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Unified Impedance Model of Grid-Connected
Voltage-Source Converters

Xiongfei Wang , Member, IEEE, Lennart Harnefors, Fellow, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper proposes a unified impedance model of
grid-connected voltage-source converters for analyzing dynamic
influences of the phase-locked loop (PLL) and current control.
The mathematical relations between the impedance models in the
different domains are first explicitly revealed by means of complex
transfer functions and complex space vectors. A stationary (αβ-)
frame impedance model is then proposed, which not only predicts
the stability impact of the PLL, but also reveals its frequency
coupling effect. Furthermore, the impedance shaping effects
of the PLL on the current control in the rotating (dq-) frame
and the stationary (αβ-) frame are structurally comapred. The
frequency-domain case studies on a three-phase grid-connected
converter are next presented, and subsequently validated in time-
domain simulations and experimental tests. The close correlations
between the measured results and theoretical analysis confirm the
effectiveness of the stationary-frame impedance model.

Index Terms—Grid, impedance model, phase-locked loop (PLL),
stability, voltage-source converters (VSCs).

I. INTRODUCTION

VOLTAGE-SOURCE converters (VSCs) are increasingly
used in electric power grids for efficient energy con-

sumption and renewable energy generation [1]. Compared to
electrical machines, VSCs have the wider bandwidth control
dynamics, ranging from the outer power control loops (sub-
synchronous frequencies) to the inner current control loop
(hundreds of hertz to kHz). The dynamic interactions among
the power grid and VSCs tend to cause oscillations in a wide
frequency range [2].

To address the stability challenges with the grid-connected
VSCs, the impedance modeling and control methods have been
developed for dynamic characterization and active stabilization
of VSCs [3]–[10]. However, many of the research efforts were
dedicated to the stability of the inner current control with LCL-
filters [3]–[6], where the influences of current controller and
time delay of the digital control system have been thoroughly
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discussed. Only a few works have recently been reported to
include the effects of the grid synchronization and the outer
power (dc-link voltage) control loops [7]–[10], [16], [17]. Those
control loops are usually designed with a lower bandwidth than
the current control, which, together with the grid impedance,
tend to result in the unexpected harmonics or resonances near
the fundamental frequency [2].

A wide variety of grid synchronization schemes have been
reported for grid-connected VSCs. The synchronous reference
frame phase-locked loop (SRF-PLL), among other schemes,
has widely been used with single-phase and three-phase VSCs
[11]–[14]. In the SRF-PLL, the phase detection is realized by
using the Park (dq-) transformation, which is highly nonlinear
and time-variant, and hence significantly complicates the small-
signal modeling of the SRF-PLL [7]. Moreover, only the q-axis
component is regulated for the phase tracking, which, unlike the
current control, leads to an asymmetric dq-frame model [15],
and consequently brings in a frequency coupling effect in the
phase domain [2], [16], [17].

Two impedance models have, thus, been developed to re-
veal the dynamic influence of the PLL. In the first approach,
the impedance model was developed in the rotating dq-frame
[7]–[9], where two dq-frames, which are aligned to the mea-
sured and actual grid phase, respectively, were built. Thus, the
PLL dynamics can be accounted by linearizing the transforma-
tion between the two frames [7]. The dq-frame model effectively
predicts the stability impact of the SRF-PLL by means of the
generalized Nyquist stability criterion. However, it fails to reveal
how the impedance characteristics of the grid and VSCs con-
tribute to the frequencies of the induced oscillations, since both
the VSC output impedance and grid impedance are nondiagonal
transfer matrices in the dq-frame [18].

The second method is based on the principle of harmonic
balance, where the harmonic linearization of sinusoidal sig-
nals is employed to formulate the impedance model directly in
the stationary αβ-frame [10]. Such a representation simplifies
the model as a diagonal transfer matrix, which is composed
by two single-input single-output transfer functions for mod-
eling the VSC system in the positive-sequence and negative-
sequence, and it is hence also named as the sequence-domain
impedance model [17]. Compared to the dq-frame model, the
αβ-frame model facilitates the stability analysis of multiple-
VSC-based systems, where the whole system can be readily
modeled in a common frame, rather than using multiple dq-
frames for multiple VSCs [19]. However, the αβ-frame model
in [10] neglects the frequency-coupling effect brought by the
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Fig. 1. Simplified one-line diagram of a three-phase grid-connected VSC.

dq-transformation, which may lead to the inaccurate stability
prediction [16].

Considering the frequency-coupling dynamics, a modified
sequence-domain impedance model has been discussed in [16]
and [17]. It is found that the same stability implication as
the dq-frame impedance model can be observed, provided that
the frequency-coupling transfer functions are included. Yet, the
mathematical relations between the modified sequence-domain
model given in [16] and the dq-frame model are not revealed. A
transformation matrix has, thus, been introduced in [17] in order
to establish the mathematical relations between the impedance
models in the dq-frame and the sequence-domain. However,
the frequency translation between the transfer functions in the
dq-frame and αβ-frame [15] is overlooked in the transformation
matrix reported in [17]. Hence, it merely transforms the original
dq-frame transfer matrix, which is based on real space vectors,
into another dq-frame transfer matrix based on complex space
vectors. Furthermore, for space vectors in the αβ-frame, their
positive and negative frequencies (±ω) represent the positive-
sequence and negative-sequence components at the frequency
ω [15]. Thus, the modified sequence-domain model in [17] may
yield a void sequence component without physical meaning,
e.g., a negative-sequence component with a negative frequency.

