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Abstract 

The purpose of the present study was to assess changes in body perception when visual feedback was removed from 

the hand and arm with the purpose of resembling the visual deprivation arising from amputation. The illusion was created 

by removing the visual feedback from the participants’ own left forearm using a mixed reality (MR) and green screen 

environment.  

Thirty healthy persons (15 female) participated in the study. Each subject experienced two MR conditions, one with 

and one without visual feedback from the left hand, and a baseline condition with normal vision of the limb (no MR). 

Body perception was assessed using proprioceptive drift, questionnaires on body perception, and thermal sensitivity 

measures (cold, warm, heat pain and cold pain detection thresholds). The proprioceptive drift showed a significant shift 

of the tip of the index finger (𝑝 < 0.001) towards the elbow in the illusion condition (mean drift: -3.71 cm). Self-report 

showed a significant decrease in ownership (𝑝 < 0.001), shift in perceptual distortions, (e.g. “It feels as if my lower arm 

has become shorter”) (𝑝 = 0.025), and changes in sensations of the hand (tingling, tickling) (𝑝 = 0.025). A significant 

decrease was also observed in cold detection threshold (𝑝 < 0.001), i.e. the detection threshold was cooler than for the 

control conditions. 

The proprioceptive drift together with the self-reported questionnaire showed that the participants felt a proximal 

retraction of their limb, resembling the telescoping experienced by phantom limb patients. The study highlights the 

influence of missing visual feedback and its possible contribution to phantom limb phenomena.  
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1. Introduction 

Phantom limb phenomena have puzzled researchers for decades. The perception of amputees is a vivid feeling that the 

amputated limb is still present, along with accompanying sensations which can be manifested as itching, cramping, 

clenching and pain. In addition, some amputees experience the phantom limb as distorted or assuming different spatial 

positions, e.g. they may feel that the distal part of the amputated limb gradually moves closer to the site of the amputation; 

a phenomenon originally described by Guéniot [1] and later referred to as telescoping by Katz [2].  

Merzenich et al. [3] discovered that substantial cortical reorganization occurred in the somatosensory areas of owl 

monkeys following amputation of the third digit as the cortical maps of the two adjacent fingers seemed to “invade” the 

now vacant area. These findings led Yang et al. [4] and Elbert et al. [5] to discover similar reorganization in human 

amputees. Later this reorganization was related to the phantom pain and telescoping perceived by the amputee [6–9]. 

Although the causal relationship between telescoping and phantom pain is unclear, they both correlate with each other 

and are hypothesized to be expressions of the cortical reorganization [10,11]. 

Ramachandran & Rogers-Ramachandran [12] introduced a treatment based on mirror-visual feedback to restore the 

perception of having an intact arm. This was achieved by mirroring the visual appearance of the contralateral intact limb 

across the midsagittal plane using a simple mirror. By performing simultaneous mirrored movements with both the 

phantom limb and the intact limb, the patients achieved congruent visual feedback. In some cases this led to reductions 

in phantom limb pain, unclenching of previously tightly clenched fists and a general perceptual congruence to the 

visualized intact limb. A recent study demonstrated that the magnitude of telescoping was a negative predictor for the 

amount of pain relief and cortical reorganization resulting from mirror therapy treatment [7], i.e. persons with telescoped 

phantoms benefited less from this type of therapy. This implies that an important connection exists between the three 

phenomena of telescoping, pain and cortical reorganization.   

In recent years, there has been an increasing interest in experimental research investigating the role of visual perception 

and perceptual illusions in the modulation of body awareness in healthy volunteers (see [13] for a review of body 

illusions). Body position arises from mixed sensory modalities, where vision and the set of mechanoreceptors that 

contribute to proprioception are dominant (i.e. Ruffini endings are important to signal limb position). Additionally, recent 

studies have shown that “efference copy” and a forward model of the limb and its environment are significant actors in 

determining the sense of body position [14,15]. Muscle spindle afferents are important proprioceptors because they 

provide a mixed encoding of muscle length and rate of length change, and thus convey limb position and movement [16]. 

The most influential evidence in support of muscle spindles as the principal kinesthetic receptors is the illusion of limb 

movement and displaced position produced by vibration over the tendon or muscle. However, the vision of the arm can 

reduce or eliminate this illusory effect [17]. Hence, vision has a strong effect on our sense of the body in space, and 

evidence has supported a dominance of vision over proprioception [18–20].  

