Aalborg Universitet

Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm

Tian, Jie; Zhou, Dao; Su, Chi; Blaabjerg, Frede; Chen, Zhe

Published in: The Journal of Engineering

DOI (link to publication from Publisher): 10.1049/joe.2017.0770

Creative Commons License CC BY-NC-ND 3.0

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Tian, J., Zhou, D., Su, C., Blaabjerg, F., & Chen, Z. (2017). Maximum Energy Yield Oriented Turbine Control in PMSG based Wind Farm. *The Journal of Engineering*, 2017(13), 2455-2460. https://doi.org/10.1049/joe.2017.0770

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Maximum energy yield oriented turbine control in PMSG-based wind farm

Jie Tian^{1,2}, Dao Zhou¹, Chi Su^{1,2}, Frede Blaabjerg¹, Zhe Chen^{1,2}

¹Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark ²Sino-Danish Centre for Education and Research, 8000 Aarhus, Denmark E-mail: jietian82@foxmail.com

Published in The Journal of Engineering; Received on 12th October 2017; Accepted on 8th November 2017

Abstract: In the modern power systems, with the fast integration of the wind power into the grid, it turns to develop large-scale offshore wind farms equipped with the permanent magnet synchronous generator (PMSG) wind turbine. In large-scale offshore wind farms, the wind turbine operating reliability and the wake effect in the wind farm became important issues. The pitch angle and tip speed ratio are the two degrees of freedom for the PMSG wind turbine is the product of its active power and lifetime, the energy production can be maximised by optimising its pitch angle and tip speed ratio. In this study, the energy production of a 2 MW PMSG wind turbine is maximised by optimising its pitch angle and tip speed ratio. Moreover, taking into account the wake effect, the energy production of a wind farm equipped with two 2 MW PMSG wind turbines is maximised by optimising the pitch angle and tip speed ratio of each wind turbine.

1 Introduction

According to IEA Wind 2015 Annual Report [1], 433 GW of wind power capacity has globally been installed by 2016, which met 4% of the world's electricity demand in 2015. With the increasing integration of the wind power into the grid, it trends to develop large-scale offshore wind farm. Due to the lower cost of power electronics and more stringent fault ride-through grid codes, the large-scale wind farm turns to the synchronous generator or asynchronous generator based turbines with the full-scale power converter.

As a popular candidate of full-scale power converter solution, the permanent magnet synchronous generator (PMSG) based wind turbine has two degrees of freedom for the active power control, which are the pitch angle and tip speed ratio [2]. The widely implemented active power control method in the PMSG wind turbine is the maximum power point tracking (MPPT), by which, each individual wind turbine generates the maximum active power at its current wind speed by adjusting its pitch angle and tip speed ratio. However, the MPPT method hardly considers the wind turbine lifetime and the wake effect in the wind farm.

In offshore wind farms, due to its expensive operation and maintenance cost, the wind turbine operating reliability became more and more important. The energy production capability of each wind turbine is related not just to its active power generation but also to its lifetime. A few studies have focused on this area. According to a field survey [3], the power converter in the wind turbine system has the most failure rate, which is 23%, compared with the other parts of the wind turbine components. Thus, by increasing the lifetime of the power converter, the energy production of the wind turbine can be increased [4].

It is not possible to calculate the exact lifetime of the power converter, as it is determined by many factors. Instead, the B_{10} lifetime is implemented [5]. The B_{10} lifetime is defined as the period during which there is 10% of the power module failed among the whole population. As presented in [6], in case of no reactive power integration from the wind turbine to the grid, the B_{10} lifetime of the machine-side converter (MSC) is smaller than that of the grid-side

converter (GSC). Thus, by increasing the lifetime of the MSC, the energy production of the wind farm can be increased. In [7], the B_{10} lifetime of the MSC in the PMSG-based wind turbine is estimated, which is determined by both the wind turbine pitch angle and the tip speed ratio. Thus, by using the trade-off between the wind turbine active power generation and the lifetime of the MSC, the energy production capability of the wind turbine can be maximised by optimising the pitch angle and tip speed ratio.

