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English summary 

With the advancements in the past decades on the development of Silicon (Si) 

based devices, the physical limits of the Si material have been pushed close to the 

limits, and the researchers have been focused on finding a suitable replacement for 

the Si semiconductors.  

Silicon-Carbide (SiC) materials, due to their physical properties, promise to 

provide improved performances in terms of breakdown voltages, switching 

frequency and operating temperatures in semiconductor switching devices. 

Continuous research in this field has already brought to the market SiC devices with 

voltages up to 3.3 kV which demonstrated superior performances compared to their 

Si counterparts in terms of efficiency and operating junction temperature. This also 

translated to a certain extent in improved reliability when considering the lower 

operating temperature of the Si devices for a similarly size heatsink.  

Due to material properties and continuous research, 10 kV 4H-SiC devices are 

currently under development as engineering samples. These promise to be a good 

candidate for replacing Si based IBGTs in the high power high voltage applications 

where an improved efficiency and higher switching frequency could decrease the 

converter costs and size while offsetting the semiconductor higher price. 

A very important requirement for power electronics devices employed in 

power converters is their reliability and behavior during transients such as short-

circuits. This is highly relevant as the device needs to be able to sustain and safely 

turn-off such a transient in order for it to be consider as a suitable candidate for high 

voltage high power converters, where reliability is a key requirement.  

Therefore the investigation of the behavior of the 10 kV 4H-SiC device during 

short-circuit and its degradation mechanism is of high interest. This summarizes 

both degradation during single event long short-circuit pulses but also during short 

and repetitive short-circuit events, which initially would not appear as a stress.  

The work developed during the Ph.D. studies the 10 kV 4H-SiC DMOSFETs 

from Wolfspeed/Cree both in terms of device characteristics and short-circuit 

robustness. Chapter one introduces the challenges and motivation of the research. 

Afterwards, in chapter two a theoretical comparison between unipolar SiC and 

Si devices is presented, together with specific unipolar figures of merit, aimed at 
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highlighting the superior characteristics of the SiC material, as its limits have yet to 

be reached by current SiC devices on the market. 

Chapter three makes a short introduction into the power MOSFETs, their 

characteristics and behavior. Afterwards the history and evolution of SiC unipolar 

devices is presented. In the last part of the chapter a low inductance test setup 

designed for 10kV 4H-SiC MOSFETs is presented. This, together with a high 

performance curve tracer is used to characterize the static and dynamic behavior of 

the first generation 10 kV 4H-SiC MOSFETs from Wolfspeed/Cree. 

In chapter four, the short-circuit behavior of the first generation 4H-SiC 

MOSFETs are investigated. Initially, the maximum short-circuit withstand time 

capability is estimated using a conservative approach. This was used in order to 

obtain a benchmark and to observe the behavior of the device during long pulses. 

Encouraged by the behavior and observed degradation during prolonged short-

circuit pulses, a further study aimed at observing and recording the degradation was 

performed. By periodically recording the degradation in the static measurements 

thought-out the short-circuit stressing of the device, some observations regarding 

the degradation could be drawn. A 1D thermal simulation was also set up in order 

to investigate the temperature evolution inside the device during short-circuit which 

aided at understanding some of the possible degradations of the device during such 

transients. Scanning electron microscope images confirmed the very high 

temperatures achieved in the device during such transients.  

Chapter five presents the conclusions and observations of the work and 

proposes some future investigations which might be performed in order to enhance 

this work and better understand the novel device.  

The main contribution of this project is in the short-circuit investigation process and 

methods. This allows for a better understanding of the device failure mechanism 

and steps and future improvements in device robustness during short-circuit 

transients.
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Dansk resume 

I takt med udviklingen indenfor silicum-baserede effektkomponenter er man rykket 

tættere på de fysiske materiale-relaterede begrænsninger for silicium. Som en følge 

deraf fokuserer en øget del af forskningen på at finde alternative materialer der kan 

erstatte silicium komponenterne. 

Et eksempel på et lovende alternativt material er siliciumkarbid (SiC) der som 

materiale med et stort båndgåb potentielt har en række interessante fysiske 

egenskaber såsom større spærrespænding, mulighed for øget switch-frekvens samt 

evne til at virke ved højere temperaturer. Den fortsatte forskning indenfor dette felt 

har udmøntet sig i SiC komponenter der kan klare spændinger på op til 3.3kV og 

som udviser forbedrede egenskaber i forhold til effektivitet såvel som maksimalt 

tilladt driftstemperatur. Sidstnævnte kan desuden give øget pålidelighed 

sammenlignet med den lavere driftstemperatur i Si komponenter under samme 

kølevilkår. 

10kV komponenter lavet af SiC typen 4H-SiC er under udvikling og såkaldte 

”engineering” komponenter er blevet realiseret af Wolfspeed (Cree). Sådanne 

komponenter kan være velegnede kandidater til at erstatte Si baserede IGBT 

komponenter indenfor anvendelsesområder med høj effekt og høj spænding, hvor 

en forøget effektivitet og muligheden for en øget switching frekvens potentielt kan 

reducere converteres størrelse og pris og dermed kompensere for den forventeligt 

højere enhedspris på SiC komponenter i forhold til Si. 

En meget vigtig parameter for effektelektroniske komponenter der anvendes i effekt 

convertere er pålidelighed og robusthed under store transienter som det er tilfældet 

under kortslutnings hændelser.  Det er afgørende at de nye komponenter kan 

modstå sådanne hændelser og slå fra på en sikker måde hvis de skal tages i 

betragtning som brugbare alternativer indenfor høj effekt / høj spænding 

anvendelsesområder, hvor driftssikkerhed og pålidelighed er centralt. 

Dette understreger interessen i og vigtigheden af at studere egenskaberne ved 10kV 

4H-SiC komponenter under kortslutningshændelser og hvilke 

nedbrydningsmekanismer sådanne eventuelt måtte udløse. Interessefeltet indebærer 

både nedbrydning under enkeltforekommende kortslutningshændelser af lang 

varighed såvel som under korte men gentagne kortslutningshændelser, hvoraf 

sidstnævnte under enkeltforekomster normalt ikke ville give anledning til 

nedbrydning men ved gentagne hændelser kan give anledning til nedbrydning over 

længere tid. 
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Arbejdet, der er udført under Ph.D. forløbet og som beskrives i nærværende rapport, 

har været fokuseret på 10kV 4H-SiC DMOSFET’s fra Wolfspeed(Cree) både hvad 

angår komponentkarakterisering såvel som kortslutningstests. I første kapitel 

introduceres udfordringer og kontekst for arbejdet og motivationen for dette 

uddybes. 

I kapitel to sammenlignes unipolære SiC and Si komponenter suppleret med 

specifikke “figures of merit” med sigte på at fremhæve de fordelagtige egenskaber 

ved SiC materialet. De eksisterende kommercielt tilgængelige  SiC komponenter 

har endnu ikke nået til SiC materialets grænser i samme omfang som Si 

komponenter og en sammenligning udelukkende baseret på tilgængelige 

komponenter ville dermed undervurdere nogle af de potentielle fremtidige gevinster 

ved SiC. 

Kapitel tre giver en kort indføring I effekt-MOSFET komponenter og deres 

karakteristiske egenskaber, efterfulgt af udviklingshistorien for unipolære SiC 

komponenter. Kapitlet afrundes med en beskrivelse af den lav-induktive 

testopstilling der er blevet designet og udviklet under forløbet. Denne opstilling har 

i kombination med karakterisering i en avanceret komponent-analysator dannet 

grundlag for karakteriseringen af 10kV komponenternes statiske såvel som 

dynamiske egenskaber. 

I kapitel fire præsenteres undersøgelserne af kortslutnings-egenskaberne af 4H-SIC 

komponenterne. Som første trin undersøgtes den maksimale tid som komponenterne 

kan klare uden nedbrud ved hjælp af en ”forsigtigheds” tilgang. Dette blev gjort for 

at etablere et referencegrundlag og for at etablere kendskab til komponenternes 

respons under længerevarende kortslutningspulser. Inspireret af observationere fra 

de første undersøgelser blev et yderligere studie i værksat med sigte på mere 

systematisk at undersøge nedbrydningsprocesserne. Ved periodisk at observere og 

registrere nedbrydningstegn mellem forsatte kortslutningstests blev det muligt at 

identificere delelementer i komponenternes nedbrydning. Eksperimenterne blev 

suppleret med en numerisk 1D termisk model for at undersøge 

temperaturudviklingen i komponenterne og dermed opnå mere indsigt i de mulige 

mekanismer der kan være i spil under de transiente kortslutningshændelser. De høje 

temperaturestimater fra simuleringerne blev understøttet af undersøgelser foretaget 

med Scannende Elektron Mikroskopi (SEM) efter kortslutningstestene var afsluttet. 

Kapitel fem sammenfatter observationerne og konklusioner på arbejdet og der 

anvises desuden mulige fremtidige undersøgelser der kunne udspringe af de fundne 

resultater og som ville udbygge forståelsen af disse nye komponenter.  

Det primære bidrag fra arbejdet I dette projekt ligger i den systematiske afdækning 

af kortslutningshændelserne og metoderne der er anvendt dertil. Dette giver 

mulighed for en dybere forståelse af fejlmekanismerne og nedbrydningstrin i de nye 
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komponenter og kan give vigtige bidrag til den videre udvikling af sådanne 

komponenter i forhold til deres robusthed under kortslutningshændelser. 
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Chapter 1.  

Introduction 

This chapter discusses the background, motivation and problem formulation of the 

PhD dissertation. Afterwards it presents the main objectives and in the end a list of 

selected scientific contributions carried out in this project. 

1.1. Limitation of Silicon-based power devices 

Nowadays, power electronics devices process over 70% of the electricity 

either for industrial users, power generating companies or home appliances [2]. 

Power semiconductor devices have been a key enabling technology in the 

regulation and distribution of power and energy around the world for the past few 

decades. Research and breakthrough on modern power electronics started with the 

invention of the bipolar junction transistor and semiconductor diodes in the 50s and 

the thyristor in the 60s. These created the foundations of modern power 

semiconductors as it is known today. Over the next decades, the desire to obtain 

more control over the power semiconductor devices fueled the research on 

improvements of the bipolar junction transistor switching speeds and the invention 

of the power metal-oxide-semiconductor field effect transistors (MOSFETs) and 

Insulated Gate Bipolar Transistors (IGBTs) [3]. Figure 1-1 summarizes the main 

industrial applications for power semiconductor devices; with the boxes indicate the 

current and voltage requirements from the devices. Generally, devices with voltage 
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Figure 1-1 Applications of silicon power devices [1] 
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ratings above 1 kV are mainly used in High Voltage Direct Current (HVDC) and 

traction applications.  

Silicon (Si)-based semiconductor devices have been the main focus of the 

research and development during the last half-century. Because of this, the material 

theoretical limits have almost been reached, and most breakthroughs are now 

related to improving the characteristics and reliability of Si devices; as the 

manufacturing process has been perfected to obtain a high yield with minimal 

defects [3]. 

As the power devices market matured, the demand from the Si semiconductors 

has increased to the point that further increase in performance are difficult to 

achieve and complex design solutions have to be selected. The main types of high 

voltage Si-based devices currently employed in the power systems are thyristors, 

gate turn-off thyristors (GTOs), gate-controlled thyristors (GCTs), bipolar junction 

transistors (BJTs), IGBTs and MOSFETs.   

 Considering the low power applications, like PV-systems and motor drives, 

the main requirement from the power semiconductor devices, excluding reliability, 

is the system efficiency. In order to increase the efficiency of such systems, most 

designers have chosen more complex converter structures like three level 

converters, which employ series connection of power devices and complex control 

schemes when compared to the simpler two level half bridge configuration. This 

switch has allowed them to achieve efficiencies above 96% due to the lower 

switching losses of 600V Si IGBTs and MOSFETs and a reduction in the output 

filter losses [4].  

Another example are the high voltage applications (e.g. HVDC), in which in 

order to achieve the high voltage blocking requirements of up to hundreds of kV, 

lower voltage Si devices like GTOs or Thyristors are stacked in series. As the 

application voltages increase this becomes a complex design, in order to avoid 

uneven voltage sharing between the blocking devices, and expensive, from the 

packaging, cooling and control points of view.  

Current power electronics market demands in terms of blocking voltages, 

switching frequencies, efficiency, power density and reliability are going beyond 

the material limits of silicon devices and forced device manufacturer to start 

investigating new materials to replace Si in the power devices over the next years. 

1.2. Influence of Silicon-Carbide semiconductors on the high 
voltage power electronics devices market 

In order to surpass the Si material limitations and develop the next generation 

power semiconductor devices, for the past decades, research has been focusing on 
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wide bandgap semiconductor materials. Among the wide range of such materials, 

the most promising ones are compared against Si in Table 1-1.  

 By considering the material properties summarized in Table 1-1, the main 

advantages of WBG devices compared to Si-based ones are higher operating 

temperatures, higher breakdown voltage, higher thermal conductivity and higher 

switching frequency.  

From a material point of view, the bandgap of the semiconductor determines 

the maximum operating temperature. Thus, if a maximum operating temperature for 

a Si-based device is assumed to be 150 °C, by multiplying this to the bandgap ratios 

of the WBG, it can be clearly seen that SiC-based and GaN-based devices can 

operate at temperatures of 400 °C [3], [5]. Therefore, WBG-based devices can 

operate at higher temperatures when compared to Si, without affecting their 

electrical properties.  

The breakdown voltage of the WBG devices is higher compared to Si-based 

devices due to the higher critical electric field for a similar doping level. Assuming 

the case of a diode, for a similar doping level, the theoretical breakdown voltage of 

a SiC device can be around 50 times higher when compared to a Si one [3]. At the 

same time, a higher critical electric field allows for a higher doping level to be used, 

thus the width of the drift region can be reduced. This will result in a thinner drift 

region for the WBG devices for the same blocking voltage when compared to Si. 

For a similar breakdown voltage design, SiC and GaN devices drift region can be 

much thinner than that of Si-based devices. This in terms will result in a small 

capacitance, fast switching speeds and maximum operation frequency and a small 

on-state resistance and lower conduction losses for the WBG devices [3], [5]. 

Considering majority carrier power electronics devices, such as MOSFETs, a 10 

fold reduction in blocking layer thickness, combined with a 10 times higher doping 

concertation for a SiC device will result in a reduction of the on state resistance up 

to a factor of 100 when compared to Si.  