To explicitly reveal the mathematical relations between the
models developed in the different domains, this paper proposes
a unifying approach by means of complex space vectors and
complex transfer functions [15]. An impedance model in the
αβ-frame is derived from the unifying approach, which not only
identifies the transfer functions capturing frequency-coupling
dynamics of space vectors, but also removes the void sequence
component in the modified sequence-domain impedance model
[17]. Moreover, the impedance shaping effect of the PLL for
the dq-frame and the αβ-frame current control is structurally
compared. Stability analysis based on the proposed impedance
model is performed. It is found that the αβ-frame current control
with the fixed-line-frequency resonant controller is more robust
than the dq-frame current control against the PLL effect. Time-
domain simulations and experiments validate the effectiveness
of the impedance model and the frequency-domain analysis.

II. GRID-CONNECTED VSCS

A. System Description

Fig. 1 illustrates a simplified one-line diagram of a three-
phase grid-connected VSC, where a constant dc-link voltage
(Vdc) is assumed, and a paralleled LC-type grid impedance is
considered. Table I provides the main circuit parameters. The

TABLE I
MAIN CIRCUIT PARAMETERS

Symbol Electrical Constant Value (p.u.)

Vg Grid voltage (line-to-line) 400 V (1)
f1 Grid fundamental frequency 50 Hz (1)
Lg Grid inductance 5 mH (0.139)
Cg Grid capacitance 20 μF (0.071)
fsw VSC switching frequency 10 kHz (200)
fs VSC control sampling frequency 10 kHz (200)
Vd c Inverter dc-link voltage 730 V (1.825)
L VSC filter inductor 3 mH (0.083)
Id 0 Steady-state output current (d-axis) 15 A (1.414)
Iq 0 Steady-state output current (q-axis) 0 A (0)

Fig. 2. Block diagrams of the current control loop in the different frames.
(a) αβ-frame current control. (b) dq-frame current control.

voltage at the point of common coupling (PCC) is measured for
synchronizing the VSC with the grid by means of the PLL. The
current control can be realized with either the proportional +
resonant (PR) controller in the αβ-frame or the P + integral (PI)
controller in the dq-frame.

For clarity, bold letters are used in this paper to denote com-
plex space vectors, e.g., V = Vα + jVβ and I = Iα + jIβ

for the PCC voltage and VSC current, respectively, and com-
plex transfer functions, e.g., the admittance Y(s) = Yα (s) +
jYβ (s) [15]. The corresponding real space vectors are repre-
sented by italic letters, e.g., V = [Vα , Vβ ]T ↔ V and I =
[Iα , Iβ ]T ↔ I. A subscript “dq” is added for space vectors
and transfer functions referred to the dq-frame, e.g., Vdq =
Vd + jVq andYdq(s) = Yd(s) + jYq (s) for the PCC volt-
age and admittance in the rotating dq-frame, respectively. Trans-
fer matrices are denoted with an additional superscript “m,” and
the matrices of complex transfer functions are represented by
bold letters.

B. Current Control Model

Fig. 2 depicts the block diagrams for the current control im-
plemented in the αβ-frame, as shown in Fig. 2(a), and in the
dq-frame, see Fig. 2(b). In the αβ-frame, the L-filter plant can
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be represented by the following transfer functions:

Yp(s) =
I

Vo

∣
∣
∣
∣
V=0

=
1

Ls + RL
, Yo(s) =

I
V

∣
∣
∣
∣
Vo =0

=
1

Ls + RL
(1)

where the VSC output voltage is denoted by the complex space
vector Vo = Voα + jVoβ , in the αβ-frame. RL is the equiv-
alent series resistance of the filter inductor. Then, based on the
frequency translation between the αβ-frame and dq-frame [15],
the L-filter plant in the dq-frame can be derived as following:

I = Yp(s)Vo

⇒ Idq = e−jθYp(s)ejθVo,dq = Yp(s + jω1)Vo,dq

⇒ Yp,dq(s) = Yp(s + jω1)

Yo,dq(s) = Yo(s +jω1) =Yp(s +jω1) =
1

L(s +jω1) + RL

(2)

where e–jθ = cos(θ) – jsin(θ) is the complex form of the Park
transformation [7], and ejθ is the inverse Park transformation.
ω1 is the grid fundamental frequency (i.e., line frequency).

Gc,dq (s) is the PI current controller in the dq-frame, which is
given by

Gc,dq (s) = kp +
ki

s
. (3)

Following the frequency translation, Gc,dq (s) is transformed
in the αβ-frame as

Gc(s) = Gc,dq (s − jω1) = kp +
ki

s − jω1
(4)

where the center frequency ω1 is fixed in the αβ-frame current
control, yet it is equivalently adapted to the PLL dynamics in
the dq-frame current control.

