation for this review is
to identify state-of-the-art within the field of building simulations
with emphasis on early design. In chapter 2, we covered devel-
opments in literature across six research areas. In this chapter, we
will propose a simulation framework combining the most pro-
mising methods found in literature after which we compare
existing software packages that may satisfy some of the require-
ments of such a framework.

In the introduction, we identified a number of challenges
related to building simulations in the design process (see Fig. 2). To
address these diverse issues, it is necessary to combine several of
the methods and developments described in the literature review
in chapter 2. Based on those findings, we describe a framework
that, presumably, facilitates proactive, intelligent, and experience
based building simulation which aid decision making in early
design. The proposed framework contains the following proper-
ties, which are combined in an iterative design process as illu-
strated on Fig. 3:

1. A knowledge based database represents the starting and fin-
ishing point for each project. It must facilitate fast input gen-
eration, consistency, and collection of experience. Moreover, the
database should contain macro-parameters to enable the use of
detailed software in early design stages (macro-parameters
represent predefined sets of constructions, HVAC systems, time
schedules, etc. that contain the input values necessary to run a
detailed simulation). Finally, it should ease the definition of
uncertain inputs.

2. A baseline model is swiftly set up by a combination of database
inputs and suitable CAD interoperability.

3. Uncertainties are assigned to inputs and a sampling strategy is
applied to explore the global design space and to facilitate
uncertainty and sensitivity analysis.

4. Thousands of simulations are run using a validated and detailed
software engine(s) that evaluate important, interdependent
design objectives.

5. Data is analyzed using UA and SA.
6. On the basis of UA and SA, attention is drawn to the most

important design parameters and the design team is informed
of benefits and consequences of various design strategies.
Interactive visualization allows for interaction with the simu-
lated data where different stakeholders preferences may be
explored.

The properties of desired framework shown on Fig. 4 entail
various requirements of the simulation software. Therefore, we
carry out a software review to assess features and limitations of
current building simulations software packages. If no software
satisfies all requirements, we aim to find software candidates that
may be combined into the desired framework. Important proper-
ties of the reviewed software are4:

A. Users: Is the software primarily intended for architects, engi-
neers, or both?

B. Design stage: Inwhich design stages are the software typically used?

Fig. 4. Desired workflow and properties as facilitated by the proposed simulation framework.

4 Properties, omitted in this work, include: licensing, price, version, status
(beta, deprecated), and number of users/downloads.
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C. Interoperability: How does the BPS software connect to CAD
environment and other software packages (see Table 1 for
definitions)?

D. Level of complexity of the core algorithms: The complexity set
the constraints of design options that the software enables to
investigate and to what level of detail. For energy and thermal
calculations, the monthly averaged ISO 13790 [116] is considered to
have a “low” complexity level, as opposed to detailed software
with “high” level of complexity due to features like multi-zones,
advanced fenestration, HVAC and lighting control strategies,
moisture transport, etc. Somewhere in between, we have the
hourly averaged ISO 13790 [116] and RC models. For daylight
calculations, simplified regression models have “low” complexity
compared to advanced algorithms that, for instance, use ray tracing
or radiosity to evaluate illuminance, luminance, and glare under
various sky conditions and at different times a year [19].

E. Objectives: Important, interdependent objectives must be
evaluated to ensure holistic design.

F. Parametric: Ability to run global parametric calculations and to
perform UA and SA – either by using integrated features or by
configuring input text files and accessing output text files.
Option to enable cloud computing is desirable.

In the search for relevant, existing software, we rely on various
resources: the tools directory list on U.S. department of energy
homepage [10], the AEC-apps homepage [103], the BLDG-SIM
mailing list [117], and prior knowledge of novel and trending
software in Scandinavia. A reduced set of programs have been
selected for further investigation. Deprecated software packages

(Ecotect, Vasari) have been excluded along with software that did
not seem to fit into the proposed framework (Modelica and
TrnSys). The selected programs differ greatly in scope, validation,
purpose, price, level of detail, and more, but each of them can
potentially fulfill a specific purpose in the framework described in
Fig. 4. Table 2 shows how the software compares. In the evaluation
of the software, we rely on vendors’ homepages, webinars, man-
uals, colleagues, and other reviews from academia [8,14,118,119].
Readers are reminded that both table structure and table inputs
are very much governed by our subjective perceptions of the
programs’ capabilities.

According to our limited review, no existing software package
satisfies all requirements of the proposed framework described
Fig. 4. Though, the following three software setups may be used as
starting point to test the framework.

Riuska [131] has integrated UA and SA into a standalone
application which removes the challenges of linking the processes
“sampling” and “statistical analysis” with the execution of the
simulations (the links illustrated by arrows between 2 and 3, and
3 and 4 on Fig. 4). Supposedly, the lack of several important
objectives (daylight, LCA, LCC) will be difficult to remedy by
combining Riuska with other applications since UA and SA are
constrained to Riuska.

OpenStudio [84] is a collection of software tools which include
the validated, detailed applications EnergyPlus and Radiance. The
packages “parametric analysis tool” (PAT) and “large scale analy-
sis” extends OpenStudio’s capabilities by enabling large parametric
studies and cloud computing. A SketchUp plug-in facilitate use in
early design whereas gbXML compatibility allows for geometry

Table 2
Comparison of software in terms of fulfilling the requirements of the proposed software framework. Checkmarks indicate fulfilment of the requirement. Checkmarks in
parenthesis indicate that software include the specific feature without satisfying the requirement. See explanations of headers A–F in the text [120–130,132–135].
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import from e.g. detailed Revit [79] CAD models for the late design
stage. Through a SketchUp plug-in, OpenStudio may access the
online, searchable library of user-rated building blocks described
in Section 2.6 [108] and thereby include several features of the
desired knowledge-based database. The combined set of tools
seems to contain most of the properties needed by the proposed
framework. Though, several features are still under development
(beta-versions) and the use of all the packages mentioned (PAT,
online database, large scale analysis, and SketchUp plugin) may be
precarious and error-prone.

Honeybee [100] connects the Grasshopper and Rhino frame-
work with OpenStudio and thereby combines the strengths of
these packages. The former enables parametric studies of building
geometry while the link to OpenStudio allows for building per-
formance evaluation. However, Honeybee cannot access all fea-
tures of OpenStudio – namely the “parametric analysis tool” and
the “large scale analysis. A possible drawback is that the Rhino
software is often not detailed enough for the final design models,
which complicates data interoperability in the transition from
preliminary to detailed design.

In conclusion, it is still not possible to perform global and
holistic UA and SA that simultaneously vary geometry, zoning,
materials, and systems. Riuska seems like a suitable fit for the
engineer who wants to learn about, and experiment with, global
parameter variations with emphasis on energy and thermal
comfort. The OpenStudio framework expands these possibilities
even further by accessing a knowledge based database, assessing
most performance metrics, and enabling cloud computing.
Though, obstacles remain in order to combine these capacities
with the parametric tools, Dynamo and Grasshopper, which are
growing increasingly popular among architects in particular. We
emphasize that geometric parameter variations should be done
while varying other sensitive inputs as well, i.e. global variations
(see Fig. 1). Otherwise, the results from the BPS will only be valid
around the specific baseline with fixed HVAC system, controls,
materials, etc.

4. Conclusion and discussion

This paper provides an overview of the developments in aca-
demia and in the software industry related to the use of building
simulations in early building design. As identified in the intro-
duction, challenges to early stage deployment include lack of
information, uncertainties, model resolution, and rapid change of
design. In addition, general challenges include interoperability,
time-consuming modeling, stricter and opposing requirements,
limited reuse of knowledge, and simulation guidance. We identi-
fied six areas of research addressing one or more of these chal-
lenges: proactive building simulations, statistical methods, holistic
design, optimisation, CAD-BPS interoperability, and knowledge
based input generation. Below, we describe promising develop-
ments within these research areas along with our perception of
how these developments may be used to improve building
simulation in the early stages.

4.1. Proactive building simulations

Building simulation software is typically used to ensure build-
ing code compliance or to evaluate the performance of a few
alternative designs or systems. Therefore, most software lacks the
ability to guide the designer towards better performing buildings.
To remedy this, a few authors have developed design tools to
perform proactive building simulations. The three prototypes,
reviewed here [5,7,27], allow fast creation of a number of alter-
native designs with emphasis on the early design phase. Such

efforts contrast the typical, time-consuming trial-and-error
approach. To avoid locking the designer in one direction, one
tool [27] included a degree of randomness into the logic creating
design alternatives.

4.2. Statistical methods

In academia, there is a growing interest in stochastic simula-
tions supported by statistical analysis. This approach enables the
design team to handle uncertainties and to explore large design
spaces. Several works apply sensitivity analysis to identify corre-
lations and interdependencies between inputs, and to rank design
inputs of importance [49,50,52]. Other works uses parametric
simulations or building performance databases [56,59] to con-
struct fast meta-models which have few inputs and are suitable for
rapid simulations. However, meta-models are only valid in the
domains in which they were constructed. Applying uncertainty
analysis are shown to add reliability to results, help explore vast
design spaces [41], and assess model quality and robustness
[44,45] (e.g. against uncertainties related to user behavior and
weather [46]). Though, the inclusion of uncertainties makes design
comparisons less straightforward. Finally, multivariate analysis
and filtering techniques are effective when analyzing large dissect
large amount of simulation data to guide decision makers [51,64].

4.3. Holistic design

The need to address multiple, contradicting objectives
emphasizes a holistic approach during all stages of the design
process. The means to do so are diverse and include weighted
scoring systems [68,69], improved CAD-BPS interoperability, ana-
lytical hierarchy processes [24,70], and sensitivity charts of mul-
tiple objectives [53].

4.4. Optimisation

Motivated by the stringent and often divergent requirements of
high performance buildings, optimisation algorithms have become
increasingly popular in academia over the last ten years. The trend
is towards multi-objective algorithms which focus on energy, cost,
thermal comfort, and CO2 [21,76]. However, algorithms are still
limited to two or three variables at a time. A more important
drawback is that optimisation lacks qualitative measures such as
aesthetics, space layout, and logistics, which are critical para-
meters in early design. Thus, optimisation may favor solutions that
come at the cost of other equally important qualitative measures.

4.5. CAD-BPS interoperability

For decades, academia and software developers have given
much attention to the interoperability between CAD and BPS.
These efforts address the issues of time-consuming modeling,
continuity, and interdisciplinary collaboration. The different
approaches to CAD-BPS interoperability may be split into four
categories: a) integrated, b) run-time interoperable, c) file
exchange, and d) standalone. Dominant vendors gradually inte-
grate algorithms directly into the CAD software [80], or they
develop proprietary BPS software to ease interoperability [78].
Concurrently, a wide range of add-on applications come to life in
academia and in open-source communities. Much attention is put
on run-time coupling to ensure fast feedback and enable para-
metric analysis [82,100]. The field is rapidly evolving, but still
needs to overcome difficult obstacles (for instance, project con-
figuration changes from one project to the next, and project
members rely on different software packages and modeling tra-
dition). An important challenge is the multi-actor collaboration in
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building design where companies team up differently for each
project and have different software tools and design approaches.

4.6. Knowledge based input generation

Input generation for building simulation is often time-
consuming and lacks reusability of best practice. Vendor sup-
plied input databases are often rigid and have been made for
detailed simulations in the late design stages. The works reviewed
here cover “the development of flexible, online database with
optional user ratings” [108,109]; “the definition of macro-
components for level of detail in early design” [112]; and “input
generation using semantic web technologies” [114]. However, the
use of default inputs may limit the exploration of the design space
since default configurations act as constraints for possible solu-
tions. Further work is needed to improve input databases to
account for the vast possibilities in early design and to enable
stochastic modelling.

Based on the literature review, we have proposed a simulation
framework with the ambition to facilitate proactive, intelligent,
and experience based building simulations (see Fig. 4). Though
applicable during all design stages, emphasis is on assisting the
design team to explore the vast design space in the early phases.
Another essential element, of the framework, is to ensure holistic
design thinking in order to create buildings with high overall
performance and with respect to different stakeholders’ pre-
ferences. The proposed framework incorporates promising meth-
ods and ideas from literature, among others: flexible and experi-
ence based database for consistency and fast setup; uncertainty
and sensitivity analysis to explore design space and ensure
robustness; and a holistic approach considering multiple, contra-
dicting objectives (e.g. energy, thermal comfort, and daylight).
Finally, the proposed exploration of a vast, global design space
using thousands of detailed simulations requires cloud computing
to ensure sufficiently fast response time in the early phases.

We may test the framework hypothetically using the example
from the introduction, in which a highly transparent design is
justified by a combination of venting and solar shading with
unrealistic preconditions. First of all, sophisticated (detailed)
algorithms are needed to model venting and shading systems
appropriately. Secondly, a holistic approach ensures that emphasis
on certain objectives, such as daylight and transparency, does not
come at the expense of other important objectives, like energy and
thermal comfort. Uncertainty analysis may reveal insufficient
robustness towards uncertainties related to control strategy, user
behavior, and weather. Sensitivity analysis can help the designer to
identify the most important simulation inputs, on which he can
direct his attention. And finally, a knowledge based database
would reduce the risk of starting out with unrealistically inputs.

To identify potential software satisfying the properties of the
proposed framework, we have compared 27 software packages,
plug-ins, and environments (see Table 2). From these, we high-
lighted three different setups, consisting of the standalone soft-
ware Riuska [131], the OpenStudio framework [84], and the plugin
Honeybee [100] that links Grasshopper [97] and OpenStudio.
Since, currently these tools do not satisfy all requirements of the
framework, further research and development is needed to enable
setups that fulfil the full potential of proactive, holistic building
simulations aiding decision making in the early design stages.
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2.2 FOCUS IN THIS THESIS AND AT MOE 

Here, we follow up on the concluding remark in Paper B which states a need for further research and 

development to realize the proposed “ideal” simulation framework. The required efforts to realize it are too 

extensive for this PhD project. Some of the work has therefore been split into various subtasks, which have been 

taken on by other MOE employees and students at Aalborg University.  Figure 2-1 provides an overview of this 

allocation of subtasks, which we elaborate on below.  

 

Figure 2-1 Overview of studies and developments related to the simulation framework proposed in Paper B. AU and AAU 
are abbreviations for Aarhus University and Aalborg University, respectively.  

In the continued work of the PhD student, emphasis is on further development of the design approach with 

Monte Carlo simulations assisted by statistical methods and interactive visualizations (as indicated by the red 

dashed line in Figure 2-1Figure 2-1). This research area is believed to have the largest potential for increasing 

building performance and for extending the use of BPS during early design. In comparison, the other topics 

relate more to the challenges of reducing errors and time consumption. However, the preferred area is still too 

wide for the PhD project. As a result, three groups of thesis students at Aalborg University have looked at 

different research questions within this field. One group investigates how to deal with variability and uncertainty 

at the same time [9]. The former refers to design parameters, such as geometry and HVAC system, which can be 

defined by the design team, whereas the latter refers to uncertain parameters and circumstances related to user 

behavior and weather. Another group assesses the influence of different zoning, level of detail, and software 

complexity in a Monte Carlo framework [10]. The third group has developed a tool that allows for Monte Carlo 

simulations using the Danish BSim software [11]. Though, limited to a single zone it has revealed both potentials 

and obstacles of adding the ability of automated, multivariate simulations to existing BPS software. 

Another important topic is the development of seamless links between CAD and BPS enabling fast model setup 

and updates. As explained in Paper B, this has received a lot of attention by software vendors. However, Danish 

building code requires specific measurement methods and it is mandatory to use the aforementioned Be15 

software. A developer within MOE has developed an API for Revit facilitating fast setup and updates of Be15 
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models [12]. Time-consumption is reduced to minutes rather than days, which is normally the case for manual 

and error-prone setup in complex building projects. Still, this new tool cannot be applied in the early stages 

where a BIM (Revit) model has not yet be created. 

A final note on the PhD related tasks concerns the knowledge based databases. An appealing example from 

Paper B is the Building Component Library [13]. Though, it applies only to OpenStudio and EnergyPlus and is 

therefore not quite applicable in a Danish context. Since Be15 is relatively simple, it allows for experimenting 

with database structure and knowledge gathering based on hundreds of projects from MOE. This has led to a 

couple of student projects which have revealed various difficulties [14][15]. For example, the logic behind 

design decisions and the actual performance of the constructed building do not appear from BPS models made 

with Be15 or BSim. Moreover, it is troublesome to provide experience based proposal for variability spans when 

the requirements are repeatedly tightened.  

As alluded above, the BPS software used throughout the PhD project is Be15 and BSim. This contrasts the 

findings of Paper B, where Riuska, OpenStudio, and Honeybee have been pointed out. Part of the reason is that 

Riuska does not address daylight and Honeybee does not facilitate Monte Carlo simulations. OpenStudio has 

these capabilities but large scale analysis is still experimental and under development. Though, the main reason 

for choosing Be15 and BSim is that we, the PhD candidate and supervisors, are experienced users. Learning 

new, complex BPS software is a very time consuming task not to be underestimated. 
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3 BUILDING SIMULATIONS WITH A MONTE CARLO 

APPROACH 

In this chapter, we elaborate on building simulations with a Monte Carlo approach. The preliminary study 

indicated a promising potential for this approach and, in the subsequent literature review, it was placed into a 

broader simulation framework. On this basis, we continue with a discussion of suitable ways to analyze and 

communicate the extensive amount of data from Monte Carlo simulations. This is followed by Paper C, which 

presents a refined simulation framework based on the experience from three sequential case studies. In Paper C, 

we also describe available sensitivity methods and we observe a potential for metamodeling. We subsequently 

experience a need for sensitivity methods which work with real-time analysis or rank inputs according to 

multiple outputs. Another lesson learnt, is the curse-of-dimensionality in building design that contains many 

design parameters and criteria. The use of rapid metamodels is considered a necessity. We therefore conclude 

with a comprehensive comparison of metamodeling techniques in Paper D including their application for 

different BPS scenarios. 

3.1 FROM STATIC GUIDANCE TO REAL-TIME, MULTI-ACTOR DESIGN EXPLORATION 

From practical experience, we know the importance of clear communication and intuitive visualization when 

collaborating with multiple decision-makers, which have diverse backgrounds and interests. This becomes 

particularly evident when dealing with a novel, stochastic approach, which differs considerably from a 

conventional, deterministic approach. In paper A, both scatterplots and histograms are used to visualize and 

analyze the simulations [4]. Since the number of inputs and outputs, denoted D, is often large, the resulting D(D-

1) scatterplots becomes unmanageable. Moreover, tendencies get obscured and difficult to observe – especially 

for non-experienced decision-makers. Instead, the histograms seem more appropriate, because they “sum up” the 

tendency for a given parameter and the number of histograms only grows linearly with the number of 

dimensions, D. However, the histograms shown in Paper A relate to static constraints of the simulation outputs. 

This calls for more interactive ways to analyse multivariate data in real-time during design meetings with 

multiple decision-makers. 

With the above concerns in mind, a “Eureka” moment occurred when stumbling upon the D3.js JavaScript 

library [16]. This rich source provides free access to numerous interactive and data-driven visualizations for 

web-based applications. Especially, the parallel coordinate plot (PCP) is an ideal companion when exploring 

multivariate simulation data. Using “filters”, a multi-actor design team can observe the consequences of applying 

different performance criteria or investigate specific “subspaces” of the input domain. An example of the PCP 

combined with histograms is shown on Figure 3-1. A detailed description of the usage and benefits of this 

interactive plot is given in Paper C, which follows this section. In general, novel interactive plots are likely to 

become more widespread in the building sector which is otherwise dominated by static documentation and 

reports. Another example is the use of a dependency diagram to explain complex input-output relations as 

described next.  
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Figure 3-1: PCP for the case study from Paper A. The nine most sensitive inputs are included. On the bottom plot, a filter is 
added to include only the top 10% highest holistic EDT-scores. 

In paper A, we briefly mentioned the necessity to keep in mind non-included performance indicators, such as 

aesthetics, functionality, and building costs. In subsequent work, we have created an interactive “dependency 

diagram”, which helps illustrate the dependencies between design parameters and performance indicators – both 

quantitative and qualitative. Figure 3-2Figure shows screenshots of this diagram. The green connections indicate 

dependencies between design inputs (grey) and qualitative performance indicators. These dependencies are 

based on experience but we cannot express the strength of these qualitative relations. In contrast, the blue 

connections represent dependencies between design inputs and quantitative indicators. Here, the varying line 

thickness relates to the strength of the correlation, which is based on first-order sensitivity analysis made for 

each of the three quantitative outputs. Thus, a thick line represents a strong relationship and vice versa. 

The leftmost plot in Figure 3-2Figure shows all connections and looks rather confusing, which emphasizes the 

complexity of building design. By “hovering the cursor” over a specific parameter, the rightmost plot displays 

only the connections relevant for that parameter [17]. We believe this interactive diagram helps bridge the gap 

between qualitative and quantitative measures. Moreover, it can be used to highlight the indicators, which are 

likely to be affected by a given design change, or to show inputs to focus on when needed to address a particular 

output.  

More examples of interactive plots are available at the website buildingdesign.moe.dk. Now, we return our 

attention to multivariate building simulations aiding decision-making in early design.  

http://buildingdesign.moe.dk/


3. BUILDING SIMULATIONS WITH A MONTE CARLO APPROACH 

35 

  

Figure 3-2: Screenshots of the interactive dependency diagram for a project-specific building [17]. Left plot shows all 

connections are present. Right plot shows connections to performance indicators affected by the windows’ g-value. The 

reader is encouraged to try it on buildingdesign.moe.dk. 