Table 1-1 Material properties of Si and major WBG semiconductors [6]-[9] 

Property Unit Si 4H-

SiC 

6H-

SiC 

GaN Diamond 

Bandgap (Eg) eV 1.11 3.26 2.9 3.45 5.45 

Dielectric constant (εs) - 11.7 9.7 9.7 9 5.5 

Critical Electric Field 

(EC) (ND=10
17

cm
-3

) 
MV/cm 0.6 3.5 3.5 3 10000 

Electron Mobility (µe) cm
2
/Vs 1420 1000 380 1250 2200 

Hole Mobility (µn) cm
2
/Vs 450 115 95 850 850 

Thermal Cond. (λ) W/cmK 1.5 4.9 4.9 1.3 22 

Electron Saturation 

Velocity (vs) 
10

7
cm/s 1.05 2 2 2.2 2.7 
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The thermal conductivity of the semiconductor is highly important where the 

heat generated from the device losses needs to be dissipated and the junction 

temperature of the junction kept low. Considering high power applications, 

especially in the case of high ambient temperatures, good heat dissipation is highly 

desirable as this would result in a lower junction temperature and a higher power 

density. Considering the SiC-based devices, their thermal conductivity 

(4.9 W/cm
.
K) is more than times bigger than that of Si (1.5 W/cm

.
K), allowing the 

devices to obtain a greater power density when compared to Si. On the other hand, 

GaN based devices fail short of this due to the low thermal conductivity, which is 

even worse than that of Si, making them more suitable for low power devices for 

high frequency applications [3], [5].  

The maximum theoretical switching frequency of the semiconductors is 

mainly determined by their electron saturation velocity and the device capacitance. 

The electron saturation velocity defines the time in which the charges in the 

depletion region can be removed. Since WBG devices have a higher electron 

saturation velocity, their reverse recovery losses are much smaller, allowing for 

faster switching times and lower switching losses when compared to Si devices [3], 

[5]. Also, being thinner makes the device parasitic capacitances smaller, allowing 

for a faster charging/discharging of those capacitances, and in turn, faster 

commutation speeds of the devices.  

Despite the above mentioned advantages of WBG-based devices, they also 

present some challenges and disadvantages when compared to Si, which need to be 

solved in order to take full advantage of their physical properties and adopt them as 

the default material for power semiconductors.  

Cost and reliability are some of the main considerations which make SiC 

devices unattractive to power electronics systems designer. In order for the devices 

to be price competitive, low defect density and large diameter wafers are required. 

Micropipes, dislocations, misoriented blocks, strain, intrinsic point defects and 

mosaicity reduce the yield of the manufacturing process and are greatly affecting 

the devices performances while increasing the cost of production. Due to the bulk 

growth method, SiC bulk crystals have long been plagued in the past by 

“micropipes”, which are the open core of a super screw dislocation which created 

micron sized holed thought the entire crystal. The density of this type of defect has 

been currently reduced to less than 0.5 cm
-2

 for all wafer sizes [10].  Due to the 

device manufacturing process, a high density of interface states is created 

(10
13

 cm
-2

), when the semiconductor is oxidized in order to create the gate dielectric 

[11]. These will affect the device threshold voltage, which might deviate up to 1 V 

(40% deviation) and will create instability [3].  This type of defect has been 

reported as largely minimized in [10] and the threshold voltage showed a maximum 

280 mV shift after 1000 hours of stressing at high temperature.  Another concern is 

the low channel mobility, as a consequence of the increased surface roughness 
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scattering (as a consequence of the higher surface fields present in SiC MOSFETs) 

and coulombic scattering from the interface traps [12]. Similar to the micropipes 

and high density interface states reductions, all of the other defects can be reduces 

through improvements of the manufacturing process.  

Another disadvantage for the WBG-devices is the necessity of modifying 

current circuit designs and topologies in order to accommodate these devices. 

Generally the gate driving circuit requires a low inductive path in order to fully 

utilize the fast switching capabilities of the devices and a bipolar power supply with 

large voltage swings. In the case of SiC MOSFETs, the recommended turn-on gate 

voltages can reach +20 V and -5 V in the case of turn-off. The turn-on requirement 

is related to the transconductance, which is generally small even at gate voltages 

under 16 V, even if the threshold voltage is between 2.5 V – 4 V. For the turn-off, 

due to the smaller thickness of the devices, and the very fast switching events 

Miller parasitic turn-on can appear if the gate bias voltage is not low enough or the 

gate power supply can’t sink the transient currents [13].  

1.3. Evolution of Silicon-Carbide  

 Silicon-Carbide is one of the oldest semiconductors in the world, and 

interesting enough, it was first synthesized artificially in 1891 [14] before being 

discovered in nature in 1905 [15], although all the SiC used today is artificially 

synthesized. Although as a material it is widely used in industries such as 

aerospace, furnaces and wear-resistance mechanical parts, its adoption in the power 

electronics market is still at the beginning. It is composed of equal parts of carbon 

and silicon, with each atom being bonded to four opposite type atoms in a 

tetrahedral bonding structure. The bond length between Si and C is 1.89Å and the 

lattice along the a axis (distance between two atoms of the same type) is 3.08Å as 

shown in Figure 1-2. The atoms in each layer can be arranged in three positions (A, 

B and C) and the sequence of stacking determines the SiC polytype, as shown in 

1.89Å 

Si

C

3.08Å 

 
Figure 1-2 Smallest building element of SiC: Thetrahedron of one C atom bonding with four 

Si neigboring atoms [7] 
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Figure 1-3. The lattice along the c axis ([1120] plane) is 10.053Å for 4H-SiC and 

15.117Å for 6H-SiC. The type of structure of the polytype (cubic, hexagonal and 

rhombohedral structure) is given by the way the layers stacked on top of each other 

are oriented, such as lateral translations and rotations. Currently, over 215 SiC 

polytypes have been discovered, but only the 4H, 6H hexagonal and 3C cubic are of 

interest. The designators for each polytype comes from the number of layers in 

sequence, followed by H, R or C which indicates to which class of structure the 

polytype belongs [8], [16].  

SiC-semiconductor has been considered since the 50’s as the next generation 

material in power electronics as a replacement, once Si reaches its material limits 

[7], [17]. The recent commercialization of such devices is expected to revolutionize 

the power electronics market. As the technology matured, and the demand 

increased, it allowed for the wafer size to be increased and cost to be optimized. 

Figure 1-4 shows the advancements from 75 mm wafers in 2003, to 100 mm in 

2008 and, recently, to 150 mm in 2015. Currently, only 4H- and 6H-SiC wafers are 

available with diameters up to 150mm for research and sample evaluation from 

different manufacturers [10]. The continuous research on manufacturability allowed 

for significant decrease in defect densities, which increased yield and decreased 

costs [10]. Figure 1-4 shows the dramatic price drop since the first generation 

Schottky SiC diodes when compared to the last generation, due to all the 

advancements in manufacturing.  

The first SiC power MOSFET device was proposed in 1992 by Palmour et al. 
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Figure 1-3 Stacking sequence for 4H-, 6H-, and 3C-SiC in the [1120] plane. The white 

circles represent Si atoms and the black ones represent C atoms [7] 
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in 1992 as a UMOSFET structure [18]. Afterwards the SiC DMOSFET structure 

was presented by Shenoy et al. in 1996 [19]. The first commercially available SiC 

device came to market in 2001. The fifth iteration of the device is currently 

available on the market with a 5 times lower cost than the first generation, and 

increased performances [20]. As the technology advanced, more manufacturers 

started considering SiC as a suitable technology, and currently hundreds of diodes 

with ratings up to 3.3 kV are commercially available, with engineering samples 

reaching even 15 kV. The main producers of SiC power devices are Cree, Infineon 

and Rohm. This paved the way for other devices based on SiC technology, and in 

2011 the first commercial SiC MOSFET was presented Cree [21]. Since then, Cree 

released two more iterations of their SiC MOSFET technology, each one with a 

lower price and better performances when compared to the previous one [20].  

As mentioned earlier, while GaN shows good performances as a WBG 

material, its low thermal conductivity make it unsuitable for the high power devices 

market. Comparing the two polytypes of SiC materials available, 4H-SiC has better 

characteristics due to its higher carrier mobility and lower dopant ionization energy 

when compared to 6H-SiC, which make it a better semiconductor for use in high 

power high voltage devices. Because of its maturity on the market and the better 

performance, only 4H-SiC will be investigated in this work.  
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As the market matured, more manufacturers started developing unipolar 

devices (MOSFETs and JFETs) with SiC technology with power ratings similar to 

those Si-based devices. This encouraged power electronics and systems designer to 

consider transitioning from Si to SiC based devices in some applications. Initially, 

this has started as hybrid topologies and devices, where SiC diodes replaced the Si 

diodes in different application, allowing for an easy way to reduce the system 

losses. Evolution of the devices ratings, price reduction of the new technology and 

the better performances play a vital role in the speed of the transition from Si to SiC 

semiconductors. While current SiC devices have a higher cost when compared to 

similarly rated Si devices, the lower switching losses, lower threshold voltage, 

higher switching frequency and better thermal performance of the SiC allow it to 

offset the higher cost, making it a good solution in certain applications or 

topologies [4].  

Figure 1-5 shows with red the integration of the available SiC devices 

(including published engineering samples) into the power semiconductor market 

[3], [10], [22]. Based on the ratings currently reported for SiC devices, the main 

suitable applications for it range from PV inverters, adjustable speed drives, pumps 

and hybrid/electric vehicles to high voltage valves, solid state transformers and high 

power traction. Moreover, commercial products based fully on SiC switching 

devices have come to the market, such as PV inverters SMA Sunny Tripower 

20000TLHE-10 and REFUsol 020K-SCI [23], [24]. 

Although SiC semiconductors show superior electro-thermal capabilities when 

compared to their Si counterpart, and the room for improvement up to the 

theoretical material limits is big, their reliability needs to be asset in order for the 

market to accelerate the adoption of this new technology. As with any new 

technology, before being widely adopted and deployed in power electronics 

systems, the reliability and capability of the technology has to be asserted. 

Considering grid-connected large power converters where Si IGBTs are 

predominantly used and which SiC promises to be a competitive replacement, the 

expectations from power electronics systems designers expect at least a similar 

robustness and reliability. Failures in this case will have a big financial impact on 

the owner’s revenue and at the same time, might threaten the power system 

stability.  
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1.4. Challenges of Research 

As mentioned earlier, research on the next generation semiconductor material 

has been ongoing since the 1980’s with special focus on SiC, which promises to be 

a suitable replacement of the Si semiconductor in the power devices as it has 

reached it material theoretical limits. In order for the new technology to be fully 

adopted and to increase its adoption rate, the new semiconductor materials have not 

only to show better electro-thermal capabilities, but also to show similar if not 

better reliability. In today’s power semiconductor market, where power electronics 

systems and converters are expected to last for a long time, reliability is a key 

parameter, taken into consideration from the planning stage.  

The availability of the power electronics converters is one of the most 

important aspects and it is mainly dictated by the components reliability and the 

maintenance schedule [25]. Considering the field of renewable energy, which at the 

present it is very dynamic and increasing rapidly, the power electronics in a system 

are responsible for a big part of the failures and unscheduled maintenance [26]-[28]. 
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Figure 1-5 Integration of SiC-based devices on the Si-based power devices market [3], [4], 
[22] 



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

10 

It was reported in [29] that, over a period of five years, in the case of large scale PV 

plants 37% of the unscheduled maintenance is due to the power electronics 

converters and this represented 59% of the total costs associated with the 

maintenance of a 3.5 MW PV plant.  

During the entire lifetime of a power semiconductor device, it will 

encountered stressing transients, such as short-circuit and avalanche due to 

unclamped switching which force the device to operate outside its safe operating 

area (SOA) and might lead to early degradation and failure of the device [30]. 

Generally, devices meant for critical, grid connected applications are designed with 

robustness in mind, and should be able to sustain such transients until the control 

circuit detects it and takes protective actions or triggers the auxiliary protection 

circuit. It is expected that even though such transients occur, the device should be 

able to withstand them without any degradation in the device performance. This is 

highly relevant as it is expected that the SiC based devices should be able to 

withstand the same short-circuit transients as their Si counterparts, if not outperform 

them. This becomes challenging because, as mentioned earlier, due to the superior 

electro-thermal properties of SiC semiconductors, the chip sizes in the power 

devices for the same ratings are much smaller when compared to Si-based ones. 

Thus the entire short-circuit energy has to be supported by a much smaller volume, 

which in turn will result in higher energy per volume and higher temperature in the 

junction and the heat generated will be dissipated over a smaller area than in the 

case of Si.  

In the 1 kV voltage range, studies have been performed on unipolar SiC 

devices in order to assess their roughness. This included experiments focusing on 

high thermal stressing of the devices which are associated with short-circuit 

events [31]-[34], or evaluation of the device behavior during short-circuit transients 

[35]-[38]. 

Single crystal SiC wafers have been fabricates since the early 90’s and with 

this, different researchers across the world have started focusing on manufacturing 

low defect density epitaxial materials for high voltage power devices based on SiC. 

With improvements in the manufacturing process, as a proof of concept for the next 

generation high voltage power semiconductor device, in 2003, the first 10 kV 

4H-SiC power DMOSFET was presented Cree Inc. [39]. 

Despite the remarkable advancement achieved in the past 15 years in the SiC 

power devices technology, the development of high voltage SiC devices with 

ratings above 10 kV is still in an early stage, as most focus is on the lower voltage 

levels where the devices can directly replace Si power semiconductors. The power 

switching devices market is mainly defining and shaping the required behavior of 

the devices, and because devices with ratings over 10 kV are still novel and it is not 

possible to directly compare their performance with similar Si device which they 
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might replace. This has less advancements in this field, and the device optimization 

was not done as well as in the lower voltage range. Thus such devices are mainly 

optimized for switching performances and low conductions losses but their SOA 

has not yet been fully defined, and their operation during extreme conditions has 

not yet been studied or fully understood.  

Due to the novelty of the device, and limited researched focused on them, no 

detailed studies have investigated the full behavior of such devices, or on the test 

setups which could take advantage of the WBG properties of the semiconductor 

material. While some studies have investigated the switching behavior of the 

device, the circuits used for such investigation were not optimized to take 

advantage of the fast switching capability of the 10 kV 10 A 4H-SiC MOSFET, 

were only focused on a particular switching characteristics or were done from a 

theoretical point of view [40]-[44]. 