Gdel(s) is the time delay of the digital control system, which,
in the worst case, includes one sampling period (Ts) of the
computational delay and half-sampling period (0.5Ts) delay of
the pulse width modulator [20]:

Gdel(s) = e−1.5Ts s . (5)

The closed-loop response of the αβ-frame current control
can, thus, be derived as follows:

I = Gcl(s)Iref − Ycl(s)V (6)

Gcl(s) =
T(s)

1 + T(s)
, Ycl(s) =

Yo(s)
1 + T(s)

(7)

where Gcl(s) and Ycl(s) are the closed-loop gain and control
output admittance of the αβ-frame current control, respectively.
T(s) denotes the open-loop gain of the αβ-frame current control,
which is given by

T(s) = Gc(s)Gdel(s)Yp(s). (8)

Similarly, the open-loop gain of the dq-frame current control
can be derived as

Tdq(s) = Gc,dq (s)Gdel(s)Yp,dq(s). (9)

Fig. 3. Block diagram of the SRF-PLL.

Fig. 4. Block diagram of the small-signal model of the SRF-PLL.

The closed-loop response of the current loop in the dq-frame
is expressed as

Idq = Gcl,dq(s)Iref ,dq − Ycl,dq(s)Vdq (10)

Gcl,dq(s) =
Tdq(s)

1 + Tdq(s)
, Ycl,dq(s) =

Yo,dq(s)
1 + Tdq(s)

.

(11)

C. PLL Model

Fig. 3 depicts the block diagram of the SRF-PLL adopted in
this work, where the dq-transformation is used for the phase
detection, and the q-axis voltage is regulated by a PI controller
for the phase tracking [11].

Given a perturbation on the PCC voltage in the dq-frame
ΔVdq , the PCC voltage in the αβ-frame can be expressed as

V = (V1d + ΔVdq)ejω1 t (12)

where V1d is the steady-state PCC voltage aligned to the
d-axis, i.e., the steady-state PCC voltage vector V1,dq =
V1d + j0. The response of the detected phase θ correspond-
ing to the voltage perturbation can be given as

θ = ω1t + Δθ. (13)

The q-axis voltage at the output of the dq-transformation is,
thus, derived as follows:

Vdq = Ve−jθ = (V1d + ΔVdq)e−jΔθ

≈ (V1d + ΔVdq)(1 − jΔθ) ⇒ Vq = ΔVq − ΔθV1d .
(14)

Then, considering the PI controller, the detected phase varia-
tion Δ θ is given by

Δθ =
HPI(s)

s
Vq . (15)

Substituting (15) into (14), the small-signal model of the SRF-
PLL can, thus, be established, which, as shown in Fig. 4, can be
derived as [2]

Δθ = HPLL(s)ΔVq , HPLL(s) =
HPI(s)

s + HPI(s)V1d
(16)
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which illustrates that SRF-PLL is linearized as a second-order
dynamic system.

III. UNIFIED IMPEDANCE MODEL WITH PLL EFFECT

This section elaborates first the dq-frame impedance model
built upon the dq-frame current control with the PLL dynamics
[2], [7]–[9]. Then, a unifying approach to the impedance models
in the different domains is proposed by using complex space
vectors and complex transfer functions. It further reveals that
the transformation matrix introduced in [17] merely transforms
a dq-frame impedance matrix of real space vectors into another
dq-frame impedance matrix based on complex space vectors.

A. DQ-Frame Impedance Model

Similar to (14), the dq-transformations used within the dq-
frame current control can also be linearized as follows:

Idq = Ie−jθ = (I1,dq + ΔIdq)e−jΔθ

≈ (I1,dq + ΔIdq)(1 − jΔθ)

⇒ Idq = I1,dq + ΔIdq − ΔIPLL,dq

ΔIPLL,dq = jΔθI1,dq (17)

Vc = Vc,dqejθ = (Vc1,dq + ΔVc,dq)ej (ω1 t+Δθ)

≈ (Vc1,dq + ΔVc,dq)(1 + jΔθ)ejω1 t

⇒ Vc,dq = Vc1,dq + ΔVc,dq + ΔVPLL,dq

ΔVPLL,dq = jΔθVc1,dq (18)

where I1,dq = I1d + jI1q is the steady-state VSC current.
Vc1, dq = Vc1d + jVc1q is the steady-state modulating volt-
age. ΔIPLL , dq and ΔVPLL , dq denote the dynamic effects
of the PLL on the VSC current and the voltage reference of the
modulator, respectively.

Substituting (16) into (17) and (18) leads to

ΔIPLL,dq = jHPLL(s)I1,dqΔVq

ΔVPLL,dq = jHPLL(s)Vc1,dqΔVq (19)

where the input is merely the q-axis voltage, other than space
vectors in (10), which are derived for the current loop only.
Hence, asymmetric transfer matrices with the cross-couplings
between the d- and q-axis components are inevitable when the
dynamics of PLL are included [7]–[9], [15].

