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Stark effect and polarizability of graphene quantum dots

Thomas Garm Pedersen*

Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg Øst, Denmark
and Center for Nanostructured Graphene, DK-9220 Aalborg Øst, Denmark

(Received 27 June 2017; revised manuscript received 16 August 2017; published 18 September 2017)

The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons
in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic
Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we determine the perturbative
regime, beyond which higher-order field effects are observed. The Dirac approach is validated by comparison
with atomistic tight-binding simulations. Finally, we study the influence on the Stark effect of band gaps produced
by, e.g., interaction with the substrate.

DOI: 10.1103/PhysRevB.96.115432

I. INTRODUCTION

External electric fields are frequently applied to tune or
characterize the properties of nanoscale electronic structures.
A prominent effect is the Stark shift of confined electronic
states, which has been studied extensively in semiconducting
nanostructures such as GaAs quantum wells [1] and CdSe
quantum dots [2]. With the development of graphene technol-
ogy a range of new device geometries has become available.
In contrast to traditional nanostructures, graphene-based ge-
ometries are atomically thin, i.e., fully two-dimensional. Thus,
several experimental and theoretical studies of planar graphene
nanostructures, including nanoribbons [3,4], nanorings [5,6],
and quantum dots or nanodots [5,7–22], have been reported.
Such atomically thin structures are highly sensitive to nearby
gates [11,15,18] or charged nanotips [20], as observed in, e.g.,
quantized transport [11,15].

Similar to atomic systems and semiconductor nanostruc-
tures, the electronic states of graphene quantum dots can
be manipulated via the Stark effect. So far, no experimental
reports of Stark shifts in graphene dots have been reported,
but several theoretical investigations exist. Thus, electric-field
control over state localization [23,24] as well as magnetic [25]
and optical [26] properties has been suggested. These studies
all employed atomistic approaches such as tight-binding
[23,26] or density-functional theory [24,25]. While accurate,
such methods are restricted to rather small structures, typically
well below the size of experimental geometries. In contrast, the
Dirac equation approach can handle arbitrarily large structures
[7,8,12,14,22]. This approach relies on the fact that carriers in
graphene behave as massless Dirac particles as long as the en-
ergy is close to the so-called Dirac point of the graphene band
structure. We have previously successfully applied this ap-
proach to study a range of graphene nanostructures such as an-
tidot lattices [27] and isolated rings, dots, and antidots [22,28].

In the present work, we apply the Dirac equation approach
to graphene quantum dots in lateral external electric fields
such as that illustrated in Fig. 1. We consider circular
quantum dots since experimental samples are frequently
roughly circular in shape [13,17,20,21]. To lowest order in
the electric field F the field-induced Stark shift �E of a
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particular state is quadratic in F , i.e., �E = − 1
2αF 2, where

α is the polarizability of the state. We demonstrate below
that compact analytical expressions for the polarizability can
be found for all states. Also, we investigate numerically
the effect of large electric fields, for which the quadratic
Stark shift is no longer applicable. Moreover, the Dirac
approach is compared with atomistic tight-binding results for
small structures, demonstrating good agreement between the
different approaches. Finally, to include band gaps induced by,
e.g., interactions with a substrate we consider quantum dots
cut from “gapped graphene” and study the influence of gaps
on the Stark shift.

II. THEORY

We consider a circular graphene quantum dot such as the
one sketched in Fig. 1 in the presence of a lateral electric
field �F . Dots etched from a large sheet using lithography,
as opposed to, e.g., patterned hydrogen adsorption [29], are
expected to provide strong electron confinement. We aim
to describe a graphene quantum dot with ideal confinement
using the usual Dirac equation. Hence, the eigenstates are
two-component spinors, and ideal confinement is enforced
by the infinite-mass-barrier boundary condition coupling the
spinor components at the periphery [14,22,30]. It is convenient
to normalize the radial coordinate r by the radius a. In this
manner, the boundary is located at r = 1. Accordingly, the
unperturbed Hamiltonian for the K valley reads

H0 = h̄vF

a

(
0 −ie−iθ

(
∂r − i

r
∂θ

)
−ieiθ

(
∂r + i

r
∂θ

)
0

)
. (1)