3.1.1 PAPER C 

Paper C describes the development of a refined simulation framework, which relies on Monte Carlo simulations 

in combination with sensitivity analysis and metamodeling. The article is titled “Early Building Design: 

Informed decision-making by exploring multidimensional design space using sensitivity analysis”, which has 

been published in Energy and Buildings, Volume 142, Pages 8 – 22, 2017.

http://buildingdesign.moe.dk/PhD-Project/Demonstration-of-Proactive-Building-Simulations
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a  b  s  t  r  a  c  t

This paper  describes  a  novel  approach  to  explore  a  multidimensional  design  space  and  guide  multi-
actor  decision  making  in  the  design  of  sustainable  buildings.  The  aim  is  to provide  proactive  and  holistic
guidance  of the  design  team.  We  propose  to perform  exhaustive  Monte  Carlo  simulations  in an  iterative
design  approach  that consists  of two  steps:  1) preparation  by  the  modeler,  and  2)  a  multi-collaborator
meeting.  In the  preparation  phase,  the  simulation  modeler  performs  Morris  sensitivity  analysis  to  fixate
insignificant  model  inputs  and  to identify  non-linearity  and  interaction  effects.  Next,  a representation  of
the  global  design  space  is obtained  from  thousands  of  simulations  using  low-discrepancy  sequences  (LP�)
for sampling.  From  these  simulations,  the  modeler  constructs  fast metamodels  and performs  quantitative
sensitivity  analysis.  During  the  meeting,  the  design  team  explores  the  global  design  space  by filtering  the
thousands  of  simulations.  Variable  filter  criteria  are  easily  applied  using  an  interactive  parallel  coordinate
plot  which  provide  immediate  feedback  on requirements  and  design  choices.  Sensitivity  measures  and
metamodels  show  the  combined  effects  of changing  a single  input  and  how  to remedy  unwanted  output
changes.  The  proposed  methodology  has  been  developed  and tested  through  real  building  cases  using  a
normative  model  to assess  energy  demand,  thermal  comfort,  and  daylight.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The field of building design is often challenged by strict require-
ments for energy and costs that come together with ambitious goals
for building performance. Moreover, the design team consists of
multiple stakeholders, e.g. building owner, architects, engineers,
and contractors, which have different opinions and areas of respon-
sibility. To complicate matters further, design decisions made in the
early stages have major impact on the final building costs and per-
formance [7]. The early stages are characterized by large variability
for a large number of design parameters which together form a vast
design space. Despite the advancements of building performance
tools, these tools typically provide deterministic results that eval-
uate the design rather than guide the design proactively [8]. This
makes it almost impossible to explore the large design space suffi-
ciently and it is difficult to guide decision makers – especially during
the early stages.

∗ Corresponding author at: Aalborg University, Department of Civil Engineering,
Thomas Manns Vej 23, DK-9220 Aalborg Ø, Denmark. Tel.: +45 2540 0325.

E-mail address: to@civil.aau.dk (T. Østergård).

To promote the use of building performance simulations (BPS)
during the early stages, various researchers have developed novel
tools with emphasis on reducing simulation time and complexity
of inputs [9–11]. A different approach is to focus on establishing a
more seamless interoperability between CAD models and BPS tools
[12]. Another trend is the development of a complete integration
or merging of performance simulations with CAD software. While
such developments enable faster feedback at the early stages, most
tools are still evaluative, give little or no guidance, and do not con-
sider variability and uncertainty. Hygh et al. [13] argue that such
point estimates are not meaningful for conceptual design. Likewise,
Picco et al. [14] notice that the extreme accuracy and level of detail
from sophisticated software is unrealistic during early design due
to sparse information and large uncertainties. The aforementioned
instant feedback allows the modeler to quickly perform a series
of parameter variations around a baseline model or by varying one
parameter at a time. However, such one-at-a-time (OAT) variations
depend highly on the order, in which the parameters are varied,
and on valid assumptions regarding the parameters kept fixed.
For example, a design variation with a high window-to-facade-
ratio might favor a low g-value whereas the opposite is true if the
window-to-facade-ratio is low. The analysis is further complicated
if other design parameters are still unknown and may  vary. These

http://dx.doi.org/10.1016/j.enbuild.2017.02.059
0378-7788/© 2017 Elsevier B.V. All rights reserved.
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Nomenclature

Be10 or “idealized model” Danish simulation software be10
based on ISO 13790 (here combined with a regres-
sion model for daylight)

BPS Building performance simulation
EE Elementary effect (in Morris method) [1]
g-value Glazing’s solar heat gain coefficient (SHGC)
LP� Low-discrepancy sequences by sobol [2]
MCF  Monte Carlo filtering
Morris SA method aka. method of elementary effects [1]
OAT One-at-a-time parameter variation
Overtemperature Penalty output in idealized model

[kWh/m2 floor area]
PCP Parallel coordinate plot
PEAR Pearson’s product-moment correlation coefficient

used for SA
R2 Coefficient of determination
RSA Regionalized sensitivity analysis [3]
Si First order effect of Xi on Y (SA) [3]
Sij Second order effect of Xi and Xj on Y (SA) [3]
STi Total effect of factor Xi on Y (SA) [3]
SA Sensitivity analysis
SDP State-dependent parameter metamodeling and SA

[4]
Sobol Sobol’s variance based sensitivity analysis (decom-

position of variance) [5]
SPEA Spearman’s rank correlation coefficient used for SA
SRC Standardized regression coefficients (from multi-

variate linear regression)
SRRC Standardized rank regression coefficients
U-value Heat transfer coefficient [W/m2 K]
Win-fac-% Windows-to-facade-ratio
�* Mean of absolute elementary effects (Morris) [6]
� Mean of elementary effects [1]
� Standard deviation of elementary effects (Morris)

[1]

can be internal loads, type of shading system, size of overhang, etc.
Ultimately, the design team may  draw wrong conclusions depend-
ing on the order of the parameters being varied and on the validity
of the baseline model.

Sensitivity analysis may  be applied to identify the order of
which the design parameters should be addressed [15,16]. Though,
in continuation of the above remarks on OAT variations, Saltelli
and Annoni argue strongly against using local sensitivity measures
obtained from OAT variations [17]. Instead, they advocate the use
of global sensitivity analysis where model inputs are varied simul-
taneously. In addition, global sensitivity analysis can: (a) reveal
interaction effects, (b) provide insight into input-output relation-
ships, (c) reveal non-influential inputs, and (d) show regions of
input space that meet certain criteria [3]. The application of sen-
sitivity analysis in the context of building performance simulations
is covered in depth by Tian (2013) [18].

One way to remedy the shortcomings of OAT parameter vari-
ations is to explore the global design space using Monte Carlo
simulations. This approach facilitates global sensitivity analysis
including Monte Carlo filtering which help identify regions of input
space that meet certain criteria [19–21]. Some authors exploit the
Monte Carlo simulations to create fast metamodels that may  be
used for design space exploration, optimisation, or sensitivity anal-
ysis [13,22–25]. The potentially time-consuming computational
load required to run thousands of simulations may  be overcome by

using idealized models, creating fast metamodels, or by utilizing
cloud computing [26].

Fig. 1 illustrates the conceptual difference between OAT  param-
eter variations and global exploration when considering two or
three inputs with large variability. The green areas indicate high
performing design spaces whereas the yellow areas represent
acceptable design spaces that, only just, meet the design criteria. In
an OAT approach, a first simulation (1) is performed on basis of the
early-stage geometric model. No matter how detailed or complex
the simulation engine, this single deterministic evaluation gives
no guidance on which parameter to adjust and in which direction.
The modeler may  start by varying the g-value (2 and 3) and con-
clude it has limited influence and thus keep it fixed at 0.4. Next,
the modeler may  choose to manually vary the windows’ overhang
(4–6) and find a suitable value around 30◦. This design meets the
requirements and may be proposed as a viable solution. However,
the high performing solutions are not found unless the modeler
returns his interest back to g-value. Now imagine that other param-
eters may  also be varied, e.g. fenestration, internal loads, air change
rates, shading system, etc. Changing a third variable may  cause
this cooling dominated design to be heating dominated instead. For
example, if the window-facade-ratio is reduced from 70% to 50%, the
acceptable and high performing areas change a lot (Fig. 1 bottom).
Such a change or variation can make the previous OAT parameter
variations invalid and misleading.

In a global approach, the modeler investigates a large design
space through proper sampling and automated simulations (Fig. 1
right). This enables the design team to identify many high per-
forming solutions in a large multidimensional design space. In our
simplified example, 125 simulations identify the high perform-
ing solutions in a 3-dimensional space (Fig. 1 bottom-right). This
global approach facilitate global sensitivity analysis which help the
modeler to address the most influential design parameters while
knowing which inputs are interdependent and which outputs are
affected. Moreover, favorable input regions can be identified under
variable constraints since the global design space is covered by
exhaustive simulations. Note that this is not possible with opti-
misation routines which rely on fixed constraints. For example if
the building owner changes the requirement for energy demand,
due to higher ambitions, or add a new constraint on thermal com-
fort, the acceptable and high performing regions will most likely
change. Similarly, optimisation cannot take into account qualita-
tive objectives, such as aesthetics and constructability, which may
be important to other stakeholders than the modeler.

The work presented here is part of an industrial PhD project
in which the goal is to improve the use of building performance
simulations (BPS) during the critical early design stages. For a com-
plete background on this project, we refer to “Building simulations
supporting decision making in early design – a review” [12]. The
review also involves CAD-BPS interoperability, time-consuming
model generation, limited reuse of knowledge, and optimisation.
However, in this paper, we  focus on the following topics:

• Tackling large variability and uncertainty in the early design
stages

• Exploration of a vast design space with regard to multiple, con-
flicting requirements

• Support and guidance of multiple decision-makers

The outcome of this paper is a proposed methodology to per-
form, analyze, and visualize simulations of a global design space
in order to guide decision-making in a multi-collaborator context.
The method has been developed through a number of case stud-
ies and through in-depth theoretical analyses. In chapter 2, we
present the lessons learnt from, both hypothetical and real, building
cases along with feedback from different stakeholders. In chap-
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Fig. 1. Comparison of a One-at-a-time approach (left) and global design space exploration (right) when considering only two (top) and three variables (bottom). Yellow and
green  circles represent favorable design spaces in 2D plane (overhang – g-value). (For interpretation of the references to color in this figure legend, the reader is referred to
the  web  version of this article.)

ter 3, we describe the analyses made to identify the most efficient
techniques in terms of sampling, sensitivity analysis, and visualiza-
tion. In addition, a brief description is given of the software model
used to simulate building performance. Readers with limited back-
ground in sensitivity analysis may  benefit from reading chapter 3
before chapter 2. In chapter 4, we sum up and present the proposed
methodology, its limitations, and future research.

2. Case studies

The proposed methodology has been developed through a series
of case studies over the last two years. In this paper, the devel-
opment has been divided into three phases to highlight the main
objectives, the case buildings, and the lessons learnt. An overview
is given in Table 1 which also includes visualizations that have been
applied to analyze and communicate the many simulations and the
derived sensitivity analyses and metamodels.

2.1. First step

In the development of the proposed design methodology, the
initial step was to investigate a global design space with a holistic
approach [27]. To evaluate energy demand and thermal comfort,

we used an idealized model based on ISO 13790 [28] together with
a regression model to estimate daylight. In general, early design
decisions have major impact on these objectives. Moreover, day-
light, thermal comfort, and energy demand are difficult to address
since optimizing one often worsens another. Therefore, we  sug-
gested a holistic scoring function that combines their performance
into one overall score.

From this initial work, we  learnt that the global design space
might preferably be explored by assigning uniform distribution to
design inputs followed by Monte Carlo simulations using quasi-
random sampling [2]. By applying Morris sensitivity analysis, the
design parameters were ranked in accordance to their influence
on the holistic score, i.e. the overall performance. The design team
could then direct its attention to the most influential inputs. Per-
haps, the most important finding was to apply Monte Carlo filtering
which helped identify favorable input spans, e.g. illustrated by his-
tograms. The advantage of the holistic approach became obvious
when gradually applying filters that correspond to the require-
ments for each output. An example of this is shown on Fig. 2
which is based on stochastic simulations for a shoebox shaped
office building. The figure shows the input distribution for the
windows’ overhang which was varied along with 17 other inputs.
The distribution changed when we gradually removed simulations
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Fig. 2. Distribution of the design variable, overhang, when gradually adding constraints to a set of 3.000 stochastic simulations (from Ref. [27]).

not meeting the requirements related to energy demand, thermal
comfort, and daylight. Ultimately, this design parameter had to
be in the interval 5–43◦ and preferable higher than 20◦. Knowing
the construction costs of each design would add extra strength to
this analysis. However, it may  be near impossible to define valid
cost functions for all design parameters during early design. For
example, the overhang may  be constructed in a great number of
ways which affect its costs. In conclusion, it is recommended to
include as many opposing quantitative objectives in the analysis
and suggest favorable input spans instead a single deterministic
solution. Suggesting input spans leave room to meet other qualita-
tive requirements and other stakeholders’ opinions. This first step
had some shortcomings; the holistic score relies on weighting and
the input spans and output criteria are kept fixed. This inflexibility
makes it difficult to answer the many questions that arise during
design meetings, i.e. “what if we lower the ambition for energy
demand”, or “what if we decrease the input span for the overhang
to see possible solutions when there is almost no overhang?”

2.2. Second step

During the second step of our research, we learnt that the above
shortcomings might be remedied using an interactive parallel coor-
dinate plot (PCP) as shown on Fig. 3. This plot is very intuitive to use
and the reader is encouraged to try it on buildingdesign.moe.dk [29].
Essentially, the interactive plot enables the design team to apply
filters in real-time and thus immediately see the consequences
of different requirements or design choices. Among other cases,
the method was tested during the preliminary design of a com-
plex multi-story residential building with a floor area of 24.000 m2.
Several stakeholders were present at the meetings: 2 building own-
ers, 2 contractors, 3 architects, and 4 engineers. Despite the short
introduction lasting a few minutes, everybody quickly understood
the concept and eagerly participated in applying different filters to
the PCP to identify input limits related to different design criteria.
At the same time, quantitative sensitivity analysis was  illustrated
using pie charts to stress out the importance of certain inputs. Par-
ticularly, the sensitivity analysis demonstrated unexpectedly large
impact of the linear heat loss from balconies on the building transmis-
sion loss. Subsequent feedback was very positive. The participants
agreed that the method aided multi-actor decision-making and
helped illustrate the most important design parameters. Also, the
speed of the idealized model was advantageous since a new set
of 10.000 simulations could be run during the two-hour meeting
in which the baseline model had changed. However, despite the
many simulations, the method failed to answer simple “what-if”
answers such as “how much does the energy demand decrease if
we add another 200 m2 of photovoltaics”. Moreover, it was  some-
times difficult to see which inputs were affected when applying a
filter. In particular, discrete distributions are troublesome since the

user cannot visually see whether the plot shows one connecting
line or many overlapping lines (notice the discrete distributions on
Fig. 3).

2.3. Third step

To address the above issues, we  added several features which
help analyze the vast design space. First, the interactive paral-
lel coordinate plot was  combined with histograms (shown for
some parameters on Fig. 3). The combined plot illustrates the
distributions of the remaining simulations and thus removes the
issue of overlapping lines related to discrete inputs. Moreover,
the histograms helped indicate those input distributions that were
affected the most by the applied filters. Presumably, quantitative
regionalized sensitivity analysis (RSA) would help highlight the
changes and thus help navigate the design team when exploring the
design space through filtering. Finally, a metamodel constructed
from multivariate linear regression helps answer how much a spe-
cific input change affects the outputs.

This enhanced approach was successfully tested during the con-
ceptual design of a 15.000 m2 educational institution. Moreover,
this case was a good example of how early in the design pro-
cess this methodology can be applied. Fig. 4 illustrates how the
architects approached the contextual design. Using the proposed
method with uniform input distributions, it was possible to per-
form simulations based on the simple conceptual design without
knowing the distributions of windows, the size of overhangs, the
type of shading systems, etc. (Fig. 4 right).

The design methodology has been applied to other real building
cases and feedback has been very positive. The next steps involve
integrating uncertainty analysis and quantitative regionalized SA
and replacing the normative model with a more advanced simula-
tion engine.

3. Development of the design method

This chapter covers the analyses and reasoning made during
the development of the proposed design methodology. First, we
describe the idealized model used for the stochastic simulations.
Only a brief description is given since the design method is believed
to work with most BPS software. Instead, emphasis is on sampling
strategy, sensitivity analysis, and metamodeling.

3.1. Idealized simulation model

For this research, we  use an idealized, normative model to
evaluate energy demand, thermal comfort, and daylight. To evalu-
ate whole-building energy demand, we  use a monthly normative
model [30] developed for code compliance in Denmark based on ISO
13790 [28]. An hourly-based model [31], also developed on basis
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Fig. 3. The interactive parallel coordinate plot combined with histograms (from Ref. [29][29]). Only some histograms have been included to show the difference. Here, the
initial  5.000 simulations for the educational institution are reduced to 988 when applying filters according to target criteria.

Fig. 4. The conceptual design contained a rough room layout but fenestration, shading, and more were not known. The global simulation approach enabled us to perform
simulations at this early stage (Illustration: EFFEKT Architects).

of ISO 13790, has been used to assess thermal comfort by calculat-
ing the number of hours above 26 ◦C and 27 ◦C for critical rooms.
Alternatively, thermal comfort risk is estimated from the penalty
function, overtemperature, which penalizes designs for which the
average building temperature exceeds 26 ◦C. To assess daylight, we
are using a regression model created for building code compliance
in Denmark [32]. In this paper, the combined, idealized model is
referred to as Be10 which is the name of the software using the two
former models. This combined model matches the level of detail in
the early design stages and they are computationally cheap. This
allows us to run thousands of simulations in minutes rather than
hours or days.

Simulation results obtained from idealized models may  not pre-
cisely match the equivalent results from more advanced simulation
software. However, exact values are not always necessary when
comparing design options. It is more important that the rank-
ing of results from simplified models match the ranking obtained
from detailed software [33,34]. When rankings are consistent, the
decision-makers will favor the highest ranked option regardless
of the exact output values. For this work, the idealized model has
been useful to test and develop the proposed design methodology.
It is hypothesized that the methodology also works with complex,
dynamic simulation engines.

3.2. Modeling and analyzing a global design space

The main idea is to run a large set of building performance sim-
ulations that adequately represent the vast design space available
during the early design. Aided by sensitivity analysis, the design
team explores this large set of simulations and tests a great number
of different designs. The consequences of different design choices
are then provided immediately. As shown on Fig. 5, the stochastic
modeling and subsequent analysis consist of the following steps
which may  be iterated:

Fig. 5. Proposed workflow when modeling a global design space using Monte Carlo
simulations.

1. A baseline building performance model is created in such way
that important design parameters may  be varied. For example,
the modeler must consider how to vary window size, construc-
tions, geometry, etc.

2. The design team assigns uniform distributions to the variable
inputs. The number of variable inputs may range from a few to
hundreds.

3. A sample matrix is constructed from the probability functions.
Sampling strategy and the number of samples (simulations)
depend on the model, the number of variable inputs, and the
type of sensitivity analysis.

4. Building simulation is performed for each sample and relevant
outputs are stored.

5. The modeler applies sensitivity analysis to analyze the large set
of building simulations.
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6. Guided by sensitivity analysis, the design team explores the
design space and tests different designs.

The modeler is advised to carry out an initial sensitivity analysis
(steps 2–5) to identify potential errors and reduce the design prob-
lem by fixating variable inputs with negligible influence. The final
step (6) represents a design meeting in which multiple stakeholders
explore the design space and make decisions assisted by sensitivity
analysis. The design parameters must be addressed in accordance
with their influence on the overall importance and with knowledge
about their mutual interactions. The decision-makers will fixate
or reduce the variation of the most influential design parameters.
Following the meeting, the design can be further developed and
explored within the limits of the remaining design space. When a
refined design is available, the above workflow is repeated to iden-
tify which parameters have become most influential and to explore
the design space related to the refined design.

3.3. Selection of parameters and sampling strategy

Prior to any modelling (CAD or BPS), the design team must
consider how to evaluate building performance and how to set
up variable design parameters. For instance, constraints towards
energy demand, daylight, and thermal comfort may  be assessed on
whole-building level, floor level, or room level and different metrics
may  be applied. Similarly, input parameters can be varied in differ-
ent ways. This applies for the distribution and sizing of windows
which may  be varied on whole-building level, facade level, or room
level. It may  be necessary to create intermediate design variables in
order to vary a large number of simulation inputs simultaneously.
An example of such a design variable could be window percent-
age used to vary the size of all windows and thus bundle these
inputs together. Some simulation software allows for the creation
of macro-parameters [35]. For example, OpenStudio’s Measures can
represent pre-defined constructions or entire HVAC systems. The
use of such bundles or macro-parameters can be of assistance during
early design to reduce the complexity and lower the level of detail.

The variations of the selected inputs can be defined using
uniform distributions − either continuous or discrete. The com-
bination of these variations represents the design space. Uniform

Fig. 6. Examples of 500 points made with random and quasi-random sampling,
respectively.

input distributions are necessary to identify favorable input regions
when applying Monte Carlo filtering (see e.g. Fig. 2). Moreover,
uniform distributions cause poorly performing designs to be eval-
uated which may  help convince the design team that some design
strategies are disadvantageous or even impossible. A sampling
strategy is required to create input samples from the assigned
probability distributions. The most appropriate sampling strat-
egy depends on the subsequent analysis. Some sensitivity analysis
techniques require specific sampling procedures, such as Sobol’s
variance based method and the Morris method (see Table 2). Oth-
ers only require generation of random or quasi-random numbers.
The advantage of the latter is their ability to cover the design space
more quickly and evenly as compared to the use of random num-
bers that results in lumps and gaps of the sampled inputs (Fig. 6). For
this work, we  apply Sobol’s LP� low discrepancy sequences when
modeling the design space [2].

Another aspect of the sampling strategy is sampling size, i.e.
the number of Monte Carlo simulations to perform. Between 100
and 1.000 simulations are typically required to achieve stable, con-
verged sensitivity measures [36,37]. Convergence depends on the
sensitivity analysis method, the sampling method, and the model.
However, a far greater amount of simulations are needed for a com-
prehensive representation of a global design space. To illustrate
this, consider a N-dimensional model for which each variable input
is discretized into p levels. Performing all simulations using full fac-
torial sampling would require Np simulations. Thus the exponential

Fig. 7. Top: Only four simulations remain from initial 5.000 simulations after adding constraints to the three outputs and the inputs win-fac-% and solar panel (filters
represented by black boxes). Bottom: When running another 5.000 simulations within the reduced spans for win-fac-% and solar panel, 22 simulations meet the criteria. The
distribution spans are now particularly larger for the inputs with low influence on energy demand, i.e. side fins and venting.
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increase quickly exceeds millions of simulations in the early design
stage due to the many variable design parameters. To remedy this,
we strive to find a reduced set of samples that is still sufficiently
large for the design team to test different scenarios and observe the
consequences.