Fig. 5 illustrates the block diagram of transfer matrices for
the dq-frame current control with the PLL effect. The transfer
functions in Fig. 2(b) are represented by the symmetric transfer
matrices, which are denoted with the additional superscript “m,”
i.e., the transfer functions for the current controller Gc,dq (s), the
time delay Gdel(s), and the L-filter plant Yp,dq (s) are changed,
respectively, as

Gc,dq (s) → Gm
c,dq (s) =

[

Gc,dq (s) 0
0 Gc,dq (s)

]

Fig. 5. Block diagram of transfer matrices for the dq-frame current control
with the small-signal dynamics of the PLL.

Gdel(s) → Gm
del(s) =

[

Gdel(s) 0
0 Gdel(s)

]

(20)

Yp,dq (s) → Y m
p,dq (s) =

1
L(s2 + ω2

1 )

[
s ω1

−ω1 s

]

= Y m
o,dq (s).

(21)

Based on (19), the PLL effects are modeled by two asym-
metric transfer matrices, Y m

PLL(s) and Gm
PLL(s), which are given

by

IPLL,dq =
[
IPLL,d

IPLL,q

]

=
[

0 −HPLL(s)I1q

0 HPLL(s)I1d

]

︸ ︷︷ ︸

Y m
P L L (s)

[
Vd

Vq

]

VPLL,dq =
[
VPLL,d

VPLL,q

]

=
[

0 −HPLL(s)Vc1q

0 HPLL(s)Vc1d

]

︸ ︷︷ ︸

Gm
P L L (s)

[
Vd

Vq

]

(22)

where the symbol “Δ” is omitted for simplicity. By shifting the
output of Gm

PLL(s) to the output of Y m
p,dq(s) in Fig. 5, it can be

seen that the open-loop output admittance is reshaped by the
PLL effect on the modulating voltage Gm

PLL(s), which is then
changed as Y m

to,dq (s), and given by

Y m
to,dq (s) = Y m

o,dq (s) − Y m
p,dq (s)G

m
del(s)G

m
PLL(s). (23)

However, the open-loop gain of the current control loop is kept
the same as (9) [21].

Including then the PLL effect on the VSC current Y m
PLL(s),

the modified closed-loop current response is derived as

Idq =
[
Id

Iq

]

= Gm
cl,dq (s)

[
Iref ,d
Iref ,q

]

−
{

[Im + Tm
dq (s)]−1Y m

to,dq (s) − Gm
cl,dq (s)Y

m
PLL(s)

}

︸ ︷︷ ︸

Y m
t c l , d q (s)

[
Vd

Vq

]

(24)

where Im is the unitary diagonal matrix, Tm
cl,dq (s) and Gm

cl,dq (s),
are symmetric transfer matrices for the open-loop and closed-
loop gains of the current loop, respectively, which are

Im =
[

1 0
0 1

]

, Tm
dq (s) = Y m

p,dq (s)G
m
del(s)G

m
c,dq (s)

Gm
cl,dq (s) = [Im + Tm

dq (s)]−1Tm
dq (s). (25)
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Y m
tcl,dq(s) is the modified closed-loop control output admittance

matrix with the PLL dynamics.

B. Unifying Approach

Basically, a second-order transfer matrix based on real space
vectors can be transformed as two complex transfer functions for
the corresponding complex space vector and its conjugate [15].
This complex equivalence leads to a unifying approach to the
dq-frame impedance model [7]–[9] and the modified sequence-
domain impedance model [17].

For illustration, a generic dq-frame impedance matrix is used
first to reveal the mathematical relations between the models
in the different domains. Given a general dq-frame impedance
matrix Zm

dq (s), which is expressed by

Vdq =
[
Vd

Vq

]

= Zm
dq (s)

[
Id

Iq

]

, Zm
dq (s) =

[
Zdd(s) Zdq (s)
Zqd(s) Zqq (s)

]

(26)
its complex equivalent can be derived in the following
[2], [15]:

Vdq = Z+,dq(s)Idq + Z−,dq(s)I∗dq (27)

Z+,dq(s) =
Zdd(s) + Zqq (s)

2
+ j

Zqd(s) − Zdq (s)
2

Z−,dq(s) =
Zdd(s) − Zqq (s)

2
+ j

Zqd(s) + Zdq (s)
2

(28)

where I∗dq is the complex conjugate of Idq .Z+ ,dq(s) and
Z−,dq(s) are the equivalent complex transfer functions. If
the impedance matrix is symmetric, i.e., Zd (s) = Zdd(s) =
Zqq (s) and Zq (s) = Zqd(s) = −Zdq (s) [15], its complex
equivalent will be simplified as a single complex transfer func-
tion Zdq(s), which is given by

Vdq = Zdq(s)Idq , Zdq(s) = Zd(s) + jZq (s). (29)

However, if the impedance matrix is asymmetric, the conju-
gate of the complex space vector will be required, as expressed
in (27). The asymmetric impedance matrix based on real space
vectors consequently results in a double-frequency model with
complex space vectors.

To capture the frequency-coupled dynamics of the double-
frequency model, a complex transfer function matrix Zm

±,dq (s)
is proposed in this work, which is given by

[
Vdq

V∗
dq

]

=
[
Z+,dq(s) Z−,dq(s)
Z∗

−,dq(s) Z∗
+,dq(s)

]

︸ ︷︷ ︸

Zm
±, d q (s)

[
Idq

I∗dq

]

(30)

where Z∗
+ ,dq (s) and Z∗

−,dq (s) are the complex conjugates of
the complex transfer functions Z+ ,dq(s) and Z−,dq(s), respec-
tively. The complex transfer matrix is the essential idea of the
unifying approach.