Here, vF = 106 m/s is the graphene Fermi velocity. Clearly,
the characteristic energy is h̄vF /a. For the K ′ valley, the
Hamiltonian is transposed but otherwise identical to Eq. (1).
The unperturbed eigenstates of angular momentum m are of
the form

ψ (0)
m = 1√

2π

(
fm(r)eimθ

igm(r)ei(m+1)θ

)
. (2)

For a circular geometry, ideal (infinite-mass) confinement
is implemented by the boundary condition fm(1) = gm(1)
[14,22,30]. Hence, for a state with energy E and writing
k = aE/(h̄vF ), it follows that, in terms of Bessel functions
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FIG. 1. Circular graphene quantum dot of radius a perturbed by
a lateral electric field F .

Jm [12,14],

(
fm(r)

gm(r)

)
= Nm

(
Jm(kr)

Jm+1(kr)

)
,

Nm = 1

Jm(k)

(
2 − 2m + 1

k

)−1/2

, (3)

with the additional condition Jm(k) = Jm+1(k) due to
the boundary condition. The parity conditions J−m(x) =
(−1)mJm(x) and Jm(−x) = (−1)mJm(x) ensure electron-hole
symmetry of the energy spectrum. Moreover, the K ′ eigen-
states are the transpose of the states above, and the energies are
related via E(K ′)

m = −E
(K)
m+1. The properties of the full spectrum

of the two valleys are therefore identical up to a relabeling, and
below we consider only the K valley.

In the presence of an external in-plane electric field F ,
the Hamiltonian is supplemented by the perturbation H1 =
(h̄vF /a)Er cos θ , with E = eFa2/(h̄vF ). We are interested in
the energy correction to second order in the field E(2) since the
first-order correction vanishes due to inversion symmetry of
the unperturbed system. Traditionally, E(2) has been calculated
using second-order perturbation theory that involves an infinite
sum over contributions. An extremely efficient and accurate
alternative is the Dalgarno-Lewis perturbation theory [31],
which has previously been applied to find polarizabilities of
two-dimensional materials [32–34]. As a starting point, we
consider the perturbed problem (H0 + H1)ψ = Eψ . Writing
ψ = ψ (0)

m + ψ (1)
m + · · · as well as E = E(0)

m + E(2)
m + · · · ,

where superscripts indicate the order of the perturbation, and
collecting first-order terms, we must solve the inhomogeneous
equation (H0 − E(0)

m )ψ (1)
m = −H1ψ

(0)
m . In the present spinor

problem, it can be demonstrated that the first-order correction
can be written as

ψ (1)
m = E eimθ

4
√

2π

(
eiθFm(r) + e−iθ F̃m(r)

i[e2iθGm(r) + G̃m(r)]

)
. (4)

By collecting terms varying as e±iθ , the radial functions must
satisfy

− kFm(r) + G′
m(r) + m + 2

r
Gm(r) + 2rfm(r) = 0,

−kGm(r) − F ′
m(r) + m + 1

r
Fm(r) + 2rgm(r) = 0,

−kF̃m(r) + G̃′
m(r) + m

r
G̃m(r) + 2rfm(r) = 0,

−kG̃m(r) − F̃ ′
m(r) + m − 1

r
F̃m(r) + 2rgm(r) = 0. (5)

Similar to the unperturbed solutions, the boundary con-
ditions for the first-order perturbation are Fm(1) = Gm(1)
and F̃m(1) = G̃m(1). Combining homogeneous and particular
solutions, it can be demonstrated that

Fm(r)/Nm = −2(m + 1)

k
rJm(kr) + (r2 − 1)Jm+1(kr),

F̃m(r)/Nm = r2Jm+1(kr) + Jm−1(kr),

Gm(r)/Nm = −r2Jm(kr) − Jm+2(kr),

G̃m(r)/Nm = 2m

k
rJm+1(kr) − (r2 − 1)Jm(kr). (6)

Based on these results, we can now compute the second-
order energy correction E(2)

m for a state of angular momentum
m. In analogy with nonrelativistic (scalar) problems [32–34],
the correction becomes

E(2)
m = 〈

ψ (0)
m

∣∣H1

∣∣ψ (1)
m

〉 = 1

8
E2

∫ 1

0
{fm(r)[Fm(r) + F̃m(r)]

+ gm(r)[Gm(r) + G̃m(r)]}r2dr. (7)

Hence, only the first-order correction to the wave function is
required. It turns out that all integrals needed in Eq. (7) can
be evaluated analytically. The final result can be written in the
compact form

E(2)
m (k) = 1

6k2

{
−k + 1

2(2k − 1 − 2m)
+ m(m + 1)

k

}
. (8)

The polarizability is then

αm(k) = 1

3k2

{
k − 1

2(2k − 1 − 2m)
− m(m + 1)

k

}
. (9)

This important result has the expected K ↔ K ′ symmetry
αm(k) = −α−(m+1)(−k).