In the case studies, we  performed between 3.000 and 10.000
simulations which seemed sufficient for these cases which involved
12–23 variable inputs. However, the design team may  add addi-
tional filters to investigate a particularly interesting subspace until
only a few simulations remain (see Fig. 7). The design team must
be aware that the few remaining simulations show possible design
solutions but they do not rule out other design possibilities. When
so few simulations remain, we advise to perform a new set of sim-
ulations within the particular subspace and see if the limits and
distributions of the simulations change. An example based on the
aforementioned institutional center is shown on Fig. 7. The design
team wanted to search the global design space for solutions that
did not include photovoltaics and at the same time ensured a high
window-facade-ratio of roughly 70%. Sensitivity analysis showed
that these inputs affect energy demand considerably, i.e. photo-
voltaics represents 31%, and win-fac-ratio 27%, of the variance of
energy demand. Surprisingly, the spans of less influential inputs, i.e.
side fins and venting, were quite narrow when only four simulations
remained (as illustrated with red arrows on Fig. 7). Another 5.000
simulations were run within the subspace with no photovoltaics
and a high win-fac-ratio. Afterwards, these additional simulations
showed that the inputs spanned greater than indicated on the ini-
tial plot (Fig. 7 bottom). The lessons learnt are to take advantage
of knowledge gained from the sensitivity analysis and be careful
when interpreting the parallel coordinate plot when only a few
simulations remain. Therefore, to achieve more information, we
advise to run an additional set of simulations for that particular
subspace. Another approach is to compute “all” possible design
combinations from the beginning, e.g. using full-factorial sampling
for discrete inputs. This, however, quickly becomes an overwhelm-
ing task. Even for a simple thermal comfort model with only 9
inputs, this approach involved 7.5 million calculations [38].

3.4. Sensitivity analysis

Sensitivity analysis can be defined as the study of how the uncer-
tainty in a model’s output is related to the uncertainties in the
model’s inputs [3]. It has many uses related to model development,
calibration, uncertainty analysis, and scenario analysis. In this work,
we have looked for methods with the ability to:

• Simplify the design problem by identifying non-influential inputs
(screening)

• Help the modeler to understand and calibrate the model
• Highlight inputs that deserves most attention in a multi-actor

design process
• Identify regions of design space that meet design criteria
• Create reliable, fast metamodels

Various authors have compared sensitivity analysis meth-
ods and it can be concluded that no single method is superior
and that many methods are valuable during the design phase
[3,18,36,37,39–41]. Based on these works, characteristics and
applicability of popular, global sensitivity methods are shown in
Table 2. Below, we give a short description of some the methods
including their applicability in the proposed design methodology.

3.4.1. Method of Morris
In the preparation phase, we recommend a preliminary screen-

ing analysis if the number of design variables and objectives are
unmanageable large. The aim is, at different design stages, to
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Fig. 8. Example of two  trajectories (j) in a 3-dimensional design space where each
design parameter is scaled to [0;1] and discretized into p = 4 levels. The blue arrows
illustrate changes in the 1st dimension, i.e. the EE1’s, green in the 2nd, and yellow in
the 3rd. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of this article.)

identify and fixate insignificant inputs that have no or negligible
influence on the building’s performance (see factor fixing in [3]).
For this purpose, the method of Morris [1] and its extended version
[6] have been widely used in the field of building simulations [18].
The idea is to create r different trajectories in the N-dimensional
design space (Fig. 8). For this space, each dimension is scaled to [0;1]
and discretized into p levels by splitting their values into p quan-
tiles. Each trajectory contains N + 1 calculations for which only one
parameter changes at a time and with equally big steps, �.  Ulti-
mately, each input is related to r so-called elementary effects (EE)
that describe the output change measured at r different places in
the design space. Thus, the elementary effect for the ith input factor
in a point X can be defined as [3]:

EEi =

[
Y (X1, X2, . . .,  Xi−1, Xi + �,  . . .,  XN)

−Y (X1, X2, . . .,  XN)

]

�

where � ∈ [1/(p − 1), . . .,  1 − 1/(p − 1)] is the input change. For each
input i, we obtain the following three sensitivity measures:

• Mean of elementary effects: �
i
= 1
r

r∑
j=1

EEj
i

• Mean of elementary effects’ absolute values: �∗
i

= 1
r

r∑
j=1

|EEj
i
|

• Standard deviation of EE’s: �2
i

= 1
r

r∑
j=1

(
EEj
i

)2

If the mean of the absolute values of the EE’s, denoted �*, is large
for the ith input, then the ith input has high influence, and vice versa.
If the EE’s for the ith input has a large standard deviation, denoted
�, then the model is either non-linear or the influence of the ith

input depends on the values of other inputs (interaction effects).
The mean value, �*, is a good approximation of the total sensitivity
measure, i.e. the total sensitivity of the parameter including the
contributions from interaction with other parameters. Therefore,
this measure is suitable for detecting non-influential inputs that
may be left out of the subsequent exhaustive simulations.

3.4.2. Variance-based methods
If the modeler seeks a deeper understanding of the model,

Sobol’s variance decomposition can be applied to identify inter-

action effects1 [3]. These effects describe how much particular
combinations of inputs contribute to the variance of the output.
Variance-based methods are often considered the most accurate
and information-rich but they are computationally expensive [39].
High accuracy obtained at high computational costs are arguably
not necessary during design meetings with non-experts. However,
the modeler may  apply variance-based methods to validate other
sensitivity methods for the particular BPS software in use.

3.4.3. Correlation and linear regression
Since the methods of Morris and Sobol both rely on specific

sampling strategies, they cannot at the same time be used to per-
form simulations that uniformly cover the design space. Instead,
the global design space is modeled from Monte Carlo simulations
with quasi-random sampling. Such simulations can easily be ana-
lyzed using either correlation or linear regression techniques which
provide quantitative estimates of the inputs’ linear effects on the
outputs first order sensitivity indices, first order sensitivity indices,
. These sensitivity indices can be converted into percentiles of their
relative importance of the output variance. The percentages are
easy to compare and they are intuitive to non-specialists. However,
these methods do not account for interaction effects and thus only
cover the variance proportional to the coefficient of determination,
R2. For example, if R2 equals 0.90, the standardized regression coef-
ficients (SRC) from linear regression explain only 90% of the total
variance. From our experience, approximate sensitivity estimates
or ranking of parameters are sufficient to guide decision-makers
towards the most important design parameters.

3.4.4. Monte Carlo Filtering
Essential for the proposed design methodology is the use of

Monte Carlo Filtering (MCF) also known as factor mapping. As
described above, filtering of Monte Carlo simulations reveal areas
of input space which are most likely to produce behavioral results
meeting the desired criteria. The parallel coordinate plots and his-
tograms are visually effective to show the consequences of applying
filters. However, changes may  be difficult to observe during a busy
meeting with multiple team members when analyzing a model
with many inputs and outputs. To remedy this difficulty, quantita-
tive regionalized sensitivity analysis (RSA) can indicate which input
distributions have been affected the most by the applied filters. For
each input, we compare the distribution of behavioral  simulations
(those remaining after filtering), denoted fb, with the distribution
of non-behavioral simulations, denoted fn [3]. If the distributions
fb and fn for a given input, Xi, differ significantly, then this input is
largely responsible for splitting the simulations into behavioral and
non-behavioral realizations. This qualitative measure of the distri-
butions’ difference is obtained by applying the Kolmogorov-Smirnov
two-sample test to each input. In contrast to the other methods, RSA
can be applied to multiple outputs at the same time. In other words,
RSA can display the combined changes on the input distributions
when adding filters to multiple outputs.

1 The conditional variance VXi

(
EX∼i (Y |Xi)

)
is called the first-order effect of Xi on Y

and  Si is the first-order sensitivity index defined as Si =
VXi

(
EX∼i (Y |Xi)

)
V(Y) [3]. The total

sensitivity index STifor Xi on Y may be defined as STi = 1 − VXi (E(Y |X∼i))
V(Y) or STi = Si +

k∑
j>i

Sij +
k∑

l>j>i

Sijl + · · · + S1···i···k where the latter terms describe higher dimensions

sensitivity indices from interaction effects [3,44].
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3.5. Metamodeling

During design meetings, we encountered the following two
issues despite having access to thousands of simulations:

1. Insufficient design space exploration: Sometimes only a few
simulations remain, when applying filters to investigate a design
subspace. In that case, there is a risk of drawing improper conclu-
sions based on the parallel coordinate plot and histograms (Fig. 7).

2. What-if questions: Scatterplots, parallel coordinate plots,
and histograms help analyze a multidimensional design space but
they do not reveal what happens to the outputs if an input is
changed by a specific amount. For example, “what happens if we
increase the window-to-facade-ratio by 10%?”

In the first case, we immediately needed more simulations rep-
resenting that particular subspace even though we had removed
insignificant parameters using the Morris method. In the second
case, we needed a rapid model that relates an input change to out-
put changes in the multidimensional domain. To solve these issues,
metamodeling is a viable solution as we will now demonstrate.

In general, metamodeling can be applied to construct a sim-
plified, fast model from input-output relationships obtained from
complex mathematical models such as those used in building per-
formance software. A wide range of metamodeling techniques
exist, such as regression, Kriging, Artificial Neural Network, and
Support Vector Machines [42]. Similar to sensitivity analysis meth-
ods, each metamodeling technique has its pros and cons. Here, we
demonstrate and compare the applicability of two  methods, SRC
(linear regression) and SDP (state-dependent parameter regres-
sion), which were also tested for sensitivity analysis purposes. Here,
emphasis is on demonstrating the use of metamodeling in the pro-
posed methodology whereas a comprehensive comparison study is
needed to identify the most suitable technique in terms of reliability
and applicability.

As case study, we adopt the aforementioned educational center
for which 10 design parameters are varied simultaneously. First,
Be10 is used to run 2.000 simulations which constitute the train-
ing set for the metamodels. For each metamodel, we  make 2.000
new predictions of energy demand, overtemperature, and daylight
factor. Fig. 9 shows how the predicted values compares to the corre-
sponding values obtained from the original Be10 software. Judged
by R2, RMSE, and the points’ closeness to the ideal y = x line, the SDP
metamodel outperforms SRC for all three objectives. Though, both
models provide inaccurate estimates of the output overtemperature
which is used to penalize designs with unacceptable high indoor
temperatures. In the above description of the idealized simulation
model, Be10, we argued that proper ranking of design options is
more important than accurate simulation values (Section 3.1). Sim-
ilarly, we will now argue that ranking is also more important than
accurate values of metamodels when applying Monte Carlo filtering
to investigate a design space.

3.5.1. Design space exploration using metamodels
As described earlier, we suggest using the parallel coordinate

plot with histograms to quickly explore the design space and see
how filtering affects the input distributions of the remaining simu-
lations. Fig. 10 shows examples of such distributions after filtering
the outputs corresponding to building code criteria. The unfiltered
dataset for the idealized model (Be10) and the two  metamodels
each consist of 5.000 simulations with uniform input distributions.
After the removal of simulations not meeting the requirements,
the number of remaining simulations and their distributions differ
considerably. This is mainly due to the metamodels’ lacking ability
to correctly represent the output overtemperature. Thus, too many
simulations are removed when adding the constraint overtemper-
ature ≤ 0 kWh/m2. In comparison, only 220 and 406 simulations
remain for the metamodels whereas 959 simulations remain in the

case of the Be10 model (see grey highlight on Fig. 10). Another
consequence is that the input distributions differ – particularly for
g-value and win-fac-ratio. Hence, design decisions based on these
distributions may  be misguided. For example, the histogram for g-
value based on SRC shows that low values are preferable since most
remaining simulations lie in the bins representing low g-values
(0.25 and 0.32). But the corresponding histogram, based on the orig-
inal Be10 model, shows that most simulations remain in the third
bin (g-value of 0.41) and many remain in the fourth bin (g-value of
0.5).

To remedy the above behavior, we try to adjust the filter val-
ues in such a way  that an equivalent number of simulations are
removed when applying a filter to a specific output. For exam-
ple, when adding the constraint overtemperature ≤ 0 kWh/m2 to the
Be10 dataset, 14.6% of the simulations get filtered out, whereas the
same constraint removes 70.6% in the case of SRC. By adjusting the
filter value to 0.66 for the SRC dataset, 14.8% of the simulations get
filtered out, i.e. almost the same as 14.6%. Similar adjustments of
filter criteria are made for both metamodels. The adjusted filters
result in new histograms as shown on Fig. 11. Now, the distribu-
tions for each input are nearly indistinguishable when comparing
across the different models. Even the easily computable SRC models
perform well despite a low R2 value of 0.42 for the output overtem-
perature. Conclusively, metamodels can be applied to remedy the
issue of insufficient design space exploration. In this work, each cal-
culation takes less than 0.5 s using the original Be10 software so
additional simulations can be computed relatively fast. However,
if computational demanding simulation software is used, meta-
models provide plausible means to decrease the computing time
of design space exploration.

3.5.2. Answering what-if questions using metamodels
To deal with “what-if” questions, we  apply metamodeling in a

different manner. The aim is to answer questions such as “what if
we add another 100 m2 of photovoltaics?” and “what if we increase
the window-to-floor-ratio by 10%?” In other terms, what are the
effects on Y1, Y2, etc. if we change input Xi by the amount �Xi?
This issue appeared during a meeting related to the multi-story
residential building. Despite having access to 10.000 simulations,
we could not immediately answer such questions since all design
inputs had been varied between simulations. To remedy this issue
for the subsequent case, we  constructed metamodels using SRC.
The regression coefficients for SRC can be used to estimate how
much the outputs are affected by a specific input change.

Fig. 12 shows how the SRC metamodels can be applied to illus-
trate the effects of input changes. The example is based on a request
to know the consequences of raising the win-fac-% by 10 percentage
points. The standard regression coefficients are used to calculate
the averaged output changes in the multidimensional domain.
Aided by the sensitivity measures, the design team may  choose
to counteract the increase in overtemp. by decreasing the windows’
g-value by 0.05 (green boxes). Finally, the combined changes to the
energy demand may  be counteracted by adding 60 m2 solar cells
(grey boxes).

The validity of the predictions, obtained from this approach,
relies on the accuracy of the metamodels and the complexity of
the original simulation model. The accuracy of the SRC method can
be assessed by the R2 values.2 The changes predicted by the SRC
model are averaged changes obtained from the global design space.
An example is to estimate the average effect of changing the g-value
by 0.1 in a global design space in which the window-to-facade-ratio
may  be anywhere between 40 and 80%, the heat capacity between

2 If the R2 is low, a comparison of the measures � and �* from Morris analysis
can  reveal which input that show non-linear relationships (see Fig. 15).
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Fig. 9. Validation of two metamodeling techniques, SRC and SDP, applied to three building performance measures. Characteristics of a good metamodel include a high
coefficient of determination, R2, low Root-Mean-Square-Error (RMSE), and points close to the ideal line, metamodel = original model (y = x).

Fig. 10. Selected input distributions for the original model, Be10, and the two metamodels, SRC and SDP, when using the same filter criteria. The numbers of remaining
simulations differ significantly (highlighted with grey box).

Fig. 11. Input distributions when adjusting the filter values such that the numbers of remaining simulations are roughly the same for all three models. The adjusted filter
criteria  are highlighted with a grey box.
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Fig. 12. Combining sensitivity and SRC metamodeling to observe and counteract consequences on input changes with regard to the performance objectives. Boxes highlight
the  applied changes and their consequences.

Fig. 13. Scatterplot show non-linear relationship between two  parameters which
cannot be described using linear regression.

80 and 120 Wh/K m2, etc. These averaged changes calculated on
basis of a global design space are more valid than calculating the
change at a specific point in design space, e.g. at the design option
where the win-to-fac is 40%; heat capacity is 120 Wh/K m2, and so
on. Even though SRC seems to work for this case, additional research
is needed to assess the best applicable metamodeling technique
and to identify appropriate training set sizes.

3.6. Scatterplots and non-linearity

A valuable supplement to the modeler’s toolbox is the scatter-
plot. A scatterplot may  reveal important characteristics, such as
trends, form, outliers, and clusters, which are difficult to observe
from statistical values from correlation, linear regression, or RSA.
This is exemplified on Fig. 13 which shows the relationship between
a design variable, orientation,  and the number of hours with indoor
temperature exceeding 26 ◦C. For this case, sensitivity analysis
methods provide completely different results. Among eight vary-
ing inputs, orientation ranks last according to PEAR and SRC (<1%)
as opposed to Morris in which orientation ranks first. The scatter-

plot shows a strong relationship, and a clearly visible form, which
corresponds well with the Morris results. PEAR is based on Pear-
son product-moment correlation coefficient, r, which measures the
linear relationship between two  variables. In this case, Pearson’s r
is 0.026 which implies no relationship. Similarly, linear regression
fails to describe the relationship which is evident from the R2 value
of 0.0007. However, in case of high-dimensional design problems,
visual inspection of scatterplots becomes laborious and inefficient.
The reason is that the possible combinations of scatterplots grow
with N2 with increasing dimensionality N. Often, the majority of
such scatterplots show randomly scattered points and reveal little
information (see the two  right-most plots on Fig. 14). To identify the
most informative input-output scatterplots, we recommend apply-
ing either Morris or SDP. As shown next, these reveal non-linear
behavior and interaction effects − in contrast to PEAR and SRC.

3.6.1. Understanding non-linearity using scatterplots
In the following example, we consider a simple shoebox shaped

building for which we  calculate the energy demand while varying
five input parameters. Fig. 14 shows scatterplots for each input in
relation to the output. The two left-most plots show clear increasing
tendencies, whereas the other distributions appear more random.
Though, more information, which is well-hidden, is revealed when
applying Monte Carlo filtering. First, Morris analysis shows dif-
ference between � and �* and a high standard deviation, �, of
Elementary Effects for the input, g-value (Fig. 15). The difference
between � and �* means that a given change of g-value,  at different
points in the multidimensional space, can cause both negative and
positive changes of the output. Similarly, this non-linear behav-
ior can be detected by looking at the Si and Sij indices available
from SDP and variance-based methods. For example, SDP analysis
reveals that for the parameter g-value Si = 0.004 whereas Sij = 0.024

Fig. 14. Five scatterplots positioned left to right according to their influence on Energy demand as indicated by Morris. The transparency is set to 50% to show overlapping
points.
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Fig. 15. According to the Morris sensitivity measures, the most important inputs
are ventilation and win-fac-ratio whereas g-value contains high degree of non-linear
and  interaction effects.

for g-value and ventilation.  This means that the variance of g-value in
itself has almost no influence but its interaction with ventilation has
some influence. We  therefore investigate the relationship between
g-value and ventilation for different subsets by applying filters to the
most sensitive parameter, ventilation.  Fig. 16 (right) shows how the
slope of the regression line for g-value differs when applying two
different filter criteria to ventilation.  The shifting slopes indicate
that the energy demand increases with g-value for low ventilation
rates and vice versa. This emphasizes the importance of modeling a
global design space and addressing the design parameters in accor-
dance with their influence on the outputs. Conclusively, a suitable
sensitivity analysis combined with filtering and visual inspection
of scatterplots helps identify and understand non-linear behavior
of models.

4. Results and further work

In the previous sections, we covered our experiences so far
including the development of the proposed design methodology.
We covered a wide range of statistical methods which differ in
applicability and complexity. Fig. 17 sums up how the different
methods and visualizations may  be applied during the design
process. The proposed method is iterative and contains two distin-
guishable parts: 1) a pre-meeting preparation part performed by
the modeler, and 2) a multi-collaborator meeting for design space
exploration and decision-making. Prior to these, it is assumed that
a design concept has been formulated including the definition of
target goals, variable design parameters, and a geometric model
(as in Fig. 4 right).

During the meeting, the design team will gradually fixate or nar-
row the variability of the most important design parameters. Some
parameters may  be left free to vary in order to provide design ‘free-
dom’ for the next design iteration. Another outcome of the meeting

is, hopefully, a better understanding of the model’s behavior and
the design parameters’ influence on building performance. When a
refined design is available, the proposed workflow may  be repeated.
For each iteration, the level of detail increases while the design
space shrinks. Eventually, in the detailed design stages, the build-
ing physicist is less dependent on other stakeholders and may try
to optimize on HVAC systems and control strategies or perform
uncertainty analysis to consider the effects of weather and user
behavior.

4.1. Further work

The methodology was  tested, and gradually improved dur-
ing three case studies, using an idealized model, Be10, to assess
whole-building performance. The next step in our work will be to
substitute the idealized model with detailed BPS software. Empha-
sis will be on how to deal with multiple zones and the increased
number of simulation inputs and outputs. Possible initiatives are
the definition of “macro-parameters” [35] and bundling of inputs
and zones. To meet the increased computational requirements, we
have already mentioned metamodels as a possible way to rapidly
evaluate thousands of design options. As mentioned, this approach
calls for a thorough comparison of metamodels techniques. This
includes an investigation of the number of building simulations
required to construct viable metamodels. Alternatively, cloud com-
puting is becoming more widespread and may  be the best choice
for extensive simulations.

In the proposed workflow, we  have considered design variability
− also referred to as design uncertainty. Further research is needed
to assess the design approach in terms of robustness of design deci-
sions when also considering uncertainties related to user behavior,
weather conditions, and modeling abstraction. One approach sug-
gested by Rodríquz et al. [43] is to define different levels for both
occupant load and weather load and then run global simulations for
each combination. Comparison of different design options under
uncertainty is not straightforward. Output distributions for differ-
ent designs may  be compared using histograms and statistics may
help to estimate the level of confidence of a design choice [33].
However, this issue of comparison under uncertainty is further
challenged when assessing not just one objective, such as energy
demand, but a range of objectives (energy, daylight, thermal com-
fort, cost, etc.). Therefore, more work is needed to provide more
confidence of design choices when considering uncertainty and
multiple, opposing design criteria.

