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Abstract. A single-image super-resolution (SR) method is proposed. The proposed method uses a generated
dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations.
First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then
they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch
of the input LR image and those of available LR patches in the LR dictionary is calculated. Theminimum distance
between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is
passed through an illumination enhancement process. By this technique, the noticeable change of illumination
between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch rep-
resents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the
patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is
calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the
conventional and state-of-art methods. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.2.023024]
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1 Introduction
The resolution of an image is one of its important properties.
This is, however, limited to the capabilities of the image
acquisition device, mainly the imaging sensor.1 The size
of this sensor defines the available spatial resolution of pro-
duced images. Thus, for increasing the spatial resolution of
an image, one could increase the sensor density by reducing
the spaces allocated to each pixel on the sensor or simply by
increasing the size of the sensor. The latter solution is expen-
sive and slows down the imaging process, while the former
solution decreases the amount of light incident on each sen-
sor, which in turn increases the shot noise.1

Applying various signal processing techniques is the
other approach for enhancing the resolution of an image.
One of the famous techniques for this purpose is super res-
olution (SR).2–5 The basic idea behind SR methods is to re-
cover/estimate one or more high resolution (HR) image(s)
from one or more low resolution (LR) images.6,7 Huang and
Tsai8 as pioneers of SR proposed a method to improve the
spatial resolution of satellite images of earth, where a large
set of translated images of the same scene are available. They
showed that SR, using multiple offset images of the same
scene and a proper registration, can produce better HR
images compared with spline interpolation. Since then,
SR methods have become common practice for many appli-
cations in different fields, such as remote sensing,9,10 surveil-
lance video,11–14 medical imaging such as ultrasound,
magnetic resonance imaging, and computerized tomography
scan,15–18 optical character recognition problems, and face
recognition.19–23

Different techniques have been developed for performing
SR.2,24,25 One such technique is based on sparse representa-
tion. In Ref. 26, a downsample version of HR images is con-
sidered as LR images, whose patches were assumed to have
a sparse representation with respect to an overcomplete
dictionary of prototype signal-atoms where signals are
described by sparse linear combinations of these atoms.
They showed that the HR image can be correctly recovered
from the downsampled signal using the compressed sensing
principle. Their method illustrated the effectiveness of spar-
sity as a prerequisite for regularizing the otherwise ill-posed
SR problem.

Yang et al.27 presented an approach to SR, based on sparse
signal representation. They showed that image patches can
be represented as a sparse linear combination of elements
from a properly chosen complete dictionary. They sought
a sparse representation for each patch of the LR input
image, and then used the coefficients of this representation
to generate the HR output. Their proposed method enforced
the similarity of sparse representations between the LR and
HR image patch pairs with respect to their own dictionaries.
The HR image patch was generated by applying the HR
image patch dictionary and the sparse representation of an
LR image patch. They used their algorithm for general
image SR and the special case of face hallucination.

The sparse representation is used to generate a scaled-up
image in Ref. 28, proposed by Zeyde et al. They started their
work using the concept of the method of Refs. 26 and 27 but
simplified the overall process both in terms of the computa-
tional complexity and the algorithm architecture, using a
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different training approach for the dictionary-pair, and intro-
duced the ability to operate without a training-set by boot-
strapping the scale-up task from the given LR image.

Peleg and Elad29 used a statistical prediction model based
on sparse representations of LR and HR image patches to
generate an HR image. Their proposed method allowed them
to avoid any invariance assumption, which was a common
practice in sparsity-based approaches treating this task.
Minimum mean square error estimation is used to predict
the HR patches, and the resulting scheme had the useful
interpretation of a feedforward neural network. They also
recommended data clustering and cascading several levels
of the basic algorithm.

Zhu et al.30 introduced an idea for quick single image SR,
which was tailored to the specifications of sparse represen-
tation, developed on the basis of self-example learning. The
desirable efficiency of the foregoing method arises from the
replacement of the regular singular value decomposition
(SVD) by the K-SVD, which was aimed at accelerating
the computation upon utilizing more simplistic approxima-
tion, along with the orthogonal matching pursuit algorithm,
being able to satisfy the conditions of the aforementioned
approach more appropriately via entailing considerably
fewer signals.

In this work, we contribute to the field of image SR by
introducing the following new steps:

• Compared with the work in Ref. 27, we do not employ
a sparse representation but utilize separate dictionaries
for LR and HR patches.

• The minimum distance between input LR patches and
LR patches in the LR dictionary is used for choosing a
corresponding HR patch in the HR dictionary.