In large-scale wind farms, the active power loss due to the wake effect became an important issue. In offshore wind farms, the active power loss due to the wake effect could even reach up to 15% [8]. In the last few decades, wake models in the wind farm have been developed in complexity [8, 9]. According to the wake models, the active power loss of the downstream wind turbine is determined by the pitch angle and tip speed ratio of the upstream wind turbine. As a consequence, as presented in [10-12], compared with the MPPT method, the active power of the upstream wind turbine will be reduced by changing the pitch angle and tip speed ratio of the upstream wind turbine. However, the equivalent wind speed of the downstream wind turbine can be increased, which results in the active power increase of the downstream wind turbine. Totally, the active power of the wind farm can be increased. Thus, taking into account the wake effect in the wind farm, trading off among the wind turbine active power, the lifetime of the MSC and the active power loss in the wind farm by optimising the pitch angle and tip speed ratio of each wind turbine, the energy production of the wind farm can be maximised.

In this paper, first, based on the B_{10} lifetime estimation of the MSC in the PMSG-based wind turbine, trading off between the active power generation and the lifetime of MSC, the energy production of a 2 MW PMSG-based wind turbine is maximised by optimising the pitch angle and tip speed ratio of the wind turbine. Afterwards, taking into account the wake effect in the wind farm, trading off among wind turbine active power, the lifetime of the MSC and the active power loss in the wind farm, the energy production of a wind farm equipped with two 2 MW PMSG wind turbines is maximised by optimising the pitch angle and tip speed ratio of each wind turbine.

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/ licenses/by-nc-nd/3.0/)

Fig. 1 Configuration of the PMSG-based wind turbine with full-scale power converters: MSC and GSC [2]

2 Energy production maximisation of a single wind turbine

In this section, the energy production of the 2 MW PMSG wind turbine is maximised by optimising its pitch angle and tip speed ratio. The configuration of the PMSG wind turbine is shown in Fig. 1.

2.1 Maximum power point tracking

The PMSG-based wind turbine has two degrees of freedom for active power control, which are the pitch angle and tip speed ratio [2]. The mechanical power generated by the PMSG wind turbine can be expressed by [2]

$$P_{\rm m} = \frac{1}{2} \rho \pi R^2 C_{\rm p}(\beta, \lambda) \nu^3 \tag{1}$$

where ρ is the air density, *R* is the rotor radius, C_p is the power coefficient, which is a function of the pitch angle β and tip speed ratio λ , and ν is the wind speed. The tip speed ratio defined as the ratio of the blade tip speed over the speed of the incoming wind is given by [2]

$$\lambda = \frac{\omega_{\rm r} R}{\nu} \tag{2}$$

where ω_r is the rotor speed.

The power coefficient in terms of the pitch angle and tip seed ratio of the 2 MW PMSG wind turbine is shown in Fig. 2 [13], where the maximum power coefficient C_{p_Max} is 0.45 obtained at the pitch angle of 0° and tip speed ratio of 8.2. According to (1), the maximum active power of the wind turbine can be obtained at the pitch angle of 0° and tip speed ratio of 8.2.

Assuming the air density of 1.225, the rotor radius of 41.3 m and the generator electrical efficiency of 0.994, at the wind speed of 9 m/s, the active power in terms of the pitch angle and tip speed ratio is shown in Fig. 3. Limited by the maximum rotor speed of 18 rpm, the upper limit of the tip speed ratio is 8.6. It can be observed in Fig. 3 that the maximum active power P_{Max} of 0.204 is obtained at the pitch angle of 0° and tip speed ratio of 8.2.

2.2 Lifetime estimation

The flowchart to estimate the B_{10} lifetime of the power converter is shown in Fig. 4 [4, 6, 7]. At a constant wind speed v, the active

Fig. 2 Power coefficient in terms of the pitch angle and tip speed ratio [13]

Fig. 3 Active power in terms of the pitch angle and tip speed ratio, at the wind speed of 9 m/s

Fig. 4 Flowchart of the B_{10} lifetime estimation [4, 6, 7]

power P and the rotor speed ω_r at a given pitch angle and tip speed ratio can be calculated by (1) and (2). Then, the voltage stress v_m and current stress I_m of the power converter can be calculated based on the PMSG model and the power converter model. In this paper, the reactive power is assumed to be 0. Then, the power loss including the conduction losses and the switching losses can be obtained [4, 7]. Afterwards, considering the thermal resistance and capacitance as well as the cooling system, the thermal profile in terms of the mean junction temperature T_{jm} and the junction temperature fluctuation d_{Tj} can be calculated by the thermal model of the power module [4, 7]. Then, the B_{10} lifetime can be obtained from the manufacture at constant thermal stress. By using the Coffin-Manson model, it can be extended to the mean junction temperature and the junction temperature fluctuation at a certain level [4, 7]. It can be concluded that the B_{10} lifetime is determined by the pitch angle and tip speed ratio.