Fig. 16. The scatterplots show relationships between energy demand and two interdependent design parameters, ventilation and g-value. Green points represent simulations
that  meet the filter criterion. The slope of the regression line for g-value change sign when analyzing different subsets using filters on ventilation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. In the iterative workflow (black), the BPS modeler generates an exhaustive set of simulations which is explored in plenum during design meetings. The architects
refine  the design and the workflow is repeated. Finally, the design evolves to the detailed design stages where the modeler may focus on HVAC systems, uncertainty analysis,
and  documentation.

5. Conclusion

In the section above, we described the workflow of the proposed
design methodology along with issues that still remain. Here, we
sum up the lessons learnt from the development of the methodol-
ogy and the case studies:

• Building performance simulations are commonly computed
using deterministic, non-linear, and complex simulation mod-
els. At the same time, building design is characterized by large
number of variable design parameters which constitute a vast
multidimensional design space. These circumstances speak for a
global design exploration through Monte Carlo simulations.

• Global sensitivity analysis is necessary to address design param-
eters according to their influence on building performance. The
modeler must have in-depth knowledge to select between var-
ious advanced methods and to interpret their results. During
the multi-collaborator meetings, the complexity, and method-
specific results, may  preferably be communicated through
simplified and intuitive visualizations.

• Prior to multi-collaborator decision-making, it is advisable to cal-
culate important, opposing performance measures while making
room for qualitative measures. A holistic, global approach helps
ensure a high-performing and well-balanced design.

• The variability of the design parameters may  be described using
uniform distributions to represent the multidimensional design
space evenly. This makes it easy to observe favorable regions
of input space when using interactive parallel coordinate plots
and histograms. The latter facilitate fast design space exploration,
easy interpretation, and flexibility of design constraints.

• Metamodels can estimate how an input change affects multiple
outputs in a global design space. In addition, metamodels can gen-
erate additional evaluations within a limited subset of the original
design space. Despite a low accuracy, the simple metamodeling
technique, multivariate linear regression (SRC), provided similar
ranking as the original model. It could therefore be used for Monte
Carlo filtering and decision support when modifying the design
constraints accordingly.

This study was undertaken within the field of building perfor-
mance simulations. However, the proposed modeling approach is

relevant to other disciplines in which multi-collaborator decision-
making is based on complex models with variable inputs.
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3.2 AFTERMATH 

In the “Further work” section of Paper C, we outlined several tasks to be addressed posterior to this paper. Some 

of these have already been discussed in section 2.2. This includes investigation of uncertainty, zoning, and level 

of detail, which have since been addressed in various Master’s theses using advanced BPS software. Here, we 

focus our attention to sensitivity analysis and metamodeling after a brief discussion of the lessons learnt from the 

work presented in Paper C. 

3.2.1 LESSONS LEARNT 

For the second case study of Paper C, we asked the design team to answer a questionnaire on the use of building 

simulations. Both questionnaire and feedback from five participants are shown in Appendix A. Here, we sum up 

some of the feedback. Firstly, there was broad agreement that the most important property of building simulation 

tools is “intelligence”, i.e. the ability to aid decision making. This corresponds well to a survey of roughly 450 

architects and engineers, where a majority of the architects favored “intelligence” as a tool selection criterion [18]. 

The engineers preferred, however, “accuracy and the ability to simulate complex components”. Regarding which 

building performance criteria should be prioritized, the responses to our questionnaire may be summed up in the 

following ranking: energy, thermal comfort, costs, daylight, air quality, environmental impact, and acoustics. This 

fit well with the prioritization made in this project, where emphasis is on energy demand, thermal comfort, and 

daylight. As mentioned, building costs are troublesome to quantify in early design characterized by great 

“variability”. Another valuable feedback is that the respondents appreciated the sensitivity analysis and considered 

it important. In general, the feedback suggested that the proposed simulation method and the real-time analysis 

have great potential and aid collaboration. These responses are consistent with the oral feedback received after 

presentations to various building investors, architects, and researchers. 

Despite the potential of Monte Carlo simulations, we have learnt a few lessons regarding the cumbersome 

definition and sampling of inputs. These conditions relate to the correlation of inputs, the aggregation of input 

distributions, and the heterogeneity of sub settings which we will elaborate on next. 

In all case studies, the sampling strategy implies independent inputs even though some inputs are correlated. For 

example, a variation of the windows’ Solar Heat Gain Coefficient (SHGC) affects the windows’ Light 

Transmittance and Thermal Resistance. There are different, software-dependent, ways to handle this. If such inputs 

are defined separately (e.g. in Be15), the modeler may allow one input to vary freely and describe dependent inputs 

using regression formulas or a correlation matrix. Such dependencies may be derived from a materials database or 

product catalogues. For other BPS tools (e.g. BSim), such properties are defined for a specific construction element 

(macro-parameter). In that case, the modeler must define a number of elements, e.g. windows, with varying 

properties. Another “correlation” is the connection between a variable window-facade-ratio and the resulting 

facade area, which may need to be defined explicitly. A final remark on these correlations is that they may be 

troublesome to handle correctly during sensitivity analysis.  

In Paper A and C, uniform probability distributions have been used to model the variability of design parameters. 

In this regard, the modeler must be aware of how uniform distributions “aggregate” or “sum up”. For example, the 

building’s window-to-wall-ratio (WWR) may be chosen to vary uniformly in the range from 40 to 80%. 

Alternatively, the modeler may choose to vary the north-oriented windows separately from south-oriented 

windows – each in the range from 40 to 80%. Similarly, WWR may be varied individually for North, South, East, 

and West. When sampling with these three approaches, the resulting distributions of the buildings average WWR 

differs significantly as shown on Figure 3-3Figure . The building facades are assumed to be equally large in all 

directions. This behavior is worth to remember, if the intention is to sample the “overall” or “aggregated” design 

parameter uniformly, i.e. with equal probability across its range. Moreover, this exemplified division of a design 

parameter into multiple design parameters also affects sensitivity analysis. That is, if 50 windows are varied 

individually in the same range, each window produces a negligible contribution to the variance of the simulation 

output. Sensitivity analysis would then consider them all as insignificant. If they were varied as a group, this could 

be the most important (sensitive) design parameter. 
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Figure 3-3: Distribution of 10.000 samples of the building’s average window-to-wall-ratio (WWR) when varying WWR for 
one, two, and four uniformly distributed parameters, respectively.  

The final “lesson learnt” is referred to as the heterogeneity of sub settings. Consider a scenario, in which the design 

team wishes to vary multiple parameters including a ventilation strategy with three options: 1) mechanical 

ventilation only, 2) mechanical ventilation with cooling, and 3) mechanical ventilation and venting. Each of these 

settings may induce important sub settings which should also be varied. For the second option with cooling, 

important sub settings could be coefficient-of-performance, cooling power, and set point. For the third option with 

venting, important sub settings might be opening area and schedule. Obviously, such heterogeneous sub settings 

are difficult to handle in a Monte Carlo simulation framework. Later, we give an example on how to circumvent 

this issue for a scenario, in which the mechanical cooling, with one sub setting, is either “on” or “off”. 

3.2.2 SENSITIVITY ANALYSIS 

As mentioned, feedback has been positive when using sensitivity analysis to reveal important and insignificant 

design parameters. Paper C provided a brief overview of popular sensitivity analysis methods. Despite their 

different assets, there are still features missing that would be beneficial in a building design context. First of all, 

building design involves multiple performance criteria but popular sensitivity methods only addresses one output 

at a time. Thus, we need a way to prioritize design parameters according to the overall building performance as 

attempted in Paper A, but without the troublesome weighting system. Another typical “trait of” of sensitivity 

analysis is that they provide fixed sensitivity measures that are not necessarily of interest to the decision-maker. 

To overcome these issues, we have developed two novel sensitivity techniques denoted TOM and TOR [19]. The 

TOM method ranks inputs according their influence on multiple outputs, whereas TOR provides real-time 

sensitivity measures during Monte Carlo Filtering. The two methods are presented in the conference paper 

“Interactive building design space exploration using regionalized sensitivity analysis” which is denoted Paper E 

placed in appendix A [19].  

3.2.3 CURSE OF DIMENSIONALITY 

As mentioned in Paper C, 5.000 simulations easily become insufficient when applying filters to explore specific 

regions of the design space. In general, the design space expands exponentially with the number of dimensions, 

which makes it near impossible to perform enough simulations to cover the multidimensional space sufficiently. 

This dimensional issue is sometimes referred to as the “curse of dimensionality” [20]. To exemplify this, imagine 

that 5 simulations represent a sufficiently dense sample for a univariate problem. The equivalent sample density 

for 10 dimensions requires 510 ~ 10 million simulations. We elaborate on this issue in Paper F, in which we argue 

that for a simple model, used for evaluation of thermal comfort according the Danish building regulations, it is 

possible to simulate (nearly) all of the design space. The reader may go to Appendix A to read Paper F which 

refers to the conference paper “Thermal comfort in residential buildings by the millions - Early design support 

from stochastic simulations” [21]. The article has led to the development of a free, online design tool [22]. This 

tool relies on millions of simulations calculated in advance. It is used to guide designers and meet thermal comfort 

requirements in dwellings according to Danish building code. 

However, the approach of performing millions of simulations to cover “all” of the design space is only viable for 

BPS software with few influential inputs and near-instant calculation time. Thus, for most BPS software, such as 
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BSim, this is not a suitable approach. Instead, the “curse of dimensionality” calls for the use of metamodeling as 

described in the following. 

3.3 DEALING WITH MULTIPLE DIMENSIONS USING METAMODELS 

As argued in Paper C, metamodeling may be the solution to various issues related to building performance 

simulations. To recap, a metamodel can be defined as a model generated from a more complex model by means 

of metamodeling. Since metamodels provide much faster calculations than the complex model, they are often used 

to explore design space, optimize performance, and provide immediate feedback. As described in Paper C, even 

linear regression models with low accuracy can be used to generate useful predictions of building performance 

[23]. However, this only worked under assumption of monotonic models and by adjusting the filter criteria. To 

avoid such inconvenient circumvention, we desire more accurate and robust metamodels which also works for 

detailed BPS models such as BSim. For this reason, we have made a comprehensive review and comparison of 

metamodeling techniques in the context of building simulations. This work is presented in Paper 4, which follows 

a brief description of the BSim model used to test the different metamodeling techniques.  

As part of ongoing research, we have defined a BSim model for a typical office space with 14 variable design 

parameters. Examples of variable parameters are window-to-wall ratio, internal load, room depth, and minimum 

air supply. For this “generic” office space, the BSim software is used to assess energy demand, daylight, thermal 

comfort, and air quality. The logic behind such “generic” spaces is similar to the design approach presented in 

Paper F, in which we have “pre-calculated” millions of designs to guide decision-makers in early design [21]. 

However, in that case, we used a rapid model to assess thermal comfort for millions of predetermined designs with 

10 variable inputs. This is not possible here, since the time consumption for each simulation is at least a hundred 

times greater for BSim than for Be15 and this case involves more dimensions. With BSim, we could perform 

10.000 simulations over the course of a weekend using a laptop [24], whereas with Be15 100.000 calculations 

were made in a couple of hours. Thus, the ratio of time consumption is approximately 1:200. We return to the 

concept and applicability of the “generic spaces” in the chapter 4.1, but now we continue with the comparison of 

metamodels in Paper D 

3.3.1 PAPER D 

In Paper D, we apply and compare six metamodeling techniques using supervised learning to construct fast 

regression models. The article is titled “A comparison of six metamodeling techniques applied to building 

performance simulations” which has been submitted to Applied Energy.
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Building performance simulations (BPS) are used to test different designs and systems with the intention of reducing building 

costs and energy demand while ensuring a comfortable indoor climate. Unfortunately, software for BPS is computationally 

intensive. This makes it impractical to run thousands of simulations for sensitivity analysis and optimization. Worse yet, millions 

of simulations may be necessary for a thorough exploration of the high-dimensional design space formed by the many design 

parameters. This computational issue may be overcome by the creation of fast metamodels. In this paper, we aim to find suitable 

metamodeling techniques for diverse outputs from BPS. We consider five indicators of building performance and eight test 

problems for the comparison six popular metamodeling techniques – linear regression with ordinary least squares (OLS), random 

forest (RF), support vector regression (SVR), multivariate adaptive regression splines, Gaussian process regression (GPR), and 

neural network (NN). The methods are compared with respect to accuracy, efficiency, ease-of-use, robustness, and 

interpretability. To conduct a fair and in-depth comparison, a methodological approach is pursued using exhaustive grid searches 

for model selection assisted by sensitivity analysis. The comparison shows that GPR produces the most accurate metamodels, 

followed by NN and MARS. GPR is robust and easy to implement but becomes inefficient for large training sets compared to 

NN and MARS. A coefficient of determination, R2, larger than 0.9 have been obtained for the BPS outputs using between 128 

and 1024 training points. In contrast, accurate metamodels with R2 values larger than 0.99 can be achieved for all eight test 

problems using only 32 to 256 training points. 

Keywords: Gaussian process regression (kriging), Random Forest, Neural Network, Support Vector Regression, Sensitivity analysis 
 

1 Introduction 

1.1 Motivation for metamodeling 

The building sector accounts for roughly 40% of the total 

energy consumption and 38% of the CO2 emissions in the 

European Union [1]. On a global scale, the energy savings 

potential is estimated to 53 exajoules each year by 2050 [2]. 

Building designers play a vital role in realizing this enormous 

energy savings potential. Architects and engineers use 

building performance simulations (BPS) to assess and reduce 

the environmental impact of buildings and, at the same time, 

meet strict requirements related to indoor climate. Examples 

of performance objectives are energy demand, CO2 footprint, 

thermal comfort, daylight availability, and construction costs. 

To find possible solutions, the design team may vary a large 

number of design parameters such as building geometry, 

insulation thickness, glazing properties, and HVAC systems. 

The variations of these parameters constitute an enormous 

multi-dimensional “design space”. The many design 

parameters (model inputs) and requirements (model outputs) 

makes it difficult and time-consuming to explore the design 

space efficiently and find favorable solutions that meet all 

requirements. To address this multivariate problem, it is 

becoming increasingly popular to perform a large number of 

simulations using Monte Carlo methods or optimization 

routines [3][4][5][6][7]. Unfortunately, most BPS software are 

computational demanding. A single simulation often takes 

minutes to compute or even hours in the case of CFD 

simulations. For real-life applications, the task of running 

thousands or millions of simulations is an obstacle for 

widespread adoption of design space exploration, uncertainty 

analysis, sensitivity analysis, and optimization. 

The computational obstacle of BPS may be overcome by 

supercomputers, cloud computing, or metamodeling. 

Supercomputers are expensive if not managed efficiently to 

avoid downtime. Cloud computing is presumably a cheaper 

alternative, and several popular BPS tools provide this feature 

for optimization or uncertainty analysis [3]. Still, if the design 

team wish to perform sensitivity analysis to identify important 

inputs or interaction effects, such analysis easily requires 

thousands of simulations. This is likely to take hours or days – 

even with access to cloud computers [8][9]. An extensive set 

of Monte Carlo simulations allows the design team to explore 

a high-dimensional design space under various constraints and 

immediately observe the consequences of different design 

choices [10]. A useful tool for such analysis is the interactive 

parallel coordinate plot, which enables rapid and visual 

exploration of multivariate data (see Figure 5) [11]. In terms 

of computational effort, Østergård et al. (2017) demonstrated 

that 5,000 simulations were insufficient when applying five 

constraints representing building legislation and architects’ 

ambitions. Similarly, in the development of a design tool for 

thermal comfort evaluation, it was necessary to run millions of 

simulations to cover the design space sufficiently, even 

though the model only contained nine design parameters and 

two objectives [12]. Conclusively, this “curse of 

dimensionality” advocates the use of fast metamodels to 

overcome the computational challenges.  

1.2 Performance requirements of metamodels 

Above, we have argued for a potential of using metamodeling 

in the context of BPS. The type of metamodeling, addressed 

in this paper, is also referred to as supervised learning, which 

overlap with regression analysis. Hence, the metamodels are 

constructed from a set of input and output data to enable 

predictions of future outputs. That means we need to run a 

number of building simulations from which we construct the 

metamodel to be used for faster predictions of building 

performance. The metamodels may be constructed in a wide 

variety of ways using many different techniques. These may 

differ substantially with respect to predictive accuracy, 

computational efficiency, ease-of-use, transparency,  
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 and robustness (see 4.1). Unfortunately, there is no “perfect” 

and one-fits-all method. Thus, in searching for the most 

suitable metamodel for BPS, we have to describe the 

characteristics of our building simulations and define 

requirements, and optionally desirable features, of the 

metamodels. Emphasis is on applicability for novel users and 

the applied algorithms are all available with Matlab.  

Building simulations are typically performed with complex 

“black box” models with many variable design parameters. 

Therefore, the users normally have no clear knowledge of the 

underlying equations and how the inputs interact with each 

other. In addition, the design team need to assess quite 

different building performance indicators, such as energy, 

thermal comfort, and daylight. These may vary substantially 

in complexity and in the shape of the output distribution (see 

4.2). Thus, the metamodeling technique must be robust to the 

number of inputs and the type of output. We have identified 

three separate cases for which metamodeling can be applied to 

enable design space exploration, optimization, and sensitivity 

analysis. The three cases denoted A, B, and C can be 

distinguished by their diverse requirements, which may be 

characteristic for many other applications across scientific 

disciplines:  

A. Expert with considerable time (~days) and emphasis on 

accuracy. 

The task is to develop a generic, reusable tool for early 

design support based on a predefined room types that 

often occur in buildings, e.g. open-offices and meeting 

rooms. Time for training and construction of the 

metamodel is not critical. 

B. Non-expert with limited time (~hours) and need for ease-

of-use and robustness 

For each building project, an engineer (or architect) with 

presumably limited knowledge of metamodeling needs to 

construct metamodels, which represent the particular 

building and its desired performance. The applied 

technique must be robust towards different objectives 

and easy to use.  

C. Automated metamodeling requiring a minimum of 

training points (obtained in minutes) and high robustness 

These conditions apply to the development of a joint 

CAD and BPS framework, in which the design team 

selects specific rooms in a CAD environment. For the 

selected room, BPS and metamodels are automatically 

performed with no user interaction and within a limited 

time frame.  

For all cases, a large number of new predictions must be 

performed rapidly for real-time design-space exploration 

during meetings with multiple stakeholders [10].  

The purpose of this study is to perform a comprehensive 

comparison of metamodeling techniques and thereby identify 

the techniques most suitable to accommodate the requirements 

listed above. We have strived for an extensive comparison by 

considering diverse building performance metrics and well-

known mathematical test functions. The number of training 

data points has been varied substantially, i.e. from 25 to 213 

(32–8,192). To improve transparency and reproducibility, we 

show all hyperparameter variations and data online [13]. In 

addition, we use the unit-less R2 values to report accuracies, 

which makes it easier to compare the accuracies for diverse 

problems encountered in different disciplines. With these 

intensions, we strongly believe that this study is relevant to all 

research areas and industries, which apply metamodeling in 

the form of supervised learning.  

2 Literature review 

First, we investigate earlier uses of metamodeling in the 

context of building simulations. Afterwards, we look for 

promising metamodeling techniques based on comparisons 

made across scientific disciplines. Emphasis is on accurate, 

rapid techniques that can be applied by a practitioner of 

building performance simulations with limited knowledge of 

metamodeling. Moreover, non-Gaussian distributions of 

aggregated outputs (see 4.2) and interaction effects must be 

captured without knowing the underlying equations, which are 

mostly hidden in the commercial “black box” software. 

2.1 Metamodeling in the field of building 
performance simulations  

Metamodeling has been applied to building simulations for a 

variety of reasons, which include early design decision-

making [14][15][16][17], uncertainty and sensitivity analysis 

[15][17][18][19][20][21][22], design optimization 

[16][18][19], and model calibration [21][23][24]. Most 

research addresses energy consumption, though metamodels 

have also been used to emulate thermal comfort [18][25][22], 

daylight [16][22], and financials costs [19]. A wide range of 

metamodeling techniques have been applied in the reviewed 

studies: linear regression (OLS) [14][15][22][24], polynomial 

regression (PR) [16][17][24], multivariate adaptive regression 

splines (MARS) [22], support vector regression (SVR) [18], 

neural network (NN) [20], and Gaussian processes regression 

(GPR) [21][25]. Additional methods, such as step-wise linear 

regression, decision trees (CART) and random forests (RF), 

have been found in works that compare metamodel methods 

in relation to BPS [26][27][28]. To sum up, a wide variety of 

metamodeling methods have been applied for diverse 

applications but typically only one method has been applied 

and the basis for choosing it is not always well-founded. 

The accuracies reported in the reviewed papers are relatively 

high. Surprisingly, linear methods (OLS) provide R² values as 

Be15 Idealized quasi-steady-state BPS software 

BPS Building performance simulation 

BSim Dynamic, multi-zone BPS software 

CART Classification and regression trees 

D Number of input dimensions 

GPR Gaussian process regression aka. kriging 

hyperparameter Model specific setting that may be changed 

or tuned to increase accuracy 

LP Low-discrepancy sequences by Sobol 

MARS Multivariate adaptive regression splines 

N Number of samples/simulations 

NN Artificial neural network 

OLS Ordinary least squares linear regression 

PR Polynomial regression 

problem Output (aka. dependent variable aka. 

response variable) from BPS or theoretical 

test functions 

Pruning Reduction of model complexity to avoid 

overfitting 

regularization Addition of regularization term or penalty 

term to avoid overfitting 

R² Coefficient of determination 

RBF Radial basis function 

RF Random forest incl. regression trees  

SVR Support vector regression 
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high as 0.94–0.96 [14][15]. Slightly higher values, 0.97 and 

0.98, have been obtained from MARS and NN, respectively 

[19][20]. Chen et al. (2017) apply MARS to improve accuracy 

compared to stepwise linear regression; 0.70 to 0.77 for 

illuminance level, 0.93 to 0.97 for air change rate, and 0.87 to 

0.9 for thermal comfort [22]. The accuracies from the other 

studies are difficult to summarize, since the metrics used to 

report accuracy are not unit less nor problem independent. The 

complex BPS problems addressed in this work lead to R² 

values in the range of 0.48–0.85 using linear regression (see 

5.2.1). This calls for the use of more advanced statistical 

methods that can handle non-linearity and interaction effects. 

