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Plasmons in two-dimensional (2D) materials have emerged as a new source of physical phenomena and
optoelectronic applications due in part to the relatively small number of charge carriers on which they are
supported. Unlike conventional plasmonic materials, they possess a large Fermi wavelength, which can be
comparable with the plasmon wavelength, thus leading to unusually strong nonlocal effects. Here, we study the
optical response of a selection of 2D crystal layers (graphene, MoS2, and black phosphorus) with inclusion of
nonlocal and thermal effects. We extensively analyze their plasmon dispersion relations and focus on the Purcell
factor for the decay of an optical emitter in close proximity to the material as a way to probe nonlocal and
thermal effects, with emphasis placed on the interplay between temperature and doping. The results are based
on tight-binding modeling of the electronic structure combined with the random-phase approximation response
function in which the temperature enters through the Fermi-Dirac electronic occupation distribution. Our study
provides a route map for the exploration and exploitation of the ultrafast optical response of 2D materials.

DOI: 10.1103/PhysRevB.96.205430

I. INTRODUCTION

Triggered by the spectacular rise of graphene as a unique
optical and electrical material, much attention has been re-
cently devoted to the study of other 2D atomically thin crystals
[1]. Transition metal dichalcogenides such as MoS2 possess
excellent electronic and optical properties [2,3], in particular
with regard to the Purcell effect and metamaterial design
[4,5], while black phosphorus (BP) offers a wide tunable
band gap, high carrier mobility, and large in-plane anisotropy.
[6,7]. Plasmons—collective excitations of conduction
electrons—are found in these materials at mid-infrared and
lower frequencies when they are doped [8] or optically heated
[9]. These excitations display unparalleled features that render
them useful for opto-electronics. [10]. More precisely, (i) they
are supported by a reduced number of electrons compared with
other conventional plasmonic materials, such as noble metals;
(ii) as a consequence of (i), a small attainable density of
doping electrons is sufficient to strongly modulate their optical
response; (iii) the atomic thickness of the material leads to a
huge reduction in the plasmon wavelength and enhancement
in the associated field intensity; and (iv) plasmons can present
long lifetimes in high-quality atomically thin samples [11].
Indeed, at zero temperature and in the absence of doping,
graphene, MoS2, and BP do not support plasmons. However,
these excitations are activated by introducing additional charge
carriers, which can be done through chemical doping [12],
molecular physisorption [13], and electrostatic gating [14,15].
The latter is useful for electrically controlling plasmons,
relying, for example, on a bottom-gate configuration, as
depicted in the upper inset of Fig. 1(b).

Ultrafast optical pumping also affects the electronic dis-
tribution of conduction electrons, essentially introducing
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electronic heat and opening new electronic transitions that
enable sufficient carrier mobility to sustain plasmons [10].
The result is roughly equivalent to doping, as illustrated in
Fig. 1. The ultrafast response of optically heated graphene
has been probed through pump-probe spectroscopy and has
been shown to sustain plasmons induced by an elevated
electron temperature [9,16]. Likewise, optical heating of BP
has been also demonstrated to enable plasmons in the material
[17]. Optical pumping causes electrons in insulating materials
to be excited across the band gap, and in graphene to be
promoted from the lower to the upper Dirac cone. These
hot electrons (and holes) then thermalize via carrier-carrier
interactions to reach a Fermi-Dirac distribution in the conduc-
tion and valence bands within ∼10’s fs, reaching attainable
electronic temperatures of thousands of degrees [9,17–20],
and eventually relaxing to the atomic lattice temperature,
with a minor overall temperature increase due to the high
heat capacity of the lattice compared with electrons. Time-
and angle-resolved photoemission spectroscopy (TR-ARPES)
has corroborated this picture by monitoring the formation of
Fermi-Dirac distributions of electrons and holes after ∼10’s fs
following optical pumping [21–25]. The presence of the
so-called thermoplasmons when the electronic temperature
is sufficiently high has been recently corroborated in high-
quality graphene through ultrafast near-field spatial imaging
[9]. Plasmon switching based upon optical pumping has also
been demonstrated [26], while it has been proposed that gain
resulting from population inversion could compensate for
losses under these circumstances [27–29].