The dimensionless polarizability in the massless Dirac
model must be multiplied by cDirac = e2a3/(h̄vF ) to obtain the
physical, dimensionful quantity. In contrast, for nonrelativistic
Schrödinger fermions, the corresponding factor is cSchrödinger =
e2m∗a4/h̄2 [32–34], where m∗ is the effective mass. Note
the difference in scaling between the massless relativistic
problem, for which the polarizability scales with size as
a3, and the nonrelativistic case scaling as α ∝ a4. In the
Dirac approach, massive rather than massless fermions can
be studied by including mass terms ±� in the diagonal of the
Dirac Hamiltonian [12,22,27,28]. The mass term is related
to the effective mass via � = m∗v2

F . Normalizing by the
characteristic energy h̄vF /a, the relevant quantity becomes the
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FIG. 2. Normalized polarizability for the lowest angular mo-
menta and states around the Dirac point.

normalized mass term δ = a�/(h̄vF ) = am∗vF /h̄. Hence, we
see that relativistic and nonrelativistic prefactors are related by
cSchrödinger = δ · cDirac.

Physically, a mass term describes a band gap of magnitude
2� in the energy spectrum. Band gaps can be caused by several
effects such as interactions with substrates [35] or periodic
gating [36]. Moreover, naturally gapped two-dimensional (2D)
semiconductors such as h-BN or transition-metal dichalco-
genides can be modeled using mass terms, i.e., differing on-site
energies [37]. To include a possible mass term and also to study
the transition from massless Dirac to massive Schrödinger
cases, we include the massive (gapped) graphene model in
the Appendix. The presence of mass terms complicates the
expression for the correction to the wave function slightly
[see Eq. (A3)]. However, an analytical expression for the
polarizability can still be found, as shown in Eqs. (A4) and
(A5). The general expression is clearly quite complicated.
However, in the limit δ � 1, we find the approximate result

αm(k) ≈ (4 + k2 − 4m2)δ

6k4
, (10)

where k is now the root of the mth Bessel function Jm(k) = 0.
For m = 0, this result agrees with the usual nonrelativistic
expression (4 + λ2

2)δ/(6λ4
2), with J0(λ2) = 0 [34]. The factor

of δ in Eq. (10) is precisely the expected manifestation of the
nonrelativistic limit.

III. RESULTS

We now illustrate our results by evaluating Eq. (9) for
the analytical polarizability for some important states in
the vicinity of the Dirac point. To this end, we solve the
eigenvalue condition Jm(k) = Jm+1(k) for the unperturbed
energies. Several eigenstates exist for any given m, and we use
n = 1,2,3, . . . to distinguish these. Labeling states by |m,n〉
and writing kmn for the associated wave number to make these
quantum numbers explicit, we have for the lowest state k01 ≈
1.435 and, consequently, find from Eq. (9) α0(k01) ≈ 0.189.
The polarizabilities for some low cases of m are plotted in
Fig. 2, highlighting the symmetry αm(k) = −α−(m+1)(−k). It
is noted that |αm(k)| decreases with |m| but only slowly for

FIG. 3. Comparison of the approximate quadratic field depen-
dence with the full numerical result.

large angular momenta. Hence, the most polarizable states are
the |m = 0,n = 1〉 and |m = −1,n = 1〉 ones.