By assuming constant wind speed of 9 m/s, with the parameters as listed in Table 1 implemented, the B_{10} lifetime of the MSC of the 2 MW PMSG wind turbine in terms of the pitch angle and tip speed ratio is shown in Fig. 5. In Fig. 5, the B_{10} lifetime of the MSC is limited by 30 years. In case that the B_{10} lifetime of MSC is larger than 30 years, the lifetime of the wind turbine is determined by the other parts of the wind turbine components. According to (2) and (4), the upper limit of the tip speed ratio is 8.6. In Fig. 5, it can be observed, in case that the wind turbine is controlled by the MPPT method, the B_{10} lifetime is 18.1 years. By changing the pitch angle and tip speed ratio, the B_{10} lifetime can be increased to 30 years.

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/)

J. Eng., 2017, Vol. 2017, Iss. 13, pp. 2455–2460 doi: 10.1049/joe.2017.0770

Table 1 Parameters of the 2 MW PMSG wind turbine

Parameters	Value
rated mechanical power	2.0 MW
rated apparent power	2.2419 MVA
rated line-to-line voltage	690 V(rms)
rated phase voltage	398.4 V(rms)
rated stator current	1867.76 A(rms)
rated stator frequency	9.75 Hz
rated power factor	0.8921
rated rotor speed	22.5 rpm
number of pole pairs	26
rated mechanical torque	848.826 kN m
rated rotor flux linkage	5.8264 Wb (rms)
stator winding resistance, R_s	0.821 mΩ
<i>d</i> -axis synchronous inductance, L_d	1.5731 mH
q-axis synchronous inductance, L_q	1.5731 mH
base flux linkage, $A_{\rm B}$	6.5029 Wb
base impedance, $Z_{\rm B}$	0.2124 Ω
base inductance, $L_{\rm B}$	3.4666 mH
base capacitance, $C_{\rm B}$	76865.87 μF

Fig. 5 B_{10} lifetime of the MSC in terms of the pitch angle and tip speed ratio, at the wind speed of 9 m/s

2.3 Energy production maximisation

The capability of the wind turbine energy production is a function of its active power and lifetime. To maximise the energy production of the 2 MW PMSG wind turbine, the objective function can be expressed by

$$Max(E_{p}(P(\beta, \lambda)L_{MSC}(\beta, \lambda))$$
(3)

where E_p is the energy production, *P* is the active power and *L* is the lifetime. The active power and the lifetime are all a function of the pitch angle β and the tip speed ratio λ .

Constraints

$$6 < \omega_{\rm r} < 18 \tag{4}$$

$$P < 2 \times 10^6 \tag{5}$$

$$L_{\rm MSC} < 30$$
 (6)

where the lower and upper limits of the rotor speed ω_r are 6 and 18 rpm, respectively. The maximum active power is the rated power 2 MW. The B_{10} lifetime of MSC is limited by 30 years.

At the constant wind speed 9 m/s, the energy production of the 2 MW PMSG wind turbine in terms of the pitch angle and tip speed ratio is shown in Fig. 6. According to (2) and (4), the up limit of the tip speed ratio is 8.6. In Fig. 6, it can be observed that the maximum energy production is 2.61×10^8 kWh obtained at the pitch angle of 0.2° and the tip speed ratio of 8.6. Compared with the energy production of 1.71×10^8 kWh controlled

Fig. 6 Energy production capability in terms of the pitch angle and tip speed ratio, at the constant wind speed of 9 m/s

by the MPPT method, 52.63% of energy production capability can be increased.