Visual input alone is able to produce dynamic changes in both self-report and on the cortical level in relation to body 

perception. By altering the visual input alone, Schaefer and colleagues [21,22] created perceptual illusions of an elongated 
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or a third arm which correlated with altered cortical responses in the primary somatosensory cortex. Similar observations 

were found in an experimental setting using mirror visual feedback [23]. Modifications of body perceptions are also 

reached by the combination of visual and tactile feedback in the rubber hand illusion, in which a rubber hand is embodied 

in the corporeal image [24]. Additionally, the perception of a telescoping limb was induced in healthy volunteers using a 

full body illusion by integrating visuo-tactile stimulations [25]. The idea that visual feedback and perception are crucial 

is also supported by the observation that amputees using an active prosthesis and thereby receiving a visual and functional 

feedback seem to experience an embodiment of their prosthesis and less occurrence of phantom limb pain and telescoping 

[26]. Taken together, these findings suggest a key role of perception in which visual feedback is paramount. Furthermore, 

vision and somatic senses seem to interact strongly as simply viewing one’s own body increases tactile acuity, modulates 

somatosensory evoked potentials, creates analgesic effects, and modulates pain responses by enlarging/decreasing the 

vision of the body size [27–31]. 

The aim of the present study was to determine the effects of visual adaptation on body perception in healthy volunteers 

by removing own-limb visual input. We hypothesized that if own-limb visual feedback was removed in healthy volunteers 

in a realistic way by means of mixed reality technology, the arising visual loss would produce perceptual correlates similar 

to the ones observed in amputees.  

2. Materials and Methods 

2.1 Participants 

A total of 30 participants (15 male and 15 female, mean age 23.77 and  4.19 SD, age range 19-35) were enrolled in 

this experiment. Participants were recruited through personal inquiry at Aalborg University. All participants were paid 

according to the amount approved by regulations, 10.75 € an hour, and informed consent was obtained from all 

participants. Exclusion criteria were: pregnancy; drug addiction defined as the use of cannabis, opioids or other drugs; 

previous neurologic, musculoskeletal or mental illnesses; claustrophobia; migraines and any form of chronic/neuropathic 

 

Fig. 1 Inside view of the illusion. On the left, the illusion is active and on the right, the MR 

helmet is see-through and the visual feedback is normal 
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pain; tendency to headaches, nausea and/or blurred vision; body dysmorphic disorders and individuals taller than 187 cm 

(due to constraints of the mixed reality (MR) system). The experiment was performed solely on the left hand as the 

proprioceptive drift measure was not set up for the right hand. Four participants were left-handed. All procedures 

performed were in accordance with the approval from the Local Ethics Committee (reg. no.: N-20160039) and in 

accordance with the Helsinki Declaration. 

2.2 Mixed Reality (MR) system description 

In order to remove visual feedback from the subject’s hand (see fig. 1), a novel system was designed based on green-

screen technology together with a mixed reality (MR) system (see fig. 2).  

The MR system consisted of an Oculus Rift® (Developer kit 2, Oculus VR, LLC, USA) with two 60 fps SXGA (1024 

x 1280) cameras (uEye® UI-3241LE-C-HQ, Imaging Development Systems GmbH, Germany). The cameras were 

attached in front of the eyes on a set of rails allowing for adjustment of separation of the cameras to match the inter-

pupillary distance of the wearer. In normal operation, the cameras streamed directly into the screens of the oculus rift 

enabling a see-through of the helmet. The benefit of the system was that the video streams could be modified in real-time 

to manipulate the visual feedback.  

The camera lenses had a 4mm focal length and were for a 1/1.8" sensor size with a field of view of 101° horizontal x 

76° vertical (Lensagon® BM4018S118C, Lensation GmbH, Germany). The Oculus DK2 specifications were 110° 

vertical x 85° horizontal and a resolution of 960 x 1080. The specification differences between cameras, lenses and screen 

were compensated by undistorting the images (lens correction) and matching camera image and the oculus’ angle of 

views.  

2.3 Removing own-limb visual input using MR 

The participant was seated in a chair in front of a large table with a black cloth covering it. Above the chair, a head 

fixation array was arranged to ensure that the head was held in a steady position during the experiment. The array allowed 

for minimal motion of the head without applying pressure. The MR system was mounted on the array in order to ensure 

that it was fixated on the head of the participant (See fig. 2).  