Even if more advanced methods are used, we encourage 

reporting R² values obtained from OLS. Thereby, it is possible 

to assess the complexity of the problem and observe how 

much the accuracy is improved. 

2.2 Previous comparisons of metamodeling 
techniques 

We now consider 10 papers, which compare at least three 

metamodeling techniques without restricting the scope to 

building performance [26][27][28][29][30][31][32] 

[33][34][35]. Table 1 summarizes recurrent features which 

include applied techniques, training set sizes, number of 

engineering and test problems, number of inputs, and 

conclusion. Note that the applied techniques may include 

variants or optimized versions. For each article, a checkmark 

indicates the “best” technique while a checkmark in 

parenthesis represents an alternative technique, which is 

almost as good or even better if another performance criterion, 

such as time consumption or ease-of-use, is more important 

than e.g. accuracy. Since each of the applied metamodeling 

techniques has at least one checkmark, it is difficult to rule 

anyone out. To sum up, the reviewed articles provide very 

different recommendations and the “best” technique depends 

on the problem at hand. Nevertheless, GPR seems to stand out 

in terms of accuracy but, at the same time, it is among the 

slowest algorithms.  

In addition to the variations shown in Table 1, the reviewed 

works differ in the extent of which hyperparameters have 

been optimized. Some methods can be “tweaked” only a little, 

such as RF. Other methods, especially NN, have a large 

number of possible configurations, which induce a potential 

for improving accuracy at the expense of time-consuming 

optimization. This makes it difficult to conduct a fair 

comparison. To address this issue, we aim to make the 

selection and variations of hyperparameters clear and 

reproducible (see 4.4.1). Finally, we try to combine the best 

practices found in these comparison papers to produce an all-

encompassing and improved metamodeling comparison. We, 

therefore, assess popular techniques under various 

requirements while varying the number of training points, 

problems, and inputs. 

3 Metamodeling techniques 

In this chapter, we present the basic principles behind the six 

metamodeling techniques, which have been selected based on 

popularity and the recommendations in the reviewed literature 

(Table 1). We have not included all the methods identified in 

Table 1. For example, extensions of linear regression, such as 

polynomial regression, are assumed to be computational 

inefficient when compared to more sophisticated high-

dimensional expansions made with e.g. SVR and GPR.  As for 

RBF, this is considered a special case of NN and we confine 

the NN analysis to the most common single hidden layer 

perceptron, since covering all NN structures would be too 

overwhelming. The reviewed methods are available in 

MATLAB R2017A except from MARS, which we test using 

an independently developed toolbox, ARESlab [36]. Each 

method has a variety of adjustable settings that affect both 

accuracy and computational effort. Examples are fitting 

methods, tuning parameters, regularization terms, 

convergence criteria, and so on. We try to identify the most 

influential settings based on the theoretical background and 

software documentation. In the next chapters, we perform 

sensitivity analysis of these settings to assess their relative 

importance and to observe if some settings seem to provide 

more robust and accurate predictions.  

3.1 Ordinary least squares linear regression 

In this paper, OLS refers to linear regression models fit by 

ordinary least squares. Such commonly used linear regression 

models are very fast, simple to apply, and easy to interpret 

[37]. Despite their simplicity, they may outperform complex, 

non-linear models in situations when data is sparse, noise is 

large, or the number of training samples is low [37]. The 

linear methods may also be applied to variables, which are 

produced by the original inputs by the use of transformations, 

basis expansions (polynomial regression), or inclusion of 

interaction terms. In our work, we apply the simple version in 

which the variables are identical to the training set data. This 

produces a measure of the linearity of the modelled problem, 

and we observe the potential benefits of using more complex 

and time-consuming machine learning methods.  
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3.2 Random forest 

Random forest is an extension of a simple and intuitive 

metamodeling approach called classification and regression 

trees (CART) [38]. A decision tree is constructed by 

recursive, binary splitting of the predictor space into non-

overlapping regions (leafs), such that new predictions equal 

the mean response value in those regions. Starting with the 

whole training set (trunk), the tree is split into two child nodes 

(branches) at a threshold value of the predictor Xi, which leads 

to the largest reduction in the residual sum of squares. In other 

words, each split maximizes the difference of the average 

response values in the two child nodes. The splitting is 

repeated recursively until a stopping criterion is met, e.g. if 

the split produces child nodes with a number of observations 

less than a given value (MinLeafSize) or if a predefined 

maximum number of splits is reached. Alternatively, the 

splitting continues until all leafs contain a single observation 

after which the tree is “pruned” to a simpler sub-tree to avoid 

overfitting.  

Decision trees are easy to interpret and visualize, but they are 

not very accurate nor robust regarding changes in the data 

[38]. To remedy this, bootstrapping techniques, such as 

bagging or random forest, are used to grow many trees, which 

are combined and averaged to provide better predictions. 

Random forest differs slightly from bagging in such a way 

that, for each split, only a subset of predictors may be 

considered. This results in de-correlated trees, which are less 

dependent on strong predictors and provide more reliable 

predictions compared to bagging [38].  

To apply random forest we use the Matlab function treebagger 

and vary the following hyperparameters: 

 The number of predictors to consider at each split 

(NumPredictorsToSample) 

 The minimum number of observations per tree leaf 

(MinLeafSize) 

For all problems, we grow 100 trees since larger numbers 

seem to increase computational with an insignificant 

improvement of accuracy. For better time comparison with 

other techniques, the computations were not run in parallel.  

3.3 Multivariate adaptive regression splines 

Multivariate adaptive regression splines (MARS) is a 

regression technique, which combines recursive partitioning 

and spline regression [39]. Basically, MARS builds a model 

of weighted basis functions. The two-stage construction 

consists of a forward phase and backward phase similar to that 

of CART with pruning. In the forward phase, MARS 

recursively partitions the training data by adding a pair of 

basis functions, which maximize the reduction of the residual 

sum of squares (RSS). To elaborate, the data is split at the 

optimal knot location using hinge functions, which results in a 

regression formula for each of the two split regions. This 

“greedy” forward approach is stopped when a maximum 

number of basis functions is reached or if the reduction of 

RSS is too small. In the backward “pruning” phase, a 

generalized cross validation (GCV) criterion is used to 

successively remove the least effective terms. This reduces the 

complexity of the model to avoid overfitting. GCV includes a 

user-defined penalty term to approximate the error from leave-

one-out cross validation. 

Since MARS is not implemented in Matlab, we use the 

independent toolbox ARESlab [36]. The model configuration 

includes more than 20 properties. As recommended by the 

developer, we pay most attention to the following: 

 The maximum number of basis functions  

 The maximum number of basis function after pruning 

 The maximum number of factors, i.e. interaction order  

 Utilization of either piecewise-linear or piecewise-

cubic modelling 

 Generalized cross validation penalty per knot (c)  

3.4 Support vector regression 

Support vector machine (SVM) is a machine learning 

approach, which is popular for classification problems, but 

SVM may also be used for regression (SVR) [37]. In a two-

class classification setting (SVM), the algorithm seeks the 

boundary or hyperplane with the maximal margin, which 

separates the training data into its respective classes with a 

minimum of misclassifications. Only observations exactly on 

the margin, or on the wrong side of the margin, are the so-

called support vectors that define the hyperplane [38]. 

Analogously, in SVR, a “best fit” hyperplane is constructed 

from support vectors, which describe observations that lie far 

from the regression hyperplane. SVR can be applied to non-

linear problems using the kernel trick which maps inputs into 

a high-dimensional feature space. This is possible since the 

solution of the support vector problem depends on the inner 

product of observations which can be replaced by a kernel 

function [40]. Popular kernel functions include the Gaussian 

radial basis function and polynomial kernels of degree d [37]. 

In this work, we use the Matlab function fitrsvm. This 

function takes more than 30 arguments of which most are 

optional and do not affect the accuracy. Based on literature 

recommendations and Matlab documentation, the following 

properties are varied [32][33][34]: 

 Three kernel functions are used: a Gaussian, a linear, 

and a polynomial kernel  

 The scaling factor (KernelScale) 

 The regularization term C, which controls the 

influence of each support vector (BoxConstraint) 

 The width of the margin , which affects the number 

of training points used as support vectors. 

3.5 Gaussian process regression (kriging) 

Gaussian process regression (GPR), also known as kriging, is 

a non-parametric Bayesian approach to supervised learning 

[41]. The Gaussian process is a collection of random variables 

which has multivariate Gaussian distribution. The main idea is 

to define a prior probability to infinitely many functions and 

then add a finite number of training points, which result in a 

posterior distribution over functions that pass exactly through 

the data points. Hence, any complex model can be fit by this 

non-parametric approach. Typically, closely connected points 

in the input space have similar response values. These 

similarities can be expressed using the covariance function, 

also referred to as kernel function, which specifies the 

covariance between pairs of random variables. The Gaussian 

process is specified by this covariance function along with a 

mean function. The choice of covariance function introduces 

different hyperparameters to be optimized. Since GPR is a 

probabilistic method, it provides uncertainty information for 
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new predicted values since every point is described by a 

normal distribution. 

In this work, we apply the Matlab function fitrgp and vary the 

following properties: 

 The kernel function 

 The basis function 

 Signal variance (sigma) 

3.6 Neural Network 

The term neural network covers a broad class of models and 

learning algorithms. In this work, we focus on the common 

feedforward neural network with a single hidden layer. This is 

also referred to as a single layer perceptron. This network 

consists of an input layer, one hidden layer, and an output 

layer. Each layer consists of a number of nodes or neurons, 

which propagate information to each of the nodes in the 

subsequent layers using weighted connections and transfer 

functions. The number of nodes in the input layer and output 

layer equals the number of model inputs and the number of 

model outputs, respectively. The number of neurons in the 

hidden layer is predetermined by the modeler. Increasing the 

number of neurons allows for more complexity at the risk of 

overfitting unless regularization or penalty functions are 

applied. The hidden layer neurons may be interpreted as basis 

expansion of the original inputs X with the neural network 

acting as a standard linear model using these transformations 

as inputs [37]. When the network and initial conditions are 

defined, a training vector is presented to the input layer and 

propagated to the output layer. The network output is 

compared to the desired output using an error function, 

typically based on the mean square error. An optimization 

algorithm is then used to update the weights and biases to 

minimize the training error. Unfortunately, the optimization 

problem typically contains many local minima. Therefore, 

different initial conditions and optimization algorithms may 

lead to different non-optimal solutions.   

For the investigation of the neural network settings, we 

constrict the analysis to the one-hidden layer perceptron for 

which the following parameters are varied: 

 Number of neurons in the hidden layer 

 Training function minimizing the mean-square-error  

 Transfer function for the hidden layer 

 Transfer function for the output layer 

4 Methodology 

As stated in the introduction, we strive for a comprehensive 

comparison study of six popular metamodeling techniques 

with emphasis on building performance simulations. This 

chapter explains our approach, which is based on the lessons 

learnt from the literature review. First, we establish which 

measures to use when assessing the performance of the 

metamodels. Accuracy is of particular interest, and we report 

it using the unitless and problem-independent R² values. Next, 

we describe 13 “problems” from BPS and theoretical 

benchmark functions, which provide diversity and 

transparency to the study. For all problems, we construct 

metamodels for a great range of training points, which allows 

us to determine when the accuracy converges and when the 

time-consumption exceeds different thresholds. This helps 

balance accuracy and time-consumption for different 

applications. Lastly, we describe how to use a grid based 

approach and sensitivity analysis to test a variety of model 

settings for different techniques in a consistent manner.  

4.1 Performance measures 

The performance of a metamodeling technique can be 

assessed using a variety of qualitative and quantitative 

measures [42]: 

 Accuracy describes how much the metamodel outputs 

deviate from the real model outputs.  

 Computational efficiency relates to the 

computational effort of constructing and tuning the 

metamodel along with the calculation of new 

predictions 

 Robustness refers to the ability to provide acceptable 

accuracy for diverse problems with varying levels of 

complexity and dimensionality 

 Simplicity or ease-of-use. The method should be 

simple to implement with few user inputs and easy to 

configure for each problem 

 Interpretability or transparency describes the amount 

of insight which the method gives into model behavior 

such as parameter importance and interaction effects 

To some extent, we address all of these in our comparisons. 

The criteria for selecting a metamodeling technique differ 

with the problem at hand, as explained in the introduction. 

However, accuracy is often a decisive factor. We apply the 

well-known coefficient of determination, R², which is a unit 

less measure of the global error with an optimal value of 1 

making the measure practical for comparison. R² is correlated 

with two other common metrics, the mean-square-error (MSE) 

and the root-mean-square-error (RMSE) [42]. There are no 

universal threshold values to determine the accuracy. In the 

context, we arbitrarily consider a metamodel with R²>0.9 as 

reasonable, R²>0.95 as accurate, and R²>0.99 as near perfect, 

respectively. However, a metamodel based on OLS with a low 

value of 0.4 has been shown to provide sufficient information 

and guidance in a Monte Carlo filtering process [10]. Though, 

this requires an adjustment of filter criteria and causes a 

problem with a monotone response.  

Computational efficiency is another important aspect of 

metamodeling. The underlying equations may indicate how 

the computational requirements depend on dimensionality of 

input space, observations, expansion functions, interactions, 

etc. However, the efficiency is also highly dependent on the 

software, amount of tuning, convergence criteria, 

parallelization, and so on. Therefore, we strive to provide 

rough measures of the computational efficiency with respect 

to the applied technique, the input size, and the number of 

training point and new predictions. We distinguish the 

computational efficiency by the units milliseconds, seconds, 

minutes, and hours. For real-time analysis and design space 

exploration, computations are preferably measured in 

milliseconds. Computational time varying from seconds to 

about a minute may be acceptable for a modeler doing manual 

tuning and analysis. When the time frame is several minutes 

or hours, the user cannot be expected to wait for the results, so 

the computations must be run in the background, during 

breaks, or overnight, which limits the applicability. 

 

 

60



 
 

4.2 BPS models and test problems 

For this work, we consider five types of output from building 

performance simulations related to two separate cases; a 

generic office room and a project-specific educational 

building. In addition, we test the metamodeling techniques for 

eight theoretical test problems with varying degree of 

complexity and dimensionality. The data sets can be accessed 

online from Mendeley Data [13]. 

First, we describe the generic office room, which can be 

modified by 14 variable inputs and the performance of the 

design is assessed by four aggregated simulation outputs. The 

variable inputs, which include window size, room depth, 

internal loads, and airflow, are important to building 

performance but difficult to assess and fixate during early 

design stages. Their variabilities are described by probability 

distributions as shown in Table 2. Using quasi-random 

sampling, we perform a Monte Carlo experiment to make 

performance simulations in the multi-dimensional feature 

space. The BPS software BSim, version 7.16.1.19, is used for 

whole-year, dynamic simulations of the indoor climate and 

energy demand and to evaluate the daylight factor (DF) [43]. 

For each simulation, we consider four aggregated outputs:  

 Energy sums up the yearly energy demand related to 

heating, cooling, ventilation, and lighting. Measured 

in kWh/m² floor area. 

 DF>2% is an indicator of daylight availability 

measured by the percentage of the room working 

plane with a daylight factor above 2%. 

 h>26°C is the number of hours with indoor 

temperature above 26°C, which is a measure of 

thermal (dis)comfort. 

 Max CO2 refers to the yearly maximum CO2 level. It 

is measured in parts per million (ppm) and indicates 

air quality. 

These performance objectives are problematic to optimize, 

since improving one of them often worsens the others and, in 

addition, the design parameters affect other objectives, such as 

aesthetics and costs. In addition, some of the 14 inputs are 

redundant with respect to the individual outputs, e.g. only a 

few inputs affect the CO2 level. This may pose a challenge for 

some metamodeling techniques. 

Now, we consider the building specific BPS problem, which 

estimates the yearly energy demand for a 15,000 m² 

educational building. For this case, 10 variable inputs describe 

the variability during early design. The energy demand is 

computed with Be15, version 8.16.2.4, which is based on the 

quasi-steady-state monthly method from ISO 13790 [44]. The 

underlying equations and the level of detail contained in the 

Be15 software are much simpler than the differential 

equations and complexity used in BSim. From a BPS 

perspective, it is of interest to compare the metamodeling of 

Table 2: Probability distributions describing the variability of the design parameters for the generic office room. 

Figure 1: Output distributions for the four aggregated performance indicators for the generic office room. 
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the energy demand calculated by two models of different 

complexity.  

The five BPS “problems” represents common ways to 

aggregate results from whole-year building simulations. 

Figure 1 shows the output distributions of 10,000 samples. 

Except for the energy related outputs, the distributions are 

somewhat irregular judged by their multi-modality, skewness, 

and peak behavior. Such characteristics may pose a challenge 

to the metamodeling techniques. 

To provide a more thorough comparison, we also consider the 

eight theoretical test problems listed in Table 3. Initially, we 

looked for recurrent problems in earlier works, but found that 

accurate metamodels could easily be obtained for some of 

these problems [31][32][35][45]. Presumably, this is 

achievable since the specific problems are best suited for 

testing of optimization algorithms and not for metamodeling. 

Thus, the general behavior may be easily reproduced leading 

to high accuracy while small subtleties, describing the 

function optima, are overlooked, see e.g. the McCormick 

optimization problem. Therefore, we searched for test 

problems better suited for metamodeling by emphasizing non-

linearity, input interactions, and varying dimensionality 

[46][47]. Though, two problems, Ishigami and The Primer, are 

included because of their applicability to test sensitivity 

analysis methods [48][49]. 

4.3 Data generation and preparation 

Training data may be generated in variety of ways. These 

include design of experiments with samples near the design 

space boundaries (Box-Behnken, factorial), space-filling 

sampling (Latin hypercube design, low-discrepancy 

sequences), and sequential sampling where new sample points 

are generated adaptively in regions where more information is 

needed [50]. In this context, building simulations are 

performed in a single event using low-discrepancy sequences 

(Sobol’s LP) which are assumed to cover the design space 

more evenly when compared to random sampling or Latin 

hypercube sampling as indicated by studies of Kucherenko et 

al. (2015) [51][52]. This process consists of the following 

steps. First, Sobol sequences are used to generate N points in 

an n-dimensional unit hypercube where n equals the number 

of inputs in the given function. Next, the points are converted 

to an N  n input matrix using the probability distributions 

shown in Table 2 and Table 3. Finally, we perform building 

simulations for each row in the input matrix to obtain the 

building performance outputs. This simulation process is 

automated from Excel Visual Basic for Applications (VBA). 

Similarly, the test problems defined in Table 3 are evaluated 

using Matlab. 

The appropriate size of training data depends on the shape 

and complexity of the original model along with the 

computational budget. At some point, more points only lead to 

a negligible improvement at unacceptable computational 

costs. Estimating the appropriate size using heuristic formulas 

leads to very different recommendations, e.g. in the range of 

2·101–104 for problems with 14 dimensions [31][53]. The 

computationally acceptable limit in our case was 10,000 

simulations, which could be done over the course of a 

weekend on a laptop running a single core. 

For each problem and technique, a metamodel is trained using 

an exponentially increasing number of points in the range 32 – 

8,192. To select the best model settings, we use a validation 

set with half the size of the training set. However, we use the 

same 500 test points to assess the accuracy of the chosen 

metamodel for all cases. Prior to training, the data for the BPS 

problems is standardized by subtracting means and dividing 

by standard deviations, since the variables are measured in 

different units. 

4.4 Assessing model settings and convergence 

The metamodeling process has been performed in two distinct 

steps, A and B, as listed in Table 4. In step A, emphasis is on 

model settings and tuning of hyperparameters. The aim is to 

assess how easy the methods are to apply and how much the 

performance varies with different settings. Next, we apply 

sensitivity analysis to assess the relative importance of model 

Table 3: List of theoretical test problems.                    denotes an input x distributed uniformly in the  

range (a,b), and                       denotes a normally distributed input x with mean  and standard deviation . 
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settings used in step A. This enables us to find suitable 

options and values for a reduced set of variable settings in step 

B. Finally, we gradually increase the training set from 32 to 

8,192 points and compare accuracy, efficiency, and 

robustness. 

4.4.1 Variation of model settings 

All metamodeling techniques may be configured and 

optimized in various ways. These model settings or 

hyperparameters can be categorical (e.g. kernel function and 

neural network class), ordinal (e.g. polynomial order and 

interaction order), or continuous variables (e.g. margin width 

and signal variance). Some settings induce additional and 

possibly different “subparameters”, such as particular tuning 

parameters related to different kernel functions. Obviously, it 

is not possible to perform a complete investigation of the 

infinite configurations. The process of finding a suitable 

configuration or optimized model is referred to as model 

selection or hyperparameter optimization. Different 

approaches, to do so, include random search, grid search, and 

optimization. Here, we perform grid searches of the 

hyperparameters identified in chapter 2. A grid search is an 

exhaustive approach where all combinations of discretized 

hyperparameters are trained. Table 5 lists the discrete options 

chosen for these hyperparameters for both steps, A and B. The 

options used in step A are based on recommendations in the 

software documentation, and include the default settings.  

The motivation for the grid based approach, in step A, is not 

to find the optimal configurations, which may be time-

consuming or even unattainable. Instead, the idea is to cover a 

variety of settings for each technique in a similar and fair way 

that indicate the potentials and ease-of-use of the methods. By 

including the default values, we can assess how well a method 

performs “out-of-the-box” without tuning and optimization. 

We investigate whether the best settings at low training sets 

also yield good metamodels with larger training sets. If so, 

this strategy may help to reduce the computational effort of 

optimizing metamodels for large training sets.  

4.4.2 Sensitivity analysis 
An advantage of the grid search is that it facilitates the use of 

sensitivity analysis. This enables us to identify the least 

influential hyperparameters which may be fixated in step B 

with a minimum decrease in the variation of the measured 

performance (R²). For “factor fixing”, it is common to apply a 

global sensitivity analysis method that estimate the inputs’ 

total order effects, which describe inputs’ combined 

contributions to output variance [49]. We apply a regionalized 

sensitivity analysis method denoted SATOM [54]. This method 

ranks inputs by repeatedly performing random splits of the 

sorted output distribution and compare the averages of the 

Smirnov two-sample test statistics for the split input 

distributions. The method can be used for factor ranking and 

factor fixing, since the SATOM measures rank similar to total 

order effects of the inputs [54]. An important feature is that 

SATOM works with the grid based sampling, which is not 

attainable with the more commonly used methods of Morris 

and Sobol (decomposition of variance).  