By the exhausted search method, the optimal pitch angle and tip speed ratio of the 2 MW PMSG wind turbine at the constant wind speeds from 3 to 12 m/s are selected and shown in Fig. 7*a*. The energy production of the 2 MW wind turbine is compared between the MPPT method and the proposed method in Fig. 7*b*. In Fig. 7*b*, it can be observed, the energy production can be significantly increased at the wind speed of 9 m/s and higher. At the lower wind speeds, controlled by the MPPT method, the lifetime of the MSC has reached to 30 years. The maximum energy production of the wind turbine is obtained by the MPPT method. With the annual wind speed distribution as shown in Fig. 7*c* adopted, the energy production capability of the wind turbine is shown in Fig. 7*d*. It can be observed that the energy production capability of the wind turbine can be significantly increased by the proposed method.

3 Energy production maximisation in a two-turbine wind farm

In this section, taking into account the wake effect, the energy production of a two-turbine wind farm equipped with the above mentioned PMSG wind turbine is maximised by optimising the pitch

Fig. 7 Comparison between the MPPT method and the proposed method for a single wind turbine

a Pitch angle and tip speed ratio at constant wind speeds

b Energy production capability at constant wind speeds

c Annual wind speed distribution

d Annual energy production capability

J. Eng., 2017, Vol. 2017, Iss. 13, pp. 2455–2460 doi: 10.1049/joe.2017.0770

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/ licenses/by-nc-nd/3.0/)

Fig. 8 Layout of the two-turbine wind farm

angle and tip speed ratio of each wind turbine. The layout of the wind farm is shown in Fig. 8. The distance between the two wind turbines is 6.5 rotor diameters.

3.1 Wake effect

In a wind farm, the upstream wind turbine causes the wind speed deficit to the downstream wind turbines. In this paper, the downstream wind speed deficit is estimated by one of the widely implemented Katic wake model, which is based on the momentum conversation theory [14].

As it is shown in Fig. 9, at the wind direction of $270^{\circ} + \varphi$ and the ambient wind speed *u*, the wind speed of WT₁ is the same as the ambient wind speed. The Katic wake model estimates the wind speed of WT₂ by [12]

$$1 - \frac{v_2}{u} = \left(1 - \sqrt{1 - C_{t_1}(\beta_1, \lambda_1)}\right) \\ \times \left(\frac{D}{D + 2kXD\cos\left(\varphi\right)}\right)^2 \frac{A_{ol_12}}{A_r}$$
(7)

where v_2 is the wind speed of WT₂, $C_{t_{-1}}$ is the thrust coefficient of WT₁, which is a function of the pitch angle and tip speed ratio of WT₁, β_1 and λ_1 , D is the rotor diameter, XD is the distance between the two turbines, $A_{ol_{-1}2}$ is the overlap area between the wake area of WT₁ and the rotor sweep area of WT₂, A_r is the rotor swap area of WT₂ and k is the decay constant. In this paper, the typical decay constant of 0.04 for offshore recommended in the Wind Atlas Analysis and Application Program-WAsP help facility [15] is implemented.

The thrust coefficient of the 2 MW PMSG wind turbine in terms of the pitch angle and tip seed ratio is shown in Fig. 10 [13]. At the wind direction of 270° and the ambient wind speed of 9 m/s, the wind speed of WT₂ in terms of the pitch angle and tip speed ratio of WT₁ calculated by (7) is shown in Fig. 11. In Fig. 11, it can be observed that the wind speed of WT₂ can be increased by increasing the pitch angle of WT₁ or reducing the tip speed ratio of the WT₁. In the two-turbine wind farm, the wind speed deficit of WT₂ appears in the wind direction range of 264–276°. The wind speed deficit of WT₁ appears in the wind direction range of 84–96°.

3.2 Energy production maximisation

In the two-turbine wind farm, there is no wind speed deficit on both WT_1 and WT_2 at the wind direction ranges of $0-83^\circ$, $97-263^\circ$ and

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Fig. 10 Thrust coefficient in terms of the pitch angle and tip speed ratio [13]

Fig. 11 Wind speed of WT_2 in terms of the pitch angle and tip speed ratio of WT_1 , at the wind direction of 270° and the ambient wind speed of 9 m/s

277–360°. At these wind directions, the maximum energy production of the wind farm is obtained at the maximum energy production of WT₁ and the maximum energy production of WT₂. The optimal pitch angle and tip speed ratio of WT₁ and WT₂ can be selected separately and are the same as they are shown in Fig. 7*a*.