Before starting the illusion, a “background photo” was captured using the two front cameras. Then, the illusion was 

activated by replacing everything with a green color in the camera view with the pre-captured background image rendering 

everything that was green as invisible. Hence, in order to remove the visual input from the participant’s arm and thus 

making the arm disappear, a green glove and a green sleeve were placed on the hand and on the arm of the participant 

(See fig. 2b).  

The MR system was based on a stereoscopic setup which worked simultaneously for both eyes and therefore retained 

a depth perception (i.e. the 3D-effect) during the illusion. This setup created a highly realistic view for the participant. In 

order for the device to work optimally, any motion of the MR system was kept limited. To ensure that accidental 

movements went unnoticed, the experiment was performed in a controlled dimmed light environment. An inside view of 

the illusion is shown in fig. 1. 
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After the hand “disappeared” from the view of the participant, a green cardboard screen with a hole at the base was 

placed on top of the wrist (but without touching the wrist). The use of this green screen occluded the vision of the hand 

hidden behind the screen allowing for projection of the previously recorded background image onto the green screen; 

hence, rendering the hand invisible to the participant. The green screen is shown in fig. 2c. Following, the green glove 

was removed from the participant’s hand to take measurements on the hand surface and to reduce the tactile sensations 

of wearing a glove (see fig. 2c). During the illusion, physical interaction and handling of the invisible hand were kept at 

a minimum to avoid distorting the illusory effect. 

2.4 Measurements 

2.4.1 Proprioceptive drift 

The proprioceptive drift is a measure used in several studies on the rubber hand illusion (RHI) [24,25,32,33]. It is used 

as a proprioceptive marker for the perception of the spatial layout of the body. Usually, in an RHI experiment the 

participant is asked to indicate the position of the actual hand on a ruler using the opposing hand. This measure is usually 

conducted on a transverse or horizontal axis in front of the participant to detect a proprioceptive drift towards an embodied 

object, such as a rubber hand. In the present study, the measurement was conducted on a distal proximal axis in front of 

the participant, i.e. away from the body, on the axis of the resting arm on the table. It was measured using a slider 

underneath the table which the participant was asked to move to the positions described by the experimenter. This 

procedure was comparable to the original assessments [24]. Here, three points were used as references: the tip of the index 

finger, the knuckle at the index finger root, and finally the wrist joint. These points were chosen because they were 

relatively easy to locate on the actual hand and because of their approximately equidistant distribution, which combined 

would give a good indication of the individual’s proprioception of the hand. A subsequent reference measurement was 

conducted from a certain fix line on the surface of the table to the tip of the index finger. See fig. 3 for a depiction of the 

proprioceptive drift measure. 

 

Fig. 2 From left to right: a) Depiction of setup: a participant was seated with the fixture around the head and the AR helmet in 

front of the view. The fixture was attached to a chair such that the participant’s weight stabilized the whole rig and ensured that it 

did not move. b) During the illusion induction, the participant wore a green glove and sleeve. c) When measuring in the illusion 

condition, the glove was removed allowing for direct skin contact 
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2.4.2 Thermal thresholds 

According to several studies, somatosensation may be modulated by illusions and visual feedback [34–37]. Thermal 

sensitivity was assessed by thermal detection thresholds for warm and cold stimuli and for heat and cold pain stimuli. The 

test was performed according to the recommendations of the German Research Network on Neuropathic Pain [38]. All 

thermal thresholds were assessed by using the methods of limits protocol and measured four times for each stimulus. 

Stimuli were delivered by a Peltier-based thermode with a surface of 30x30 mm of the thermo-sensory stimulator (Medoc 

Pathway®; Medoc Ltd., Ramat Yishai, Israel). The probe was applied to the skin of the left index finger with the minimum 

pressure necessary to ensure that the entire surface had contact to the participant’s skin and to ensure minimum 

perturbation in relation to the illusion. For warm detection and pain stimuli, the temperature of the thermode was 

continuously increased from 32C to a maximum of 52.5C at a rate of 1C/s. For cold detection and pain stimuli, the 

temperature of the thermode was continuously decreased from 32C to a minimum of 0C at a rate of 1C/s. The subjects 

were instructed to click on a computer mouse with their right hand as soon as they reached their threshold. 

2.4.3 Questionnaire about the magnitude of the illusion 

To quantify the perceptual experiences associated with the illusion, the subjects replied to a questionnaire at the end 

of each condition. The questionnaire was inspired by previous studies investigating body illusions and phantom limbs 

[24,33,34,39,40] and was modified to probe different aspects of body perception: ownership, dis-ownership and 

perceptual distortions. The complete set of questions is given in table 1.  Answers were based on a 7-point Likert-scale 

from -3 to +3, in which -3 corresponded to “I strongly disagree”, and +3 to “I strongly agree”.   