When the least significant settings have been identified using 

SATOM, we broaden the sensitivity analysis using Monte Carlo 

filtering to fixate these settings at their most suitable options 

and reduce the variations of others. For each metamodeling 

technique, we use an interactive parallel coordinate plot 

(PCP), combined with histograms showing parameter 

distributions, to identify settings that provide the most 

accurate models (see Figure 5). In the PCP, each line 

represents a specific metamodel configuration and the 

resulting R² values (truncated to zero). Histograms represent 

the parameter distributions that remain after filter criteria are 

applied to one or more of the parallel axes. If the histogram 

shows a large bin for a particular value of an insignificant 

hyperparameter, we can fixate the hyperparameter at this 

suitable value. 

4.4.3 Accuracy, efficiency, and robustness 
Following the sensitivity analysis, we can proceed to step B 

and construct metamodel for much larger training sets but 

with less hyperparameter configurations (Table 5). The 

purpose is to assess accuracy, efficiency, and robustness with 

respect to variable training sets and diverse problems. 

Presumably, the variation of hyperparameters now only 

include the most suitable settings. We therefore assume that 

the accuracy obtained with the limited variations is still a 

reasonable indicator of the potential of the metamodeling 

technique. Presumably, the accuracy of each metamodel can 

be improved slightly but it comes at the expense of more 

tuning and increased time consumption. 

5 Results and comparison 

5.1 Model settings 

This first step of the two-step approach defined in Table 4 

concerns the ease-of-use of the metamodeling techniques with 

respect to model settings. To do so, we assess the accuracy 

obtained using default settings and we test whether the best 

settings at small training sets also produce the most accurate 

metamodels for large training sets. Afterwards, we apply 

sensitivity analysis to reduce the number of configurations to 

be used in the second step presented in section 5.2.  

 

Table 4: Extent and purpose of the two-step investigations. 
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  Table 5: Model settings varied in the grid searches in step A and B. 
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5.1.1 Ease-of-use 
Figure 2 and Figure 3 show the results from the grid search 

approach applied to the BSim outputs Energy and h>26°C 

using 64, 256, and 1024 training points, respectively. On each 

box plot, the median is indicated by the central mark, the 25th 

and 75th percentiles correspond to the box edges, and the 

minimum and maximum values lie at the whiskers. “Extreme” 

data is compressed below the dashed line when some R² 

values lie considerably below 0.5. On each plot, orange 

diamonds show the results when using default settings. Blue 

crosses show the results when reusing the settings that provide 

the highest accuracy for the smallest training set of 64 

simulations. The tables below show the hyperparameter 

settings that provide the highest accuracy for each of the grid 

searches.  

The box plots show relative small spreads for RF and GPR 

and large spreads for SVR and NN. The former methods are 

thus less sensitive to the chosen settings, and GPR even 

provides the most accurate results for both problems. 

Reasonably accurate models may also be obtained using SVR 

and NN, though it requires more tuning to find the most 

suitable settings – especially with SVR. In general, the default 

values do not yield the best performance, which makes the 

importance of model selection and tuning more critical for 

SVR, MARS, and NN. For GPR, only the default kernel uses 

the same length scale for each predictor whereas the other 

kernels, in our grid search, use separate length scales, which 

results in more accurate models.  

The rationale for reusing the configuration that leads to the 

best results for the smallest training set (blue crosses), is to 

reduce the computational effort of the hyperparameter 

optimization. Indeed, this approach provides better results 

than the defaults values except from the MARS metamodels 

of the Energy output. Particularly for SVR and GPR this could 

be a time-saver and assist the modeler in choosing suitable 

hyperparameters before training metamodels with large 

datasets. Finally, we observe that the best settings, for each 

grid search, may vary considerably as shown below the plots. 

5.1.2 Sensitivity analysis of model settings 
The next step is to perform sensitivity analysis to identify the 

least influential variables used in step A and to find suitable 

settings for step B, which includes more training set sizes for 

all BPS and test problems. For the SATOM sensitivity analysis, 

we use the three training set sizes, 64, 256, and 1024, for all 

BPS and test problems. The relative sensitivity measures are 

shown on Figure 4. The “Dummy” variables help identify 

inputs with insignificant influence on the R² value. Such 

insignificant inputs include Minimum number of leafs for RF, 

Kernel Scale for SVR, Maximum interactions and GCV knot 

penalty for MARS, Transfer function for hidden layer for NN, 

and Basis function for GPR. These settings may be fixated 

with limited effect on the metamodel accuracy. Instead, we 

pay more attention to the most sensitive settings. Note that the 

tuning parameter, neurons, for NN seems unimportant. This is 

probably caused by the varying number of variables in the 

various problems. The same may apply to e.g. the Minimum 

number of leafs for RF.  

Now, we apply Monte Carlo filtering using the interactive 

parallel coordinate plot to identify suitable for settings for the 

reduced number of configurations in step B. An example of 

this filtering approach is shown on Figure 5, which concerns 

the NN metamodels. The top plot shows all configurations for 

a total of 2496 NN metamodels along with the achieved R² 

values and how the metamodels rank with respect to each 

problem. In the bottom plot, a filter criterion is applied to the 

coordinate “Rank” to focus on the 10% most accurate 

metamodels for each problem. Note that “Rank” is strongly 

correlated with R² but problem-independent. From the 

histograms, we observe that none of the top 10% ranked 

metamodels have a “saturating linear” transfer function for the 

output layer (TF output). This is the reason that setting TF 

output stands out as the most sensitive parameter in the SATOM 

analysis shown on Figure 4. Hence, this setting is set to the 

option “linear” in the extended analysis. In contrast, the 

histogram bins are equally large for the two options for the 

least sensitive setting, TF hidden. Therefore, this setting can 

be set to the default option “tan-sigmoid” without affecting 

accuracy notably. The second-most influential setting is the 

type of training function for which Bayesian regularization 

(BR) and alternatively Levenberg-Marquardt (LM) are the 

best options based on their bin sizes. In the extended analysis, 

we choose to use BR and only vary the number of neurons to 

tune the models.  

Similar investigations have been performed for all 

metamodeling techniques except OLS. The fixated options 

and reduced variations for the extended analysis in step B are 

shown in Table 5. Note that by filtering the R² values, we 

have been able to assess whether some settings work better for 

the test problems and other settings are more suitable for the 

BPS problems. Indeed, this was the case for the kernel 

function applied to SVR, where the Gaussian radial basis 

kernel generally performed better for the test problems 

whereas the polynomial kernel was preferable for the BPS 

problems. Since focus is on the BPS problems, we use the 

polynomial kernel for step B and vary the degree of the 

polynomial between 3 and 5 to allow for more complexity.
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5.2 Convergence with variable training sets 

In step B, we construct and compare metamodels for nine 

training set sizes shown in Table 4. The reduced set of 

hyperparameter variations are shown in Table 5. 

5.2.1 Accuracy 
First, we consider the accuracies obtained for each of the 

BSim outputs modelled with variable training set size as 

shown on Figure 6. Again, OLS is mainly used as reference 

for the linearity of the problems (note that R² converges at 

0.48 for h>26°C). Except for Max CO2, GPR provides the 

most accurate models whereas RF has the poorest 

performance. NN, MARS, and SVR provide similar 

accuracies. The Energy output, which showed the most 

regular distribution on Figure 1, is the easiest to metamodel, 

whereas no method provided an accurate model for Max CO2. 

In terms of convergence, the increase in accuracy levels off in 

the range from 512 to 2048 training points. Again, Max CO2 is 

an exception, and remarkably, the accuracy decreases for GPR 

at the largest training sets. 

Now, we extend the investigation to include the Be15 Energy 

output and the eight test problems. Figure 7 shows that these 

problems can be modeled with higher accuracies and at lower 

training costs. For each of these problems, a near-perfect 

model, with R² larger than 0.99, can be obtained with 256 

training points or less. Note that OLS can provide an accurate 

model of the Be15 Energy output with R² larger than 0.95. 

Thus, OLS may be sufficient for this aggregated output from 

Figure 4: Relative sensitivity measures with respect to problem type, number of training points, and varied hyperparameters in step A. 

Figure 5: Interactive parallel coordinate plots used to identify suitable settings from the variations of NN in step A. The top plot 

has no filters whereas the bottom plot shows the top 10% best metamodels for each problem. A red rectangle indicates this filter 

criterion and histograms show distributions of filtered data. 
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the idealized BPS software. On Figure 7, a grey cross is used 

when the accuracy of the applied technique is less than the 

maximum R² value obtained from OLS for the specific 

problem. This is used to indicate very poor performing 

metamodels (or insignificant training data), since these 

metamodels do not even describe the linear tendencies of the 

problem. 

5.2.2 Robustness 
Here, we wish to assess the robustness of the techniques 

towards diverse problems with varying levels of complexity 

and dimensionality. Since we concentrate on data from 

building simulations, we do not consider the influence of 

outliers, mixed data types, and noise. As indicator of 

robustness, previous works have used the standard deviations 

of the accuracies obtained from multiple problems [31][33]. 

Therefore, mean values and standard deviations are shown 

below the heat map on Figure 7. In most cases, the standard 

deviations decrease with increasing training sets. In general, 

GPR has the lowest spread, and SVR and OLS the largest1.  

A drawback of using standard deviation as robustness 

indicator is that it does not reveal inconsistencies such as 

modeling failures or decreasing accuracies. For example, the 

GPR method simply failed for test problem F with 4,096 and 

8,192 training points. Similar errors appeared for SVR with 

problem D and H. Such failures are somewhat disturbing, 

especially when the metamodeling is to be automated as 

intended for the case “C” described in the introduction. 

Finally, we remark that the accuracies obtained for RF and 

NN vary when repeating the metamodeling even without 

changing the settings. For instance, when repeating the 

metamodeling of Be15 Energy 50 times for NN with 256 

training points, the R² varied from 0.86 to 0.94. For RF, the 

corresponding approach gave results from 0.84 to 0.86. Such 

variations are not critical, but it might complicate the 

hyperparameter tuning since the “optimal” settings are not 

consistent.  

5.2.3 Efficiency 
It is troublesome to compare the computational efficiency due 

to software dependency, stopping criteria, amount of tuning, 

etc. With that in mind, we aim to compare the efficiencies 

with respect to training size, new predictions, and input 

dimensionality. Figure 8 clearly shows that OLS is 

computationally much more efficient than the more complex 

regression methods. NN also stands out since the 

computational effort is relatively constant and NN is less 

                                                                        
1 We remark that SVR can provide more accurate models for the test 

problems using Gaussian kernel functions. 

time-consuming with large training sets and many new 

predictions. SVR is the second-most efficient up to a few 

hundred training points. MARS becomes very laborious with 

thousands of training points, which can take hours depending 

on the amount of hyperparameter optimization. Training time 

also increases rapidly for GPR. As seen on the middle plot, 

GPR is the least efficient method for making new predictions 

when the model is trained with more than 128 observations. 

Again, NN is far more efficient and relatively constant. The 

right plot on Figure 8 shows the training time for a selection 

of problems with varying dimensionality. The fluctuations 

indicate that the training time depends much more on the 

complexity of the model than on the number of inputs. An 

increase in time can be observed for GPR. Therefore, there 

may be a time saving potential of removing redundant input 

prior to training. For example, the Max CO2 output only 

depends on a few of the 14 inputs, and the redundant inputs 

for this output could be removed using sensitivity analysis.  

5.3 Interpretability 

We conclude this chapter with a brief and general description 

of the interpretability based on textbook material and software 

documentation. OLS is the simplest method and easy to 

interpret. The regression coefficients reveal the linear 

response to input changes and their magnitude indicates the 

relative importance of the inputs. RF is made up of a 

collection of regression trees (CART), which by themselves 

are intuitive to understand and the “tree structure”, obtained 

from the recursive splitting, can be illustrated with 

dendograms. However, the aggregation of multiple trees in RF 

obscures the internal structure of the model and makes RF 

difficult to interpret. The treebagger toolbox does, however, 

provide a measure of the inputs’ relative importance. The 

related MARS technique is fairly transparent. A MARS model 

consists of a sum of basis functions, which show the response 

in the recursively split regions. The basis functions also reveal 

interactions between inputs. However, understanding the 

hinge functions may require some practice, and the model can 

become unmanageable to interpret with large numbers of basis 

functions. A SVR model with a linear kernel function is 

comprehensible, but it is hard to interpret models with other 

kernels, which are typically necessary for sufficient flexibility 

of the SVR technique. Likewise, the kernel based GPR 

approach is difficult to comprehend. Finally, NN is possibly 

the least interpretable method and is often described as black 

box, which is flexible but provides no insight of the structure 

of the function being approximated.                                                

Figure 6: Convergence investigation of R² values with increasing training set sizes for the BSim outputs. 
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6 Discussion 

We first discuss the best metamodeling candidates for three 

scenarios with differing requirements of user experience, 

computational efficiency, and robustness (see 1.2).  

A. Expert with considerable time (~days) and emphasis on 

accuracy. 

In general, GPR is likely to produce the most accurate 

metamodels but the construction process becomes 

unstable and inefficient with thousands of training points. 

Instead, NN can be constructed relatively fast with large 

training sets and still provide millions of new predictions 

in a fraction of a second. With sufficient time and 

expertise, the modeler may be able to tweak the 

configuration of NN considerably and obtain better 

accuracies than presented here. In this study, the 

configuration was restricted to a single layer perceptron. 

B. Non-expert with limited time (~hours) and need for ease-

of-use and robustness 

In a matter of hours (or overnight), it is possible to create 

a medium-sized training set of 128–512 building 

simulations. In that case, GPR seems the best candidate 

since it produces accurate metamodels for diverse 

problems with little need for hyperparameter 

optimization. Another advantage of GPR is its 

probabilistic structure, which provides uncertainty 

estimates, with confidence intervals, of new predictions. 

C. Automated metamodeling requiring a minimum of 

training points (obtained in minutes) and high robustness 

With only 32 training points, we obtained near-perfect 

metamodels (R>0.99) for half of the test problems. In 

contrast, as much as 128 points were needed from the 

BPS problems just to exceed the maximum accuracies 

obtained from OLS. It is not possible to run that many 

simulations within a few minutes using advanced BPS 

software such as BSim. In this case, it seems necessary to 

use faster software, e.g. the normative Be15. Combining 

such software with fast OLS metamodels could enable 

design space exploration in the matter of seconds – 

though, with a loss of accuracy and level of detail. 

For this comparison study, we have split the data into three 

sets for training, validation, and testing. However, it is often 

advantageous to use cross-validation or bootstrapping when 

data is scarce, e.g. for the cases B and C. The recommended 

techniques differs for the three cases, which also help explain 

the lack of consistency of the preferred methods in the 

reviewed papers in Table 1. One stands out, since GPR tends 

to perform well in most studies when emphasizing accuracy, 

though it is inefficient for large data sets [27][29][31][32][33]. 

To round off, we discuss some pros and cons of the 

methodology used to compare metamodeling techniques. We 

set out to broaden the study when compared to the papers 

listed in Table 1. It has turned out rewarding to include 

problems from both real-life applications (BPS) and well-

known theoretical functions. For example, we observed that, 

for SVR, the recommendable settings differed for the BPS 

problems and the test functions. In general, the BPS problems 

requires significantly more training data and high accuracies 

are harder to obtain. One reason is the aggregation of model 

outputs which causes a loss of information and leads to 

irregular shaped distributions, which are difficult to emulate 

(see 4.2). Test problems with noisy data have not been 

considered, since emphasis is on building simulations. 

However, the inclusion of “noisy” problems, and problems 

from other engineering disciplines, would produce better 

insight into the capabilities of the techniques.  

Each technique have a great variety of method-specific 

settings2. This makes it hard to conduct a fair comparison to 

reveal the potential of each methods and to identify suitable 

settings for a collection of problems. We chose to discretize 

up to five settings and used a grid search to evaluate all 

combinations. An alternative approach using optimization 

algorithms might have produced more accurate models by 

identifying better values for the continuous variables. Though, 

optimization algorithms would add yet another layer of 

complexity to the study, and the chosen algorithm might work 

better for some techniques than others, and thus obscure the 

comparison.  

The use of sensitivity analysis has enabled us to fixate the 

least significant model settings, thereby making 

hyperparameter optimization less burdensome at larger 

training sets. This use of sensitivity analysis for factor fixing 

may be automated in metamodeling. In contrast, the visual 

and user-dependent investigation, using parallel coordinate 

                                                                        
2 Settings may refer to continuous, discrete, and categorical variables 
and entire setups, such as ensemble methods for RF or network 

structure for NN. 

Figure 8: Left: Average time spent to train the models for the BSim problems. Middle: Time spent to perform 106 new predictions 

for the best models for the BSim problems. Right: Time spent to train models with 1024 training point for problems with varying 

input size. 
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plots, do not work for automated implementations of 

metamodels. If time allows it, it does provide valuable 

information on suitable settings when used in a grid based 

approach. 

7 Conclusion 

This work builds upon the learnings from 10 papers which 

compare a variety of metamodeling techniques for supervised 

learning. Across those studies, there was no consensus on a 

single “best” technique but we did identify six prevalent and 

popular methods. These six were chosen as possible 

candidates for the construction of fast metamodels to 

overcome the computational barrier related to design space 

exploration, design optimization, and sensitivity analysis. To 

perform an extensive metamodeling comparison, we 

combined best practices from the literature review and 

considered 13 diverse problems, with varying dimensionality 

and complexity, using nine different sizes of training data. 

Since the “best” technique depends on the given context and 

its purposes, we considered metamodeling performance for 

three scenarios with different requirements of time 

consumption and user interaction.  

A methodological approach was required to conduct a fair, in-

depth comparison of metamodeling techniques which may be 

configured endlessly to improve the accuracy of new 

predictions. A grid search approach was preferred to assess all 

combinations of several discretized model settings. The 

alternative use of an optimization algorithm might have 

produced slightly more accurate metamodels by optimizing 

continuous variables, but it would have added another layer of 

complexity to the comparison and made it less transparent and 

reproducible. The grid search allowed us to perform 

regionalized sensitivity analysis to fixate the least important 

settings and identify suitable options for the most influential 

ones. This allowed us to assess efficiency, robustness, and 

accuracy for training sets ranging from 25 to 213 points. 

The following summarizes the key findings related to model 

settings: 

 In general, default settings yielded poor or mediocre 

accuracies. Thus, the defaults were of little use which 

stressed the need for hyperparameter optimization. 

 Sensitivity analysis helped fixate the least influential 

settings and identify suitable options for important 

settings for a collections of problems.  

 For SVR, the most suitable settings differed notably 

for the BPS problems and the mathematical test 

functions. This implies that SVR are less robust and 

more settings must be considered for diverse 

problems. 

The following findings relate to accuracy and efficiency: 

 In general, GPR produced the most accurate 

metamodels, followed by NN and MARS. Linear 

regression using ordinary least squares (OLS) was 

mainly used as a benchmark and provided poor 

accuracy due to the non-linearity of the problems. 

 GPR metamodels with R2>0.99 were obtained for all 

eight mathematical benchmark functions using 

between 32 and 256 training points. In contrast, the 

BPS problems required much larger training sets: 

2,048 to achieve R2>0.90 for Max CO2, and between 

1,024 and 4,096 to achieve R2>0.99 for the other 

outputs obtained from the advanced BPS software 

(BSim).  

 OLS was, by far, the fastest method for both training 

and new predictions. For the most accurate, non-linear 

methods, NN proved the most efficient for large 

training sets whereas GPR became slow and even 

“unstable”. 

 The dimensionality, i.e. the number of model inputs, 

had only a small influence on both accuracy and 

efficiency. 

Hopefully, this comparison study will provide a good starting 

point for novices in metamodeling and contribute to the 

proliferation of supervised learning. The applied methodology 

and the findings are relevant to both researchers and 

practitioners – not limited to the field of building performance 

simulations. A logical next step would be to extend the 

comparison to address data which include noise, e.g. 

measurements of energy consumption or perceived indoor 

comfort. To gain more insight into the performance of 

metamodeling, we encourage others to extend this comparison 

by testing additional problems and techniques. For 

comparability, we advocate the use of the problem-

independent coefficient of determination, R2, to report 

accuracy. 
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3.3.2 CONCLUDING REMARKS 

Paper D has shown that accurate and rapid metamodels can be generated for diverse building performance 

indicators. Though, we note that a considerable amount of building simulations is needed to train the metamodels. 

For instance, hundreds of simulations are required to obtain reasonable accurate models for the “generic” office 

modelled with BSim. Another drawback is that metamodels are only valid in the domain used to generate the 

models. Thus, new metamodels must be generated if the choice of design parameters changes of if the ranges of 

variation are extended.  

To round off, we have a few remarks to bridge the gap between Paper C and Paper D in terms of metamodeling. 

The observant reader may have noticed that we did not include the SDP (state-dependent parameter regression) 

method in Paper D even though it showed promising accuracy in Paper C. The reason is that SDP did not frequently 

occur in the literature review [24]. Moreover, we knew from experience that SDP metamodeling easily takes hours 

with a few thousand training sets. In addition, the available Matlab code was limited to include only first and 

second order effects.  

Another remark relates to the issue of filter criteria, which can have large impact on the histograms used to guide 

decision-makers during Monte Carlo Filtering [23]. In Paper C, we argued that the specific criteria can be adjusted 

to obtain better matching histograms. As a result, the linear regression models could yield similar histograms as 

obtained when filtering the original simulations (see Figure 11 in Paper C). This worked despite the inaccurate 

regression model for the output Overtemperature for which the R²-value was only 0.41. It was hypothesized that 

with a more accurate metamodel the inconvenient filter adjustments would be unnecessary. Here, we extend the 

analysis with accurate GPR metamodels. The GPR models are trained with 1.000 simulations which result in R² 

values larger than 0.98 for test data. Figure 3-4Figure  shows input distributions of the “behavioral” simulations 

obtained with the original model, Be10, and the metamodel methods, SRC, SDP, and GPR.  