In this paper, we analyze the plasmonic response obtained
under doping and ultrafast pumping for a selection of three 2D
materials: graphene, MoS2, and BP. We study their respective
plasmon dispersion relations, which evolve from low to high
parallel wave vectors q until the plasmons enter the electron-
hole-pair-excitation region, where they are extinguished by
Landau damping. A rigorous description of these effects
requires the inclusion of spatial dispersion (i.e., nonlocal

2469-9950/2017/96(20)/205430(8) 205430-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.205430


RENÉ PETERSEN et al. PHYSICAL REVIEW B 96, 205430 (2017)

FIG. 1. Schematic band structure diagrams and electron pop-
ulations in three different scenarios for parabolic semiconductor
(left) and massless Dirac-fermion (right) 2D materials. (a) Undoped
system at low temperature and zero doping. (b) Doped system
at low temperature. (c) Optically pumped system with conduction
(electrons) and valence (holes) subsystems at elevated temperatures
in instantaneous thermal equilibrium, with chemical potentials μe and
μh, respectively. The systems are probed with a light pulse of energy
and momentum h̄ω and h̄q.

effects, NLEs) in a realistic manner, which we achieve by
adopting the random-phase approximation [30] (nonlocal-
RPA) for monolayers of these three materials, using as input the
single-electron wave functions obtained from a tight-binding
(TB) parametrization of the valence band region [31,32].
Graphene and MoS2 are nearly isotropic [33] in contrast to
BP [15], which we explore for 2D optical wave vector q
oriented along both �X and �Y directions. We compare the full
nonlocal-RPA response with semianalytical results obtained
in the local low-q limit (local-RPA), and more precisely, we
present dispersion relations under a wide range of doping
and heating conditions. The effect of pumping is found to
be roughly equivalent to doping, with a temperature-dependent
effective Fermi energy obtained for each of the materials under
consideration. We also discuss the Purcell factor, that is, the
enhancement of the decay rate of an oscillating dipole in the
vicinity of a nanostructured material relative to the free-space
value. In particular, we study its dependence on the existence
of thermally activated plasmons as a physically meaningful

parameter that is highly dependent on the presence of NLEs.
Our paper provides the basis for understanding and exploring
the dependence of plasmons on doping and optical pumping
conditions in these materials.

II. THEORETICAL FORMALISM

We use a TB model to describe each of the three materials
under consideration. Graphene has been extensively studied
in the literature using a two-band π -electron TB model
with one orbital per carbon atom [31,34] and a hopping
parameter of t , for which we adopt the value t = 3.03 eV
[35] (it should be noted that the exact value of t varies in
the literature depending on the experimental quantity that
is used to fit it [36], or when based on first-principles
simulations [37]). For MoS2, we consider interactions up
to third nearest neighbors, with TB parameters fitted to a
generalized-gradient approximation (GGA) calculation, as
reported by Liu et al. [32]. The parametrized bands agree
well with the GGA calculation for electronic transitions in
the 0–3 eV range under consideration. For BP, we use the
two-band density-functional theory (DFT) TB parametrization
reported in Ref. [38], which describes reasonably well the
low-energy response up to 0.5 eV away from the band edges
and also captures the band anisotropy. However, because it is
based on DFT, it underestimates the band gap of BP. More
accurate GW-Bethe-Salpeter simulations properly accounting
for electron-hole interactions suggest an optical band gap of
1.2 eV [39], so we rigidly shift the conduction band upward to
match this gap. The zero-point of one-electron-state energies
is taken at the Dirac point in graphene and at the middle of the
gap in the other two materials.

We calculate the 2D wave vector and frequency-dependent
nonlocal-RPA conductivity σ = σ ′ + iσ ′′ using a well-known
expression for the real part [33,40],

