Investigation of User Effects on Mobile Phased Antenna Array from 5 to 6 GHz

Di Paola, Carla; Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

Published in:
2018 IEEE 12th European Conference on Antenna and Propagation (EuCAP)

DOI (link to publication from Publisher):
10.1049/cp.2018.1201

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: January 10, 2020
Investigation of User Effects on Mobile Phased Antenna Array from 5 to 6GHz

Carla Di Paola, Igor Syrytsin, Shuai Zhang, Gert Frølund Pedersen
Department of Electronic Systems, Aalborg University, Aalborg, Denmark, {cdp, igs, sz, gfp}@es.aau.dk

Abstract—The goal of this paper is to evaluate the impact of the user to the performance of a phased antenna array in the frequency range from 5 to 6 GHz. The design consists of four quarter wavelength dipoles printed on the short edge of an FR4 substrate. Simulations including a 105° phase shifter proved that the antenna array can cover a 120° beamwidth, with a gain of 7 dBi. The analysis of the user effects in terms of total scan pattern (TSP) and coverage efficiency is carried out via simulations both in data mode and in talk mode. The comparison with the performance in free space shows a loss in gain from 2 dB up to 7 dB, due to the user hand and the user hand-head respectively. Simulation results have been confirmed by the measurements of the prototype with a hand and head phantoms.

Index Terms—Mobile terminal antenna, phased array, 6 GHz, 5 GHz, User effects, coverage efficiency.

I. INTRODUCTION

The fifth generation mobile communication system (5G) has been shown exponential growth in data rate requirements. One of the key enabling techniques in 5G systems is the use of millimeter-wave (mm-wave) and centimeter-wave (cm-wave) technology, which guarantees Gigabit-per-second data rate [11–[4]. Along with the use of mm/cm-wave frequencies, also the sub-6 GHz bands typical of 4G systems have been considered; hence, the demand of antennas able to cover both the new frequencies and to be tightly integrated with the existing 4G bands.

However, the use of mm/cm-wave spectrum will put challenging requirements on the design of antennas for the new generation mobile phones. In fact, in mm/cm-wave bands, free-space path loss is much higher than in conventional cellular bands below 6 GHz [5], [6], if we assume antenna gain is fixed. Moreover, coverage issues have to be faced. Hence, beamforming appeared to be the right solution to overcome the path loss at the high frequencies, as described in [2] and [7] and directional phased-array antennas, typical of 4G mobile phones [8], [9], have been considered to be applied at both the mobile device and the base station [10]. Furthermore, since beam steering does not solve coverage issues, when using only one array, it is needed to place more antenna systems in different points of the device to cover a wider area.

Last but not least, user effect has to be considered, when designing antennas for the new generation mobile phones. Many research efforts [11], [12] made over the years proved and quantified the human body interaction. The effects on the total radiated power (TRP) and the radiation pattern were evaluated in [13], by using phantoms and humans, and the impact of the user hand/hands on the mobile antenna performance was studied in [14] and [15]. In [16] the absorption of the millimeter waves by humans has been studied. It is interesting to observe that a big amount of power is lost in the human hand and head and a significant change in the shape of the radiation pattern occurs. Moreover, the investigation using the coverage efficiency metric defined in [17], including user effects, has been done in [18] at 28 GHz, where 12 users have been measured in the anechoic chamber. The performance investigation of the phased arrays with user effects has been done at 3.5 GHz in [19], where four sub-arrays of two elements each have been applied. Similar studies have been conducted in [9] and [20] at 28 and 15 GHz respectively.

In this paper the performance of the phased antenna array, consisting of 4 array elements, has been investigated with user effect in the band from 5 to 6 GHz. The free space, data and talk modes have been considered for the simulations in CST Microwave Studio. Furthermore, the measurements have been conducted in the Satimo Starlab [21] located in a shielded anechoic chamber at Aalborg University. The setup including the right hand phantom for the data mode and the right hand next to head phantom for the talk mode are in accordance with the CTIA test plan [22]. To evaluate the performance of the antenna system in the three different scenarios, the total scan pattern (TSP) and coverage efficiency have been calculated in the band of interest and mean coverage efficiency has been extracted from the results. Finally, the three setups have been compared to each other.

The paper is organized as follows. The design of the proposed phased antenna array is presented in Section I. Section II deals with the performance of the system in free-space, expressed in terms of TSP and coverage efficiency, both for the simulations and for the measurements. Section III shows the analysis of the user effects in data and talk mode, followed by a comparison with the results in free-space. Finally, Section IV concludes the paper.

II. PHASED ANTENNA ARRAY GEOMETRY

The design of the antenna array is shown in Fig. 1. Four quarter wavelength dipoles, spaced 20 mm from each other, are printed on both sides of a FR4 substrate. In particular, half dipole, placed in the bottom of the structure, is grounded in the antenna ground plane and half dipole on top is connected to a microstrip line fed by an SMA connector.
The simulations run over the structure prove that, using a 70° or 150° phase shifter, the antenna system allows to steer a beam of 90° and 120° respectively with a maximum gain of 7 dBi in both cases.