In the modified sequence-domain impedance model [17], a
linear transformation matrix Az is introduced to transform the
impedance matrix Zm dq(s) into the sequence-domain. However,
it is worth noting that the resulting impedance matrix in [17] is
also a complex transfer matrix based on complex space vectors,

and it is actually equal to the impedance matrix Zm
±,dq (s) derived

in (30), i.e.,

Zm
pn(s) = AZ Zm

dq (s)A
−1
Z = Zm

±,dq(s). (31)

Hence, the transformed impedance matrix in [17] is still
in the dq-frame, other than in the sequence-domain or in the
αβ-frame. Moreover, the complex equivalence given in (27) re-
veals the mathematical relations between the dq-frame model
and the modified sequence-domain model in [17]. Yet, the fre-
quency translation from the dq-frame to αβ-frame is still over-
looked in (31), and thus the frequency coupling effect revealed
in [2] and [16] is not explicitly identified.

IV. STATIONARY-FRAME IMPEDANCE MODEL

This section introduces first the proposed impedance model
in the αβ-frame, and then presents a structural comparison of
the impedance shaping effects of the PLL on the dq-frame and
αβ-frame current control.

A. Proposed αβ-Frame Impedance Model

Considering the frequency translation of complex transfer
functions [15], the complex transfer matrix in (30) and (31) can
be further transformed into the αβ-frame, which is elaborated
in the following:

e−jθV = Z+,dq(s)e−jθI + Z−,dq(s)ejθI∗

⇒ V = ejθZ+,dq(s)e−jθI + ejθZ−,dq(s)ejθI∗

= Z+,dq(s − jω1)I + Z−,dq(s − jω1)ej2θI∗

(32)

ejθV∗ = Z∗
−,dq(s)e−jθI + Z∗

+,dq(s)ejθI∗

⇒ ej2θV∗=ejθZ∗
−,dq(s)e

−jθI + ejθZ∗
+,dq(s)e

jθI∗

= Z∗
−,dq(s − jω1)I + Z∗

+,dq(s − jω1)ej2θI∗

(33)
[

V
ej2θV∗

]

=
[
Z+,dq(s − jω1) Z−,dq(s − jω1)
Z∗

−,dq(s − jω1) Z∗
+,dq(s − jω1)

]

︸ ︷︷ ︸

Zm
± (s)

[
I

ej2θI∗

]

(34)

where I∗ is the complex conjugate of I in the αβ-frame, Zm
± (s)

is the complex transfer matrix in the αβ-frame. The positive-
frequency and negative-frequency of complex space vectors in
the αβ-frame imply that the positive-sequence and negative-
sequence components of three-phase systems. For a given vec-
tor at the frequency ω, a frequency-coupled vector at the fre-
quency 2ω1 − ω is yielded from (34). Hence, only when the fre-
quency ω is above 2ω1 , there is a coupling between the positive-
sequence and negative-sequence components. Otherwise, only
the positive-sequence components at two different frequencies
will be brought by the asymmetric transfer matrix.

Next is to apply this equivalence to the VSC control out-
put admittance including the PLL dynamics, i.e., to transform
the admittance matrix given in (24) from the dq-frame to the
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αβ-frame. In (19), the q-axis voltage Vq is replaced by the com-
plex space vectors as follows:

Vq =
Vdq − V∗

dq

2j
(35)

which consequently leads to

IPLL,dq =
HPLL(s)I1,dq

2
︸ ︷︷ ︸

YP L L (s)

(

Vdq − V∗
dq

)

(36)

VPLL,dq =
HPLL(s)Vc1,dq

2
︸ ︷︷ ︸

GP L L (s)

(

Vdq − V∗
dq

)

(37)

where YPLL(s) and GPLL(s) are the equivalent complex
transfer functions of asymmetric transfer matrices Y m

P LL (s) and
Y m

P LL (s) given in (22), respectively.
The modified open-loop output admittance is formulated by

using complex transfer functions and complex space vectors,
which is given by

Idq |Vo , d q =0 = [Yo,dq(s) − Gd(s)Yp,dq(s)GPLL(s)]
︸ ︷︷ ︸

Yto+ , d q (s)

Vdq

+ Gd(s)Yp,dq(s)GPLL(s)
︸ ︷︷ ︸

Yto −, d q (s)

V∗
dq (38)

where Yto+ ,dq(s) and Yto−,dq(s) are the complex trans-
fer functions of the modified open-loop output admittance.
Thus, the transfer matrix given in (23) is equivalent to two
complex transfer functions. Then taking (36) into account,
the modified closed-loop control output admittance can be
derived by

Idq |Ire f , d q =0 =
[

−Gcl,dq(s)YPLL(s) +
Yto+ ,dq(s)
1 + Tdq(s)

]

︸ ︷︷ ︸

Ytc l+ , d q (s)

Vdq

+
[

Gcl,dq(s)YPLL(s) +
Yto−,dq(s)
1 + Tdq(s)

]

︸ ︷︷ ︸

Ytc l−, d q (s)

V∗
dq

(39)

where Ytcl+ ,dq(s) and Ytcl−,dq(s) are complex transfer func-
tions of the modified closed-loop control output admittance.