σ ′(q,ω) = e2ω

2πq2

∑
m,n

∫
BZ

f q
nm

∣∣Mq
mn

∣∣2
δ
(
Eq

mn − h̄ω
)
d2k, (1)

where M
q
mn= 〈�k−q/2

m | e−iq·r |�k+q/2
n 〉, E

q
mn = E

k−q/2
m −

E
k+q/2
n , f

q
nm = f (Ek+q/2

n ) − f (Ek−q/2
m ), f (E) is the

Fermi-Dirac distribution, �k
m are Bloch wave functions of

wave vector k in band m, the integral extends of the first
Brillouin zone (BZ), and the sums run over band indices m

and n. This is a general result that includes both inter- and
intraband electronic transitions, assuming zero damping in
the response. We then obtain the imaginary part σ ′′ using
the Kramers-Krönig relations and apply a convolution with
a Lorentzian to introduce a finite broadening of full-width-
at-half-maximum (FWHM) h̄γ = 5 meV. The broadening is
introduced to account for a phenomenological relaxation time
and to soften the unphysically strong resonances found from
Eq. (1). We employ the triangle integration method [41] with
∼1.5 × 106 k points in the entire Brillouin zone, which is
sufficient to achieve converged results. We adopt an energy
grid consisting of 20,000 points logarithmically distributed in
the 0–20 eV range, so that we have higher sampling density
at low energies where Eq. (1) produces sharp features in the
spectrum for small q (see Supplemental Material (SM) [42]).
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In the q → 0 limit, Eq. (1) reduces to the local-RPA
conductivity. In particular, the intraband contribution (i.e.,
m = n) involves limq→0 M

q
nn = 1, and additionally the δ

function (energy conservation) allows us to replace h̄ω by
E

q
nn inside the sum. We further use the limits

lim
q→0

Eq
nn = 0,

lim
q→0

f q
nn/q = f ′(En)∇kEn · q̂, (2)

lim
q→0

Eq
nn/q = ∇kEn · q̂,

with q̂ = q/q, perform the Kramers-Krönig transformation,
and introduce a spectral broadening γ . The local intraband
contribution thus reduces to the Drude response

σintra(ω) = iω2
p/4π

ω + iγ
, (3)

with the plasma frequency ωp given by

ω2
p = −2e2

πh̄2

∑
n

∫
BZ

f ′(En)(∇kEn · q̂)2 d2k. (4)

For the interband contribution, the exponential function
in Eq. (1) becomes e−iq·r ≈ 1 − iq · r for q → 0, where
the first term yields a vanishing contribution by virtue of
orthogonality of the electronic states. The remaining part
is proportional to q and involves 〈�k−q/2

m | r |�k+q/2
n 〉 =

ih̄/(meE
q
mn) 〈�k−q/2

m | p |�k+q/2
n 〉 = ih̄/(meE

q
mn)Pq

mn [43],
where me is the electron mass, p is the momentum operator,
and Pq

mn is the momentum matrix element. Putting these
elements together, we can write

σ ′
inter(ω) = e2

2πm2ω

∑
n�=m

∫
BZ

fnm|q̂ · Pmn|2δ
(
Eq

mn − h̄ω
)
d2k,

(5)

where we have again made the substitution E
q
mn → h̄ω.

Equations (3)–(5) give the local-RPA limit of the conduc-
tivity [41,44]. Note that for the photon frequencies ω under
consideration, the light wave vector ω/c is small compared
with the typical values of q for which plasmons are observed
in 2D materials. We therefore neglect retardation effects.
Additionally, we have numerically verified the convergence
of the nonlocal-RPA to the local-RPA for q → 0, and further
found that Eq. (1) agrees with the local-RPA when describing
physical quantities such as the Purcell factor, except for
relatively large values of q encountered at short emitter-surface
distances (see SM [42]).

We model pumping of the intrinsic materials through the
Fermi-Dirac distributions fe and fh of hot electrons and
holes at temperature T and chemical potentials μe and μh,
respectively. Additionally, T is determined by the nature of the
pumping process, while μe and μh must satisfy the condition
that the number of electrons in the conduction band equals
the number of holes in the valence band such as to maintain
charge neutrality of the system, that is,

∫ ∞
Ec

D(E)fe(E)dE =∫ Ev

−∞ D(E)fh(E)dE, where D(E) is the density of states (DOS)
and Ec and Ev are the conduction and valence band edges,
respectively. In graphene, the symmetry of the Dirac-cone

band structure leads to μe = −μh, although this value differs
from the Fermi energy (defined as the T = 0 limit of μ)
when μe 
 kBT [20]. In MoS2 and BP, electron and hole
bands are not symmetric, and interband relaxation times are
considerably longer, therefore leading to different μe and −μh

values. Additionally, when assuming a value of μe, we adjust
μh accordingly to maintain the number of electrons in the
system constant. Doping is modeled by simply increasing the
chemical potential to add electrons into the system. In this
case, there will be only one chemical potential, and in what
follows, we use μ with no subscript to refer to the change in
the Fermi energy at T = 0 (e.g., by gating).