At the same time, only the lower voltage SiC 4H-MOSFETs short-circuit 

capabilities were investigated, with no information regarding the higher voltage 

devices being available. The lack of these studies makes implementation of such 

devices into power converters unlikely, as short-circuit capabilities and degradation 

are key parameters when designing such circuits.  

1.5. Objective 

The integration of 10 kV 10 A 4H-SiC MOSFETs into the power electronics 

market, currently dominated by slower Si IGBTs is strongly dependent on their 

reliability, especially during transients.  

Therefore, in order for such device to be considered, and to accelerate their 

market adoption, the emerging challenges that have to be overcome are summarized 

as:  

1. What is the device behavior over a wide range of temperatures and 

loading levels?  

2. What is the device minimum short-circuit withstand time capability?  

3. How and why is the device degrading during short-circuit transients? 

Based on the above mentioned research questions, the main objectives of the 

work have been summarized as:  

1. Development of a unified test setup which could test 10 kV 10 A 4H-SiC 

MOSFETs during all the expected dynamic transients, such as: switching, 
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short-circuit and unclamped inductive switching, over a wide range of 

temperatures, drain currents, drain-source voltages and gate voltages.  

2. Investigation of device switching behavior and generation of switching 

losses maps over a wide range of parameters, to allow for an easier study 

of the device characteristics.  

3. Identification of the peak short-circuit current of 10 kV 10 A 4H-SiC 

MOSFET and the minimum short-circuit withstand time capability. 

4. Investigation of the behavior during short-circuit of the 10 kV 10 A 

4H-SiC MOSFET and current shaping phenomena.  

5. Investigation of the possible degradation mechanisms in 10 kV 10 A 

4H-SiC MOSFETs during short-circuit stressing. 

1.6. List of publications  

The work performed during the PhD period has been presented in the 

following publications: 
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P. I. E. P. Eni; S. Beczkowski; S. Munk-Nielsen; T. Kerekes; R. Teodorescu; 

R. R. Juluri; B. Julsgaard; E. VanBrunt; B. Hull; S. Sabri; D. Grider and C. 

Uhrenfeldt, "Short-Circuit Degradation of 10 kV 10 A SiC MOSFET," in 

IEEE Transactions on Power Electronics , [in publication] 

 Conference papers: 

P. II. C. Sintamarean; E. P. Eni; F. Blaabjerg; R. Teodorescu and H. Wang, 

"Wide-band gap devices in PV systems - opportunities and challenges," in 

2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - 

ECCE ASIA), Hiroshima, 2014, pp. 1912-1919. 

P. III. E. P. Eni; T. Kerekes; C. Uhrenfeldt; R. Teodorescu and S. Munk-

Nielsen, "Design of low impedance busbar for 10 kV, 100A 4H-SiC 

MOSFET short-circuit tester using axial capacitors," in 2015 IEEE 6th 

International Symposium on Power Electronics for Distributed Generation 

Systems (PEDG), Aachen, 2015, pp. 1-5. 

P. IV. E. P. Eni; B. I. Incau; T. Kerekes; R. Teodorescu and S. Munk-Nielsen, 

"Characterisation of 10 kV 10 A SiC MOSFET," in 2015 Intl Aegean 

Conference on Electrical Machines & Power Electronics (ACEMP), 2015 

Intl Conference on Optimization of Electrical & Electronic Equipment 
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(OPTIM) & 2015 Intl Symposium on Advanced Electromechanical 

Motion Systems (ELECTROMOTION), Side, 2015, pp. 675-680. 

P. V. E. P. Eni; S. Bęczkowski; S. Munk-Nielsen; T. Kerekes and R. 

Teodorescu, "Short-circuit characterization of 10 kV 10A 4H-SiC 

MOSFET," in 2016 IEEE Applied Power Electronics Conference and 

Exposition (APEC), Long Beach, CA, 2016, pp. 974-978 

P. VI. S. Bęczkowski; H. Li; C. Uhrenfeldt; E. P. Eni and S. Munk-Nielsen, 

"10kV SiC MOSFET split output power module," in 2015 17th European 

Conference on Power Electronics and Applications (EPE'15 ECCE-

Europe), Geneva, 2015, pp. 1-7. 

P. VII. H. Li; S. Munk-Nielsen; S. Bęczkowski; X. Wang and E. P. Eni, "Effects 

of auxiliary source connections in multichip power module," in 2016 IEEE 

Applied Power Electronics Conference and Exposition (APEC), Long 

Beach, CA, 2016, pp. 3101-3106. 

 

1.7. Outline of dissertation 

Chapter 1 - Introduction – present the background and motivation of the 

research, highlighting the influence of SiC semiconductor on the power electronics 

market and evolution of SiC. In the end the main objectives and outline of the thesis 

are presented. 

Chapter 2 - SiC Power Devices – presents a theoretical investigation of SiC 

and Si unipolar devices. SiC theoretical limits in terms of on-state resistance, 

switching frequency, dimensions, doping and parameters variation are compared 

against Si. In the last part, different figures of merits for the two semiconductor 

materials are compared.  

Chapter 3 - Characterization of 10kV 4H-SiC MOSFET – starts with an 

introduction into power MOSFETs and their characteristics, parasitic components 

and switching behavior. A state-of-the-art and evolution of 4H-SiC MOSFETs is 

then presented, up to current times. Afterwards, the design and performance of a 

custom designed, unified testing, low inductance test setup for 10 kV 4H-SiC 

MOSFETs are presented. In the last part of the chapter, the static and dynamic 

characteristics of the 10 kV 10 A 4H-SiC MOSFET are studied over a wide range 

of temperatures, voltages and currents.  

Chapter 4 - Short-Circuit Analysis of 10kV 4H-SiC MOSFETs – investigates 

the minimum short-circuit withstand time capabilities and behavior of the 10 kV 10 

A 4H-SiC MOSFET. As the device has never been studied during such events, a 

state-of-the-art of short-circuit behavior and degradation of lower voltage 4H-SiC 

MOSFETs has been gathered. The lower voltage device are based on the same 
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manufacturing technology and internal structure, and while not necessarily directly 

scalable, the observation obtained from such devices could be replicable and 

insightful for the 10 kV 4H-SiC MOSFET. Because of the lack of benchmarks, the 

minimum short-circuit withstand time capability for the device was obtained in a 

conservative way, with the device being stressed and degraded long before it failed. 

Intrigued by the failure, the degradation observed in the short-circuit peak current 

was also investigated in another study, with the aim to observe variations in the 

device electrical parameters and structure. 1D thermal simulations were also used to 

confirm the temperatures during short-circuit experienced by the device. 

Chapter 5 - Conclusion and future work – presents the final conclusions of the 

research done in the thesis and summarized the main contributions of the works, 

discussing some future possible works which could improve on the findings of the 

thesis.  
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Chapter 2.  

SiC Power Devices 

In this chapter the theoretical capabilities of SiC power devices is compared to that 

of Si in order to better highlight the advantages of the new WBG semiconductor 

material and to emphasize the trend and advantages of switching from Si to SiC in 

power electronics converters.  

2.1. Introduction 

SiC based power devices are still in the early stage of development when 

compared to Si semiconductors. Si has been the semiconductor of choice for high 

power devices for the past decade and the continuous research focused on 

improving its performance in power semiconductor devices have allowed the power 

electronics to exploit the material up to its limits, or in case of specific unipolar 

devices structures, such as super junction MOSFETs, even surpass them. On the 

other hand, SiC has getting attention for a much shorter period of time, as Si limits 

were starting to get reached. The research on SiC, being on the beginning has 

mostly focused on making SiC unipolar devices as reliable and competitive as 

possible, and the material limits are still not yet fully reached. 

Because of this, the most correct way of comparing the two technologies is 

from a theoretical material point of view, in order to highlight the performances of 

the two devices from a similar point of view, as research on SiC is still in its 

infancy, compared to Si. 

2.2. Theoretical Specific On-State Resistance 

One of the main benefits of WBG based power devices when compared to Si 

ones comes from lower specific on-state resistance of the drift region for a similar 

blocking voltage. The voltage limit which can be safely supported across a drift 

region is decided by the beginning of the impact ionization as the electric field in 

the region increases. The limit of the electric field at which impact ionization starts 

to occur is specific to each semiconductor and is termed as the critical electric field 

(EC) of the material. The edge termination of the chip plays an important role in 

influencing the electric field in the device, thus its design can influence the 

maximum voltage the device can sustain. Although the electric field in a power 

device is also influenced by the dimensions and geometry of the die, the parallel 

plane analysis is sufficient to highlight the advantages of WBG semiconductors. 
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Considering an abrupt asymmetric 4H-SiC device, the critical electric field as a 

function of doping concertation can be expressed as [3]:  

 
4 1/8(4 ) 3.3 10c DE H SiC N     (2.1) 

where ND is the doping concertation in the uniformly doped 4H-SiC N-region. The 

critical field of 4H-SiC with a doping concertation of 1017 cm-3 is 3.5MV/cm, 

almost 6 times bigger than in Si as show in Table 1-1[6]. 

Assuming a non-punch through P
+
/N junction as shown in Figure 2-1, where 

the P
+
 region is highly doped, the electric field which can be supported by the 

region is neglectable. If the junction is reversed biased, the depletion region will 

form in the N-region as the electric field needed to support the bias voltage 

increases. The maximum electric field of the junction can then be expressed as [3]:  

 
2 D a

max
s

qN V
E


   (2.2) 

where εs is the semiconductor dielectric constant, q is the electron charge and Va is 

the applied reverse bias. Equation (2.2) shows that as the applied bias increases, so 

does the maximum electric field and at a certain point impact ionization might start 

to occur and avalanche breakdown might occur. By rearranging equation (2.2) the 

W

Depletion RegionP N+

x

Emax

E(x)

x

V(x)

 
Figure 2-1 Electric field and potential distribution for an abrupt parallel-plane P+/N 

junction [3] 
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breakdown voltage (BV) of the structure can be extracted as:  

 
2

2

s c

D

E
BV

qN


   (2.3) 

Thus, the doping concentration of the N-region required to support this 

breakdown voltage is given by:  

 
2

2

s c
D

E
N

qBV


   (2.4) 

The thickness of the depletion region, W, can be expressed in relation to the 

applied reverse bias as [9]: 

 
2 s a

D

V
W

qN


   (2.5) 

This represents the minimum thickness required for the drift layer, WD, in 

order to support a given avalanche voltage. Inserting equation (2.3) into equation 

(2.5), the minimum thickness of the drift layer can be expressed as:   

 
2 2s

D
D C

BV BV
W

qN E


    (2.6) 

The ideal specific on-state resistance of the drift region, if charge coupling is 

ignored, can be described as [3]:  

 
2

, 3

4
on sp

s n c

BV
R

E 
   (2.7) 

where µn is the electron mobility in the drift layer. 

The breakdown voltage can be written as a function of doping concentration as 

of the N-region using Baliga’s power law [45], as [1]: 

 
13 3/4( ) 4.45 10pp DBV Si N     (2.8) 

for Si, and for SiC as [3]:   
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15 3/4(4 ) 3 10pp DBV H SiC N      (2.9) 

The breakdown voltage as a function of doping concentration is plotted in 

Figure 2-2 for both Si and 4H-SiC. The graph clearly shows that 4H-SiC devices 

can support a much higher breakdown voltage for the same doping concentration 

when compared to Si devices. For a similar material doping concentration, 4H-SiC 

devices have a blocking voltage 60 times higher than that of SiC. Or, a much higher 

doping concentration can be used for the drift region of the 4H-SiC devices for a 

given device breakdown voltage when compared to Si. For a similar desired 

breakdown voltage, the doping concentration of the 4H-SiC devices when 

compared to Si devices can be 275 times larger.  

Using the same power law equation, the width of the depletion layer at 

breakdown can be extracted for both Si and SiC as a function of doping 

concentration as [1], [3]: 

 
10 7/8( ) 2.404 10pp DW Si N     (2.10) 

 
11 7/8(4 ) 1.82 10pp DW H SiC N      (2.11) 

 
Figure 2-2 Breakdown Voltage for Abrupt Parallel-Plane Junctions in Si and 4H-SiC as a 

function of doping concentration 
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Figure 2-3 shows depletion layer width at breakdown voltage of SiC and Si for 

as a function of doping concentration. 4H-SiC maximum depletion width in the 

N-region is 7.6 times bigger than that of the Si material for a similar doping 

concentration. This would allow 4H-SiC to support a larger electric field when 

compared to Si. The main advantage which can be observed here is that the 

depletion width of the 4H-SiC devices is much smaller than for Si-based devices for 

a given breakdown voltage. The smaller depletion layer and much higher doping 

levels used in 4H-SiC devices will give a big reduction in the device specific 

on-state resistance of the drift region compared to Si-based devices.  

In order to compute the specific on-state resistance, it is required to consider 

the variation of the mobility and electric field with the doping concentration. Since 

the doping varies with the breakdown voltage. An approach to this would to 

calculate the doping concentration required for a certain breakdown voltage and, 

based on that, to calculate afterwards the mobility and depletion width. Afterwards, 

the specific on-resistance, Ron,sp, of the ideal non-punch through drift region is 

described as [3]:  

 ,
D

on sp
n D

W
R

q N
   (2.12) 

 
Figure 2-3 Maximum Depletion Width at Breakdown in Si and 4H-SiC 



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

20 

The theoretical specific on-resistance at room temperature of unipolar 

Si-based devices (which follows the results from the equation above) can also be 

written as [46]:  

 
9 2.5

, ( ) 5.93 10on spR Si BV    (2.13) 

The theoretical on-state resistance of the drift regions for 4H-SiC and Si is 

calculated using equation (2.12) and compared in Figure 2-4. The ratio between the 

theoretical on-state resistance of 4H-SiC based devices to that of Si based devices is 

around 1000 at 100V and goes up to 2600 for breakdown voltages of 10kV.  