 

Figure 3-4: Selected input distributions when using the same filter criteria (extension of the Figure 11 in [23]) 

From Figure 3-4Figure , we notice that the more accurate models from GPR provide better approximation of the 

g-value histogram as compared to SRC and SDP. Despite the use of accurate metamodels, we still observe 

discrepancies between histograms related to the original model, Be10, and GPR. Such discrepancies are observed 

in the low ranges for Heat capacity and Side fins. Moreover, we notice that the number of “behavioral” simulations 

for GPR (425) is still much lower than for the original model (959). To understand why these differences occur 

despite the use of highly accurate metamodels, we look at the distributions for Overtemperature on Figure 3-

5Figure . The tall bin for Be10 is caused by 4269 simulations that yield a value of exactly zero. In contrast, the 

regression models provide continuous outputs. As consequence, roughly half of these “zero” simulations are 

slightly less than zero and the others are slightly larger than zero for SDP and GPR. 
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Figure 3-5: Distributions for “Overtemperature” for the original model, Be10, and three metamodels. 

In conclusion, awareness is required when building code criteria corresponds to a discrete value that dominates 

the distribution. Fortunately, this rare issue is easy to observe from the output distributions and it may be 

circumvented by adding a small “buffer” to the filter value. Thus, metamodeling is still considered a necessity 

when exploring multidimensional building performance simulations. In paper D, we mentioned how metamodeling 

may be implemented in three stages, which we elaborate on in the next chapter. 
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4 NEXT LOGICAL STEPS 

To follow up on the developments presented in the previous chapters, we round off with a brief description of 

current and upcoming work related to holistic, multi-dimensional building simulations. In Paper D, which mainly 

involves metamodeling, we briefly describe how metamodeling may be applied in a building performance context 

in three separate stages or “development steps”. In this chapter, we elaborate on the logic and novelty of these with 

emphasis on the first step, which relates to our current, non-published work. Again, the work is influenced by the 

needs of the host company, MOE, and the common approach to building simulations in Denmark. 

4.1 NEXT STEP – GENERIC PRE-SIMULATED ROOMS 

The first step is the development of a design method that combines “pre-simulated” generic rooms with the project-

specific, whole-building simulations. This approach resembles the method described in Paper F, in which pre-

calculated Monte Carlo simulations describe the variability and thermal performance of “critical” rooms. That 

method, however, was limited to address thermal comfort in Danish residential buildings. Here, the idea of “pre-

simulated” spaces is extended by encompassing diverse building functions and addressing multiple performance 

objectives.  

We aim to define and pre-simulate “generic” rooms that represent building spaces that are often “critical” and 

therefore affect building design. Examples are office spaces, meeting rooms, and lecture rooms, whereas secondary 

spaces, such as toilets and corridors are omitted. Each “generic” room is described by variable design parameters, 

which lead to a room-specific, multidimensional design space. To assess the performance of all room 

configurations, we perform Monte Carlo simulations after which metamodels are created for each performance 

indicator. For the office example used in Paper D, metamodels were constructed for a few, diverse performance 

indicators; total energy demand, thermal comfort, daylight factor, and air quality. Actually, other common 

performance indicators have also been assessed and stored in a database along with the design inputs for all generic 

rooms. The design team may then choose to include only the performance indicators that suit the given project. 

The diversity of performance indictors can exemplified by the many contributors to energy demand (e.g. lighting, 

heating, and cooling) or the different aggregation of outputs (e.g. h>26 °C, h>27 °C, CO2>900 ppm, CO2>1.000 

ppm, etc.). 

The intended use of generic rooms is to combine them with whole-building simulations during early design phases. 

The existence of a BIM model is not necessary. The design team identifies potential “critical” or “representative” 

rooms based on building shape and a rough disposition of room functions. Often, budget and time constraints limit 

the number of rooms to consider. For most projects in MOE, this number of rooms is between three and six. The 

idea is to analyze these rooms using parallel coordinate plots for the corresponding generic rooms. At the same 

time, a PCP for the whole-building simulations is added to the same graphical interface as shown on Figure 4-1. 

The design team can then simultaneously test various designs for each room and the whole building. 
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Figure 4-1: Possible setup of graphical user interface which include floor plans with highlights of critical rooms, PCPs for 
generic rooms, and a PCP for the whole building. 

The ideas presented here are still untested and much work remains. This includes defining the rooms and their 

variability, performing the simulations, constructing the metamodels, and setting up the database and user 

interface. We also need to consider how to connect correlated design variables and how to model the building such 

that it fits the variability of the generic rooms.  

4.2 FURTHER STEPS 

The second step of the planned developments is a refinement of the above approach. Here, the generic rooms are 

substituted by project-specific spaces which provide better match to the actual geometry, shading obstacles, 

schedules, internal loads, etc. In absence of pre-defined rooms and direct CAD-BPS interoperability, the modeller 

must manually set up a baseline model in BSim (or equivalent), perform Monte Carlo simulations, and construct 

metamodels. The presentation and analysis of designs will be the same as above. This approach is assumed to be 

applicable in both early and detailed design stages. However, it requires further development of the multivariate 

BSim framework initiated in a aforementioned student project [11]. Alternatively, OpenStudio may be an option 

with its parametric and cloud capabilities even though OpenStudio has limited penetration in Denmark. 
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Finally, we strive to reduce manual labour by automating the global simulations of selected rooms directly in the 

BIM model. Making this third step relies on positive experience and feedback from the above developments. In 

terms of software development, it requires a BPS API which is linked directly into Revit (or similar BIM software). 

Such efforts are supposed to streamline the process of Monte Carlo simulations and metamodeling for project-

specific, critical rooms.  
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5 CONCLUSION 

With this industrial PhD project, we set out to address various challenges experienced by consulting engineers 

specialized in energy demand, indoor climate, and sustainability in buildings. The challenges relate to the guidance 

of multi-actor design teams and then handling of the enormous design space in the early stages of holistic building 

design. To accommodate such issues, we advocate the use of Monte Carlo simulations aided by statistical methods 

and interactive visualizations. This allows the design team to explore an enormous, multivariate design space 

represented by thousands or millions of building performance simulations (BPS). The interactive parallel 

coordinate plot (PCP) has shown useful for real-time exploration of such comprehensive design space. Using the 

PCP, multiple stakeholders apply filters to investigate specific parts of the design space and immediately observe 

consequences for both design parameters and performance indicators. 

Sensitivity analysis plays a vital role in the proposed simulation framework. Popular methods, such as Morris’ and 

variance decomposition, help explain model behavior and reveal both important and insignificant design 

parameters. The Monte Carlo filtering used in the PCP relates to regionalized sensitivity analysis. To address 

multiple objectives and to aid real-time decision-making, we have developed two novel sensitivity methods 

denoted TOM and TOR, respectively. The former is used to prioritize design parameters according to multiple 

outputs, which directs attention to the parameters that matter the most in holistic design. The latter method, TOR, 

improves the use of the PCP by highlighting the parameters affected by the user-defined filtering. Another valuable 

field from statistics relates to metamodeling, which has proven crucial to obtain immediate feedback and to 

overcome the computational issues of Monte Carlo simulations. In a BPS context, the best candidates for 

metamodeling are Gaussian process regression and neural networks based on a comprehensive comparison study. 

The PhD study has been completed with the Danish-based company, MOE, as the primary stakeholder. The 

proposed simulation framework and interactive exploration is now possible for the normative Be15 software, and 

it has been applied in several projects by MOE engineers. In addition, a design tool for assessing thermal comfort 

in Danish residential buildings is freely available on the website buildingdesign.moe.dk. Same site contains 

supplementary information about the PhD project including case studies, interactive plots, and related projects. 

Future developments and tools will be presented and made available on this site – to some extent. 

A concluding remark is that the proposed methods are considered applicable for other research areas and industries, 

which involve model-driven decision making under uncertainty and with respect to multiple objectives and 

stakeholders.  

https://buildingdesign.moe.dk/
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Nomenclature 

Di KS2 maximum distance between two cumulative 
distributions for ith parameter 

Di-AB Di between cumulative distribution sets SA and SB 

Dij Di for jth repetition in the TOM method 

EE method of elementary effect (Morris’ SA)  

FF factoring fixing (SA setting based on total effects) 

FM factor mapping (SA setting) 

FP factor prioritization (SA setting based on main effects) 

FR factor ranking (SA setting based on total effects) 

J number of repetitions in TOM method 

KS2 Kolmogorov-Smirnov two-sample statistics 

N total number of Monte Carlo simulations 

Normative 
model 

Danish simulation software Be10 based on ISO 13790 
(here combined with regression model for daylight) 

Overtem-

perature 

thermal comfort penalty output in normative model 
[kWh/m² floor area] 

PCP parallel coordinate plot (for real-time analysis) 

PEAR Pearson’s product-moment correlation coefficient  

Q number of simulations in random selected subset 

RSA regionalized sensitivity analysis  

SA sensitivity analysis 

SRC standardized regression coefficients (linear regression) 

SA set of all simulations 

SB set of behavioural simulations meeting all criteria 

SN set of non-behavioural simulations 

Si first order effect (Sobol’s variance-based SA) 

ST total effect (Sobol’s variance-based SA) 

SATOR comparable SA measure based on TOR [0; 100%] 

SATOM comparable SA measure based on TOM [0; 100%] 

TOR proposed RSA method used for real-time analysis – 
both inputs and outputs 

TOM proposed RSA method to rank inputs according to 
sensitivity towards multiple outputs 

Abstract 

Monte Carlo simulations combined with regionalized 
sensitivity analysis provide the means to explore a vast, 
multivariate design space in building design. Typically, 
sensitivity analysis shows how the variability of model 
output relates to the uncertainties in models inputs. This 

reveals which simulation inputs are most important and 
which have negligible influence on the model output. 
Popular sensitivity methods include the Morris method, 
variance-based methods (e.g. Sobol’s), and regression 
methods (e.g. SRC). However, such methods only 
address one output at a time, which makes it difficult to 
prioritize and fixate inputs when considering multiple 
outputs. In this work, the primary outcome is a novel 
sensitivity method denoted TOM, which relies on 
Kolmogorov-Smirnov two-sample (KS2) statistics to 
rank inputs due to their influence on multiple outputs. A 
secondary method, denoted TOR, provides a real-time 
sensitivity measure when exploring data with the 
interactive parallel coordinate plot (PCP). The latter is an 
effective tool to explore stochastic simulations and to 
find high-performing building designs. The proposed 
methods help decision makers to focus their attention to 
the most important design parameters. As case study, we 
consider building performance simulations of a 
15.000 m² educational centre with respect to energy 
demand, thermal comfort, and daylight. 

Introduction 

Sensitivity analysis (SA) plays a valuable role in the 
field of building performance simulations. Its extensive 
applications have been reviewed in-depth by Tian 
(2013). Other works compare sensitivity methods with 
respect to accuracy, applicability, convergence, and 
visualization in relation to building performance 
(Burhenne 2013, Das et al. 2014, Nguyen & Reiter 
2015). Similar comparisons been conducted within other 
engineering disciplines (Confalonieri et al. 2010, Mara et 
al. 2017, Pianosi et al. 2016, Song et al. 2015, Yang 
2011). A textbook on SA by Saltelli et al. (2008) state 
that the purpose of SA may be the following: 

• Factor Prioritization (FP), which is used to rank 
inputs according to their individual 
contributions to output variance 

• Factor Fixing (FF) or screening, which is used 
to fixate uncertain inputs which have negligible 
contribution to output variance – even when 
considering interactions with other inputs 

• Factor Mapping (FM), which is used to identify 
input values that lead to model realizations in a 
specific output range  
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FP is a measure of the input’s individual contribution to 
output variance, which is often referred to as main 
effects or first order effects. This setting is used to 
identify uncertain inputs which, when kept fixed, will 
lead to the greatest reduction in output variance. This is 
desirable in uncertainty analysis, if the analyst wish to 
reduce uncertainty of the results. In contrast, FF is based 
on the inputs’ total effects, which is a measure of the 
variance induced by the input’s individual contribution 
along with its interactions with other inputs. If the total 
effect is small, the input makes no significant 
contribution to the variance and it may be fixated. For 
this work, we define another setting called “Factor 
Ranking” (FR), which is based on the total effects. This 
setting is used to rank inputs according their overall 
influence, which help the analyst (or multi-actor design 
team) focus on the inputs that matter and interact the 
most. 

Other purposes of SA include the study of input 
interactions (interdependencies), robustness assessment, 
and error detection. The intent of the analysis, along with 
computational effort and model complexity, is important 
when choosing among the many sensitivity methods. 
The global methods may be classified as regression-
based, screening-based, variance-based, and regionalized 
sensitivity analysis. In the following, we discuss the 
deficiencies of popular methods when guiding decision 
makers towards building design with high overall 
performance.  

Building simulations involve hundreds of inputs. When 
varying design parameters in Monte Carlo experiments, 
it is desirable to fixate the least significant inputs (FF) 
and thus simplify the analysis. For this purpose, the 
Morris method (EE) has been widely used because it is 
model independent and computationally cheap (Morris 
1991). However, its one-at-a-time sampling strategy 
cannot be used for design space exploration, which is an 
important aspect of building design. Variance-based 
methods are also popular for SA, since they are model-
independent and they can assess first order effects (for 
FP), higher order effects, and total effects (for FF). 

Higher order effects reveal input interactions. Though, 
variance-based methods have high computationally costs 
(Pianosi et al. 2016). 

Common for (perhaps all) screening-based, variance-
based, and metamodel sensitivity methods is that they 
address only one model output at a time. Hence, inputs 
contribute and rank differently for each output of 
interest. This makes it difficult to determine, which 
inputs should be kept fixed, and which inputs are the 
most important overall. In addition, their sensitivity 
measures represent the entire set of simulations, whereas 
the modeller may be interested in different parts of the 
simulated design space (FM). To address these issues, 
we propose to apply regionalized sensitivity analysis 
using two-sample Kolmogorov-Smirnov test statistics.  

In this paper, the primary objective is to rank inputs with 
respect to multiple outputs (FR). This is particularly 
helpful in holistic building design that involves multiple 
performance outputs, such as energy demand, thermal 
comfort, and daylight. The secondary objective is to 
highlight, in real-time, the parameters affected the most 
by user-defined filters (FM). The latter builds on 
previous work, in which a multi-actor design team filters 
Monte Carlo simulations, using an interactive parallel 
coordinate plot (PCP), to investigate different regions of 
the design space (see Figure 1) (Østergård et al. 2017). 
The PCP is intuitive and easy to interpret, but if the 
analysis contains more than approximately 10 
parameters, it becomes difficult to see which parameters 
have been affected by the applied filters. 

Methodology 

A precondition for our work is the Monte Carlo method. 
This is used to run a large number, N, of building 
simulations, which are explored using several SA 
methods. In the Monte Carlo workflow, the modeler first 
defines input distributions and sampling strategy. Next, 
simulations are run with respect to various outputs such 
as energy demand, thermal comfort, and daylight. The 
modeller may perform sensitivity analysis to fixate non-
significant inputs (FF). In that case, the Monte Carlo 

Figure 1: Parallel coordinate plot (PCP) with histograms showing distribution of the simulations, which remain 

after filtering. The bar plots how much the distributions have been affected by the filters (red rectangles). Each line 

in the PCP represents one simulation and is coloured according to its energy demand (green – yellow – red). 
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experiment is repeated with the reduced set of variable 
inputs. A large number of simulations must be sampled 
in order to represent a sufficiently large part of the 
multivariate design space. The modeller then ranks the 
inputs according to their combined output importance as 
explained below (FR). Finally, the multi-actor design 
team explores the design space by filtering inputs and 
outputs using an interactive parallel coordinate plot 
(FM). Figure 1 shows an example of the PCP, where 
histograms illustrate input and output distributions of 
simulations that meet the user defined filter criteria. 

We will now briefly introduce the general concept of 
regionalized sensitivity analysis (RSA) when using 
Kolmogorov-Smirnov statistics. In the following 
subsection, we explain the novel sensitivity measures, 
TOM and TOR, which we have developed based on the 
Kolmogorov-Smirnov two-sample statistics (TOM and 
TOR are derived from the first author’s name with the 
last letter referring to Multiple and Real-time). 

The essential part of RSA is filtering (also known as 
Monte Carlo Filtering). The filtering is typically applied 
to model outputs based on specific constraints, e.g. 
maximum value for energy demand or minimum criteria 
for daylight availability. The filter criteria split the 
simulations into two groups: 1) the behavioural 
simulations meeting the filtering criteria, and 2) the non-

behavioural simulations (Saltelli et al. 2008). The reason 

for doing so is to identify input values that most likely 
will result in behavioural simulations. These behavioural 
simulations represent building designs with high 
performance. After filtering, for each parameter, there is 
a distribution of values belonging to the behavioural 
simulations and likewise for the non-behavioural 
simulations. The two-sample Kolmogorov-Smirnov test 
provides a measure of how much two distributions differ 
(Saltelli et al. 2008). This measure, denoted D, is the 
maximum distance between two cumulative distributions 
as illustrated on Figure 2. If the maximum distance is 
large for the i

th input, then this input is important in 
driving the model into the desired output range, and vice 
versa. A comparable sensitivity measure, SAKS2,i, for the 
i
th parameter is obtained from the size of Di relative to 

the summed Di’s, see equation (1). Comparison of the 
Di’s shows which inputs are important and which are 
not. 

2,
i

KS i

i

i

D
SA

D
=
∑
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TOM – Factor ranking for multiple outputs 

Here, we present a novel SA method denoted TOM, 
which ranks inputs according to their influence on 
multiple outputs (FR). The method builds upon the 
above concept of splitting a large set of simulations, SA, 
into two subsets, SB and SN. Key to this approach is that 
filter criteria may be applied to any number of outputs 
(and inputs) and still two subsets remain. Of course, the 
number of “behavioural” simulations decreases for each 
additional constraint. The novelty here is to do this 
“splitting” by applying filter criteria to all outputs 
without knowing actual, project-specific constraints. 
Hence, the task is to develop a strategy to define criteria 
values for all outputs in a generic way. Afterwards, we 
define a sensitivity measure SATOM based on the KS2 
statistics Di. 

In the proposed methodology, we first assign an index to 
each Monte Carlo simulation. Next, we sort each output 
in ascending order while keeping a reference to the 
simulations’ indices (Figur 3 top left). For each sequence 
of output values, we now choose a random starting point 
(corresponding to a minimum criterion) and select Q 
number of simulations above this value (see arrows on 
Figure 3). If this selection exceeds the maximum value, 

Figure 3: 10 simulations sorted for two outputs. Subsets S1,j and S2,j are randomly selected for each repetition, j. 

The subsets are illustrated with arrows, which have random starting points but same length (Q simulations). 

Figure 2: The maximum distance D between two 

cumulative distributions. 
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the remaining simulations are chosen from the lowest 
output value. These steps are repeated J times. For each 
repetition j, we obtain a subset of “behavioural” 
simulations SB,j from the intersections of the subsets S1,j 
and S2,j. For example, the simulations with indices 1, 5, 
6, 8, and 10 all occur in both subsets S1,1 and S2,1. At the 
same time, we get a subset of “non-behavioural” 
simulations, SN,j, from the difference of SB,j and SA,. 
Using two subsets, we calculate the Dij for all inputs. 
Finally, we use the average values of Dij’s to establish 
the sensitivity measure SATOM,i for all input parameters – 
equation (2). This measure indicates the i

th input’s 
relative importance with respect to all outputs. To use 
this TOM method, we first need to assess how large the 
random subsets must be and how many repetitions are 
necessary, i.e. estimate Q and J. 

,

, ,
1 ,

J
i av

i av ij TOM i

j i av

i

D
D D SA

D=

= → =∑
∑

 
(2) 

Figure 4 illustrates how the size of the randomly picked 
subsets affects how much the randomly chosen subsets 
will intersect. If the subsets are too small, there will 
often be no intersection (Figure 4 top left). In those 
cases, the “non-behavioural” set, SB,j, will equal the total 
set of simulations, SA, and consequently all Dij’s will be 
zero. If so, the step is repeated until a non-empty 
intersection is obtained. To get the most distinctive 
maximum distances, we want the “non-behavioural” set 
to constitute roughly half the size of the total set. From 
logical reasoning and experience, it seems that for m 

uncorrelated outputs and infinitely many repetitions J, 
the number of “non-behavioural” simulations converges 
to 50% of N when defining the subset size Q as in 
equation (3). 

10.5 mQ N= ⋅  (3) 

As mentioned, we also need to estimate the number of 
repetitions, J, necessary for convergence of the distance 
Di,av’s. In the “Results and discussion” section, we show 
that the sensitivity measures converge after ~300 
repetitions for the case study. However, to recommend a 
general value for J, we need to test additional models 
with different levels of complexity and number of inputs. 

In the “Results and discussion” session, we apply the 
TOM method to several benchmark models. The results 
show that the method estimates the inputs’ total effects. 
Thus, TOM can be used for Factor Ranking, which was 
the intention of this approach. The method may also be 
used for Factor Fixing. One approach is to apply the null 
hypothesis of KS2, which checks whether the 
cumulative distributions for the subsets SB,ij and SN,ij for 

the ith input are the same at a given significance level, α. 
If the null hypothesis is accepted (for all J), the ith input 
is non-influential. However, our experience has shown it 
difficult to find a specific significance level that avoids 
type I and type II errors for different models. Instead, we 
propose to include a “dummy” input, which does not 
affect the output (Mara et al. 2017). If Di,av for the i

th 
input is similar to Ddummy,av, then the ith input must have 
limited or no influence and may be fixated. 

A final remark relates to our choice of comparison of 
cumulative distributions. For the TOM method, we 
compare the non-behavioural set, SN with the entire set, 
SA, in order to calculate Dij. Instead, we could have 
chosen to compare SB with SA or SB with SN. The 
differences are illustrated on Figure 5. However, our 
initial testing have indicated that the relative measures 
SATOM,i are almost identical, no matter which two sets 
are used to calculate Di. We have chosen to compare SN 
with SA since SB might be an empty set if there is no 
intersection of the subsets (if Q is small). 