III. RESULTS AND DISCUSSION

A. Plasmon dispersion

In Fig. 2, we present in the first column [Figs. 2(a)–2(c)]
the band structures (left) and the DOS (right) of graphene,
MoS2, and BP, and, in columns 2 through 4 [Figs. 2(d)–2(g),
2(h)–2(k), and 2(l)–2(o)] we show the nonlocal-RPA-based
loss function Im{rp}, where [10]

rp = 1

1 − iω/(2πqσ (q,ω))
(6)

is the reflection coefficient of a self-standing layer for p-
polarized light, neglecting retardation effects. The results are
plotted as a function of optical 2D wave vector q and frequency
ω. For comparison, we present additional calculations obtained
within the local-RPA model in the SM [42]. Figures 2(d)–2(g)
(second column) show the response from the pristine materials
(i.e., without doping and at room temperature, T = 293 K).
Due to the absence of free charge carriers, they are incapable
of supporting plasmons, so absorption comes primarily from
interband transitions. For the semiconductors MoS2 and BP,
the weak absorption observed at energies below the band gap
is an effect originating in electronic damping, which produces
a finite conductivity even at ω = 0.

Next, we investigate the effect of doping and pumping
on the optical dispersion. An elevated electronic temperature
produced upon optical pumping is equivalent to an increase in
the effective chemical potential [10]. The equivalent μeq is such
that it produces at room temperature the same Drude plasma
frequency ωp as for a specific pair of μe and T . We explore
this equivalence in the three materials under consideration, and
we expect it to hold approximately even in the nonlocal-RPA
model for moderate values of q. We provide spectra in the
SM [42] showing that this is a reasonable approximation. In
Fig. 3, we show μeq for all three materials and for different
electronic temperatures. For graphene, μeq shows two distinct
regimes for low and high temperatures, already investigated
in the literature [9,20]. When the temperature T becomes
sufficiently high, μeq increases linearly with T as a direct
consequence of the linearly increasing DOS around the K
point. In graphene, μeq = 2μe at T = 0 due to the linear
bands and electron/hole symmetry. We emphasize that, for
the pumping conditions represented by a specific choice of T ,
μe, and μh, the materials maintain charge neutrality, while this
is not the case for electron doping.

With the doping-pumping equivalence established, we can
determine equivalent plasmon dispersion relations in the
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FIG. 2. (a)–(c) Band structure (left) and electronic density of states (right) for graphene, MoS2, and BP, calculated using tight-binding
models (see main text). (d)–(o) Optical dispersion diagrams calculated in the nonlocal-RPA for the selected 2D materials. For BP, we consider
q oriented along either �X or �Y directions. For all materials, we show the dispersion at room temperature without doping (d)–(g), at room
temperature with high doping (h)–(k), and at high temperature (200 meV ≈ 2300 K) under different doping conditions (l)–(o). The chemical
potential in (h)–(k) is chosen to yield a similar plasmon dispersion relation as that obtained through optical pumping at the temperatures selected
in (l)–(o). The dashed lines correspond to the energies chosen for the Purcell factor calculations in Fig. 6.

doping and optical pumping schemes. In particular, we plot
in the third [Figs. 2(h)–2(k)] and fourth [Figs. 2(l)–2(o)]
columns of Fig. 2 the loss function Im{rp} for doped and
heated materials, respectively. For graphene, we set μe = 0
and choose the temperature to be equivalent to a doping
of μ = 0.5 eV. For the semiconductors we take μe = Ec

to capture the longer relaxation time across the band gap
and the resulting pileup of electrons and holes at the band
edges, and we subsequently choose a doping level equivalent
to kBT = 200 meV (∼2320 K). We use these doping and
temperature conditions throughout the rest of the paper, except
for the BP Purcell factor calculations, in which we use the
average of the band edges as μe.