2.5 Experimental design 

A within-subject design was used for the experiment with a baseline (without the MR system) and two conditions (with 

the MR system) in a counterbalanced order: visible hand (control) and invisible hand (illusion). The two conditions were 

similar in structure with the only difference in the visual feedback. 

 

Fig. 3 Depiction of the proprioceptive drift measure. 

Participants were asked to move the slider underneath the 

table to the perceived position of the finger, knuckle and 

wrist 
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2.5.1 Baseline 

As an initial step, a set of demographic data was obtained from the participant including gender, age, length of fingers 

and hands, handedness and height. Upon completion of the data collection, the participant was asked to sit in the chair in 

front of the table with the head in the fixed array. The participant was then instructed to rest his or her left arm on the 

table and keep it still and to grab the slider underneath the table with the right hand to perform the proprioceptive measures. 

The participant was asked to drive the slider to three different positions in relation to his/her left hand: (i) tip of the index 

finger; (ii) the knuckle; and (iii) the wrist. Between each measure the experimenter read off the slider and reset it to a 

random position at the beginning of the slider range, i.e. close to the edge of the table. Next, the thermal thresholds were 

obtained. The participant was instructed to detect four different thermal thresholds: cold, warm, cold pain and heat pain. 

The thermal probe was applied on the left index finger while the participant pressed the trigger button using the right 

hand.  

2.5.2 Illusion condition 

The participant was asked to sit as comfortably as possible in the chair with the MR system fixated in front of the head 

and mounted on the array to ensure a steady head position. Before the start of the experiment the experimenter ensured 

that the participant had a clear view through the screens and the cameras. A background photo was taken with the 

participant’s arm outside the view. Meanwhile, the green glove and sleeve were mounted on the left hand. Then the 

participant was asked to place the left hand on the table (in full view) in a relaxed, comfortable, and steady position. A 

small manuscript was read to the participant, wherein he or she was asked to relax, to keep the visual focus on the hand 

and listen to the experimenter’s instructions. The instructions were added as a consequence of our pilot experiments, 

which showed that additional instructions were needed to focus the attention of the participants on the hand. They were 

designed as a verbalization of what the participant was seeing through the MR device. Sample lines from the manuscript 

are: “I would like you to focus on your left hand. You start to notice how your hand slowly begins to disappear… 

disappears and becomes nothing…”. The talk was timed with the MR system such that the hand slowly faded away until 

it completely disappeared. Two minutes of silence followed to let the illusion settle. Following the talk, the green screen 

was placed on top of the wrist and the first measure, proprioceptive drift, was carried out followed by the questionnaire. 

Prior to assessing the thermal thresholds, the glove was removed to allow for direct skin contact. The condition was ended 

by re-measuring the proprioceptive drift to check if any changes occurred from a temporal perspective. 

2.5.3 Control condition 

The control condition progressed similarly to the illusion condition, except for the visual feedback. In this condition, 

the participant was able to see the arm and hand through an unaltered camera feed. The participants were verbally 

instructed to focus on their left arm for a time period comparable to the time it took for the talk given during the illusion 

condition. All further measurements and procedures were identical to the illusion condition. 

2.6 Data Analysis 

From each condition, the following variables were measured: Thermal thresholds, detection and pain thresholds, 

proprioceptive drifts (twice for both conditions) and questionnaire data for both conditions. Prior to analysis, the thermal 
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and proprioceptive data were tested for normality using Shapiro-Wilks tests. Before processing the thermal data, cold and 

heat detection thresholds were log transformed as recommended in the QST protocols developed by the DNFS [38]. A 

repeated measures ANOVA with condition as factor was initially used, and if significant differences were found, post 

hoc Bonferroni-corrected paired t-tests were performed to observe the statistical differences between conditions. To 

correct for possible violations of sphericity, only the Greenhouse-Geisser corrected significance values are reported here. 

The questionnaire data were tested using Wilcoxon signed ranks tests between the two conditions. All reported results 

are with 𝛼 = 0.05 significance level. 