• A mean shift method is used for illumination enhance-
ment to avoid blocking effects in the super-
resolved image.

Furthermore, we show that the dictionaries used in the
proposed system can be reduced in size quite a lot, without
affecting the performance of the system. The quantitative and
qualitative experimental results show the superiority of
the proposed method over the state-of-the-art of Ref. 29,
which uses sparse representation, and the more recent tech-
nique of Ref. 31, which uses deep learning techniques based
on convolutional neural networks (CNN).

The rest of this paper is organized as follows. A detailed
overview of the proposed method is presented in Sec. 2.
Section 3 reports and discusses the results of the experiments
carried out. Finally, Sec. 4 concludes the paper.

2 Proposed System
In this section, first we present some notation for our work.
Then, the way we have built the LR and HR dictionaries is
discussed. Then, we continue with the details of the proposed
system.

The LR and HR images are represented as matrix
Ψl ∈ RNl×Ml and Ψh ∈ RNh×Mh , where Nh ¼ αNl, Mh ¼
αMl, and α > 1 is some integer scale-up factor. The blur
operator is denoted by H∶RNh×Mh → RNh×Mh, and the deci-
mation operator for a factor α in each axis is denoted by
Q∶RNh×Mh → RNl×Ml , which discards rows and columns
from the input image (nearest neighbor interpolation function

is used as a decimation function in this work). Two acquis-
ition models are commonly used in the literature29 to
describe how an LR image is generated from an HR image,
and each of them has a different rationale. The first assumes
that prior to decimation, a known low pass filter is applied on
the image

EQ-TARGET;temp:intralink-;e001;326;686Ψl ¼ Q½HðΨhÞ� þ v; (1)

where v is an additive noise in the acquisition process. The
corresponding problem of reconstructing Ψh from Ψl is also
referred to in the literature as zooming deblurring.32 The sec-
ond acquisition model27,29,31 assumes that there is no blur
prior to decimation, namely Ψl ¼ QfΨhg þ v, so image
reconstruction is cast as a pure interpolation (zooming) prob-
lem. In other words, the problem is only filling out the miss-
ing pixels between the original pixels in the input LR image,
which remain unaltered in the recovered HR image. In this
work, the second model is considered, and the images are
assumed to be noise free, i.e., v ¼ 0.

Let Pk ¼ Rk
nΨ be an image patch of size n × n centered at

location k and extracted from the image Ψ by the linear oper-
ator R. Hence, the LR and HR patches are extracted as

EQ-TARGET;temp:intralink-;e002;326;501Pk
l ¼ Rk

nΨl Pk
h ¼ Rk

αnΨh; (2)

where α is the scale-up factor, h refers to HR, and l refers to
LR. Extracted patches of HR images and their corresponding
LR patches are saved in two dictionaries of HR patches Dh
and LR patchesDl, respectively. Hence, every Pk

l ∈ Dl has a
correspondence in Dh. Th mapping between these two pairs
is expressed by f as

EQ-TARGET;temp:intralink-;e003;326;403Pk
h ¼ fðPk

l Þ: (3)

The main motivation for the proposed model is the desire
to predict a missing HR detail for each LR patch via a pair in
the created Dl and Dh dictionaries. Following the block dia-
gram of the proposed system, shown in Fig. 1, we first find
all the patches of the input LR image, Ψ̃l, using Rq

n centered
at location q

EQ-TARGET;temp:intralink-;e004;326;305P̃q
l ¼ Rq

l Ψ̃l: (4)

Then the minimum distance between each patch, P̃q
l , and

all patches in Dl is calculated by

EQ-TARGET;temp:intralink-;e005;326;250dκ ¼ min
k
½dðPk

l ; P̃
q
l Þ�

where dðPk
l ; P̃

q
l Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðP̃q
li
− Pk

li
Þ2

r
;

(5)

where κ refers to the index of the patch in Dl, which has the
minimum distance from the P̃q

l of the input LR image.
Having found a patch in the LR dictionary with a mini-

mum distance to Pq
l , its HR corresponding patch is found in

Dh and replaced in the HR image by

EQ-TARGET;temp:intralink-;e006;326;128P̃q
h ¼ fðPκ

l Þ: (6)

To avoid a sudden change of illumination,33 a simple illu-
mination enhancement (mean shift) is applied to P̃q

h by mov-
ing its mean, μP̃q

h
, toward the mean of P̃q

l , μP̃q
l
, using
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EQ-TARGET;temp:intralink-;e007;63;420P̃q
h ¼ P̃q

l ×
μP̃q

l

μP̃q
h

: (7)