For doped graphene, we observe the well-known plasmon
dispersion relation shown in Fig. 2(h). Interband transitions
are effectively suppressed at energies h̄ω < 2μ for q = 0 due
to Pauli blocking, but for increasing q, this gap narrows down.
With optical pumping [Fig. 2(l)], the plasmon band is clearly
discernible, although it is significantly smeared out because
the increased temperature produces electrons in the upper
Dirac cone and holes in the lower one that enable additional
intra- and interband transitions that quench the plasmons.

For doped MoS2, we find two distinct bands: (1) a
characteristic 2D plasmon starting at ω = 0, made of intraband
virtual transitions in the partially filled (emptied) conduction
(valence) band; and (2) an optical mode starting at h̄ω ≈
0.65 eV, supported by interband transitions between the
second and the third bands. We have indicated these 0.65 eV
transitions in the band structure of MoS2 shown in Fig. 2. The
dispersion of both of these modes is characterized by small
slopes at large wave vector q > 0.01 Å−1. This will contribute
to produce comparatively large decay rates of nearby emitters
(see below). Under equivalent high temperature, these two
modes are again broadened by the availability of additional
intra- and interband transitions between the second and the
third band. The increase of temperature additionally produces a
new optical feature around ∼1.9 eV, associated with transitions
between the first and second bands and enabled by partial
thermal population.

For BP, the similarity between the optical modes enabled
by either doping or optical pumping is striking, especially at
large q. In contrast to both graphene and MoS2, no significant
band broadening is observed in the heated material because
we have only two electronic bands separated by a gap of

205430-4



NONLOCAL PLASMONIC RESPONSE OF DOPED AND . . . PHYSICAL REVIEW B 96, 205430 (2017)

FIG. 3. Chemical potential μeq required to obtain a plasmon
dispersion relation at room temperature equivalent to that observed
as a function of temperature T for several fixed values of the
electron chemical potential μe (see labels). Results for μe = Ec (the
conduction band edge) are shown as green thick curves in all four
panels. All results are obtained within the local-RPA approximation.

1.2 eV. From DFT calculations of the band structure in
BP [38], we can anticipate that inclusion of more bands
should also produce broadening of the plasmon resonance
at elevated electron temperature. The difference between the
two orientations of BP due to crystal anisotropy is clear,
with two different plasmon bands that share in common the
dispersion dependence ω ∝ √

q characteristic of 2D systems,
in agreement with previous calculations [45].

We conclude that thermally activated plasmon modes
resemble those enabled by doping, but we emphasize the
transient character of the former, which can be sustained during
times scales of 100’s fs, because relaxation of electronic heat
to phonon modes takes place. The temporal evolution dictated
by relaxation should introduce an additional mechanism of
plasmon broadening, which we estimate to be small compared
with the intrinsic damping here assumed.

B. Purcell enhancement

We now turn to the enhancement of the decay rate of
an oscillating dipole in close proximity to the materials to

investigate the equivalence between doping and pumping and
the coupling between plasmons in the materials and point
emitters. The Purcell enhancement factor is influenced by the
reflection coefficient at large q, and so it serves as an excellent
probe of the importance of NLEs. For a dipole oriented parallel
to the surface, the Purcell enhancement factor is given by
[46,47]

�

�0
= 1 + 3c3

4ω3

∫ ∞

0
q2 Im{rp(q,ω)}e−2qddq, (7)

where �0 is the decay rate in vacuum, � is the decay rate
in the presence of the 2D material, and d is the distance
between the surface and the emitting dipole. We are working
in the electrostatic limit (

√
ω2/c2 − q2 ≈ iq), which is a good

approximation for the small distance d 
 c/ω under con-
sideration, and further simplifies the numerical simulations.
We note that Eq. (7) is only valid for materials in which the
reflection coefficient rp is independent of the orientation of q.
This is not the case of BP, for which one should carry out the
corresponding azimuthal integral taking into account the full
q-dependence of rp. Instead, for simplicity, we estimate the
Purcell factor in BP by carrying out only the radial integral
over q and averaging rp along the �X and �Y directions.