To go beyond perturbation theory, we now consider the
full problem (H0 + H1)ψ = Eψ and expand the unknown
wave function in a basis of unperturbed eigenstates ψ (0)

m . We
include angular momenta in the range |m| � 10 and, similarly,
include the 20 states closest to the Dirac point for each m.
This basis leads to converged results with absolute uncertainty
below 10−5 in the energy range considered below. The results
found by numerically diagonalizing the full Hamiltonian in this
basis are compared to the analytical quadratic approximation
in Fig. 3. Several features in this plot are worth stressing.
Primarily, the quadratic approximation is in good agreement
with the numerical curves for small field strengths, testifying
to the correctness of the polarizability Eq. (9). Notice also
the perfect electron-hole symmetry. Second, the perturbative
regime extends up to field strengths of around E ≈ 2. Beyond
this field, a much more complicated nonperturbative behavior
is observed, including avoided crossings in several places.
Finally, the states nearest to the Dirac point are seen to be
most strongly affected by the field and are therefore the most
polarizable.

Next, we wish to check the present approach against
atomistic results. As explained above, atomistic approaches
are highly reliable but limited to relatively small structures.
Hence, we make the comparison for the four geometries
inset in Fig. 4 that contain a manageable 780, 1728, 2076,
and 4902 atoms, respectively. The atomistic calculation is
made using the tight-binding (TB) method in the orthogonal
nearest-neighbor approximation. We take the hopping integral
γ = 3.033 eV [22,27] and bond length acc = 1.42 Å consistent
with a Fermi velocity of vF = 106 m/s. The circular quantum
dots have radii a of 18.0acc ≈ 26 Å, 26.8acc ≈ 38 Å, and
29.4acc ≈ 42 Å, respectively, and the radius of the inscribed
circle for the hexagonal one measures 43.0acc ≈ 61 Å. To
find the Stark shift, a linearly varying electrostatic potential
is added to the TB Hamiltonian. We take the field along either
the zigzag x direction or armchair y direction. Hence, matrix
elements �Hnn = eFxn or �Hnn = eFyn are added to the
on-site energy of site n in the TB model.

115432-3
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FIG. 4. Comparison of atomistic tight-binding results (solid and dotted black lines for x and y polarization, respectively) with the analytical
quadratic approximation (dashed red lines) for four different quantum dot sizes. The radii are (a) 26, (b) 38, (c) 42, (d) and 61 Å, and the atomic
geometries are shown in the insets.

The four geometries in Fig. 4 illustrate both the applicability
and problems with the Dirac approach. In principle, the Dirac
model is expected to be most accurate for low-energy states in
relatively large structures, for which the continuum approxi-
mation holds. For large structures, however, complications due
to edge states may appear, as discussed in detail below. Thus,
the geometries in Figs. 4(a) and 4(b) represent relatively small
or medium dots, whereas Fig. 4(c) is large enough to support
extended zigzag edges. The hexagonal dot in Fig. 4(d) has
exclusively armchair edges and hence does not support edge
states. We include this noncircular geometry to demonstrate
that the present model can, in fact, be successfully applied
to such structures. In each circular dot, a state with energy
ET B between 0.2 and 0.3 eV is found in the TB model in
the absence of the field. This state corresponds to the solution
with Dirac energy E01 = h̄vF k01/a in the Dirac model. In
fact, if the Dirac energy is calculated from the radius a used
to define the atomic geometries, we consistently find energies
that are slightly larger than the TB values. The physical reason
is that the π -electron cloud in the TB model extends beyond
the radius defining the atomic sites included in the geometry.
Thus, a slightly larger effective radius aeff might be applied
to compensate for this discrepancy. To this end, we may
simply determine aeff by equating ET B and E01 = h̄vF k01/aeff .
Moreover, in this manner an effective radius for the hexagonal
dot in Fig. 4(d) can be defined. This approach leads to the
effective radii listed in Table I and shows that aeff exceeds
a by ∼4 − 7 Å. In this manner, the TB and Dirac energies

in Fig. 4 are forced to coincide in the limit of vanishing
field.

For finite fields, the plots in Fig. 4 illustrate the differences
and similarities between TB and Dirac models. As shown
by the solid and dotted lines, the atomistic results have a
slight dependence on the orientation of the electric field.
This is visible only for rather large fields, however, and
the approximate quadratic behavior found in small fields is
the same for both zigzag and armchair directions. Thus, the
polarizability is independent of field orientation. The |0,1〉
states are twofold degenerate in the Dirac model due to
valley degeneracy even in the presence of an electric field.
From Fig. 4 it is seen that this degeneracy is lifted in the
tight-binding simulation for finite field strengths. Thus, the
state is split by the electric field, and accordingly, two separate

TABLE I. Characteristic parameters and polarizabilities for the
four geometries in Fig. 4.