This process is repeated until the last patch of the input
LR image. Finally, all founded HR patches are merged
together according to their location to get the HR image,
Ψ̃h. The generated image has some blocking effect, which
is not desired. To remove this effect, the LR input image,
Ψ̃l, is also interpolated using bicubic interpolation with
the same scaling factor, using

EQ-TARGET;temp:intralink-;e008;63;306Ψ̃b
h ¼ BαfΨ̃lg; (8)

where B is the bicubic interpolation operator with a scaling-
up factor of α. Finally, the HR image, Ψ̂h, is calculated by
averaging the HR image obtained by merging patches, Ψ̃h,
and the HR image obtained by bicubic interpolation, Ψ̃b

h, as
shown in

EQ-TARGET;temp:intralink-;e009;63;218Ψ̂h ¼
Ψ̃h þ Ψ̃b

h

2
: (9)

The general steps of the proposed single image SR
method are summarized and shown in Algorithm 1 and
are illustrated in Fig. 1.

One of the main constraints in dictionary-based SR algo-
rithms is the huge size of the dictionaries. There exist many
patches within the dictionaries that are very similar to one
another. As one of the contribution of this work, to reduce
the number of patches in the dictionary, we tried to find the
set of patches that spans the vector space, which includes
all the patches as well as the structural similarity between

patches. For the first approach, the selected patches are in-
dependent or almost independent from each other. To find
the independent and almost independent patches, we used
SVD. Then, the Euclidean distance between the vector of

Algorithm 1 Single image SR schema.

Input: LR image and scale-up factor.

Output: HR image.

1 Image interpolation using bicubic interpolation with the scale-up
factor to generate a scaled-up image from Ψ̃l .

2 Extract LR patches centered at locations q from the LR image.

3 for q do

4 Compute the minimum distance between the LR patch and
the LR patches in Dl .

5 Find the corresponding HR patch with the LR patches that
has minimum distance.

6 Enhance the illumination of HR patch.

7 Replace the HR patch in Ψ̃h .

8 end for

9 Find the average between Ψ̃h and Ψ̃b
h .

10 Generate HR image.

Fig. 1 The block diagram of the proposed system.
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singular values of patches have been calculated. The patches
who are discriminant enough from the other ones, i.e., the
calculated cross distance is bigger than threshold value, τ,
are kept in the dictionary. The threshold, τ, is selected based
on the application. In this work, we reduced the size of dic-
tionary by 30%, and the visual quality dropped only 0.07 dB
(discussed more in the next section).

Another approach of dictionary reduction proposed in this
work is based on a structural similarity index (SSIM). To
remove patches that are structurally similar to other patches,
a similarity between all patches is calculated using SSIM;
then, patches with a similarity index more than threshold
τ are removed from the dictionaries. Similar to the previous
approach, the threshold, τ, is selected based on the applica-
tion. In this approach, we reduced the size of dictionary by
45%, and the visual quality dropped only 0.08 dB (discussed
more in the next section).

3 Experimental Results
In this work, 581 HR images from different databases,
namely, the LFW face database34 and some standard test
image databases,35 are used to make the HR dictionary, Dh,
and its corresponding LR dictionary, Dl. These images are
selected from different categories, such as faces images,
natural images, and texture images. Some of these images
are shown in Fig. 2.

For making the LR dictionary, the HR images are down-
sampled by factor of 2 and 4, i.e., in our experimental results,
we conduct SR with scaling factors of α ¼ 2 and α ¼ 4.
Then patch sizes of 8 × 8, 16 × 16 for making HR diction-
aries and patch sizes of 4 × 4 are chosen for making the LR
dictionary. All HR images used for this work are set on the
size of 256 × 256. Also, the input LR test images of all SR
techniques used for the experimental results were obtained
by downsampling their HR original counterparts using near-
est neighbor kernel. It should be mentioned that the test
images are not used in constructing the dictionaries.

For testing, many well-known benchmark images (such as
Butterfly, Comic, Flowers, Foreman, Girl, Lena, Man,
Pepper, Starfish, and Zebra) were used.

The peak signal-to-noise ratio (PSNR) and SSIM are used
to evaluate the imperceptibility characteristics quality meas-
urement. Tables 1–4 show the PSNR values in dB and SSIM
values for sparse coding based network (SCN),36 the CNN
based SR method of Ref. 31, Peleg and Elad’s system of
Ref. 29, and the proposed SR system (with and without

mean shift) for the aforementioned images, respectively. It
can be seen from these tables that the proposed system,
even without the mean shift step, outperforms the other
methods, and, involving the mean shift, improves the results
even further.