3. Results 

3.1 Proprioceptive drift 

The proprioceptive measure, shown in fig. 3, was measured once at baseline and twice per condition to investigate if 

the illusion had any temporal effect. This effect showed no significant differences within the condition, i.e. between the 

measures at the beginning and end of the illusion and control conditions. Therefore, we report both the results for each 

measurement point and the average for each condition. Sphericity was not violated in any of the proprioceptive drift 

measures. Bonferroni-corrected paired t-tests between the mean control and illusion conditions (second row of plots in 

 

Fig. 4 The proprioceptive drift measure, i.e. the difference in actual position and proprioception determined position. The upper 

row of plots shows all five measures; at baseline (BL), control start and end (Cs and Ce), and illusion start and end (Is and Ie). 

The lower row of plots shows the averaged values for each condition; baseline (BL), control mean (Cm) and illusion (Im). Outliers 

are plotted as the values outside of +/- 2.73σ interval. However,  in the ANOVA and paired t-tests all values were considered 
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fig. 4) are reported here: Index finger tip control and illusion 𝑝 < 0.001, 𝑡(29) = 6.59; Knuckle control and illusion 

𝑝 < 0.001, 𝑡(29) = 4.97; Wrist control and illusion 𝑝 = 0.004, 𝑡(29) = 3.28. The proprioceptive drift data show a 

consistent picture in line with our hypothesis that there would be a proximal drift towards the elbow when comparing the 

illusion and control conditions (𝜇ΔDrift = −3.65 cm  and 𝜎ΔDrift = 3.03 cm  for the fingertip; 𝜇ΔDrift = −2.85 cm  and 

𝜎ΔDrift = 3.14 cm for the knuckle; and 𝜇ΔDrift = −2.06 cm and 𝜎ΔDrift = 3.28 cm for the position of the wrist). A table 

of the mean and standard deviations is provided in Online Resource 1. 

3.2 Thermal thresholds 

Thermal thresholds are shown in fig. 5. Normality of the data was tested and all passed, except cold pain threshold 

measures. One-way repeated measures ANOVAs are given above each graph in fig. 5. The means and confidence intervals 

for the cold and heat detection thresholds were transformed back and are reported here: Cold detection threshold (𝜇BL =

−2.06° , 95% CI, −1.74° to − 2.43° ; 𝜇C = −2.28°, 95% CI, −1.88° to − 2.77° ; 𝜇I = −2.83°, 95% CI, −2.36° to −

3.38° ) and heat detection threshold (𝜇BL = 2.28°, 95% CI, 1.95° to 2.67° ; 𝜇C = 2.90°, 95% CI, 2.42° to 3.48° ; 𝜇I =

3.35°, 95% CI, 2.77° to 4.05°). Bonferroni-corrected paired t-tests showed a significant difference from baseline and 

control to the illusion condition in cold detection threshold (𝑝 < 0.001 and 𝑝 < 0.001, respectively ), indicating a 

possible effect of the illusion condition. Contrary to the results of the cold detection thresholds, the heat detection 

thresholds were significantly different from baseline to control (𝑝 < 0.004)  and illusion (𝑝 < 0.001) . The same 

significant shift in differences was observed for cold pain threshold ( 𝑝 < 0.001, 𝑡(29) = 4.39 and 𝑝 < 0.001, 𝑡(29) =

2.64, control and illusion conditions respectively). No significant differences were detected in the ANOVA on the heat 

pain thresholds. 

3.3 Questionnaire data 

The results of the 7-point Likert-scale questionnaire are plotted as a bar graph in fig 6 with the Wilcoxon signed ranks 

test provided on the vertical axis of the plot. The questions found to be significant were: Q2 “I feel like my hand has 

disappeared” (𝑝 < 0.001), Q3 “It feels as if I cannot move my hand” (𝑝 < 0.001), Q4 “It feels like my hand belongs to 

me” (𝑝 < 0.001), Q5 “I have a hard time localizing my hand” (𝑝 < 0.001), Q8 “It feels as if my lower arm has become 

 

Fig. 5 Thermal threshold results. From left: Cold detection threshold, heat detection threshold, cold pain threshold and finally 

heat pain threshold. Each graph in the plots corresponds to: the baseline (BL), the control condition (C) and the illusion condition 

(I). The outcome of one-way repeated measures ANOVAs are presented at the top 
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shorter” (𝑝 = 0.025) and Q16 “I can feel a tickling or a tingling sensation in my hand” (𝑝 = 0.025). All of the questions 

are presented in table 1.  