Structure Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d)

Radius a (Å) 25.6 38.1 41.7 61.0
TB energy ET B (eV) 0.292 0.221 0.207 0.140
Eff. radius aeff (Å) 32.3 42.7 45.5 67.3
α(eV nm2/V2) 9.67 22.4 27.1 88.1

α
(+)
T B (eV nm2/V2) 13.3 29.2 60.4 110

α
(−)
T B (eV nm2/V2) 7.25 12.9 7.53 35.9
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polarizabilities describe the Stark effect. This feature is not
captured in the Dirac model. Apart from this discrepancy,
Figs. 4(a), 4(b), and 4(d) demonstrate good agreement between
the Dirac model (based on effective radii) and the TB approach.
Hence, even relatively small structures such as Fig. 4(a) can be
described by the Dirac model if the effective radius is properly
chosen. Moreover, it is gratifying that hexagonal geometries fit
the model as such structures are typically found in dots grown
by vapor deposition rather than defined by lithography. For
the TB model, we extract numerical polarizabilities α

(±)
T B for

the high- and low-energy state by fitting results for zigzag
orientation to parabolas in the field range |F | � 0.2 V/a.
Numerically, the polarizability in the Dirac model lies between
the two atomistic values (see Table I). Also, focusing on the
38-Å structure in Fig. 4(b), the quadratic Stark shift model
predicts a complete closing of the energy gap at field strengths
around 0.17 V/nm, whereas the atomistic results predict an
avoided crossing near 0.15–0.16 V/nm and a complete closing
(for zigzag polarization) near 0.22 V/nm. Similar behavior is
found in Figs. 4(a) and 4(d).

The 26- and 38-Å structures are small enough that no
extended zigzag segments are found at the perimeter. Such
segments lead to localized edge states with energy close to
the Dirac point [27]. These effects cannot be captured by the
Dirac approach used here, and hence, discrepancies between
tight-binding and Dirac models are expected in such cases.
To this end, we have included a somewhat larger geometry
in Fig. 4(c). For clarity, only zigzag orientation of the field is
shown. In this case, extended zigzag segments (with dangling
bonded atoms) are found at the edge [see the geometry inset
in Fig. 4(c)]. In the absence of an electric field, a total of 12
states are found close to the Dirac point with energy below
|E01|. In a finite field, the states split into three groups of
four states each. One group of four states remains close to
the Dirac point, whereas the remaining two either increase or
decrease strongly with field depending on the sign of their
dipole moment. Thus, these groups intersect the |0,1〉-type
states at a finite field around 0.05 V/nm. This phenomenon is
completely absent in the Dirac model. It can still be applied as
an approximation for “bulk” states, however, in this case, and
as shown in Fig. 4(d), it applies very well to large structures
provided edge states are absent.

Finally, we address the gapped graphene case. As explained
in the previous section and detailed in the Appendix, the
presence of a band gap in the bulk of the graphene sheet can be
incorporated via a mass term. Without additional confinement,
this leads to the gapped graphene model that can be applied
as a model of natural 2D semiconductors such as h-BN or
transition-metal dichalcogenides. In the graphene case, a mass
term can result from sublattice symmetry breaking via, e.g.,
interaction with a substrate [35]. Hence, the magnitude of
the mass term may vary significantly between these different
cases. In Fig. 5, the associated change in polarizability for some
cases of low angular momentum and n = 1 is illustrated as a
function of the normalized mass term δ using the gapped Dirac
expressions (A4) and (A5). In all cases, the full calculation
approaches the nonrelativistic limit as δ increases. However,
rather large deviations are seen even for mass terms as large
as δ = 50. It is noted also that whereas the polarizability in
the massless limit δ = 0 remains positive for all m � 0, the

FIG. 5. Polarizability as a function of the mass term in gapped
graphene quantum dots. The red and green lines are exact relativistic
and approximate nonrelativistic values, respectively.

nonrelativistic cases turn negative for m � 4. When plotted
against δ, the full polarizabilities therefore change sign at a
certain value of δ for m � 4. We note that for � = 13 meV
corresponding to the band gap of graphene on SiC substrates
[35], a dot size of a = 100 nm corresponds to a normalized
mass parameter of only δ = a�/(h̄vF ) ≈ 2. Conversely, a
similar disk of transition-metal dichalcogenide material with a
band gap of Eg ∼ 2 eV has a mass term that is approximately
100 times larger. Hence, Fig. 5 shows that a small substrate-
induced band gap has little effect on the Stark shift, whereas
band gaps in the eV range will dramatically modify the Stark
response of large dots.