For the Lena image, the PSNR of the proposed method is
3.37, 3.50, and 3.01 dB higher than those of the SCN,36

CNN-based technique of Ref. 31, and SR method of
Peleg and Elad’s,29 respectively.

Table 1 shows that, for instance, for the pepper image, the
PSNR of our proposed super-resolved image is about 4.4 and
4 dB higher than those of the SRCNN31 and the Peleg and
Elad’s method in Ref. 29, respectively. The average of the

Fig. 2 Some images used in constructing the dictionaries.

Table 1 PSNR results of the proposedmethod with a scaling factor of
2 compared with Refs. 29, 31, 36, where bold numbers show the best
performance.

SCN36 SRCNN31

Peleg
and

Elad29

Proposed
method
without

mean shift

Proposed
method with
mean shift

Butterfly 21.53 22.45 22.95 23.63 23.67

Comic 20.08 21.03 21.68 22.63 22.67

Flowers 22.56 23.58 24.13 24.95 25.03

Foreman 30.58 30.33 30.55 32.71 32.83

Girl 29.64 30.95 31.69 32.23 32.40

Lena 25.00 24.93 25.42 28.12 28.37

Man 22.71 23.68 24.32 25.32 25.43

Pepper 25.30 27.21 27.63 30.69 31.63

Starfish 23.50 24.52 25.12 26.05 26.16

Zebra 19.90 20.75 21.67 22.40 22.40

Average of
1000 face
images

30.99 31.95 32.33 32.14 32.72

Average 24.71 25.58 26.14 27.35 27.57
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PSNR results of our proposed method is ∼1.4 and 0.7 dB
more than the SRCNN method in Ref. 31 and Peleg and
Elad’s method in Ref. 29, respectively.

To have a better understanding of the performance of the
proposed algorithm, 1000 facial images from Ref. 34 have
been super-resolved using the conventional and state-of-the-
art techniques as well as the proposed SR algorithm. The
quantitative results show that, on average for these 1000
facial images, the proposed algorithm improves the PSNR
values by 1.73, 0.77, and 0.39 dB for SCN,36 SRCNN,31

and Peleg and Elad’s method,29 respectively.
Figures 3(b)–3(e) show the visual comparison of the

images produced by the SCN,36 the CNN-based SR method
of Ref. 31, Peleg and Elad’s system of Ref. 29 and the pro-
posed SR system (with and without mean shift) for the Girl
and Peppers images. The experimental results show that the
proposed method performs better than the conventional and
the state-of-the-art methods.

3.1 Observations on Dictionary Size
In the previous section, we have shown that the proposed SR
algorithm outperforms state-of-the-art SR algorithms in
terms of known measurements criteria of PSNR and
SSIM. In this section, we show that the dictionaries that
are used in the proposed system are reducible to a great
degree, with a negligible reduction in the performance of
the system. Tables 5 and 6 report performance reduction
of the system in terms of PSNR, when dictionary size reduc-
tion is done using the SSIM technique mentioned in the pre-
vious section. The size of LR patches is 4 × 4 and 8 × 8, in
Tables 5 and 6, respectively. These tables as well as Fig. 4
show that average PSNR results of tested images do not drop
significantly when ∼50% of dictionary size is reduced.

Table 2 SSIM results of the proposed method with a scaling factor of
2 compared with Refs. 29, 31, 36.

SCN36 SRCNN31

Peleg
and

Elad29

Proposed
method
without

mean shift

Proposed
method with
mean shift

Butterfly 0.8217 0.8269 0.8415 0.8549 0.8665

Comic 0.7321 0.7360 0.7468 0.7777 0.7879

Flowers 0.7585 0.7740 0.7857 0.8151 0.8253

Foreman 0.8859 0.8852 0.9011 0.9123 0.9232

Girl 0.7646 0.7997 0.8291 0.8403 0.8407

Lena 0.8318 0.8347 0.8416 0.8805 0.8826

Man 0.7251 0.7431 0.7638 0.7901 0.8013

Pepper 0.8526 0.8811 0.8941 0.9539 0.9598

Starfish 0.7954 0.8071 0.8205 0.8404 0.8520

Zebra 0.7041 0.7259 0.7502 0.7633 0.7802

Average of
1000 face
images

0.9535 0.9453 0.9516 0.9412 0.9562

Average 0.8536 0.8145 0.8296 0.8518 0.8614

Table 3 PSNR results of the proposedmethod with a scaling factor of
4 compared with Refs. 29, 31, 36, where bold numbers show the best
performance.