Following the same procedure as (30), the complex transfer
matrix of the modified closed-loop control output admittance
can be given, in the dq-frame, as

[

Idq

I∗dq

]

=

[

Ytcl+ ,dq(s) Ytcl−,dq(s)

Y∗
tcl−,dq(s) Y∗

tcl+ ,dq(s)

]

︸ ︷︷ ︸

Ym
tc l±, d q (s)

[

Vdq

V∗
dq

]

. (40)

Finally, applying the frequency translation formulated in (32)
and (33), the dq-frame complex transfer matrix is transformed

Fig. 6. Block diagram of complex transfer functions of the dq-frame current
control with the PLL effect.

Fig. 7. Block diagram of complex transfer functions of the αβ-frame current
control with the PLL effect.

into the αβ-frame, which is expressed by

[
I

ej2θI∗

]

=

[

Ytcl+ ,dq(s − jω1) Ytcl−,dq(s − jω1)
Y∗

tcl−,dq(s − jω1) Y∗
tcl+ ,dq(s − jω1)

]

︸ ︷︷ ︸

Ym
tc l±(s)

×
[

V
ej2θV∗

]

(41)

where Ym
tcl±(s) is the αβ-frame VSC control output admittance

matrix including the PLL dynamics.

B. Impedance Shaping Effect of PLL

Fig. 6 shows the equivalent block diagram of Fig. 5, where,
according to (36) and (37), complex space vectors and complex
transfer functions are used to replace the real space vectors and
transfer matrices in Fig. 5. It is shown that the PLL dynamics
introduce the frequency-coupling dynamics with the complex
conjugate of the PCC voltage. Also, the PLL dynamics mod-
ify the inputs of both the current controller and the modulator
in the dq-frame current control, which consequently shapes both
the open-loop output admittance, see (38), and the closed-loop
control output admittance.

Fig. 7 illustrates the block diagram of the αβ-frame current
control loop with the PLL dynamics, where the current control
loop is transformed into the dq-frame, following the frequency
translation given in (2) and (4). Similar to (17), the PLL effect
on the current reference can be derived as

Iref = Iref ,dqejθ = (Iref1,dq + ΔIdq)ej (ω1 t+Δθ)

≈ (I1,dq + ΔIdq)(1 + jΔθ)ejω1 t

⇒ Iref ,dq = Iref1,dq + ΔIdq + ΔIPLL,dq

ΔIPLL,dq = jΔθIref1,dq = jΔθI1,dq (42)
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TABLE II
CURRENT CONTROLLER AND PLL PARAMETERS

Symbol Controller Parameter Value

kp Proportional gain of current controller 16 Ω
ki Integral gain of current controller 600 Ω /s
kp P L L PLL-proportional gain (fP L L = 20 Hz) 1.08 rad/s

PLL-proportional gain (fP L L = 175 Hz) 9.51 rad/s
PLL-proportional gain (fP L L = 330 Hz) 18.07 rad/s

ki P L L PLL-integral gain (fP L L = 20 Hz) 99.75 rad/s2

PLL-integral gain (fP L L = 175 Hz) 7675 rad/s2

PLL-integral gain (fP L L = 330 Hz) 27 708 rad/s2

where Iref1,dq is the current reference at the steady-state, which
is equal to I1,dq . Thus, the same effect on the input of the
current controller as the dq-frame current control is brought by
the PLL. However, differing from Fig. 6, the PLL dynamics have
no effect on the input of the modulator and the open-loop output
admittance. This difference is because the center frequency of
the R controller, i.e., the grid fundamental frequency ω1 , is fixed
in the αβ-frame current control scheme shown in Fig. 2(a). In
contrast, the I controller in the dq-frame leads to an equivalent
R controller with the center frequency varied with the dynamics
of the PLL [2], [8].

V. IMPEDANCE-BASED STABILITY ANALYSIS

The generalized Nyquist stability criterion is widely applied
to the asymmetric impedance matrices for the system stability
assessment [22], [23]. Similar to the dq-frame impedance model,
the proposed αβ-frame impedance model is asymmetric, which
requires using the generalized Nyquist stability criterion for
the converter–grid interaction analysis. Considering the grid
impedance, the impedance ratio is given by

Lm (s) = Zm
g (s)Ym

tcl±(s) (43)

where Zm
g (s) is the grid impedance matrix. The system stability

can then be predicted based on the frequency responses of the
eigenvalues of the impedance ratio, which are derived by

det
[

λIm − Zm
g (s)Ym

tcl±(s)
]

= 0. (44)

Since the grid impedance is assumed to be balanced, the grid
impedance matrix turns as a diagonal matrix for the complex
space vectors. Corresponding to the dq-frame complex transfer
matrix of the VSC control output admittance, which is given by
(40), the grid impedance matrix can be expressed as