At the wind directions in the range of 264-276° and at a constant ambient wind speed, to maximise the energy production of the wind farm, there are four control parameters to be optimised, which are the pitch angle and tip speed ratio of WT_1 and WT_2 . At these wind directions, the active power of WT₁, the MSC lifetime of WT_1 and the wind speed of WT_2 are all determined by the pitch angle and tip speed ratio of WT₁. At each set of pitch angle and tip speed ratio of WT_1 , the energy production of WT_1 is a fixed value, and the maximum energy production of the wind farm is obtained at the maximum energy production of WT_2 . If the WT_2 is controlled by the optimised pitch angle and tip speed ratio which objects to maximise the energy production of WT₂ as they are shown in Fig. 7a, the maximum energy production of the wind farm can be obtained by optimising the pitch angle and tip speed ratio of WT₁. Thus, the maximum energy production of the wind farm can be optimised by selecting the optimal pitch angle and tip speed ratio of WT1, while the optimal pitch angle and tip speed ratio of WT_2 are the same as they are shown in Fig. 7*a*.

At the wind direction of 270° and the ambient wind speed of 9 m/s, with the optimal pitch angle and tip speed ratio of WT₂ as they are shown in Fig. 7*a* implemented, the sum of the energy production of WT₁ and the maximum energy production of WT₂ in terms of the pitch angle and tip speed ratio of WT₁ are shown in Fig. 12. It can be observed that the maximum energy production of the wind farm is obtained at the 1.8° pitch angle and the 8.6 tip speed ratio of WT₁.

By the exhausted search method, the optimised pitch angle and tip speed ratio of WT₁ at the wind speeds from 3 to 12 m/s is shown in Fig. 13*a*. The energy production of the wind farm is compared between the MPPT method and the proposed method in Fig. 13*b*. In Fig. 13*b*, it can be observed that the energy production capability of the wind farm is significantly increased at the wind speeds from 9 to 12 m/s. At the wind speeds from 3 to 8 m/s, the lifetime of WT₁ and WT₂ are both reached to 30 years. However,

> J. Eng., 2017, Vol. 2017, Iss. 13, pp. 2455–2460 doi: 10.1049/joe.2017.0770

Fig. 12 Energy production of the wind farm in terms of the pitch angle and tip speed ratio of WT_1 , at the wind direction of 270° and ambient wind speed of 9 m/s

Fig. 13 Comparison between the MPPT method and the proposed method for the two-turbine wind farm

a Pitch angle and tip speed ratio of WT_1 at constant wind direction of 270° and constant wind speeds

b Energy Production of the wind farm at constant wind direction of 270° and various wind speeds

c Annual wind direction distribution

d Annual energy production capability of the wind farm

the wind speed of WT_2 can be increased by larger pitch angle of WT_1 , which results in the active power increase of the WT_2 . Thus, the energy production capability of the wind farm can also be increased.

At the wind directions in the range of $264-276^{\circ}$ and $84-96^{\circ}$, the optimal pitch angle and tip speed ratio of WT₁ and WT₂ can be selected by the same method as at the wind direction of 270° . With the annual wind direction distribution as shown in Fig. 13*c* and the annual wind speed distribution as shown in Fig. 7*c* adopted, the energy production capability of the WT₁, WT₂ and the wind farm are shown in Fig. 13*d*. It can be observed the energy production capability of the wind speed deficit due to the wake effect just occurs at the rose sectors of $85-95^{\circ}$ and $265-275^{\circ}$, the energy production capabilities of WT₁ and WT₂ are close to each other.

4 Conclusions

In this work, an optimal active power control method is proposed to maximise the energy production in the PMSG wind turbine based

J. Eng., 2017, Vol. 2017, Iss. 13, pp. 2455–2460 doi: 10.1049/joe.2017.0770 wind farm. For a single wind turbine, its active power and lifetime are both determined by the pitch angle and tip speed ratio. Compared with the MPPT method, by changing the pitch angle and tip speed ratio, the active power of the wind turbine will be reduced. However, the lifetime of the MSC can be increased. Thus, the energy production capability of the wind turbine, which is a function of the active power and the lifetime, can be increased.

As the MSC of the PMSG wind turbine has the most failure rate compared with the other parts of the wind turbine components, in this paper, the lifetime of the wind turbine is represented by the lifetime of the MSC. The lifetime of the MSG is limited by 30 years. In case that the MSG lifetime is higher than 30 years, the lifetime of the wind turbine is assumed to be determined by the lifetime of the other parts of the wind turbine components.