2.3. Theoretical Maximum Switching Frequency of Unipolar 
Devices 

One of the main key features of 4H-SiC, inherited from its wide bandgap 

properties are the material capabilities for fast switching. This is highly attractive 

because, generally, increasing the switching frequency allows for a decrease in size 

and weight of the power converters and an increase in power density. This is mainly 

related to a reduction in the converter output filters, reduction in converter 

complexity by reducing the number of level and furthermore a reduction in cost, 

 
Figure 2-4 Specific On-State Resistance of the Drift Region as a Function of Voltage on 

4H-SiC and Si 
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depending on the parameters of the converter which are optimized [4].  

The switching losses of unipolar devices can be described by observing their 

gate charge characteristics, and is similar for all unipolar devices, independent of 

their structure (MOSFET, JFET etc.) [47].  

The total power losses of a unipolar power device can be described as [47]:  

  2
,

1

2

on off

loss rms DS on DS D r f

E E
P I R V I f t t


     (2.14) 

where Irms is the RMS current of the converter, 𝑅𝐷𝑆,𝑜𝑛 is the on-state resistance of 

the device, VDS is the applied drain-source voltage, f is the swithicng frequency, tr is 

the drain current rise time, tf is the drain-source voltage fall time and Eon and Eoff are 

the turn-on and turn-off energies. The first part of equation (2.14) describes the 

unipolar device conduction losses, while the second term describes the switching 

losses.  

tf can be expressed as [47]: 

 
,

gd

f
g av

Q
t

i
   (2.15) 

where Qgd is the charge of the gate-drain capacitance, CGD, integrated over the 

voltage supported by the device during its transition from VDS to the small voltage 

drop during conduction as the devices shifts from blocking to conduction state, or 

vice versa [47].  ig,av is the average gate current of the device. Qgd is mainly defined 

by the depletion layer charge under the gate which is formed in order to support 

VDS. Based on Gauss’s law, the specific gate-drain charge, Qgd,sp can be expressed 

as [47]:  

 ,
DS

gd sp s DS s c

V
Q k E k E

BV
     (2.16) 

 where EDS is the peak electric field required for the device to support VDS and 

k (<1) represents a device design parameter which defines the ratio of the gate-drain 

overlap area compared to the entire chip area.  

The assumption made in [47] by Huang et all. that the turn-on and turn-off 

losses are equal, thus the last part of the switching losses can be assumed to be one 

is not correct, as it was already observed in [48] where the turn-on losses are up to 6 
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times higher than the turn-off losses, even when a low gate-source voltage bias is 

used.  

Considering that the switching losses are dominated by the charging and 

discharging of the Miller charge, and the losses accumulated during the tr period are 

neglectable compared to the ones in the tf  period, equation (2.14) can be simplified 

and expressed as a function of the area: 

 

2
, ,

,

1

2

rms on sp DS D GD sp on off

loss
g av

I R V I fQ A E E
P

A i


    (2.17) 

From equation (2.17) it can be observed that the losses are dependent on the 

device dimensions. As expected, if the device area is increased, the current and 

Ron,sp will be distributed over a larger area, thus decreasing the conduction losses, 

but on the other hand, the Qgd,sp is directly proportional to the device area, thus 

increasing the switching losses. The minimum power losses can be obtained when 

dPloss/dA=0. Equation (2.17) can be rearranged then in order to obtain to satisfy the 

minimum power losses criteria: 

 

2
, ,

2
,

DS D gd sp rms on sp

g av

V I fQ I R

i A
   (2.18) 

Thus the optimal area of the device, Aopt, in order to obtain the minimum 

power losses is described as:  

 
,

,

,

1

2

on sprms
opt

gd spon off DS D

g av

RI
A

QE E V I f

i




  (2.19) 

Substituting equation (2.19) into equation (2.17), the minimum power losses 

can be obtained as:  

 , , ,
,

1
2

2

on off DS D
loss min rms on sp gd sp

g av

E E V I f
P I R Q

i


   (2.20) 

Combining equation (2.7) and equation (2.16), one can obtain:  

 , , 3

4 DS
on sp gd sp

n c

kBV BV V
R Q

E


   (2.21) 
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Thus, introduction equation (2.21) into equation (2.20) the minimum power 

loss of the unipolar device becomes:  

 

 
3

4

,

,

1
4

2

on off D
rms DS

g av

loss min

c n

E E I f
I V BV k

i
P

E 



   (2.22) 

From equation (2.22), the maximum operating frequency of unipolar devices 

as a function of device ratings and dimensions can be extracted as:  

 

 

2 2
,

3/22
1

16
2

loss c g av n

max
on off

rms D DS

P E i
f

E E
I I V BV k





  (2.23) 

where Ploss is the total losses the packaging of the device allows to be dissipated. As 

it can be seen, the maximum frequency is directly proportional to 𝑃𝑙𝑜𝑠𝑠
2 , which 

means that any improvement in the power density of the packages will allow for a 

higher operating frequency.  

 
Figure 2-5 Maximum theoretical swithcing frequency of unipolar Si and 4H-SiC devices as a 

function of the blocking voltage assuming usage in identical circuits 
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As an example, assuming a Si and a 4H-SiC MOSFETs with a chip active area 

size of 100mm
2
, k=0.5, a turn-on losses to turn-off losses ratio of 4, that operate in a 

converter with a VDS nominal voltage of half of the BV, a nominal current ID=10A, 

an average gate current ig,av=1A with a total power losses of 300W and a junction 

temperature of 175°C, their maximum frequency as a function of their blocking 

voltage is plotted in Figure 2-5. Based on the above assumption, the a 4H-SiC 

unipolar, device can have a maximum theoretical switching frequency more than 25 

times higher than a Si unipolar device with an identical breakdown voltage used in 

a similar circuit with identical power ratings. This is related only to the better 

material properties of the WBG material. For a 10kV 4H-SiC unipolar device, the 

maximum theoretical switching frequency is approximately 10 kHz. 

2.4. Figure of Merits 

Figure of merits (FOMs) have been developed over the years in order to 

quantify the performance of semiconductor power device based on the 

semiconductor material properties. For power unipolar devices, there are two main 

categories of FOMs, the first category uses only the material properties in order to 

highlight the impact of better material properties of the device, while the second 

category take into consideration different device specific characteristics and 

behavior. The first category is the most used one as it allows for the semiconductor 

material to be directly compared, thus giving a theoretical comparison. Because 

research on most WBG materials has not been as intensive as on Si devices, the 

challenges of developing WBG devices with those materials have not been fully 

overpassed and solved when compared to Si based device. The evolution of the 

power semiconductor market and the reach of Si theoretical limit is speeding the 

research in those fields, allowing for large improvements in the WBG based devices 

manufacturing and closing the gap between the commercially available devices and 

the theoretical limits at a high pace [22], [49]. The second category takes into 

consideration device specific parameters thus also showing the limitations of the 

design and manufacturing process. While they might be more relevant to a certain 

extent, they require a lot of knowledge regarding the device manufacturing process 

and the physical dimensions of the semiconductor chip which are not easily 

available. Also WBG devices are still in their early stages, thus research on their 

manufacturability can yield larger improvements on WBG devices performance, 

when compared to Si which has been the main research topic in the power 

semiconductor industry for the past decades.  

In 1965, Johnson derived a figure of merits for semiconductor materials used 

in high frequency field-effect transistors where the product of the electron 

saturation velocity and the electric breakdown field is assumed to be the limiting 

factor [50]:  
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 JFOM
2

c sE v


   (2.24) 

In 1972, Keyes proposed a figure of merit aimed at defining a thermal 

limitation to the switching behavior of transistors [51]:  

 

1/2
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 
 

   (2.25) 

where c is the velocity of light. 

Both JFOM and KFOM are not relevant for high power switching application 

as they are limited to specific conditions. JFOM is only applicable in the case of 

low voltage transistors while KFOM is mainly usable in the case of integrated 

transistor. Despite this, they can still be used when comparing different materials as 

they take into consideration only the material properties of unipolar devices.  

In 1982, Baliga derived a figure of merit as [52]: 

 
3BFOM GE   (2.26) 

 which quantifies the material parameters mobility and bandgap in order to 

minimize power unipolar devices conduction losses. This assumes that almost all 

the device losses are associated with the large current passing through the device 

on-state resistance during conduction, making it suitable only for devices operating 

at low switching frequencies.  

In 1989, Baliga presented another figure of merit aimed to consider the 

switching losses of power unipolar devices resulted from the charging and 

discharging of the device’s input capacitance during each switching cycle [53]:  
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  (2.27) 

Table 2-1 FOMs for semiconductor materials [53]-[55] 

Material Si 4H-SiC GaN 

JFOM 9.09 ∙ 1023 3.64 ∙ 1026 6.87 ∙ 1026 

KFOM 1.39 ∙ 103 6.46 ∙ 103 3.85 ∙ 103 

BFOM 4.26 ∙ 1020 1.83 ∙ 1023 2.88 ∙ 1023 

BHFFOM 1.22 ∙ 1014 6.3 ∙ 1015 9.8 ∙ 1015 
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In order to keep BHFFOM only related to the material properties and not 

device dependent, the part of the equation in the parentheses is generally dropped 

when using BHFFOM to compare different semiconductor materials for unipolar 

power devices.  

Table 2-1 shows the FOMs for different semiconductor materials. It can be 

observed that from a theoretical point of view, due to its superior material 

properties, 4H-SiC devices promises to offer vast improvement when compared to 

Si ones. In order to highlight the advantages better and help the reader, the values in 

Table 2-1 have been normalized to Si and are shown in Table 2-2. 

2.5. Summary 

In this chapter, several theoretical material limits of Si and SiC based unipolar 

devices, such as theoretical specific on-state resistance, have been investigated and 

compared among the two semiconductor materials. It was showed that for a similar 

breakdown voltage a SiC based unipolar power device can have a 275 times larger 

doping concentration than a Si based unipolar device. This higher doping 

concentration would allow for a up to 7.5 times smaller drift layer thickness in the 

SiC based unipolar device when compared to Si counterpart with a similar voltage 

rating. The theoretical on-state resistance of SiC based unipolar devices was shown 

to be up to 2000 times smaller than that of Si based ones if the same breakdown 

voltage is desired.  

The theoretical maximum frequency of a SiC power MOSFET was also 

compared against a Si based power MOSFET with similar voltage ratings in an 

identical circuit and assuming similar power losses. The SiC based device 

outperformed the Si one, showing a theoretical switching capability more than 25 

times larger than the Si based device.  

The two semiconductor materials were also compared using different figures 

of merits, proving that as a semiconductor SiC is a better material for unipolar 

power devices.  

Table 2-2 Normalized values of FOMs for semiconductor materials [53]-[55] 

Material Si 4H-SiC GaN 

JFOM 1 400 756.25 

KFOM 1 4.66 2.78 

BFOM 1 429.88 674.98 

BHFFOM 1 51.85 80.67 
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Due to all of the above mentioned advantages make SiC based unipolar 

devices the best candidate to replace Si based power devices for voltage ratings 

above 1kV. At the same time it allows unipolar devices to achieve voltage rating 

which were previously suitable only for Si bipolar transistors and even exceeding 

them.  
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Chapter 3.  

Characterization of 10kV 4H-SiC 

MOSFET  

This chapter discusses the power MOSFET and history of SiC power MOSFETs 

and then makes an analysis of the first generation 10kV 10A 4H-SiC MOSFET from 

both the dynamic and static perspective. The switching losses of the device are 

investigated in order to get a clear understanding of its behaviour during 

operation.   

3.1. Introduction to Power MOSFETs 

The power MOSFET was developed in the 1970’s and was the first 

commercially viable Si-based unipolar switching device [56]. It revolutionized the 

market, which at that time was dominated by slow, generally current driven power 

semiconductors. It had an innovative design which gave several advantages. Its 

high input impedance gate structure allowed for a cheaper and simplified driving 

circuit while maintaining good control of the device. Since it was a unipolar, 

majority carrier device, it allowed for much faster switching frequencies compared 

to bipolar minority carrier devices. The device allowed for a large SOA, compared 

to bipolar devices of the time, where larger currents and voltages could be 

supported for short periods of time without destruction.  

The initial structure design has been improved and modified depending on the 

feature which needed to be enhanced, giving birth to different structures such as: 

CoolMOS HEXMOS, UMOSFET, etc [3]. The purpose of this chapter is to only 

focus on the basic power MOSFET structure which is also termed DMOSET, as a 

consequence of the cost-effective way of constructing the channel in these devices: 

by the double diffusion process.  

Figure 3-1 shows the cross section view of a simplified n-channel power 

MOSFET cell. The source regions, P-base and N
+
, are formed by ion implantations 

though a common slot given by the edge of the gate polysilicon electrode. After 

each implantation cycle, a drive-in process moves the P-N junction laterally under 

the gate. The P-base region is pushed deeper under the gate than the N
+
 region. The 

area under the gate electrode between the N
+
/P-base junction and the P-base/N

-
-drift 

junction defines the source channel region [3]. This allows for the channel length to 

be controlled up to µm dimensions without complicated and expensive, high 

resolution lithography.  
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When employed in high voltage application, the drift region resistance 

becomes dominant in Si-based MOSFETs, leading to large voltage drops for high 

current applications. For devices with large breakdown voltage ratings, this 

resistance is in the range of 10
-2

 Ω
.
cm

2
, as shown in Figure 2-4. This has 

discouraged the usage of MOSFETs in applications above 200 V, instead being 

replaced by Insulated Gate Bipolar Transistors (IGBTs) in higher voltage power 

applications. The new Si MOSFETs technologies (UMOSFET, CoolMOS, etc) 

have allowed for Si MOSFETs to be used in application with device ratings up to 

900V [57], but their drift region resistance is still considerably large leading to 

higher conduction losses when compared to Si IBGTs, thus making them suitable 

only for applications requiring high frequency switching. 

3.1.1. STATIC CHARACTERISTICS  

Considering the simplified n-channel power MOSFET from Figure 3-1, it has 

three main operation modes: linear or ohmic mode, saturation mode and cutoff or 

blocking mode as shown in Figure 3-2.  

Ignoring sub-threshold conduction and the weak-inversion current, under ideal 

circumstances, when the gate-source bias voltage, VGS, is smaller than the MOSFET 

threshold voltage, Vth, the device is assumed to be turned off and can support a large 

drain-source voltage, VDS, across the junction formed by the P-body/N
-
 drift region. 