Zg (s) =
Lgs + RLg

(Lgs + RLg )Cgs + 1

⇒ Zg ,dq(s)=
Lg (s + jω1) + RLg

[Lg (s + jω1) + RLg ] Cg (s + jω1) + 1
(45)

[
Vdq

V∗
dq

]

=
[
Vg ,dq

V∗
g ,dq

]

−
[
Zg ,dq(s) 0

0 Z∗
g ,dq(s)

]

︸ ︷︷ ︸

Zm
g , d q (s)

[
Idq

I∗dq

]

(46)
Fig. 8. Frequency responses for the eigenvalues of Y(s) and the grid
impedance when using the dq-frame current control. (a) fPLL = 20 Hz.
(b) fPLL = 175 Hz. (c) fPLL = 330 Hz.
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Fig. 9. Nqyuist diagrams for the eigenvalues of the impedance ratios derived in different domains. (a) dq-frame impedance model. (b) αβ-frame impedance
model.

where RLg is the equivalent series resistance of grid inductance
Lg . The complex conjugate of Zg , dq(s) is given by

Z∗
g ,dq(s) =

Lg (s − jω1) + RLg

[Lg (s − jω1) + RLg ] Cg (s − jω1) + 1
(47)

which can then be transformed into the αβ-frame following the
frequency translation given in (32) and (33), and it is given by

Zm
g ,dq(s) → Zm

g (s) =

[

Zg ,dq(s − jω1) 0
0 Z∗

g ,dq(s − jω1)

]

=
[
Zg (s) 0

0 Zg (s − j2ω1)

]

. (48)

With the diagonal grid impedance matrix, the eigenvalues of
the impedance ratio can be approximated as

det
[

λIm − Zm
g (s)Ym

tcl±(s)
]≈Zg (s) · det

[

λIm − Ym
tcl±(s)

]

.

(49)

Instead of plotting the Nyquist diagrams for the eigenvalues
of (44), the converter–grid interactions can be analyzed by plot-
ting the frequency responses for the eigenvalues of Ym

tcl±(s)
against the grid admittance, i.e., Yg (s) = 1/Zg (s). The system
stability will be dependent on the phase difference at the fre-
quencies where their magnitude responses intersect, where the
phase difference out of 180° indicates an unstable system with
a negative phase margin [18].

Table II provides the controller parameters used in this
work. Three sets of SRF-PLL parameters with the different
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control bandwidth fPLL are evaluated. The control bandwidth
of the SRF-PLL is determined by the settling time, Tset , of
the second-order system given by (19), i.e., fPLL ≈ 1/Tset ,
where the damping ratio is chosen as 0.707, and the param-
eters of the PI controller can be found based on the settling
time [14].

First, considering the cases with the dq-frame current control,
the frequency responses for the eigenvalues of Ym

tcl±(s) are
plotted against the grid admittance. With the PLL bandwidth of
20 Hz, fPLL = 20 Hz, the phase differences at the frequencies
where |λ1(jω)| = |Yg (jω)| or |λ2(jω)| = |Yg (jω)| are within
180°, as shown in Fig. 8(a), which imply a stable response of
the VSC system. However, as the PLL bandwidth increases, the
phase differences are increased.

Fig. 8(b) plots the frequency responses for fPLL = 175 Hz,
where the phase difference at their magnitude intersection fre-
quency 196 Hz is close to 180°. This implies that the system is
marginally stable in response with the resonant or unexpected
harmonic component nearby 196 Hz, and another frequency-
coupled component nearby 2ω1 − ω, i.e., –96 Hz (negative-
sequence), due to the frequency-coupling dynamics. When the
PLL bandwidth is increased up to 330 Hz, the system becomes
unstable with the phase difference out of 180° at the magnitude-
interaction frequency, as shown in Fig. 8(c).

Fig. 9 then compares the Nyquist diagrams of the eigenvalues
of the impedance ratio derived from the dq-frame impedance
model and the αβ-frame impedance model, where the case
of the dq-frame current control with the PLL bandwidth of
330 Hz is considered. The same instability implication can
be observed from the two Nyquist diagrams. Yet, differing
from the dq-frame impedance model, the Nyquist diagrams of
the αβ-frame impedance model are asymmetric between the
positive- and negative-frequencies. This difference is brought
by the frequency translation from the dq-frame to the αβ-frame.
It is worth noting that the dq-frame complex transfer matrix,
which is given in (40), leads to the same Nyquist diagrams
as the dq-frame impedance matrix of real space vectors. This
equivalence has been explicitly elaborated in [17].

Subsequently, Fig. 10 depicts the frequency responses for
the cases with the αβ-frame current control. Differing from
the dq-frame current control, the VSC is kept stable with all
three sets of PLL parameters. The differences are due to the
use of a fixed-frequency R controller in the αβ-frame, which,
as illustrated in Fig. 7, equivalently avoids the PLL effect on
the modulating voltage, and it is hence more robust against
the dynamic impact of the PLL than the dq-frame current
control.