 

4. Discussion 

The purpose of this study was to assess the impact of the removal of concurrent own-limb visual input on body 

perception. The findings show that it was possible provoke significant body perceptual distortions in our participants. Our 

illusion caused a proprioceptive drift, changes in the cold detection thresholds and in own-body perception. The perceived 

shortening is reminiscent of the frequent reports from amputees experiencing a shortening of their phantom limb (49% to 

63% of amputees, [8–10,41]). The phantom limb experience, however, includes an array of sensory deprivations and 

changes, and visual feedback may not account for telescoping alone. However, it seems that healthy participants can 

experience aspects of the phantom limb phenomenon by manipulating their own-limb visual feedback. A decreased cold 

detection threshold was also observed in the present study; a result that could be related to ownership. In the rubber hand 

illusion, a decreased sense of ownership over the real hand has been associated with a decrease in temperature of the hand 

[42]. If the same is true for the present experiment, a centrally mediated regulation of the homeostatic control may result 

Q# Questions 

Control question 

1 It feels as if I have more than one hand or arm. 

Dis-ownership 

2*** I feel like my hand has disappeared. 

3*** It feels as if I cannot move my hand. 

4*** It feels like my hand belongs to me. 

5*** I have a hard time localizing my hand. 

Ownership 

6 It feels as if my arm belongs to me. 

Perceptual 

7 
I feel as if my hand has moved closer towards 
my elbow. 

8* 
It feels as if my lower arm has become 
shorter. 

9* It feels as if my lower arm has disappeared. 

10 My hand feels heavier. 

11* My hand feels lighter. 

12 It feels as if my fingers have shrunk. 

13 It feels as if my fingers are enlarged. 

14 It feels as if my hand has shrunk. 

15 It feels as if my hand is enlarged. 

16* 
I can feel a tickling or a tingling sensation in 
my hand. 

Table I Questions with according category. 

 

 

 

 

Fig. 6 Questionnaire results. The average response is 

shown here as a bar graph with standard deviation. 

Control is the red bar and illusion is the blue bar. A 

Wilcoxon signed ranks test was used for evaluating the 

difference across conditions. The number of stars indicate 

the significance level (* 𝑝 < 0.05, *** 𝑝 < 0.001) 
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in a drop in temperature and conversely lower the detection threshold for cold sensation [42]. Recently, a progressive 

degradation in cold sensation together with dynamic changes in the size and perceived posture of the hand were reported 

in an experimental phantom hand study [43]. Although the authors used a different method based on ischemic block, the 

results showed that cold sensation was affected more than heat sensation; thus showing more sensibility of cold sensations 

to experimental manipulation. The thermal cold thresholds also showed that the pain threshold was reached at lower 

temperatures during the baseline condition compared to control and illusion conditions. This may seem paradoxical, but 

as noxious and innocuous cold sensations are mediated by different fibers that are modulated differentially (possibly in 

the periaqueductal gray) [44], the earlier onset of cold pain response seen in the control and illusion conditions could be 

an effect of a top-down modulation. Perhaps, psychological factors could be implicated in this process (i.e. related with 

the experience of wearing the AR device). However, since no literature investigating both innocuous and noxious cold 

pain thresholds under similar experimental manipulations has previously been done this remains to be further clarified. 

As in previous studies [19,20,45,46], the proprioceptive drift observed in the present study suggests that our body 

schema is not only updated by proprioceptive information. Instead vision plays a significant role in the perception of 

physical layout of the body. In Longo and Haggard’s study from 2010 [45], the hand of healthy subjects was covered 

using a board on which the participants were asked to locate fingertips and knuckles of their occluded hand. The results 

showed a remarkably skewed representation of the hand; with shorter estimated fingers and an overall wider hand. The 

authors associated this skewness to the relative representation size of these groups on the somatosensory homunculus. By 

doing this, they related the body schema directly to the somatosensory layout suggesting that the cortical representations 

provide a mental map of the body itself. This result is intriguing in relation to the present study as we observed a similar 

shortening of the fingers but also a shortening of the hand. In addition, this shortening was strongly perceived distally and 

gradually decreasing proximally. It would seem that the body schema is somewhat distorted and the visual information 

“normalizes” it towards the actual physical layout; an idea supported by the results of Inui and Masumoto [19]. Evidence 

for the same idea is indirectly supported by the findings of Schaefer and colleagues [21], who induced an illusion of an 

elongated arm while measuring the cortical responses to a tactile stimulation on the affected limb using 

magnetoencephalography. They showed that the corresponding peak of activation moved according to the perceived 

elongation of the arm, indicating that their illusion modulated the layout of the somatosensory homunculus in the short-

term. The same result led Flor and Nikolajsen [10] to propose that telescoping in phantom limb patients is indeed a 

manifestation of permanent cortical reorganizations and noting that the somatosensory system responds to the perceived 

rather than the actual sensory input. Therefore, the proprioceptive drift seen in the present study could be a reflection of 

a short-term modulation of the somatosensory homunculus induced by a shift in body perception; a shift arising from the 

missing visual feedback. Our study did not focus on this aspect and it remains a speculation. A future study should 

investigate cortical responses to the illusion.  