In Fig. 4, we plot the imaginary part of the reflection coeffi-
cient calculated using either the local-RPA or the nonlocal-

FIG. 4. Imaginary part of the Fresnel reflection coefficient for
p-polarization rp as obtained in the local-RPA (dashed curves) and
the nonlocal-RPA (solid curves) for a MoS2 atomic monolayer.
We compare results with either doping and heating (red curves,
μe = 925 meV, kB = 200 meV) or only doping (blue curves, μ =
1116 meV, room temperature). Vertical lines mark the integration
limit qcut that accounts for 90% of the Purcell factor at various
dipole-surface distances (top labels in Å, see text).
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RPA models for MoS2 at three different photon energies.
The prominent peak observed for h̄ω = 0.23 eV is due to the
excitation of plasmons, while for h̄ω = 0.66 eV the peak is
due to interband absorption, as discussed above. For large q,
we have Im{rp} ≈ q−1 in the local-RPA, just as observed in
Fig. 4. In contrast, in the nonlocal-RPA σ depends on q in a
more involved manner, as it reflects the details of the electronic
band structure. From Fig. 4 we conclude that NLEs are not
important for small values of q, but for sufficiently large q

significant variations are introduced in the nonlocal reflectivity,
including strong modulations and fine structure in rp for MoS2.
Defining qcut by 0.9 = ∫ qcut

ω/c
q2e−2qddq/

∫ ∞
ω/c

q2e−2qddq [i.e.,
the upper wave vector integration limit that yields 90% of
the contribution to the Purcell factor in Eq. (7)], we argue
that higher q’s play a marginal role, so they can be ignored.
We show in Fig. 4 (vertical lines) the values of qcut for a
number of different values of d. For example, for d = 40 Å,
the integral in Eq. (7) should run up to the line marked 40 Å
to account for 90% of the Purcell factor. It is clear that the
importance of NLEs is strongly dependent on photon energy.
For 2.35 eV, significant differences are observed only for q

larger than ∼0.2 Å−1, while at an energy of 0.66 eV large
differences are observed already at q ≈ 0.02 Å−1. In agreement
with the conclusions extracted above from the analysis of
the plasmon dispersion, we find that optical pumping (i.e.,
heating to an equivalent high temperature) gives rise to
additional broadening compared to doping, but the plasmon
peak positions are almost unchanged.

In Fig. 5, we show the Purcell enhancement factor as
a function of photon energy for a dipole placed parallel
at a distance of 1 nm from a single atomic layer for all
three materials in the local and nonlocal-RPA models under
either doping or optically pumping conditions. For the doped
materials, we observe a strong overall enhancement of the
decay rate due to the presence of the materials. At some
energies, we see a particularly strong enhancement and this is
associated with the excitation of plasmons. Energy transferred
during decay is then mainly deposited in the surface modes
of the system, which ultimately decay into electron-hole pair
transitions and finally relax to produce heating of the materials.
In the local-RPA, the plasmon modes may be practically
nondispersive for large q (see SM [42]), leading to artificially
stronger peaks in the Purcell enhancement at these energies. In
the nonlocal-RPA, however, the plasmon energy evolves with
q (see Fig. 2), and thus, the enhancement is weaker and we
generally observe smaller peak-to-valley ratios. Specifically
for graphene, we observe a huge reduction from a ratio of
∼25 to ∼2, stressing that NLEs play an important role. For
energies below ∼0.4 eV, the nonlocal-RPA Purcell factor is
always much larger than in the local-RPA because at q > 0
the intraband absorption is peaked at some energy larger than
0, in contrast to the Drude response, which produces higher
losses in the low-energy regime.

The response of optically pumped graphene and MoS2 is
affected by the increase in losses due to new opened intra-
and interband transition channels, which end up in an overall
increase in the Purcell factor compared to doping, except at fre-
quencies where the coupling to plasmons is strong (i.e., optical
pumping reduces the peak strength of the plasmons, but creates
additional decay channels to electron-hole pair transitions).

FIG. 5. Spectral dependence of the Purcell factor for a dipole
emitter oriented perpendicularly to the surface and placed at a
distance of 1 nm from monoatomic graphene, MoS2, and BP layers.
For BP, we present an average of the Purcell factor for the two
independent directions considered in Fig. 2 (see discussion in text).
We compare local-RPA (dashed curves) and nonlocal-RPA (solid
curves) calculations for the material either at room temperature and
high doping (blue curves) or at high temperature (red curves).