However, similar to the dq-frame current control, the sys-
tem phase margin is also reduced, i.e., the phase difference at
the intersection frequencies of the magnitude responses is get-
ting closer to 180°, as the bandwidth of the PLL increases.
Fig. 10(c) shows that a marginally stable operation with the
under-damped resonance may be resulted at the intersection fre-
quency (270 Hz) of the magnitude responses, and the frequency-
coupling harmonic at 170 H, yet in the negative-sequence,
may arise.

Fig. 10. Frequency responses for the eigenvalues of Y(s) and the grid
impedance when using the αβ-frame current control. (a) fPLL = 20 Hz.
(b) fPLL = 175 Hz. (c) fPLL = 330 Hz.



1784 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 2, FEBRUARY 2018

Fig. 11. Simulated PCC voltage and VSC current for the dq-frame current
control. (a) fPLL = 20 Hz. (b) fPLL = 175 Hz. (c) fPLL = 330 Hz.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Simulation Results

To verify the effectiveness of the impedance-based analysis,
the time-domain simulations based on the MATLAB/Simulink
and PLECS blockset are performed. The parameters presented
in Tables I and II are adopted.

Fig. 11 shows the simulated PCC voltage (line-to-line) and
VSC current for the dq-frame current control. Three cases cor-
responding to the three different sets of PLL parameters are
compared. A stable response is observed in Fig. 11(a) when
fPLL = 20 Hz, which agrees with the frequency-domain anal-
ysis in Fig. 8(a). Fig. 11(b) depicts the simulated waveforms
for the case of fPLL = 175 Hz, where the harmonic distortions
confirm the stability implication of Fig. 8(b). Fig. 12 further il-
lustrates the harmonic spectra analysis of Fig. 11(b), where the
two main harmonic components correlate closely with the fre-
quency identified in Fig. 8(b), and phase sequence obtained in
the harmonic spectra verifies the frequency coupling effect, i.e.,
2ω1 − ω. Fig. 11(c) shows the step change of the PLL band-
width from 20 to 330 Hz at the time instant of 0.5 s. It is clear

Fig. 12. Harmonic spectra analysis for the simulated waveforms in Fig. 11(b).

Fig. 13. Simulated PCC voltage and VSC current for the αβ-frame current
control. (a) fPLL = 20 Hz. (b) fPLL = 175 Hz. (c) fPLL = 330 Hz.

that the system becomes unstable when the PLL bandwidth is
increased.

Fig. 13 shows the simulated results for the αβ-frame current
control. It is clear that the system is kept stable in all cases,
which confirms the stability analysis in Fig. 10. The harmonic
distortion shown in Fig. 13(c) verifies the limited phase margin
predicted in Fig. 10(c). The harmonic spectra of Fig. 13(c) are
shown in Fig. 14, where the two harmonic components confirm
the frequency identified in Fig. 10(c) and the coupled harmonic
distortion.
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Fig. 14. Harmonic spectra analysis for the simulated waveforms in Fig. 13(c).

Fig. 15. Measured PCC voltage and VSC current for the dq-frame current
control. (a) fPLL = 20 Hz. (b) fPLL = 175 Hz.

B. Experimental Results

To further verify the simulation results, the experiments on
a laboratory test setup are carried out. All the parameters used
in the frequency-domain analysis and time-domain simulations
are tested in experiments. A frequency converter is used as the
grid-connected VSC. The control system is implemented in the
DS1007 dSPACE system, where the DS5101 digital waveform
output board is used for generating the switching pulses, and
the DS2004 high-speed A/D board is used for the voltage and
current measurements. A constant dc voltage supply is used at

Fig. 16. Measured PCC voltage and VSC current for the αβ-frame current
control. (a) fPLL = 20 Hz. (b) fPLL = 175 Hz. (c) fPLL = 330 Hz.

the dc-side, and Chroma grid simulator is used to generate the
grid voltage.

Fig. 15 shows the measured line-to-line PCC voltage (VAB)
and VSC currents for the dq-frame current control. Two sets
of PLL parameters, i.e., fPLL = 20 Hz and 175 Hz, are tested,
since the unstable case with fPLL = 330 Hz tripped the test sys-
tem. The harmonic spectra of the phase-A current are shown.
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It is clear that the voltage and current are distorted when
the PLL bandwidth is increased to fPLL = 175 Hz, which
closely correlate with the simulation results in Fig. 11(a)
and (b).

Fig. 16 shows the measured line-to-line PCC voltage (VAB)
and VSC currents for the αβ-frame current control. Three sets of
PLL parameters presented in Table II are tested for comparison.
It is clear that the harmonic spectra of the phase-A current in
Fig. 16(c) match with the simulation result in Fig. 14 and the
frequency identified in Fig. 10(c).

VII. CONCLUSION

This paper has discussed a unifying approach to the
impedance models of VSCs with the PLL dynamics included.
The mathematical relations between the models built in the dif-
ferent domains have been explicitly revealed. A complex equiv-
alence of the asymmetric dq-frame impedance matrix has been
introduced based on complex space vectors and complex trans-
fer functions. Based on the complex equivalence, a stationary-
frame (αβ-frame) impedance model has further been developed.
Frequency-domain analysis on the influence of different PLL
bandwidths has been performed with the developed impedance
model, and validated in time domain simulations and experi-
ments.
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