![Fig. 1. Design of the prototype in (a) the xz-plane and (b) the zy-plane.](image)

III. FREE SPACE PERFORMANCE

As reported in Fig. 2(a), the working frequency of each of the dipoles is in the interval from 6 to 6.5 GHz and the −10 dB bandwidth is approximately 500 MHz with a maximum of 1 GHz for the fourth element. The prototype, realized in the laboratory of the Antennas, Propagation and Millimeter-Wave Systems (APMS) section at Aalborg University, is presented in Fig. 3, where the waveguide ports have been replaced by SMA connectors. Comparing the plots in Fig. 2, it results that the reflection coefficients of the structure, measured with the Keysight N5227A PNA, are in accordance with the simulations.

![Fig. 2. Reflection coefficients in free space of (a) simulated array and (b) measured array.](image)

Next, to evaluate the spatial coverage performance of the proposed phased antenna array system the TSP and coverage efficiency metrics have been applied. The TSP of a phased antenna array is obtained from all array patterns corresponding to the beam for the different array scan angles by extracting the best achievable gain value at every angular distribution point. The spatial performance of the phased antenna array can be described in terms of the coverage efficiency. Coverage efficiency is defined as [17]:

\[
\eta_c = \frac{\text{Coverage Solid Angle}}{\text{Maximum Solid Angle}}
\]

where maximum solid angle is defined as 4π steradians in order to account for the arbitrary angle of arrival and arbitrary orientation of the mobile device. The coverage efficiency is calculated from the total scan pattern with respect to the chosen set of the gain values. In this work it has been chosen to use gain values ranging from -15 to 10 dBi.

The Satimo measuring equipment consists of a ring with 15 bi-directional and dual polarized test probes, a base-station emulator, CMW500, and a computer receiving the measured data from the device under test. The first step was the calibration of the anechoic chamber, followed by the evaluation of the E-field of each dipole separately over the 3D full sphere. The rotation of the setup, positioned in the center of the ring, allowed to measure each point on the φ-axis, while the probe array carried out the measurement of each point over the θ-axis.

The E-field values, gathered for each of the four antennas, have been processed in MATLAB and the resulting TSP is shown in Fig. 4(b), in comparison with the one of the simulated structure (Fig. 4(a)). The evaluated values of TSP for the antenna array were reported in a 2D-plot, where the color bar indicates an increasing gain from -15 to 10 dBi. The TSP of the measured prototype looks like the one obtained from the simulations, but in the first case the gain is higher in correspondence of lower values of θ, vice versa in the second case.

Moreover, in Fig. 5 the coverage efficiency from 5 to 6 GHz is plotted versus the realized gain. Choosing η_c = 0.5, the gain of the measured structure is 3 dB higher than the one of the simulated, as it can clearly result from the comparison of the curves representing the mean efficiency calculated over 21 frequency points.

IV. USER EFFECTS

To evaluate the influence of the user on the performance of the antenna array, the device has been simulated and measured with a phantom hand in data mode and the phantom hand

![Fig. 3. Measurement setup of the prototype in free space.](image)
next to a phantom head in talk mode. The setup simulated in CST can be seen in Figs. 6(a) and 6(c). The simulated hand and head phantoms represent the prototypes used for the measurements which are in accordance with the CTIA specifications and are produced by Speag. In Fig. 6(b) and Fig. 6(d) the setup for the measurements in the Satimo Starlab has been shown.

Looking first at the simulated reflection coefficients in Fig. 7 and comparing them with the ones in Fig. 2(a), it is possible to notice that only the curve of S_{22} is affected by the user. In fact, the second dipole is the only one touched by the middle finger of the hand phantom.

The impact of the user has been measured in terms of TSP and coverage efficiency and the results of the simulations and the measurements for both data and talk mode are reported in Figs. 8 and 9. Comparing the simulated TSP including the user effects with the one in free space (Fig. 4), it is clear to notice that the hand phantom does not highly impact the radiation pattern of the antenna array, meaning that the user hand produces a negligible absorption.

On the other hand, the presence of the head phantom significantly decreases the gain of the device in talk mode, which is visibly lower than $-5\,\text{dBi}$ in most of the pattern. The same comments apply to the measured TSP and to the coverage efficiency, plotted in Fig. 9. In fact, fixed $\eta_c = 0.5$, it is possible to notice a reduction of the gain of 5 dB in the simulations including the head phantom, compared to the performance in free space.

Finally, the plot in Fig. 10 shows that the loss due to the hand phantom is 2 dB at $\eta_c = 0.5$, whereas the head phantom increases the loss up to 7 dB. Better values of the coverage efficiency have been gathered by the measurements. Comparing the curves, it is also possible to notice that, fixed any value of η_c, the loss due to the user effect is much lower compared to the simulations.

Looking first at the simulated reflection coefficients in Fig. 7 and comparing them with the ones in Fig. 2(a), it is possible to notice that only the curve of S_{22} is affected by the user. In fact, the second dipole is the only one touched by the middle finger of the hand phantom.
The authors would like to thank lab engineers Ben Krøyer, for valuable guidance in the realization of the prototype, and Kristian Bank, for precious assistance in the measurements setup. The work presented in this paper has been conducted under the framework of the RANGE project, supported by The Innovation Fund Denmark together with industry partners: WiSpry, AAC and Sony Mobile.

REFERENCES