The maximum drain-source voltage has to be within the device design limits, thus 
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Figure 3-1 Cross section view of simplified n-channel power MOSFET cell structure  [9] 
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smaller than the breakdown voltage of the junction formed by the P-body/N
-
 drift 

region, or the device will go into avalanche breakdown and the device could get 

destroyed. The lowest curve in Figure 3-2 shows the cutoff operation mode. 

As a gate-source voltage larger than the threshold voltage is applied, an 

inversion layer channel appears under the gate oxide of the power MOSFET, at the 

interface between the p-body and the oxide, and currents starts flowing between the 

drain and the source of the device. The device will enter the ohmic regime while the 

drain-source voltage is smaller than the applied gate-source voltage minus the 

device threshold voltage. In the linear region the device behaves as a resistor, and 

the drain current is controlled by the applied gate-source and drain-source voltages.  

This resistance dictates the losses of the device during conduction and as a 

consequence, the junction temperature. The resistance mainly varies with the 

channel resistance, drift region resistance and JFET resistance. If the drain-source 

voltage is increased above the applied gate-source voltage minus the device 

threshold voltage, the device will go into saturation mode. During this mode the 

device on-state resistance will increase as a consequence of the channel getting 

pinched off and an increase in drain-source voltage will have almost no influence 

on the drain current. 
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Figure 3-2 Typical output characteristic of basic n-channel Si MOSFET(based on [9]) 
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3.1.2. PARASITIC CAPACITANCES 

Figure 3-3 shows the internal parasitic capacitances present in a power 

MOSFET. The gate-source capacitance, CGS, is formed by the region of the 

polysilicon gate which overlaps the source and the metal source contact. This 

capacitance is mainly considered constant as the N
+
 and P body regions are highly 

doped. As the gate polysilicon overlaps the drift region (from which it is separated 

by the gate oxide) it forms with the silicon underneath (in the JFET region) a part of 

the gate-drain capacitance, CGD. The other part of CGD is dependent on the 

space-charge zone which forms when the device in not conducting. Therefore it 

shows a non-linear behavior, being influenced by the applied drain-source voltage. 

The last internal parasitic capacitance is the drain-source capacitance, CDS, which is 

attributed to the body drift diode and varies inversely with the square root of the 

applied drain-source bias.  

The equivalent electrical circuit of an n-channel power MOSFET with the 

parasitic components is shown in Figure 3-5. These parasitic components have a 

high impact on the device switching performance, dictating the shape and slopes of 

the MOSFETs current and voltage switching waveforms. During switching the 

external gate driving circuit has to charge and discharge the input capacitance, Ciss, 

formed by CGS and CGD, while considering the internal gate resistance, RGint. These 

devices mainly dictate the switching speeds the device can achieve, the switching 

losses and the required gate driving power. CDS, in conjunction with the drain 

current, also dictates the shape of the voltage waveforms during switching, 

influencing the device switching losses.  
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Figure 3-3 Parasitic capacitances of a simplified  n-channel power MOSFET cell [9] 
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3.2. Switching performances 

In order to evaluate the turn-on and turn-off performances of a power 

MOSFET, a clamped inductive test circuit is used, as an inductive load is usually 

existent in the application where such devices are used, especially in DC-DC 

converters. A simplified schematic of the typical test circuit is shown in Figure 3-4 

and is normally referred to as a Double Pulse Tester (DPT).  

In order to simplify this analysis the parasitic inductance of the circuit is going 

to be ignored (no overshoot of the drain-source voltage) and the current through the 

inductor is going to be considered constant. Despite this, the analysis will not differ 
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Figure 3-4 Test circuit for clamped inductive switching characterisation of Power MOSFETs 
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Figure 3-5 Electrical equivalent circuit of MOSFET with parasitic components [9] 
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too much from what a power MOSFET behaves in real life, as it is general desirable 

and achievable to obtain a low parasitic inductance in the circuit through careful 

consideration and design of the circuit.  

The turn-on time for a power MOSFET is influenced by the internal parasitic 

components of the device, if maximum power dissipation is ignored, limits the 

transition period to:  

 
1

2o
G

c C Riss
    (3.1) 

where RG is the gate resistance and is equal to: 

 G Gext GintR R R    (3.2) 

with RGint being the device internal parasitic gate resistance and RGext is the 

resistance added in the gate circuit in order to control the switching behavior of the 

device. 

The turn-on waveforms for the power MOSFET are shown in Figure 3-6, 

where at time t=0 the voltage applied to the gate is stepped from zero to VGG, with 

VGG larger than the Vth. During the first interval, td(on) (turn-on delay time, VGS will 

rise from zero to Vth. This delay is given by the charging of CGS and CGD by the 

current flowing through the gate resistor RG, as shown in Figure 3-7a. The voltage 

rises almost linearly and is defined by the time constant τ1=RG(CGS+CGD). 

Afterward, in the following interval, VGS continues to rise with the same slope 

as before. An inversion channel start forming under the gate and drain current, ID, 

starts flowing though the device with a linear slope. The device will operate in the 

saturation region. This is associated with the equivalent circuit shown in Figure 

3-7b. The drain-source voltage, VDS, stays constant until ID reaches Io, which is the 

same current running through the inductor, IL. tri is the current rise time, 

representing the time interval needed for ID to ramp from zero to Io.  

Since the freewheeling diode, DF, is not ideal, it has a reverse recovery current 

Irr, ID increases beyond Io to Io+Irr. This will also force VGS to temporarily increase 

beyond VGS,Io, until Irr goes to zero and the diode turn off. When this happens, VGS 

will decrease to VGS,Io and the gate current, IGS, flowing though CGD will temporarily 

increase as shown in Figure 3-7c. This current will also cause a rapid decrease in 

VDS. VGS,Io is the gate-source voltage required to clamp ID to Io while the device is 

the active region. 
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Figure 3-6 Turn-on waveforms of the MOSFET with inductive load (based on [9]) 
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Figure 3-7 Equivalents circuits used to estimate the turn-on voltage and currents waveforms 

for a power MOSFET used in a clamped inductive double pulse tester: (a) equivalent circuit 

during turn-on delay time (td(on)) (b) equivalent circuit during the rise time (tri); (c) 

equivalent circuit during free-wheeling diode reverse recovery (trr); (d) equivalent circuit 

during the drain voltage decrease while the device is in the active region (tfv1); (e) equivalent 

circuit during the drain voltage decrease as the device swithces to the ohmic region ( tfv2) 

(based on [9]) 
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After the reverse recovery period of the diode is over and the device carries to 

full load current Io, the gate-source voltage is clamped at while still in the active 

region. During this time IGS is given by the voltage drop over RG due to the 

difference between the applied gate-source voltage and the voltage at which the 

gate is clamped. This current will flow though CGD as shown in Figure 3-7d. VDS 

will decrease in the time interval tfv1 as the device crosses though the active region 

toward the ohmic region.  

In second time interval that VDS decreases, tfv2, the devices passes into the 

ohmic region and the associated circuit is shown in Figure 3-7e. When the 

drain-source voltage becomes smaller than the gate-source voltage, in this case 

VGS,Io, the device leaves the saturation region and goes into linear operation. This 

coincides with the collapse of the depletion region which will increase CGD as the 

device enters the ohmic region (VDS<VGS−Vth). VDS will have a slower decrease rate 

because of the increased capacitance of CGD. This time interval will end once the 

drain-source voltage will reach its on-state value, given by Io
.
RDS(on). At this point 

VGS is unclamped and continues to grow exponentially until it reaches the applied 

gate-source voltage VGG. 

The turn-off waveforms are shown in Figure 3-8 and it involves the same steps 

as during turn-on, but in a reverse sequence. At time zero the device is turned off by 

applying zero volts to the gate. If the device permits, negative voltage can also be 

applied to turn off the device, as this will give a higher gate current and will speed 

up the turn-off transient. Also, different values for RG can be used for turn-on and 

turn-off in order to speed up or slow down the device, depending on the application 

requirements.  

The switching losses resulting from the turn-on/turn-off transients are mainly 

concentrated in the time interval tc in Figure 3-6 and Figure 3-8. The instantaneous 

power losses p(t)=vDSiD is very high during this transition time. While the on-state 

resistance of the device varies with temperature which will result in conduction 

losses varying with the junction temperature of the device, the MOSFETs’ internal 

parasitic capacitances variation with temperature is negligible. Thus, the switching 

losses are marginally influenced by the actual junction temperature of the device. 

On the other hand, the gate resistance used for turn-on/turn-off of the device, limits 

the current which flows though the parasitic capacitances and can have a large 

impact on the devices’ switching losses and can be selected as a function of device 

controllability, desired switching waveforms and switching losses.  
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Figure 3-8 Turn-off waveforms of the MOSFET with inductive load and ideal free-wheeling 

diode (based on [9]) 
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3.3. SiC MOSFETs history and status 

As mentioned before, only being on the market for less than two decades, SiC 

based devices are still in their infancy when compared to Si ones. Despite this, 

research efforts focused on 4H-SiC and the knowhow acquired from Si based 

devices gave large progresses and improvements. Most if not all current 

commercially available SiC MOSFETs are based on the DMOSFET structure and 

use 4H-SiC material as the semiconductor.  

In the early stage of development different attempts were made to create a 

suitable power device based on SiC which would accelerate the transition from Si 

to WBG semiconductors with higher breakdown field, with special focus on SiC for 

voltage levels above 600V. For a vertical unipolar power device, the theoretical 

minimum value of specific on-state resistance, defined as resistance-area product, 

under optimal punchthrough conditions can be expressed as [49]: 

 

3 2 2

, 3 3

3 3.375

2
on sp

n s c n s c

BV BV
R

E E   

 
  
 

  (3.3) 

The first SiC based MOSFETs were reported in the late 1980s [58]-[60] but 

the first power MOSFET based on SiC was presented by Palmour et al. only in 

1994 as a vertical trench MOSFET (UMOSFET) [61]. The device showed a 

specific on-state resistance of 33mΩ ∙ cm2 and a blocking voltage of only 150V. 

This was improved afterwards in 1996 to a specific on-state resistance of 18 

mΩ ∙ cm2 for a blocking voltage of 260 V [62]. In 1997, Agarwal et al. presented a 

1.1kV SiC UMOSFET with a specific on-state resistance of 87 mΩ ∙ cm2 [63]. SiC 

semiconductor, being a highly thermal and chemical material creates challenges 

during manufacturing, and solution used in the fabrication of Si based devices are 

not practical for SiC. UMOSFET structure was initially selected to develop a power 

SiC MOSFET based on it manufacturability. The base and source regions in the 

UMOSFET can be formed epitaxially, instead of ion implantation which requires 

annealing temperatures between 1000 °C and 1700 °C. The channel in a 

UMOSFET structure is formed in the trench created with reactive ion etching, as 

chemical etching is not a viable solution. Despite its easier way to manufacture, the 

SiC UMOSFET structure comes with some disadvantages. Due to the way the gate 

in designed, the channel mobility was as low as 1.5cm2/V ∙ s [63]. Another 

disadvantage of the UMOSFET structure was related to the high electric fields 

which are developed in the device. Due to the high critical field of SiC 

semiconductor, the electric field at the p-n junction is 10 times higher when 

compared to Si semiconductor, leading to very high fields in the gate oxide, close to 

the oxide breakdown field [49]. Combined with the sharp corners of the trench 

structure which will lead to field concentration, it will result in oxide failure and 
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reliability problems. In order to surpass the disadvantages of the UMOSFET 

structure and avoid reliability problems related to the gate oxide breakdown due to 

the sharp trench corners, the double-implanted DMOSFET [19] structure was 

proposed in 1996  and the accumulation-channel UMOSFET [64] structures where 

proposed in 1997.   

The accumulation-channel UMOSFET proposed in 1997 was designed to 

avoid the sharp corners field concentration in the classical UMOSFET by rounding 

the trench corners and adding an n-type epilayer on the side of the etched trench 

[64]. A blocking voltage of 450V and a specific on-state resistance of 10.9 mΩ ∙
cm2 were reported for the device. Purdue University improved on this design by 

adding a grounded, shielding p-type ion implanted region in the trench structure 

[65]. This shielded the oxide from the high electric fields when device was in 

blocking state. The device also had a thin n-type epilayer inserted between the 

n-type drift region and the p-type base region. This helped reduce the current 

crowding phenomenon around the trench corners by allowing better lateral 

distribution of the current during conduction. The device showed a blocking voltage 

of 1.4 kV and a specific on-state resistance of 15.7 mΩ ∙ cm2. 

As mentioned earlier, the DMOSFET structure was proposed as an alternative 

to avoid the UMOSFET disadvantages due to field concentration in the corners of 

the trench structure. This was first proposed with a 6H-SiC semiconductor material 

in 1996 [19]. Due to its material properties, impurity diffusion is unfeasible in SiC, 

hence the base and source regions are successively created by ion implantation. 

Since p-type implant annealing is done at temperatures in excess of 1600 °C, 

challenges arise in the manufacturing process as self-aligning of the implant is not 

feasible and larger tolerance for realignment of the different regions (base, gate, 

source) have to be taken into consideration [49]. Despite these, the device presented 

manage to show a blocking voltage of 760 V with a specific on-state resistance of 

125 mΩ ∙ cm2. Compared to previous SiC UMOSFETs presented before, this 

device blocking voltage was almost three times larger than the ones presented 

before. The DMOSFET structure also presents some drawback due to 

arrangements. The resistance of the JFET region formed between the p-base regions 

of the devices adds up to the device specific on-state resistance and creates 

challenges when designing the devices. If the JFET region is reduced, by increasing 

the distance between the two p-based regions in the cell, the area of the cell is also 

increased, thus increasing the rest of the components parasitic resistances. At the 

same time, this increase in the spacing between the p-bases will result in a higher 

electric field in the gate oxide and diminishing the voltage blocking capability. 

Despite these drawbacks, the remarkable result obtained with the new DMOSFET 

structure determined others to try and improve on the structure. Most notable here 

are: the accumulation-channel DMOSFET in 1997 [66], with a rated voltage of 

350 V and a specific on-state resistance of only 18 mΩ ∙ cm2, the triple implanted 

DMOSFET in 1998 [67], with a rating of 1.8 kV and a specific on-state resistance 
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of 82 mΩ ∙ cm2 and in 2000 [68] a static induction channel accumulation FET with 

rated voltage of approximately 2 kV, 4.1 kV and 4.6 kV and specific on-state 

resistances of 172 mΩ ∙ cm2, 324 mΩ ∙ cm2 and 387 mΩ ∙ cm2. 