For the 2 MW PMSG wind turbine, controlled by the MPPT method, the lifetime of MSC has reached to 30 years at the lower wind speeds. The maximum energy production is obtained at the maximum active power. Thus, controlled by the MPPT method, the maximum energy production of the wind turbine has been reached. The energy production cannot be further increased. However, at higher wind speeds, the energy production of the wind turbine can be significantly increased due to the increase of the MSC lifetime.

In a wind farm, the upstream wind turbine causes the wind speed deficit to its downstream wind turbines. The downstream wind speed deficit is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. As the wind speed of the downstream wind turbine can be increased by changing the pitch angle and tip speed ratio of the upstream wind turbine, the active power and the energy production of the wind farm can be increased at both of the lower wind speed and the higher wind speeds.

This optimisation method is studied on a single wind turbine and in a two-turbine wind farm. However, the proposed method can be implemented in any layout wind farm and at any wind directions and ambient wind speeds. The real wind profile can also be implemented in this proposed method.

5 References

- [1] 2015 IEA Wind Annual Report. August 2016. Available at http ://www.ieawind.org, accessed 2 August 2016
- [2] Wu B., Lang Y., Zargari N., *ET AL.*: 'Power conversion and control of wind energy systems' (Wiley, NJ, 2011)
- [3] Hahn B., Durstewitz M., Rohrig K.: 'Reliability of wind turbines, experiences of 15 years with 1,500 WTs'. ISET. 2007. Available at http://renknownet2.iwes.fraunhofer.de/pages/wind_energy/data/ 2006-02-09Reliability.pdf, 09 February 2006
- [4] Tian J., Zhou D., Su C., *ET AL*.: 'Optimal control to increase energy production of wind farm considering wake effect and lifetime estimation', *Appl. Sci.*, 2017, 7, (1), pp. 1–18
- [5] Load-Cycling Capability of HiPaks. ABB Application Note. 2004
- [6] Zhou D., Blaabjerg F., Lau M., *ET AL.*: 'Optimized reactive power flow of DFIG power converters for better reliability performance considering grid codes', *IEEE Trans. Ind. Electron.*, 2015, **62**, (3), pp. 1552–1562
- [7] Zhou D., Blaabjerg F., Franke T., *ET AL.*: 'Comparison of wind power converter reliability with low-speed and medium-speed permanentmagnet synchronous generators', *IEEE Trans. Ind. Electron.*, 2015, 62, (10), pp. 6575–6584
- [8] Barthelmie R.J., Hansen K., Frandsen S.T., *ET AL*.: 'Modelling and measuring flow and wind turbine wakes in large wind farms offshore', *Wind Energy*, 2009, **12**, (5), pp. 431–444
- [9] Duckworth A., Barthelmie R.J.: 'Investigation and validation of wind turbine wake models', *Wind Eng.*, 2008, 32, (5), pp. 459–475
- [10] Tian J., Su C., Soltani M., *ET AL.*: 'Active power dispatch method for a wind farm central controller considering wake effect'. Proc. 40th IEEE Industrial Electronics Society Conf., 2014, pp. 5450–5456
- [11] Serrano González J., Burgos Payán M., Riquelme Santos J., ET AL.: 'Maximizing the overall production of wind farms by setting the individual operating point of wind turbines', *Renew. Energy*, 2015, 80, pp. 219–229

This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/ licenses/by-nc-nd/3.0/)

- [12] Tian J., Zhou D., Su C., *ET AL.*: 'Wind turbine power curve design for optimal power generation in wind farms considering wake effect', *Energies*, 2017, **10**, (3), pp. 1–19
- [13] Jonkman J., Butterfield S., Musial W., *ET AL*.: 'Definition of a 5-MW reference wind turbine for offshore system development'. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, February 2009
- [14] Katic I., Højstrup D., Jensen N.O.: 'A sample model for cluster efficiency'. Proc. European Wind Energy Association Conf., 1986, pp. 407–410
- [15] Mortensen N.G., Heathfield D.N., Myllerup L., *ET AL.*: 'Wind atlas analysis and application program: WASP 8 help Facility' (Risø National Laboratory, Roskilde, DK, 2005). 335 topics. ISBN 87-550-3457-8