Proposed
algorithm SRCNN31

Peleg and
Elad29 SCN36

Butterfly 18.97 18.67 14.90 17.32

Comic 18.31 17.71 14.47 16.56

Flowers 20.69 19.83 19.16 18.65

Foreman 27.73 26.80 25.52 26.22

Girl 28.61 28.26 26.08 26.69

Lena 23.68 22.00 21.84 21.95

Man 21.15 20.64 18.97 19.51

Pepper 23.94 23.56 21.56 21.89

Starfish 21.35 21.11 18.80 19.63

Zebra 17.50 16.11 15.84 15.58

Average of
1000 face images

27.31 27.19 26.79 27.01

Table 4 SSIM results of the proposed method with a scaling factor of
4 compared with Refs. 29, 31, 36.

Proposed
algorithm SRCNN31

Peleg and
Elad29 SCN36

Butterfly 0.6639 0.6633 0.4845 0.6120

Comic 0.5575 0.5160 0.3631 0.4887

Flowers 0.5900 0.5894 0.5611 0.5497

Foreman 0.8794 0.8156 0.8190 0.7897

Girl 0.6756 0.7178 0.6448 0.6525

Lena 0.8895 0.7128 0.8111 0.6996

Man 0.6189 0.5654 0.6708 0.5172

Pepper 0.8877 0.7754 0.8305 0.7188

Starfish 0.6917 0.6672 0.5623 0.6123

Zebra 0.5480 0.4796 0.5025 0.4457

Average of
1000 face images

0.9002 0.8516 0.7843 0.8189
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Fig. 3 Visual comparison of the proposed method against those of Ref. 31 and 29 with α ¼ 2: (a) the
original LR image, (b)–(e) the results of SRCNN,31 Peleg and Elad’s method,29 the proposed method
without mean shift and the proposed method with mean shift, respectively.

Table 5 Average PSNR results of applying SSIM approach of dic-
tionary reduction on LR patches size of 4 × 4 and HR patches size
of 8 × 8.

Reduction
(%)

Average
PSNR

No. of
patches

PSNR difference
to original dictionary

0 27.53 8,13,056 0

13 27.51 5,42,469 0.02

37 27.48 5,12,472 0.05

40 27.475 4,87,010 0.055

46 27.45 4,42,799 0.08

51 27.4 4,02,128 0.13

56 27.35 3,60,958 0.18

67 27.24 2,72,202 0.29

73 27.18 2,22,830 0.35

Table 6 Average PSNR results of applying SSIM approach of dic-
tionary reduction on LR patches size of 8 × 8 and HR patches size
of 16 × 16.

Reduction
(%)

Average
PSNR

No. of
patches

PSNR difference
to original dictionary

0 26.77 1,37,984 0

13 26.77 1,20,736 0

15 26.76 1,16,997 0.01

18 26.76 1,13,528 0.01

22 26.76 1,07,136 0.01

27 26.72 1,00,201 0.05

33 26.69 92,435 0.08
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A similar observation is seen in Table 7 and Fig. 4 when
dictionary reduction is based on the SVD approach. It shows
that a significant drop in performance of the system happens
only when ∼80% of the size of the dictionary is reduced.
Figure 5 shows a visual comparison between using the origi-
nal size of the dictionary and a reduced version of that using
two approaches of SSIM-based dictionary size reduction and
SVD-based dictionary size reduction.

Since the dictionary size is reduced by 73%, the speed of
the system compared with the original size of dictionary is
improved by 62.5%

4 Conclusion
In this work, a single-image SR method based on generating
a dictionary from pairs of HR and their corresponding LR
images was proposed. First, HR and LR pairs were divided
into patches to make HR and LR dictionaries, respectively.
The initial HR representation of an input LR image was cal-
culated by merging the HR patches from the HR dictionary
with those LR patches that have the closest distance to the
patches of the input LR image. Each selected HR patch
was processed further by passing through illumination
enhancement processing to reduce the noticeable change of
illumination between neighbor patches in the super-resolved
image. To reduce the blocking effect, an average of the
obtained SR image and the bicubic interpolated image was
calculated. The quantitative and qualitative analyses of the
experimental results showed the superiority of the proposed
technique over conventional and state-of-the-art techniques.
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