 

Figure 5: Cumulative distributions for SA, SB, and SN for 

a uniformly distributed input, xi. 

Figure 4: Conceptual illustration of how 

intersections of randomly selected subsets change. 

Smaller subsets may have no intersection and thus no 

behavioral simulations 
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Conclusively, we have now established the RSA method, 
TOM, which ranks inputs according their importance 
towards multiple outputs. Before testing TOM on a 
building simulation case, we present another RSA 
approach, TOR, which is used to highlight important 
parameters, which have been affected the most during 
real-time Monte Carlo filtering in the PCP. 

TOR – Real-time highlight of important parameters 

This RSA method, denoted TOR, helps highlight the 
parameters affected, when users add constraints to 
simulation data in a parallel coordinate plot (PCP). The 
interactive PCP is a powerful tool to analyse multivariate 
data in “real-time”. In a building design context, the 
design team may filter the output coordinates in 
accordance with building code criteria. The remaining 
“behavioural” simulations indicate regions or limits of 
the input space that meet the criteria. For example, the 
distribution of the mean room reflectance in Figure 1 is 
highly skewed and favours high reflectance values after 
applying building code criteria. In addition, the design 
team may assess design choices by applying filters to 
input coordinates. The remaining distributions reveal the 
consequences of such design choices. In the same 
example, the design team may test if it is possible to 
avoid solar panels and at the same time have a high 
window-to-facade-ratio. Despite its strengths, the PCP 
becomes difficult to interpret when the number of 
parameters increases or when the distributions are non-
uniform. 

Here, we suggest using KS2 to assess how much the 
behavioural distributions differ from the initial 
distributions, when applying filters in the PCP. The user-
defined filters split the simulations into a behavioural set 
and non-behavioural set. Therefore, we do not need to do 
this splitting in a generic way as in the TOM method. In 
this approach, we calculate the Di’s for the distributions 
of the behavioural set, SB, and the entire set of 
simulations, SA. In real-time, we calculate and visualize 
the relative distances Di’s each time a filter is applied. 

We suggest using bar plots to visualize the relative Di’s 
and thus direct the user’s attention towards the 
parameters, which have been affected by the user-
defined constraints. Notably, this method works for both 
inputs and outputs. Moreover, it enables the modeller to 
include more parameters in the Monte Carlo method, 
which is beneficial for building simulations that contain 
many design parameters and performance criteria.  

Results and discussion 

First, we use four benchmark models to compare the 
TOM method against the well-established methods of 
Sobol and Morris. Next, we use a building case study to 
test the method when considering multiple outputs. In 
addition, this we assess how much the sensitivity 
measure, SATOM, depends on the sample size N and the 
number of repetitions J. Finally, we exemplify how to 
use the TOR approach together with the parallel 
coordinate plot. 

Benchmark models with single output 

To assess the TOM method, we apply it to two non-
linear and non-additive benchmark equations referred to 
as “Primer” (Saltelli et al. 2008) and Ishigami (Saltelli 
et al. 2000), respectively. 

               
4

1
i i

i

y W Z
=

=∑  (4) 

where ( )~ ,
i Z i

Z N µ σ , ( ),~ ,i W i iW N µ σ , 0Zµ = , 

, 0.5W i iµ = , and 1,2,3,4ii σ= = . 

           ( ) ( ) ( )2 4

1 2 3 1sin 7sin 0.1 siny X X X X= + +  (5) 

where ( )~ ,
i

X U π π− . The three SA methods require 

different sampling techniques. For TOM, we use 1.000 
and 10.000 calculations. The error bars indicate one 
standard deviation when repeating the method 50 times 
with J = 200. For Sobol’ variance decomposition, we 
apply 100.000 calculations. For Morris, the number of 

Figure 6: Results of sensitivity analysis for two benchmark models, using the TOM, Sobol’, and Morris method. 
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trajectories is adjusted, such that 1.000 calculations are 
used.  

Figure 6 shows how the sensitivity measures compare. 
The TOM method provides the same ranking of inputs as 
Sobol’ total effects, ST. However, the dummy variable is 
not zero. For the “Primer” model, the dummy has 
approximately the same size as Z1 and W1, and thus 
indicate that these may be fixated in a FF setting. This 
corresponds well with the results from Sobol’ and 
Morris. However, the Morris method wrongfully ranks 
X3 as more sensitive than X2 for the Ishigami model. For 
the “Primer” model, W3 ranks higher than Z3 when the p-
level is 6. Since the inputs in this model are normally 
distributed, it is necessary to truncate them (using three 
standard deviations) in order to apply Morris. This 
explains the dependence on p-level. Another issue of 
Morris arises when the input distributions are discrete 
due to a possible “misfit” with the p-level. In building 
performance simulations, inputs are often discrete. 

Two additional benchmark models, Sobol’s g-function 
and the Dixon-Price function, have been tested in similar 
manner. For those, the TOM method also produces the 
same ranking as the ones obtained from Sobol’s total 
effects. For all four benchmark models, we try to 
estimate the number of samples needed to achieve the 
same ranking as Sobol’. To do so, we start with a 
sampling size of 10.000 and then reduce the sample size 
in steps of 100 (until the size is 1.000 and then in steps 
of 10) until the ranking differs from Sobol’. This 
procedure has been repeated 10 times for each model. 
On average, the ranking starts to differ from Sobol’ 
when the sampling size becomes less than 800, 420, 340, 
and 960, for the four models respectively.  

In the following, we use a building performance model 
to assess the TOM method for multiple outputs.  

Building case study with multiple outputs 

As case study, we consider a 15.000 m² educational 
institution during a conceptual design stage (Figure 7). 
The design proposal contains a floor plan, but 
fenestration, shading, and more, have not been defined. 
We may describe the “variability” of these “undecided” 

design parameters using uniform distributions. For 
example, the design team have estimated the windows-

to-facade-ratio to be at least 40% and no more than 
80%. Another variable, infiltration, has been varied in 
three discrete steps corresponding to different levels of 
airtightness based on Danish building regulations. Ten 
design parameters have been defined using such 
continuous, or discrete, uniform distributions. Every 
possible combination of these variables constitutes an 
infinitely large design space. A Monte Carlo experiment 
is conducted to evaluate 5.000 different designs options, 
which is assumed to represent a sufficiently large part of 
this global design space. Quasi-random sampling is 

applied using Sobol’s low discrepancy sequences, LPτ 
(Sobol’ & Shukman 1993). This technique reduces 
“gaps” and “clusters” in the simulated design space, and 
it reaches convergence faster than ordinary random 
sampling. We use a “simulation engine” based on ISO 
13790 to evaluate energy demand (Energy) and thermal 
comfort (Overtemperature). A regression model is used 
to assess the average daylight factor (Daylight) in a 
typical classroom. Hence, for each simulation we obtain 
three performance objectives, which are often contrary. 
That is, improving one of them often worsens one of the 
others. 

Dependency on repetitions and simulations (TOM) 

As described above, we select a random subset of “non-
behavioural” simulations J number of times. For each 
repetition, the subset is compared to the entire simulation 
set by calculating the maximum distances Dij between 
the cumulative distributions for each input, i. Here, we 
determine how many repeated samples J is required to 
reach convergence of the mean values of Dij. We 
consider three outputs and all of the 5.000 simulations 
from the case study. Thus, the number of simulations in 
the subsets, Q, is 0.79·N = 3.950 in accordance with 
equation (3). 

From Figure 8, it seems the mean values converge after 
~300 repetitions. The ranking is consistent after 25 
repetitions. Note that, equally sensitive inputs may 
occasionally change positions. The computational time 
grows linearly with both N and J. For 5.000 simulations 
with 300 repetitions, it was less than 6 seconds using a 
standard laptop with Matlab R2016a. Thus, the 
computational time is negligible compared to that of 
building performance simulations.  Figure 7: Early design draft of the educational 

institution. Illustration: EFFEKT Architects. 

Table 1: Input probability distributions for case study. 
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Figure 8: Convergence of the mean values of Dij. 

The number of simulations, N, required for SA is often 
important to the modeller, when choosing which 
sensitivity method to apply. N typically depends on the 
number of inputs, the complexity of the model, and the 
sampling strategy. In regionalized sensitivity analysis, N 
must typically be 100 times the number of inputs 
(Pianosi et al. 2016). Figure 9 illustrates how the mean 
of Dij’s converge with increasing number of simulations, 
N. The former involves only one output, whereas the 
latter involves all three outputs. With the exception of 
the dummy, the mean values seem to converge when N 
exceeds 1.000 for case a single output. This fits well 
with the aforementioned “rule-of-thumb” suggested by 
Pianosi et al. Roughly three times as many is needed in 
the case of three outputs (for this case study). Both plots 
show some fluctuations of the mean value, but the 
ranking of the most important inputs is consistent when 
N is larger than 1.000.  

Sensitivity analysis for multiple, correlated outputs 

As described earlier, the main purpose of TOM is to rank 
inputs with respect to their sensitivity towards multiple 
outputs (FR). However, a multiple output measure may 
also be obtained from ordinary sensitivity methods by 
combining the sensitivity measures for the individual 
outputs using a weighting system. In the context of 
building performance simulation, some outputs may be 
highly correlated, since the design has to comply with 
several, correlated performance indicators. Now, we 
compare sensitivity measures for the case study in the 
following steps: 

1. For each output, we rank inputs using the 
relative sensitivity measures obtained from 
SRC, Morris, and TOM. 

2. The results from the TOM method for three 
outputs are discussed. 

3. The TOM method is compared to a weighted 
SRC method in the case of 7 outputs from 
which 5 are identical (thus correlated). 

The sensitivity measures from TOM and SRC are based 
on 5.000 simulations. The number of repetitions for 
TOM is 500. For Morris, we discretize all inputs into 8 
levels and run 450 trajectories (4.950 simulations). The 
results are shown in Table 2, which also include the 
results from TOM with respect to all three outputs. 

In Table 2, the inputs have been sorted with respect to 
their sensitivity towards all three outputs (TOM). First, 
we consider one output at a time only. From SRC, we 
obtain the coefficients of determination, R², which are 
0.96, 0.42, and 0.96, respectively. Thus, the outputs 
Energy Demand and Daylight Factor are nearly linear 
for these idealized building performance models. We 
observe that the different methods provide the same 
ranking of the three highest ranked inputs. However, we 
do not necessarily expect the same ranking for SRC as 
for the two others, since the SRC measures are obtained 
from linear regression, and, therefore, they only include 
linear effects. The ranking of less important inputs differ 
slightly. For example, SHGC ranks 7 with SRC, 4 with 
Morris, and 5 with TOM (SRC does not capture SGHC’s 

Figure 9: Mean of Dij in steps of 10 simulations with 

respect one output, Energy demand (top), and all 

three outputs (bottom). 
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interaction effects with e.g. Win-fac-ratio). The bottom 
row shows how the dummy variable would rank for the 
TOM method. For example, the dummy would be placed 
between the fourth and fifth highest ranked inputs for 
Overtemperature and Daylight Factor. Thus, the last six 
inputs may be considered non-influential for these 
outputs according to TOM. The dummy ranks last (11) 
for Energy Demand. 

We now turn our attention to the overall ranking towards 
multiple outputs, which are shown in the leftmost 
column in Table 2. We notice that each of the 
individually most important inputs, Win-fac-ratio, Solar 

panels, and SGHC, end up on the first, second, and 
fourth place. Remarkably, Reflectance ranks third 
overall even though it only ranks second for Daylight 

Factor and it is nearly insignificant for Energy Demand 
and Overtemperature. The reason is that only a few 
inputs affect Daylight Factor and Reflectance is a major 
contributor to the variance of this output. For the case 
study, this high ranking of Reflectance stresses out its 
importance to the design team. Thus, the design team 
must consider this interior design parameter at the early 
stages even though such parameters are often not 
determined before the late design phases. For example, 
the design team may search for a lower limit for 
Reflectance from Factor Mapping (see Figure 10).  

Finally, we wish to assess how the TOM method ranks 
inputs when some of the outputs are correlated. This is 
often the case in the context of building performance, 
since the design has to comply with several, correlated 
performance indicators. Examples of such indicators are 
the number of hours with indoor temperatures above 26 
and 27 °C, the number of hours the indoor climate falls 
into different categories, and heating demand, cooling 
demand, and total energy demand. In a holistic building 
design context, it is desirable to give less weight to such 
performance indicators since we wish to optimize the 
overall performance of the building. Here, we construct 
five “artificial” and 100% correlated outputs by 
including the output Daylight Factor five times for the 
TOM analysis. We also consider the outputs Energy 

Demand and Overtemperature. For comparison, we 
create an overall “weighted-sum” measure from SRC. 
Table 3 shows the rankings obtained from the TOM 
method and the weighted-sum SRC approach (WS-SRC) 
together with sensitivity measures for the single output, 
Daylight Factor. Naturally, the percentages from WS-
SRC are close to those from SRC for Daylight Factor. In 
contrast, the TOM method puts less weight to these fully 
correlated outputs. For example, Solar panels (sensitive 
to Energy demand) ranks third and Venting (sensitive to 
Overtemperature) ranks sixth. The reason is that the 
randomly selected subsets for the correlated outputs will 
often intersect and therefore their contributions to the 
behavioural subset will often be very similar. In 
conclusion, the TOM method helps rank inputs with 
respect to multiple outputs with less weight on correlated 
outputs, which is a desirable feature in holistic building 
design.  

 

Table 3: Ranking with respect to multiple, correlated 

outputs (blue). For comparison, the sensitivity measures 

for the “duplicated output” Daylight Factor are shown 

to the right. 

 

Table 2: Sensitivity measures obtained from SRC, Morris (EE), and TOM. 

96



Real-time highlight of importance (TOR)  

Now, we demonstrate how the TOR method improves 
the use of the interactive parallel coordinate plot. As 
mentioned, the PCP is very intuitive and effective when 
exploring and analysing multivariate data. However, 
changes may be difficult to observe – especially if the 
plot contains many parameters. Here, the Kolmogorov-
Smirnov maximum distances, Di’s, are based solely on 
the user-defined filter criteria. Therefore, we need not 
define subset size Q or number of repetitions J.  

Figure 10 shows examples of a PCP with different filters 
applied. Bar plots show the relative sizes of the Di’s for 
the parameters with no filters applied. The 10 input 
parameters have been arranged according to the ranking 
obtained from the TOM method, such that the left-most 
inputs are the least important, and vice versa. In the 
topmost plot, we have removed all simulations, which 
have Overtemperature-values larger than zero.  This 
constraint largely affects the remaining distributions of 
SHGC (30.7%) and Window-to-facade-ratio (20.2%). In 
addition, it affects the remaining distributions for Energy 

Demand (18.7%) and Daylight Factor (17.6%).  

In the middle plot, we have added constraints to all three 
outputs in accordance with Danish building code 
regulations. Noteworthy, the TOR sensitivity measures 

do not provide the exact same ranking as the initial 
ranking from TOM, because the user-defined filters are 
different from the J random applied filters used for 
TOM. For example, Reflectance, and not Win-fac-ratio, 
has been affected the most by the filters applied to the 
three outputs in the middle plot. 

In the bottom plot, we assume the design team aims for a 
mean room reflectance larger than 0.5, because of its 
importance. Moreover, we assume the design team 
strives for a window-to-facade-ratio larger than 60%. 
The TOR measures and histograms show that this 
combination of criteria greatly affects the remaining 
distributions of values for Solar Panels and SHGC. The 
TOR measures also indicate some influence from Heat 

Capacity and U-value windows, which is harder to notice 
from the histograms.  

Conclusively, the TOR method helps decision makers 
focus on parameters that matter the most, and see the 
consequences of design choices. Especially, if the initial 
distributions are not uniform, changes are difficult to 
observe. However, when few simulations remain, the 
KS2 statistics will become inaccurate and it may be 
erroneous to draw conclusions about trends based on the 
histograms. To overcome this, metamodeling may be 
applied to create new predictions in the reduced 

Figure 10: PCP’s with user-defined filters illustrated with red rectangles. Based on TOR, bar plots indicate which 

parameters have been affected the most by the filtering. The inputs have been ranked right-to-left using TOM. 

97



subspace as discussed by Østergård et al. (2017).  

Combining TOM and TOR 

TOM and TOR may both be used in a design process 
with Monte Carlo simulations. First, the modeller runs 
~1.000·m simulations and use TOM to fixate the least 
influential parameters with respect to all m outputs (FF). 
Afterwards, a very large set of simulations is run to 
represent the global design space (optionally using fast 
metamodels). Then, TOM is used to rank the inputs, e.g. 
for positioning in the PCP (FR). Finally, TOR is used to 
highlight changes during real-time exploration in the 
PCP (FM). 

Conclusion 

We have presented two novel sensitivity methods, 
denoted TOM and TOR, which help decision makers 
focus on the most important parameters during building 
design. A precondition is the use of the Monte Carlo 
method to perform thousands of simulations to explore 
the multivariate design space. In contrast to the popular 
Morris and variance-based methods, TOM and TOR can 
be used for multiple outputs and they work with random 
or quasi-random sampling.  

To test the TOM method, we used four non-linear and 
non-additive benchmark models and compared with 
Morris and Sobol’. The TOM method provided the same 
ranking of inputs as Sobol’, even when Morris did not. A 
building case study showed that TOM puts less weight 
on correlated outputs, which is preferable in holistic 
building design. The TOR method makes it easier to 
perform real-time exploration of multivariate data in the 
parallel coordinate plot. TOR highlights the parameters, 
which are most affected by user-defined criteria. This 
allows more parameters to be included in the analysis 
without the PCP becoming unmanageable. The reader 
may download Matlab code for TOM or test the 
combination of PCP and TOR on: 
http://buildingdesign.moe.dk/phd/ibpsa.html 

In future work, we wish to investigate larger case studies 
with more inputs and outputs. In addition, we will assess 
how to use the dummy variable or hypothesis tests to 
identify truly non-influenial inputs. Alternatives to the 
KS2 test, such as the Anderson-Darling test, may 
improve the accuracy of the methods (Engmann & 
Cousineau 2011). Finally, the methods may be combined 
with the regionalized sensitivity measure, PAWN, to 
detect interaction effects (Pianosi & Wagener 2015). 
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=�>��	��	�������	 	� ������	��� ����	��	��	����	���	��	��������	�����	 ��	�������	���	
��	< �� ����!	"�� ����	��	�������	 	� �	��	 � ��?�	 ��	<��� ��?�	��	��������	��	
����� �����!	
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��	��������	��	������	����� �	�����	 ��	� ���� ��	O �����P	 ��	��������	�������� �����	���	
���	�����!	;�	������� ���	�����	� �	��<������	��	��	Q ���	R�������	S��� ��	

��������	��	 �����	���� �	�������	��	��	������ �	����	��	��������� �	���������	TUV!	;�	
������	� ���	��	
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�������	� �	������	��	� ����	���<��	��	 	���	�������	�!�!	��	U	��	Y]	����	�������<�	
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������&$''(�)��*����������*�+,-./0+1234025-,06,/78892:;./,/;782.--<+=27.028-;7,0>27,2
�������� ��������������������������������������������"����������$?���������
��!"������������"!��������������������!������������������������"����
��"��@$�������������A���������"��������%%�)"�����������������������
����B���������"!�"��������������#��$%C$��������������!�������������%DD
E�FG�)"������������"������������������������������������������A�����
�������������������12H/.+,I2J02>0<-6+,.7,0272:K-.J7.>=2755.-7;42+L/,7M802K-.2,40207.892
����������������������������������N�����������������������������������
57,4+12O0;-6>89I2J02/88L+,.7,0272:M7;PJ7.>=2755.-7;42+4-J/6Q24-J2,-2K/6>25-++/M802
����������������������������������R���������$
S�,402:K-.J7.>=2755.-7;4I2J027++L<02,47,2,402>0+/Q60.25./-./,/T02>798/Q4,276>2

���N������� ����� ��������������@UVB���������������@$'U�)��������WX$%�)
�������C$�����������������������A����*����������������X�F��)���������
���������������������������N�������������������"������!$?��������#��$U
B���C�����������������������������"����������������������Y����������
��R������������������A��*�����B�����������������������!�����Z�������*������C$
[�������������������������������@DD����������������������$����������������
*����"����!��������\ *��������������������]�$?��A����������"������������
����������\ *������D$&@�����!���������������������$̂����R�����!����
������������������������������������������D$_��������������������]�$S�#��$U�
������������������������������������������������������������������������\ 
*�������]�$





#��$Ù�������������������/62,402:K-.J7.>=2755.-7;42�������������*��!����!����������������������
B"���N����������C$���������������������������������������$a�������������������"�������������"��

������������������ ��A��*����"���$

b62,402:M7;PJ7.>=20c7<580I2�����������������������������������!��*��$
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Appendix C. Feedback from case study 

  

Figure C-1: Illustrations from early and detailed stages of the second case study in Paper C (BIG architects). 

 

 

 

Figure C-2: Interactive plots used for the multi-collaborator design meeting. The labels have been translated to English and 
the color and size of the parallel coordinate plot (bottom) has been adjusted. The pie charts (above) show relative parameter 
importance based to sensitivity analysis. 
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Table C-1: Summary of feedback from five design team members. Four did not respond and two MOE engineers were 
“disqualified” since they contributed to the development of the method and the plots. 
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SUMMARY

Simulations are commonly used to assess building performance with respect 
to energy demand and indoor environment. However, the use of performance 
simulations is limited during the early stages characterized by large uncer-
tainties. This industrial Ph.D. study presents a novel simulation approach that 
relies on thousands of simulations representing the multidimensional design 
space. Interactive visualizations enable decision-makers to explore, in re-
al-time, the vast design space and identify favorable solutions which satisfy 
the needs of different stakeholders. Sensitivity analysis helps reveal important 
design parameters that require the most attention when seeking to improve 
building performance. Fast metamodels facilitate immediate feedback on de-
sign changes and reduce time-consumption related to performance assessment. 
Ultimately, the work described in this thesis and on buildingdesign.moe.dk 
facilitates proactive guidance and supports collaboration between building 
owners, architects, engineers, and contractors. This helps the design team to 
create buildings with high performance and minimum costs
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