In order to terminate the edges and problems arising from the high electric 

fields associated, floating guard were used to create a 2.4kV 4H-SiC DMOSFET in 

2001 by Cree [69]. As a world first, in 2003, Cree presented a 10 kV 4H-SiC 

DMOSFET with a specific on-state resistance of 236 mΩ ∙ cm2 [39]. The effective 

channel mobility was still small, at 14.5 cm2/V ∙ s. This was followed in 2004 by 

another 10 kV 4H-SiC DMOSFET with an improved specific on-state resistance of 

123 mΩ ∙ cm2 [70] and in 2006 a specific on-state resistance of only 111 mΩ ∙ cm2 

was achieved for a 10 kV device [71]. The first commercial SiC device was brought 

to market as a DMOSFET structure in 2011 by Cree [21], also referred to as first 

generation Cree device, as a reference to the manufacturing process.  At the same 

time, using the same manufacturing process, a 10 kV 10 A 4H-SiC DMOSFET was 

presented [72]. At that time it was the largest SiC chip even built with a 8.11mm by 

8.11 mm dimensions. Devices manufactured as generation 1 showed reliability 

problems regarding their body diode due to recombination induced stacking faults 

in the p-n diode [73]. This effect was more evident in the case of 10kV devices, but 

it applied also to the lower voltage devices, and it was recommended to use a JBS 

diode in parallel with the body diode. The initial problems of the 4H-SiC 

DMOSFETs related to the gate oxide and threshold voltage instability and drift 

[74], [75] have been largely reported as solved or diminished through improvement 

and optimization of the manufacturing process [76]. In 2013 Cree launch its second 

generation of 4H-SiC DMOSFETs as they improved and optimized their 

manufacturing processes. This devices where mainly designed for the PV market 

and where rated for 1.2 kV with a specific on-state resistance of approximately 5 

mΩ ∙ cm2. No 10 kV DMOSFET was presented for the second generation of 

manufacturing. In 2014, after improvements in the manufacturing processes, the 

third generation 4H-SiC MOSFETs where presented by Cree with voltage ratings 

ranging from 900 V up to 15 kV and specific on-state resistances ranging from 2.3 

mΩ ∙ cm2 for the 900 V unipolar device up to 123 mΩ ∙ cm2 for the 10 kV and 

15 kV devices [22].  

Figure 3-9 summarizes the most relevant devices with SiC MOSFETs since 

their first introduction in 1994 until present times. The blue and red lines shows the 

theoretical limits of Si and SiC semiconductors as defined by equation (3.3). The 

pink line shows the current SiC state-of-the-art for unipolar devices. The data is 

presented as the a mark with the year and company/institute that presented it, based 

on references [19], [21], [22], [39], [49], [61]-[73]. 

While the main focus has been on unipolar devices, proof-of-concept bipolar 

devices have been demonstrated With IGBTs with voltage ratings of 12 kV and 
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15 kV in 2012 and specific on-state resistances of 24 mΩ ∙ cm2 and 5.3 mΩ ∙ cm2 

[77], Gate Turn-off Thyristors (GTOs) with voltage rating of 12 kV [78] and 20 kV 

and 11 mΩ ∙ cm2 specific on-state resistance and Emitter Turn-off Thyristors 

(ETOs) with a rating of 22 kV and a specific on-state resistance of 

7.7 mΩ𝑐𝑚2 [79]. To the authors knowledge this are the higher rated voltages for 

power semiconductor devices achieved until the time of writing. 

 
Figure 3-9 Specific on-state resistance and breakdown voltage of representative SiC 

MOSFETs fabricated since 1994 until the present. Solid lines represent the theoretical 

material limits of Si and SiC as given by equation (3.3) and the dash line represents the 

current state of the art in SiC MOSFETs. The plot is not complete, and only presents the 

devices and manufacturer for which the specific on-state resistance and breakdown voltage 

were given or could be derived .3G and 2G data represents second and third generation of 

devices from Cree Inc. [19], [21], [22], [39], [49], [61]-[73] 
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 Despite the higher blocking voltages, SiC bipolar devices are not highly 

desirable due to their increased conduction losses, slow switching times and 

specific tail currents. At the same time SiC unipolar devices allow for fast switching 

times, are new on the market and their limits have yet to be explored, making SiC 

bipolar devices. 

SiC-based MOSFETs, having a much lower on-state resistance than their 

Si-based counterparts allow for the development of power MOSFETs with very 

high voltage ratings. This would permit SiC MOSFETs to replace Si IGBTs in high 

power high voltage applications while at the same time reduce the conduction and 

switching losses and increase the switching frequency of those applications and 

further limiting the power electronics converter losses and dimensions by allowing 

a decrease in the size and dimension of the passive components [80]. 

To the authors knowledge five technologically different 10 kV SiC devices 

have been manufactured until the time of the writing. The first two devices [39], 

[70], could be considered proof of concept, as to their very low current capability 

(<200A) would make them unsuitable for power applications. The third device [71] 

was an improvement of the previous technology managing to achieve a current 

capability of 5A. This device has been extensively studied in [40], [44], [81]-[83] 

and showed surprising results when compared against Si IGBTs in high power high 

voltage converters. The fourth iteration of the 10 kV 4H-SiC DMOSFET was based 

on the manufacturing processes for generation one, which defines the 

manufacturing process for the commercially available devices with lower voltage 

ratings and showed a current carrying capability of 10 A and a breakdown voltage 

in excess of 12 kV[72]. The fifth variation of the 10 kV  was presented based on the 

manufacturing process of the third commercial generation from Cree, alongside 15 

kV SiC DMOSFETs, which to the authors knowledge until the time of the writing 

is still the highest rating achieved by any power unipolar device.  

Despite the fact that 10 kV SiC DMOSFETs have been presented as since 

2003, and available as engineering samples since 2011 in the form of 10 kV 10 A 

device, due to the scarce availability of such devices, they have not been measured 

and studied as extensively as the lower voltage devices, especially in the 1 kV 

range, which have been commercially available to the research and academic world.  

In this work the first generation 10 kV SiC DMOSFET (designed as a 10 kV 

10 A device) is going to be thoroughly investigated in order to observe the device 

static and dynamic behavior and highlight the performance and drawbacks of such a 

device.  



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

44 

3.4. Design of low inductance test setup for discrete packaged 
10kV 4H-SiC MOSFETs 

In order to evaluate the generation one 10 kV 10 A SiC MOSFET, custom test 

setups need to be constructed in order to evaluate the dynamic behavior of the 

device during different transients, such as: clamped and unclamped inductive 

switching, short-circuit and avalanche breakdown. Ideally, such a test setup would 

add no parasitic inductance in the test circuit, but since this is impossible, as it is 

highly desirable for the circuit parasitic inductance to be minimal, and initially the 

aim was for a maximum parasitic inductance of 10 nH. Designing and constructing 

such test circuit can be time and resource consuming, it was decided to developed a 

unified test setup which would enable easy testing of all of the above mentioned 

transients.  

Different test solution for high power devices, and especially SiC unipolar 

devices have been published in the literature [35], [84], [85]. These solutions 

allowed fulfilled the versatility requirement by allowing testing the device under all 

the above mentioned circumstances. They allowed a good control over the test, 

integrating also protections which gave a big flexibility, such as: ramping the 

current up in the inductive tests with a separate device in order to avoid heating the 

device under test (DUT) or disconnecting the DUT at different intervals in order to 

avoid destruction during testing or different biasing and configuration of the circuit 

in order to minimize the parasitic capacitances of the circuit which might affect the 

behavior of the DUT during testing. Despite their versatility, such tests setups 

which required multiple power sources and auxiliary devices were not suitable 

designs for such high voltage (>10 kV). For the test setups presented in literature, 

the devices required to charge the inductor, bypass the DUT as a protection or 

disconnect it would most of the times be Si IGBTs with higher voltage and current 

ratings than the device under test. At the time when the test setup was designed 

devices with ratings above 10 kV which would be able to conduct and switch 

short-circuit currents where bulky and expensive and were mainly designed with 

little consideration for their parasitic components, and would add large inductive 

and capacitive parasitic components. Another disadvantage for such test setups was 

the increase complexity and length of the circuit which would in itself add a lot of 

parasitic inductance to the switching path, influencing the device switching 

waveforms. This could also be observed in the literature when the setups where 

presented.  

Based on the above, it was opted for a simplified solution, as shown in Figure 

3-10, which although would not offer the versatility of device protection during 

destructive tests, it would allow for a low inductance in the switching path, which 

was more desirable. At the same time the self-heating of the device during inductor 

charging was not considered a critical design criteria, as the switching current was 

small compared to the chip size and with a properly designed charging inductor, the 
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current ramp up time could be minimized in order to minimize its impact on the 

device junction temperature.  

Since the device that was going to be tested was packaged in a custom discrete 

package by Cree with long clearance distances, it was decided to build the test setup 

around it in order to try and keep the parasitic inductance as low as possible. The 

packed device is shown in Figure 3-11b). The device drain is soldered directly to 

the baseplate, which acts also as the drain terminal, making it a challenge when it 

comes to cooling/heating the device. The gate and source terminals are on the same 

plane, on opposite sides of the device, 10 mm above the drain terminal in order to 

ensure sufficient clearance distance during high voltage operation. The source 

terminal is connected to the source pads on the die via four 250 µm aluminum bond 

wires, while the gate terminal is serviced by only one 250 µm bond wires. While 

the bond wires are rather long, the inductance added by them seems negligible [86].   

The distance between the interconnection hole on the drain terminal and between 

the connection holes of the gate and source is 42 mm.  

The test setup was designed so that the freewheeling diode and the inductor 

could be inserter and in the circuit easily, in order to be able to make the transition 

from one test configuration to the other straightforward. Different planar busbar 

designs for various applications which might apply also for this versatile test setup, 

together with their model have been investigated in order to obtain guidance on the 

design [87], [88]. 
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Figure 3-10 Simplified test circuit diagram 

 
Figure 3-11 10 kV 10 A 4H-SiC MOSFET: a) Bare die; b) custom packaged device  [48] 
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When designing such a circuit, the storage capacitance of the setup DC-link, 

𝐶𝐷𝐶, is dependent on the maximum energy which is expected to be sourced, 

𝐸𝑆𝐶,𝑚𝑎𝑥 , the DC-link voltage during short-circuit, 𝑉𝐷𝐶, and the maximum allowable 

voltage drop during short-circuit, ∆𝑉, if it is assumed that 𝐸𝑆𝐶,𝑚𝑎𝑥is going to be 

drawn out of the storage capacitors. The required total DC-link capacitance can be 

expressed as [35]:  
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In general, for power electronics used in converters which are exposed to 

inductive switching, it is recommended to operate the devices at 60% of their 

nominal voltage ratings. This is done in order to avoid situations where during 

turn-off, due to the inductive load and the current in the switching path, the turn-off 

voltage would overshoot and exceed the devices breakdown ratings. Since the 

circuit would also be used for short-circuit investigation, the same operating voltage 

would be assumed. Thus the DC-link voltage for the design was chosen as 𝑉𝐷𝐶 =
6kV. During short-circuit transients, the MOSFET behaves as a resistor, and in 

order to obtain proper results it is necessary to ensure that the energy stored in the 

DC-link capacitor is sufficiently high in order to avoid large voltage variations of 

the VDS during the transient. For the lower voltage (1.1kV) DMOSFETs the 

maximum withstand short-circuit energy fount in literature was around 3000 mJ 

[35], [84]. Since the 10 kV device is large, and in theory should be able to dissipate 

a larger energy during short-circuit before failing, the storage energy was chosen at 

6000 mJ and the maximum voltage drop during short-circuit was selected at 1% of 

the 6kV DC-link (60V). Based on these requirements, the minimum DC-link 

capacitance can be calculated using equation (3.4): 
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In order to minimize the parasitic inductance of the test circuit and provide 

symmetry for the current path from the storage capacitors to the DUT, four identical 

6 µF film capacitors with a rating of 15 kV DC are connected in parallel and 

arrange around the DUT as shown in Figure 3-12. At the time of the design, 

capacitors with voltage ratings above 5 kV where only designed axially, due to cost 

and manufacturing limitations. The arrangement of the terminals would require 

series and parallel connection of capacitors in order to bring the DC-link planes 

close and reduce the parasitic inductance which might be added otherwise. This 

would make the DC-link large and unpractical. In order to avoid this, the aluminum 

capacitors are placed in aluminum sleeves in order to bring both terminals to the 

same plane. The negative terminal, sitting on the bottom is connected through a 
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plate to the slave and at the top of the sleeve a flange connects to the bottom 

negative plate of the DC-link. Thus the bottom plate of the DC-link is the negative 

terminal which was designed to be at ground potential and the top is the positive 

terminal. Since the capacitors where rated to support the 15 kV across the two 

terminals at opposite ends, they might not be rated to support it when the negative 

terminal is brought to the same plane. In order to avoid the destruction of the 

capacitors due to internal dielectric breakdown, it was decided to line the inside of 

the sleeves with 0.05 µm Mylar film, which has a breakdown rating of 9 kV. In 

order to ensure even higher breakdown voltage, after the capacitors where inserted 

in the sleeves, the same silicone gel used in power modules was used to pot the 

capacitors. 

Assuming the capacitors as a single solid conductor and the external sleeve as 

a hollow cylinder with a known radius, the inductance of each capacitor could be 

approximated as: 

 
6

0 1.26 10 / 0.3 0.057
ln ln 31.86

2 2 3.14 0.055
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  (3.6) 

where µ0 is the permeability of free air, l is the length of the sleeve and capacitor, R 

is the radius of the sleeve and r is the external radius of the capacitor, with all 
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Figure 3-12 Busbar CAD design 1) Positive busbar side 2) Insulation Mylar 3) Negative 

busbar side 4) MOSFET under test 5) DC-Link capacitors [86] 



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

48 

length measurement in meters. It was also assumed that the current is evenly 

distributed inside the sleeve and the capacitor. Based on the results from equation 

(3.6), the inductance of the four capacitors can be calculated as 7.9 nH. The 

DC-link positive and negative terminals are cut from a 2mm aluminum plate. Mylar 

foil with a thickness of 0.25 mm and a insulation rating of 20 kV is used in-between 

the plates in order to support the large voltages. As mentioned earlier the DC-link if 

formed by two plates on top of each other. This would force the current on each 

plate to flow in close proximity and in opposite directions, reducing their impact on 

the circuit parasitic inductance. Also precautions were taken in order to reduce the 

number of holes in the plates. Thus, screws were welded on the bottom DC-link 

plate to allow a secure connection with the negative terminal of the capacitors and 

at the same time to avoid having the large holes in the top plate which would 

otherwise be needed in order to ensure proper clearance. The DUT is connected to 

the two DC-link plates directly through cutouts in both plates as shown in Figure 

3-13. The gate driver is connected from the bottom side. 