IV. SUMMARY

In summary, a model based on the Dirac equation has been
constructed for the Stark effect in graphene quantum dots. This
makes it possible to treat arbitrarily large structures, in contrast
to atomistic approaches. An analytical expression for the po-
larizability valid for arbitrary angular momentum and energy
has been derived. Moreover, we have studied the high-field
regime, for which the quadratic field dependence is no longer
accurate. The Dirac model has been compared to an atomistic
calculation of the Stark effect for small- and medium-sized
dots to validate the results. Finally, the influence of a gap in
the bulk graphene band structure due to, e.g., substrate effects
has been investigated. We have found that typical gaps induced
by substrates have a limited influence on the Stark shift.
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APPENDIX: GAPPED GRAPHENE

The case of gapped graphene is slightly more involved than the gapless one but still analytically tractable. The modification
is accomplished by adding mass terms ±δ = ±am∗vF /h̄ to the diagonal so that the unperturbed Hamiltonian for the K valley
reads

H0 = h̄vF

a

(
δ −ie−iθ

(
∂r − i

r
∂θ

)
−ieiθ

(
∂r + i

r
∂θ

) −δ

)
. (A1)

The eigenvalues are now ε = ±√
k2 + δ2, and the eigenstates become(

fm(r)
gm(r)

)
= Nm

(
Jm(kr)

k
ε+δ

Jm+1(kr)

)
, Nm = k

Jm(k)
[δ + ε(2ε − 2m − 1)]−1/2. (A2)

The quantization condition is then Jm(k) = k
ε+δ

Jm+1(k). The Dalgarno-Lewis approach for the gapped case leads to a first-order
correction that is still of the form of Eq. (4) but where

Fm(r)/Nm = 2[δ − (m + 1)ε]

k2
rJm(kr) + 1

k

(
δ

m − ε + 1
+ ε(r2 − 1)

)
Jm+1(kr),

F̃m(r)/Nm = ε

k
r2Jm+1(kr) + δ + ε(ε − m)

k(ε − m)
Jm−1(kr),

Gm(r)/Nm = − ε

δ + ε
r2Jm(kr) + ε(m − ε + 1) − δ

(δ + ε)(−m + ε − 1)
Jm+2(kr),

G̃m(r)/Nm = δ − ε(ε − m)(r2 − 1)

(δ + ε)(ε − m)
Jm(kr) + 2(mε − δ)

k(δ + ε)
rJm+1(kr). (A3)

In turn, this leads to the rather cumbersome expression for the polarizability

αm(k) = 1

12k4(ε − 1 − m)(ε − m)[δ + ε(2ε − 2m − 1)]

7∑
p=0

Cpεp, (A4)

with coefficients

C0 = (1 + 2m)δ2[4m2(1 + m)2 − 2m(1 + m)δ − 2m(1 + m)δ2 + 3δ3],

C1 = −δ{24m2(1 + m)2 − 6m(1 + m)[1 − 4m(1 + m)]δ + [1 − 12m(1 + m)]δ3 + 6δ4 − 2(δ + 2mδ)2},
C2 = (1 + 2m){4m2(1 + m)2 + 34m(1 + m)δ + 2[−5 + 9m(1 + m)]δ2 − 5δ3 − 6δ4},
C3 = −6m(1 + m)(1 + 2m)2 − 2[5 + 32m(1 + m)]δ + [7 − 44m(1 + m)]δ2 + 6δ3 + 4δ4,

C4 = 2(1 + 2m)[1 + 4m(1 + m) + δ(5 + 9δ)], C5 = 2[1 + 8m(1 + m) − 6δ2], C6 = −12(1 + 2m), C7 = 8. (A5)
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