Surprisingly, in MoS2, we observe a significant peak-to-valley
ratio of approximately 5 for the 0.5 eV peak in the nonlocal-
RPA calculation with optical pumping, thus suggesting that
this effect may indeed be observable in a pump-probe
experiment. In graphene, under the chosen high-temperature
conditions, the peak vanishes entirely in the nonlocal-RPA
simulations, and thus, it appears to be experimentally diffi-
cult to observe. The difference between doping and optical
pumping is generally less pronounced in the nonlocal-RPA
compared to the local-RPA. At low energies, this occurs
because the intraband response becomes increasingly weaker
for increasing q, such that the difference between doping and
optical pumping does not persist in the entire integration range
in Eq. (7). For high energies, it is difficult to single out a
general explanation, except that increasing q in the nonlocal-
RPA model may cause spectral features comparable to those
obtained by increasing the temperature, something that is par-
ticularly pronounced for graphene (see Fig. S4 in the SM [42]).

In BP, broadening effects due to optical pumping are
negligible at energies below the band gap in the local-RPA
model because in this energy regime the only effect of
increasing the temperature is to increase the plasma frequency.
However, in the nonlocal-RPA calculations, we observe a
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FIG. 6. Emitter-surface distance dependence of nonlocal effects in the Purcell factor. We compare local-RPA and nonlocal-RPA calculations
with three different photon emission energies, chosen at the valley and peak values of the Purcell factor marked by arrows in Fig. 5, as well as
at an energy in which interband transitions are the dominant contribution to absorption for each of the materials under consideration.

weak broadening because the increased temperature affects
the intraband transitions at high q.

In Fig. 6, we show the dependence of the Purcell factor
on the distance between the dipole and the surface for three
energies corresponding to the horizontal dashed lines in
Figs. 2(h)–2(o) and the vertical lines in Fig. 5. The first
two energies are somewhat arbitrarily chosen at positions,
for which Fig. 5 exhibits a large difference between local-
and nonlocal-RPA simulations, while the highest energy lies
300 meV above the onset of interband absorption. Major
deviations between the local-RPA and the nonlocal-RPA
calculations are observed primarily at distances below 5 nm,
although for graphene at 0.73 eV, NLEs are noticeable even
up to d = 20 nm. For energies at which interband transitions
are the major contribution to optical absorption, the correspon-
dence between local- and nonlocal-RPA models is generally
quite good. This shows that it is the intraband transitions that
are most heavily influenced by NLEs. Specifically for MoS2,
we find that, moving from left to right in Fig. 6, dipole-surface
distances of 2 nm, 5 nm, and 0.4 nm are the approximate
locations at which NLEs become important, in good agreement
with the values of qcut discussed in connection with Fig. 4.

IV. CONCLUSION

We have investigated plasmons activated by either electron
doping or optical pumping and their role in the enhancement
of the Purcell factor for a dipole in the vicinity of one
of the three 2D materials graphene, MoS2, or BP. To treat
doping and optical pumping in a comparable manner, we
have calculated the equivalent doping level that produces a
Drude plasmon weight similar to that obtained for a given
temperature increase without doping, and we have determined

plasmon dispersions and Purcell enhancement factors under
these comparable conditions. The Purcell factor is highly
dependent on the evanescent wave components of high spatial
wave vector, and so we have adopted the nonlocal-RPA model
to realistically describe the material response, and compared
it with the local approximation.

We find that optical pumping (i.e., for an equivalent elevated
temperature) and doping give rise to similar features in the
Purcell factor, but that the former introduces extra broadening
due to the opening of additional electron-hole pair transition
channels that quench the plasmons. Surprisingly, for MoS2,
we find significantly high peaks in the Purcell enhancement
factor, even under optical pumping conditions, indicating that
it may be possible to observe a broadband Purcell enhancement
experimentally in pumped MoS2.

Under doping at low temperature, graphene exhibits large
Purcell enhancement factors, which are, however, strongly
reduced under equivalent high temperature with low doping
conditions, due to the noted new plasmon-quenching channels.
Compared with MoS2, the optically induced increase of the
Purcell factor should be difficult to observe in graphene.

We find that nonlocal effects can be generally disregarded
for dipole-surface distances above ∼5 nm. However, for
smaller distances, these effects can change the Purcell factor
by orders of magnitude, produce smearing of spectral features
in the Purcell factor, and result in generally smaller peak-to-
valley ratios in the spectral dependence of this quantity.
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