4.1 Bodily illusions and previous approaches 

Numerous studies have shown the malleability of the human body perception by developing experimental paradigms 

that embodied extracorporeal objects such as rubber hands, mannequins, and even empty volumes of space [25,33,47–

51] (see [13] for a review of some illusions). To induce embodiment, a combination of tactile and visual coherent cues is 

often used. The approach in the present study relied on visual feedback from the body part and circumvented the idea that 

a coherent multi-modal manipulation is necessary to obtain illusory phenomena. The multi-modal integration processes 
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can be viewed as a statistical optimization problem in which the mind tries to integrate all sensory information to give 

one optimal perception of the current state of our experience [30]. If the previous research is viewed in this light, it makes 

sense that in order to trick the mind to embody an extracorporeal object, a coherent multi-sensory induction must occur 

to create the link between the own-body and the object (e.g. stroking a rubber hand in front of a participant will not induce 

any ownership over the rubber hand, but adding a coherent tactile stimulus on the real hand will create a plausible sensory 

link between what is seen and felt). In the case of our system, no intermediate embodiment of an extracorporeal object 

was present, but rather a direct manipulation of the visual feedback of the real body. Hence, the body ownership did not 

need to be moved from the actual hand to an extracorporeal object because we manipulated the already embodied real 

hand.  

Schmalzl and Ehrsson [25] created an illusion of having a phantom limb using a full-body illusion [52]. They achieved 

this by means of an amputated mannequin with two cameras attached to the head such that the cameras pointed downwards 

to capture the view of the mannequin body. Through a stereoscopic head-mounted display, the video feeds from the 

cameras were shown to the participant, who stood in a similar posture to the mannequin. Through simultaneous stroking, 

they attempted to induce a telescoping effect by touching the stump of the amputated mannequin and the fingertips of the 

participant. The findings suggested a similar proprioceptive drift using a different method. Although the results are similar 

in measurement, we propose that these are different results based on different principles. In the case of the full-body 

illusion, an embodiment of the stump is the crucial factor for observing a proprioceptive drift. The present experiment 

visually manipulated the real body of the participant with no embodiment procedures and may therefore be a more valid 

way to measure the impact of missing own-limb visual feedback.  

In the work of Newport and Gilpin [53], they applied a trick in which visual feedback of the right hand was maintained 

in a static position, whereas in reality the hand was slowly moved to the side. Due to the slow movement, the displacement 

went unnoticed by the participant who only received the static image of the hand (i.e. a hand not moving). Subsequently, 

the participants were asked to touch the right hand using their left hand, only to find that the hand was not there. Thus, 

Newport and Gilpin found a disembodiment of the hand similar to the present study. Their study showed another way of 

inducing disownership by manipulating the senses. They used the dominant dependence on vision to trick the sensory 

integration processes to disregard the proprioceptive input from the moving hand. In our study we relied on vision only 

and showed that mere removal of collocated visual feedback was enough to provoke a change in body perception. The 

two studies complement each other and both underline the importance of visual feedback. New interesting results have 

emerged from studies using ischemic anesthesia of the arm/leg to study the effects of visual information on experimental 

phantom limbs[19,43]. Surprisingly, the authors found that if the limb was flexed before and during the anesthesia, the 

phantom arising from the sensory deprivation was an extended limb and vice versa. The authors explained the 

phenomenon in the following way: when the limb is bent and the flexors on the front of the limb are signaling that they 

are in stretched state, the ischemic block kicks in, gradually diminishing the signaling, which leads the cortex to assume 

that the flexion has ceased. However, if the participants were able to see their contralateral limb (which was in the same 

pose as the leg with the ischemic block), the perception was normalized towards the current physical pose of the 

anaesthetized leg, demonstrating once again a dominance of vision.   
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4.2 Proprioceptive drift: an overlooked measure? 

In this and previous studies, the proprioceptive drift has been used to measure the perceptual spatial layout of the body. 