In order to validate the calculations, the setup inductance was measured to be 

8.09 nH using a E4990A impedance analyzer from Agilent. The test setup was also 

Capacitor 
bank

DUT

Shunt 
resistor Crowbar

inV+
DSDS

DSV

 

Figure 3-13 Versatile test setup for characterisation of 10kV 10A SiC MOSFETs, configured 

for short-circuit testing [89] 
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simulated in Ansys Q3D and analyzed using AC inductance estimation with a mesh 

of 10
6
 triangles. The inductance resulted from the simulation was 8.4 nH.  

In order to confirm the results, an inductor and diode where inserted into the 

circuit and a double pulse test was performed in order to observe the over-voltage 

experienced by the device during turn-off. 

A custom built 20 mH, low capacitance (<5 pF) 10kV inductor was used for 

current charging. The freewheeling diode was a 10kV 10A JBS diode from Cree in 

a package identical to the one of the MOSFET [90]. The DC-link was charged to 6 

kV and the device was double pulsed at room temperature. The current was 

measured with a SSDN-001 low inductance shunt resistor from T&M research. The 

voltage waveforms are acquired with a PHV4002-3, 100Mhz, 20kV passive voltage 

probe from PMK. All the measurements are recorded with a 12bit oscilloscope 

from Lecroy. The pulses length were adjusted to obtain a turn-off current of 10 A. 

The results of the measurement are shown in Figure 3-14. The measured current at 

turn-off was 9.77A with a fall rate of di/dt=18.27kA/µs by using a gate driver with 

a −5V/+20V power supply. The over-voltage at turn-off, ΔV, is given by the 

equation: 

 
di

V L
dt

    (3.7) 

VDS rises to 6105V and then settles at 5939V after turn-off. Based on the 

measured current di/dt and the voltage overshoot the parasitic inductance of the 

circuit was calculated to be 9.08 nH. This is a bit larger than the one simulated and 

measured due to the internal parasitic inductance of the 10 kV 4H-SiC DMOSFET 

and the screws and nuts which are used to connect the DUT to the test setup.  

Since the test setup has already been imported into Ansys Q3D for inductance 

analysis, the current distribution on the plates was also analyzed and is shown in 

Figure 3-15. For the analysis only one connection point (con. 1) was used. The 

current is sourced from the four positive terminals of the setup capacitors, marked 

 

Figure 3-14 Turn-off waveforms at 6 kV and 10 A for 10 kV 4H-SiC MOSFET at room 

temperature with VGS=−5V/+18V [86] 
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with C+ and is sinked into the two terminals of the connection point Con. 1. It can 

be observed that overall the current distribution is even among the four capacitors, 

and the symmetrical arrangement around the DUT would allow for a good current 

distribution, especially if Con. 2 is used during large currents. 

This test setup is going to be used to characterize the 10 kV 4H-SiC MOSFET 

as it showed high energy storage and low inductance which should not affect the 

measurements or behavior of the device.  

Con. 1

Con. 2

C+

C+ C+

C+

  
Figure 3-15 Surface current distribution of the busbars of loop 1 at 1 MHz frequency 

asuming only one connection point for the DUT. C+ shows the positive terminal of the 

capcitors throw which the current is sourced on the top plate. Con.1 and Con. 2 are the 

connection points of the DUT during testing.[86] 
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3.5. Characteristics of 10kV SiC MOSFET 

The 10 kV 10 A first generation SiC MOSFET from Cree has been fully 

investigated in the literature. This is highly relevant and required before deploying 

such a device in a converter, in order to assess the different requirements of the 

device in terms of EMI, cooling etc. 

Figure 3-16 shows a simplified cross section of the device under test [22] and 

the bare die is shown in Figure 3-11a). The chip size is 8.11mm by 8.11 mm. 

3.5.1. DC-CHARACTERISTICS 

The DC characteristics of the device were measured using a Keysight B1506A 

curve tracer and a Thermostream ATS-515. The characterization setup is shown in 

Figure 3-17. A custom measurement program was set up to acquire the specific DC-

characteristics of the device. The setup was automated to perform all the 

JFET REGION

N 4H SiC

Aluminum

Inter-metal Dielectric

Degenerately doped Poly Si Gate

Gate Oxide Source

Drain

N+

N+4H SiC Substrate

P well

N+

P well

N - 4H SiC drift

P
+

P
+

Figure 3-16 Simplified cross section of a 10-kV SiC MOSFET [22] 
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measurement at 25 °C, 50 °C, 75 °C, 100 °C, 125 °C and 150 °C. After reaching a 

temperature set point the device was soaked for ten minutes at each temperature 

before the measurements where performed in order to ensure good thermal 

distribution throughout the device. Two K-type thermocouples were also used to 

measure the temperature in different locations of the device in order to ensure the 

device was measured at the desired temperature. 

During the test, in order to avoid self-heating of the device, the applied VDS is 

pulsed for 200µs for each point measurement and a sufficiently long break (>50ms) 

is taken between each measurement. Each point measurement is repeated for at 

least 3 times and then the results are averaged in order to ensure accurate 

measurements.  

Based on the information received from Cree, the maximum allowable gate 

voltage of the device is 20V for turn-on and −5V for turn-off. These are the same 

values that are going to be used. The turn-on voltage is desired to be as high as 

possible due to the low channel mobility specific to SiC devices, thus allowing for a 

better conduction and higher current through the device. The turn-off voltage is 

advisable to be as low as possible in order to ensure that during high temperature 

operations, when the device threshold voltage starts decreasing, the device will not 

turn-on parasitically, due to currents running through the Miller capacitance which 

 
Figure 3-17 DC-characterisation setup 
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has been observed in SiC devices [13]. This will become more evident as the 

DC-characteristics are presented. 

 Despite close collaboration with Cree, the device specific dimensions have 

not been shared by Cree as they are considered sensitive proprietary information, 

thus some of the device parameters which might be influenced by the structure, or 

doping concentration cannot be investigated. 

The device forward I-V characteristics have been measured at room 

temperature and are shown in Figure 3-18. The drain-source voltage was swept 

from 0V up to 40V while the gate was stepped from 5V to 20V in steps of 1V. 

Figure 3-19 shows the same measurement performed at 150°C. It can be observed 

that at higher temperature the current limit of 20A is reached at a higher VDS in the 

case of high gate voltages (VGS>12V). On the other hand, for lower gate voltages 

(VGS<12V) the device can conduct higher currents at higher temperature. These two 

phenomena can be observed better in Figure 3-20 and Figure 3-21 where the 

influence of temperature on the waveform is shown for a gate voltage of 5V and 

20V, respectively. This is mainly related to the device on-state resistance which is 

defined by the competition of two temperature dependent internal resistances of the 

device, the channel resistance, Rch, which shows a negative temperature coefficient 

and the remaining part of the total resistance (commonly referred to as the “residual 

resistance”), RS, which has a positive temperature coefficient. The residual 

resistance is comprised of the contact resistance, JFET region resistance, drift 

region resistance and the substrate resistance, with the drain region resistance, RDrift, 

 
Figure 3-18 Measured forward I-V characteristics of 10kV 10A 4H-SiC MOSFET at 25°C 
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being the dominant one [91]. RDrift has shown a positive thermal coefficient. This 

will be discussed in more detail later in this subchapter. 

Another observation which can be made from the measured I-V characteristics 

of the device is the very small difference between the higher gate voltages (VGS=18-

20V) the device conduction variation is minimal. Thus in case the gate driving 

circuit has oscillations and overshoots the set limit, a lower driving voltage can be 

selected in order to avoid damage to the gate oxide with minimal impact on the 

conduction performance [92]. 

 
Figure 3-19 Measured forward I-V characteristics of 10kV 10A 4H-SiC MOSFET at 150°C 

 
Figure 3-20 Measured forward I-V characteristics of 10kV 10A SiC MOSFET for VGS=5V at 

different temperatures 
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The on-state resistance of the device was also measured as a function of the 

junction temperature for a gate-source voltage of 20V and a drain current of 10A 

and is shown in Figure 3-22. The device on-state resistance increased from 0.41Ω at 

room temperature to 1.16Ω at 150°C. The positive temperature coefficient of the 

on-state resistance is a result of the decrease of the bulk mobility in 4H-SiC with 

temperature increase and is attributed to the resistance of the drift region and at high 

gate biases it dominates the total resistance of the device [93]. This can be better 

observed in Figure 3-23. 

Figure 3-24 shows the measured transfer characteristics of a 10kV 10A 

4H-SiC MOSFET at different junction temperatures. The measurements where 

performed at a drain voltage of 20V. It shows the negative temperature coefficient 

of the threshold voltage, as it decreases with temperature. The measurements also 

show the change in dominance between the channel resistance and the drift region 

 
Figure 3-21 Measured forward I-V characteristics of 10kV 10A SiC MOSFET for VGS=20V 

at different temperatures 

 
Figure 3-22 Measured on-state resistance of 10kV 10A 4H-SiC MOSFET as a function of 

junction temperature 
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resistance. Since Rch has a positive temperature coefficient, the device conducts 

more current at gate voltage values closer to the device threshold voltage, where Rch 

is dominating the on-state resistance, 𝑅𝐷𝑆,𝑜𝑛. At high gate voltages, 𝑅𝐷𝑟𝑖𝑓𝑡 takes 

over and becomes dominant, and since this increases with temperature, the device 

current conduction capability decreases. 

Generally, in the device datasheet, the threshold voltage is given as the 𝑉𝐺𝑆 

 
Figure 3-23 Measured on-state resistance of 10kV 10A 4H-SiC MOSFET as a function of 

temperature and gate votlage for 𝐼𝐷=10A 

 
Figure 3-24 Measured transfer characteristics of 10kV 10A SiC MOSFET at different 

temperatures 
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value at which the device conducts a specific current when the gate and drain 

terminals are connected together. While this value is not the correct threshold 

voltage value it is easier to obtain and it aids the user of the device in comparing 

similar devices. The threshold voltage is important for the converter designer and 

aids him in designing the gate driving circuit and selecting the proper gate supply 

voltage or voltages in case of a bipolar gate driver. Based on the above measuring 

process, Figure 3-25 shows the measured threshold voltage as a function of 

temperature for a drain current of 0.1mA. 

Based on the measurements from Figure 3-24 the transconductance 𝑔𝑚was 

extracted and plotted in Figure 3-26. For this device 𝑔𝑚 increases monolithically as 

𝑉𝐺𝑆increases for low 𝑉𝐺𝑆 values up to its maximum values and afterwards decreases 

as 𝑉𝐺𝑆 continues to increase. It can also be observed that the transconductance 

increases with temperature at low gate-source voltages and decreases at temperature 

at higher gate-source voltages. This can be explained by the presence of the residual 

 
Figure 3-25 Measured threshold voltage variation with temperature for a drain current of 

0.1mA 

 
Figure 3-26 Derived transconductance for a 10kV 10A 4H-SiC MOSFET 
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resistance in series with the device channel resistance, and the point where 𝑔𝑚 is 

the maximum represents the gate-source voltage where the residual resistance 

becomes dominant. 

The device internal capacitances are shown in Figure 3-27 where the input 

capacitance, 𝐶𝐼𝑆𝑆, is equal to 𝐶𝐺𝑆 + 𝐶𝐺𝐷 in Figure 3-3, the reverse transfer 

capacitance, 𝐶𝑅𝑆𝑆, is equal to 𝐶𝐺𝐷 and the output capacitance, 𝐶𝑂𝑆𝑆, is equal to 

𝐶𝐷𝑆 + 𝐶𝐺𝐷. Considering the current carrying capabilities of the device, the 

capacitances measured are large, and will play a big role in the behavior of the 

device in a circuit. 𝐶𝐼𝑆𝑆 will influence the device transition from conduction to 

blocking and vice versa. 𝐶𝐷𝑆 will show a bigger role in a circuit, where it will need 

to be charged and discharged, thus requiring extra energy input. 

3.5.1.1 Channel Resistance and Internal Transconductance 

The first 4H-SiC DMOSFETs which were presented in literature had the 

on-state resistance of the device dominated by the channel resistance, as reported in 

[70], [71], similar to low voltage MOSFETs. As the channel mobility improved, the 

device on-state resistance is shared among the residual resistance and channel 

resistance, with the channel being dominant at lower gate voltages and showing a 

negative temperature coefficient and the residual resistance dominating in the upper 

range of the gate voltages and showing a positive temperature coefficient. This 

behavior can be clearly observed in Figure 3-23, Figure 3-24 and Figure 3-25. 

While in the early devices current concentration and thermal runaway was a 

concern as the MOSFET cells in the devices could present mismatches, with the 

newer devices, this is not the case anymore, because the residual resistance which 

has a positive temperature coefficient dominates the upper range of the gate 

voltages, and the cells will self-limit. This would also create challenges when trying 

 
Figure 3-27 Internal capacitances sweep from 1V to 3kV for 10kV 10A SiC MOSFET 
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to parallel chips in a module, because the mismatch between devices would result in 

an unbalance in current sharing.  

The total on-state resistance of the device can be expressed as [91]:  

 
 ,
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DS on s
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L
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C W V V
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
  (3.8) 

where 𝐿𝑔 is the gate length, 𝐶𝑔 is the gate oxide capacitance and 𝑊 is the gate 

width.  