A similar method and measurement could be applied to phantom limb patients to assess telescoping effects. Existing 

descriptions of telescoping are based on verbal explanations from patients [11] and visual analogue scale ratings on 

intensity of the telescoping [7]. To our knowledge, no published work has used the proprioceptive drift to evaluate the 

effects of treatments that rely on restoring sensory feedback (e.g. visual feedback treatment such as mirror therapy). 

However, it would be a valuable measure to assess the correlation between phantom limb pain and telescoping effects. 

Even if patients do not consciously feel a telescope, a proprioceptive distortion of their phantom limb may exist, and by 

measuring the proprioceptive drift over treatment sessions, these distortions could be captured and compared to the effects 

of the treatment.  

In relation to the rubber hand illusion experiments, in which the measure was first conceived, the proprioceptive drift 

is also thought to indicate the embodiment or strength of the illusion. However, recent studies have questioned the 

relationship between limb ownership and proprioceptive drift [50,54]. Though the present experiment is not entirely 

comparable to the RHI, our results would also imply that a distinction should be made between these two facets of body 

illusions as we report a strong proprioceptive drift together with a disownership of the actual hand and vice versa. 

4.3 Implications for research on phantom limbs 

The observed changes resemble the accounts of amputees experiencing phantom limbs. Often, amputees report a 

feeling of the amputated part retracting proximally to the point of amputation or even inside the neuroma [9–11,55]; an 

effect that could be compared with the proprioceptive drift and is supported by the perceptual questionnaire data. Though 

the similarities between these two phenomena have to be studied in closer detail, the ability to recreate the perceptual 

correlates of amputees in healthy participants using experimental illusions is intriguing. The question “I can feel a tickling 

or a tingling sensation in my hand” also gave a significant response which is interestingly also a common phantom limb 

sensation [56]. If a visual distortion such as the one presented in this paper is able to disrupt the own-body perception of 

a healthy participant, it seems likely that the opposite, i.e. regaining visual feedback, can have normalizing effects on 

own-body perception in amputees and in turn reverse cortical reorganization.  

Inui and Masumoto used ischemic block anesthesia as an experimental model of a phantom limb [43]. A combination 

of their approach and the method employed in the present study could provide an accurate perceptual phantom limb model 

with loss of visual, proprioceptive, tactile, and to some extent thermal sensation. Having an accurate experimental model 

of phantom limbs is valuable in research to study the many characteristics of the phenomenon. 

4.4 Limitations 

This work relies on the MR system to relay an accurate reproduction of the visual feedback of the hand. With this, 

certain limitations should be mentioned: (i) reproduction of a vision is limited by the relative quality and resolution of the 

retina, the screens in the goggles and the cameras used. In the employed system, the screens are the limiting factor with a 

resolution of 960 x 1080 relatively close to the eyes; inferior to what the eye can see; (ii) furthermore, the screen-door 

effect (that every pixel in itself is discernable) is still an inherit problem of these types of goggles, and this may break the 

immersion; (iii) finally, a main assumption in this study is that embodiment is preserved through this MR system. We 
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argue that spatially coincident and coherent visual feedback in combination with low latency video maintains the 

embodiment of the hand. This aspect is supported by the results of the questionnaire data on ownership in which the 

embodiment is clear from the control condition.  

The illusion condition of this experiment was also combined with a verbalization of the fading hand to ensure the 

attention of the participant. However, it must be considered that this alone could have provoked some suggestions or 

expectations in the induction of the illusion. The effect of this verbalization on the results has not been accounted for 

since similar proprioceptive, thermal and subjective results were obtained during a pilot test conducted without this 

verbalization. Consequently, the impact of verbalization is deemed to be of less importance. 

The perceptual and proprioceptive data advocates a resemblance to phantom limb experiences. A subset of phantom 

limb patients experience phantoms that are twisted or turned into anatomically implausible configurations and none of 

the participants during the present experiment reported such perceptions. However, it should be noted that it is far more 

common to experience a telescope rather than an extension or deformation [8].  

5. Conclusion 

Using a novel MR system, it was possible to manipulate visual feedback from a limb in a realistic way. By removing 

the own-limb visual feedback in healthy volunteers, a proprioceptive drift could be generated along with perceptual 

changes (limb shortening, disownership and tickling or tingling sensations). The effects of the manipulation may resemble 

the phenomenon of telescoping phantom limbs seen in amputees. Furthermore, the MR system used to induce the illusion 

may be a valuable tool to assess several aspects of visual feedback ranging from motor integration tasks to importance of 

visual feedback during prolonged pain.  
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