From equation (3.8) it can be observed that when 𝑉𝐺𝑆 approaches the threshold 

voltage, (𝑉𝐺𝑆 − 𝑉𝑡ℎ)−1 approaches infinity, the total device on-state resistance is 

largely determined by the channel resistance. Due to the sublinearity of the device 

output characteristics, the device on-state resistance is highly dependent on the 

drain voltage even at low drain-source biases as it can be seen in Figure 3-28. This 

dependence is getting smaller as the applied gate biased is increasing or as the 

junction temperature increases [93]. Thus, the residual resistance and subsequently 

the channel resistance can be extracted from the measurements in Figure 3-28 by 

interpolating the dependencies as shown in Figure 3-29 with the y-axis. This will 

give the 𝑅𝑆 values based on the temperature of the device junction [94], [95]. In 

[93], the on-state resistances of a vertical DMOSFET (VDMOSFET) and a lateral 

 
Figure 3-28 Measured transfer characteristics at room temperature for different low drain 

biases 
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DMOSFET (LDMOSFET) with similar characteristics have been investigated. It 

was shown that in the case of VDMOSFETs, the residual resistance is very small 

(more than 50-100 times smaller) and does not have a dependence on the 

temperature, thus almost all the residual resistance present in the VDMOSFETs is 

associated with the drift region resistance. Thus, from this point on 𝑅𝑆 and 

𝑅𝐷𝑟𝑖𝑓𝑡will be used interchangeably. 

In order to better highlight the change in dominance between the residual 

resistance and channel resistance, Figure 3-31 shows the on-state resistance, derived 

residual resistance and channel resistance as a function of temperature for two 

distinct gate voltages. At low gate source voltages (𝑉𝐺𝑆=5V) the channel is 

dominating the total on-state resistance at low temperatures. But as the temperature 

increases the channel mobility improves and the channel resistance decreases. On 

the other hand as the temperature increases, so does the drift region resistance, and 

at high temperatures becomes dominant. At high gate biases (𝑉𝐺𝑆=20V) the channel 

conduction improves and its resistance decreases dramatically. The residual 

resistance dominates the total on-state resistance as it increases with temperature. 

Despite the fact that the channel conduction improves with the increase in 

temperature, its impact on the total resistance is negligible at high gate biases. 

Figure 3-30 shows the same shift in dominance between 𝑅𝑐ℎ and 𝑅𝑆 at 25°C and 

150°C while the gate voltage is swiped from 5V to 15V. At room temperature, the 

channel resistance dominates the total on-state resistance, but as the gate voltage 

increases, the channel conduction improves and its resistance decreases, becoming 

insignificant when compared to the residual resistance. At higher temperature the 

 
Figure 3-29 Dependences of the total source–drain resistance on (𝑉𝐺𝑆 − 𝑉𝑡ℎ)−1 for 

MOSFET under study at different temperatures and drain biases[89] 
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electron density and mobility increases in the channel. While at low gate voltages 

the channel still shows an impact on 𝑅𝐷𝑆,𝑜𝑛 as the gate bias is increased, the channel 

resistance decreases and so does its impact on the device total resistance.  

 
Figure 3-30 𝑉𝐺𝑆 sweep of the on-resistance, derived residual resistance and channel 

resistance for junction temperatures of a) 25°C; b)150°C 

 
Figure 3-31 Temperature sweep of the onstate resistance, derived residual resistance and 

channel resistance for gate voltage: a) 5V; b) 20V 
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Since the measurements performed for Figure 3-28 where done at very low 

drain-source voltages in order to limit the influence of 𝑉𝐷𝑆 on the measurements and 

in order to use the high resolution analog to digital converter of the B1506A curve 

tracer the threshold voltage can be extracted from the same measurements with a 

high accuracy. 

It can be noticed that in the case of the vertical DMOSFET, the residual 

resistance is most of the times larger than the channel resistance. This means that 

the transconductance measured in Figure 3-26 is external transconductance of the 

device as the residual resistance influences its shape and it is smaller than the 

intrinsic (“internal”) transconductance of the 10kV MOSFET [93]. Considering the 

linear region, and assuming there is no residual source resistance present, based on 

[93], the drain current can be expressed as:  

    ,D g GS th n DS D DS on
g

W
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L
     (3.9) 

where µn is the charge-carrier effective mobility. Expressing m D GSg I V    as the 

external transconductance, the internal transconductance of the device can then be 

derived as:  
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Figure 3-32 Internal transconductance of the 10kV 10A SiC MOSFET  
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By using equation (3.10) and the data for the external transconductance from 

Figure 3-26, the trend of the internal transconductance of the device is plotted in 

Figure 3-32. Unfortunately, as the measurement was performed at lower voltages to 

show the channel impact on the total device resistance, the channel 

transconductance is also limited in value, but non-the-less, the trend can be 

observed. 

The threshold voltage was extracted as a function of temperature using the 

second derivate method as described in [96] and it is shown in Figure 3-33. The 

second derivative method showed good accuracy, similar to that of the first 

derivative method but improved when compared to the linear extrapolation method. 

As an advantage this method is not dependent on series resistances of the device. 

Comparing the results from Figure 3-33 to those in Figure 3-25 a large difference 

can be observed. The results measured for a current of 0.1mA can be considered too 

conservative and might lead to overdesign of the gate-driving circuits or excessive 

slowing down of the device during normal operation in order to ensure parasitic 

currents flowing through the Miller capacitance would not turn on the device.  

3.5.2. DYNAMIC CHARACTERISTICS 

Since most power devices application involve clamped inductive switching, it 

is relevant to investigate the 10kV 10A 4H-SiC MOSFET behavior during such 

transients. For the inductive clamped switching, the circuit presented in chapter 3.4 

was used. The DC-link was set to 60% of the device rating and a gate driving 

resistance of 3 Ω was used. The resistance was selected as a tread-off between fast 

switching times and device stability, based on the recommended value from the 

manufacturer and laboratory investigations. In order to measure the device behavior 

at elevated temperature, a custom heating element had to be design as the baseplate 

is soldered to the drain of the chip, thus baseplate temperature measurement and 

 
Figure 3-33 Threshold voltage temperature dependence for 𝑉𝐷𝑆=5V[30] 
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baseplate heating was not direct. In order to provide insulation for the high levels, 

DBC used in power module manufacturing was cut and etched to the size of the 

packaged 10kV 10A 4H-SiC MOSFET. The heating element and temperature 

measurements where soldered on one side of the DBC while the other side was 

connected though thermal compound to the baseplate of the DUT, with temperature 

compensation being performed before testing. As it can be observed from Figure 

3-23 at constant temperature, there is no noticeable difference in the 𝑅𝐷𝑆,𝑜𝑛 of the 

device for a gate voltage of 18V or 20V. 

In order to avoid stressing of the gate oxide, as a precaution, 𝑉𝐺𝑆 was chosen at 

18V when the switching behavior was investigated. Figure 3-34 and Figure 3-35 

show the turn-on and turn-off waveforms of the 10kV 10A 4H-SiC MOSFET at 

different temperature for a DC-link voltage of 5kV. The turn-on currents were 

approximately 5A while the turn off currents where 7A. It can be observed that 

during turn-on, the ramps of both 𝑉𝐷𝑆 and 𝐼𝐷 become steeper as the temperature 

increases, while at turn-off the opposite can be noticed. This can be linked with the 

decrease in threshold voltage and plateau voltage due to an increase in temperature. 

Since in the case of SiC, the device capacitances have very negligible temperature 

dependence [97], the plateau voltage variation can be observed from [98]: 

 
1

plateau m0 DV g I    (3.11) 

As shown in Figure 3-32, the internal transconductance of the device increases 

 
Figure 3-34 Turn-on waveforms for 10 kV 10 A SiC MOSFET at 5 kV 5 A for different 

junction temperatures 
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with temperature, resulting in a decrease with temperature in 𝑉𝑝𝑙𝑎𝑡𝑒𝑎𝑢 for a given 

drain current. 

At the same time, an interesting phenomena is observed related to current of 

the device during the switching transitions. At turn on the current has an overshoot, 

which would normally be associated with the reverse recovery of the free-wheeling 

diode in parallel to the inductor as it was shown in Figure 3-6, but as mentioned 

earlier, the test setup uses a SiC 4H-SiC JBS diode, thus no reverse recovery exists 

in this case. By observing the turn-off waveforms, the current seems to show an 

abrupt drop as it would be influenced by a capacitive snubber [99]. Despite the fact 

that the JBS diode does not show a reverse recovery, the internal parasitic 

capacitance of the device shows a similar behavior. While the losses in the diode 

are insignificant, the large capacitance, associated with its large dimensions [100] 

plays an important role on the losses of the lower device, or in this circuit on the 

10kV MOSFET, especially if the operating voltages are considered. This parasitic 

capacitance of the JBS SiC diode will give rise to an overshoot during turn-on due 

to the high 𝑑𝑣/𝑑𝑡 encountered, and during turn off it will aid in the decay of the 

current in the first part of the transient. 

The reduction in the two voltages, 𝑉𝑡ℎ and 𝑉𝑝𝑙𝑎𝑡𝑒𝑎𝑢 will also result in faster 

𝑑𝑖/𝑑𝑡 and 𝑑𝑣/𝑑𝑡 for the same current and voltage during turn-on but a slower 

𝑑𝑖/𝑑𝑡 and 𝑑𝑣/𝑑𝑡 during turn-off. From the two switching waveforms it can also be 

observed that during turn-on the delay decrease with temperature while during 

 
Figure 3-35 Turn-off waveforms for 10 kV 10 A SiC MOSFET at 5 kV 7 A for different 

junction temperatures 
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turn-off they increase with temperature. This will show an influence on the device 

switching losses as the turn-on transients will be accelerated with temperature but 

the turn-off times will decrease with temperature. As a result the losses will be 

smaller with temperature during turn-on for the same voltage and current but, 

during turn-off of an identical current and voltage the losses will increase with 

temperature. 

The main switching characteristics at room temperature for the 10kV 10A 

4H-SiC MOSFET for a 𝑉𝐺𝑆=18V have been measured at 10A and a DC-link voltage 

of 6kV and are summarized in Table 3-1. 

In order to observe the influence of the gate voltage on the switching behavior 

of the 10kV MOSFET, the device was characterized at two 𝑉𝐺𝑆 turn-on voltages of 

+15V and +18V while the turn-off voltage was kept at -5V. Three different 

drain-source voltages where used, 𝑉𝐷𝑆=4kV, 5kV and 6kV respectively. The 

Table 3-1 10kV 10A 4H-SiC MOSFET switching characteristics at room temperature [48] 

Gate Charge ( GQ ) 350 nC 

Rise time ( rt ) 90 ns 

dV dt  (rise rate) 40kV s  

Fall time ( ft ) 50 ns 

dV dt  (fall rate) 84kV s  

Turn-on energy ( onE ) 6.2 mJ 

Turn-on energy  ( offE ) 1.3  mJ 

 

 
Figure 3-36 Switching losses at 𝑉𝐷𝑆= 4 kV and 𝑉𝐺𝑆=15 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 
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junction temperature was varied in steps of 25 °C from room temperature up to 

125 °C. The switching losses where then calculated for the different gate and drain 

voltages as a function of temperature and drain currents.  

Figure 3-36, Figure 3-37 and Figure 3-38 show the turn-on and turn-off losses 

at 𝑉𝐷𝑆= 4kV, 5kV and 6kV for a 𝑉𝐺𝑆=+15V/-5V as a function of temperature and 

current. As mentioned earlier and observed from Figure 3-34 and Figure 3-35, the 

turn-on losses are decreasing with temperature for the same voltage and current 

 
Figure 3-37 Switching losses at 𝑉𝐷𝑆= 5 kV and 𝑉𝐺𝑆=15 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 

 
Figure 3-38 Switching losses at 𝑉𝐷𝑆= 6 kV and 𝑉𝐺𝑆=15 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 
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rating, while during turn-off they are increasing for an identical current-voltage 

pair. 

Figure 3-39, Figure 3-40 and Figure 3-41 Figure 3-38 show the turn-on and 

turn-off losses at 𝑉𝐷𝑆= 4kV, 5kV and 6kV for a 𝑉𝐺𝑆=+18V/-5V as a function of 

temperature and current. As in the case of the lower gate voltage, the turn-off losses 

seem to be constant despite an increase in temperature while the turn-on losses 

show an identical behavior. 

 
Figure 3-39 Switching losses at 𝑉𝐷𝑆= 4 kV and 𝑉𝐺𝑆=18 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 

 
Figure 3-40 Switching losses at 𝑉𝐷𝑆= 5 kV and 𝑉𝐺𝑆=18 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 
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An interesting observation can be made during turn-off, where the losses are 

not increasing with current at the same rate as the turn-on losses. As the losses are 

very small during turn-off, measurement noise can have a high impact on the 

measured data. Despite this, it can be observed that for a given temperature, an 

increase in measured drain current does not increase the losses of the device 

proportionally. This can be explained by the higher current running through the 

inductor, which during turn-off will aid in charging the device capacitances faster, 

thus reducing the switching times for a higher current at a constant temperature. 

The phenomena can be observed in Figure 3-42 where the device is turn-off at 

different drain currents while keeping temperature, gate voltage and drain voltage 

constant. Each color in Figure 3-42 represents the turn-off transient for a different 

drain current. It can be observed that the higher the current it is, the faster it decays 

to zero, and at the same time the sharper 𝑉𝐷𝑆rises to nominal voltage. Considering 

the parasitic capacitances of the device 𝐶𝐺𝐷 and 𝐶𝐷𝑆 shown in Figure 3-3 and Figure 

3-5 need to be charged as the device transitions from conduction to blocking state, 

the higher current running through the drain terminal will contribute to the charge 

needed for the transition, thus aiding the device to turn-off faster and decreasing the 

switching time while keeping the switching losses constant in relation to the drain 

current.  

If the losses between the two gate voltages are compared, the turn-on losses 

for the higher gate voltage have decreased under similar temperature, voltage and 

currents conditions. This was an expected behavior as the bias applied to the device 

gate is higher, allowing for a faster charging of the input capacitance and at the 

same time increasing the channel mobility. At turn-off, the plots show no difference 

in switching losses for the same temperature, voltage and current condition because 

 
Figure 3-41 Switching losses at 𝑉𝐷𝑆= 6 kV and 𝑉𝐺𝑆=18 V as a function of temperature and 

current for 10kV 10A 4H-SiC MOSFET [48] 
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the same turn-off voltage was used. As explained earlier and shown in Figure 3-42 

during this transition the device output capacitance dictates in this case the turn-off 

speed of the device.  

3.6. Summary 

In the beginning of this chapter the power MOSFETs was presented and 

analyzed in simplified manner in order to offer a background for the power SiC 

MOSFET analysis. The static characteristics of the power MOSFET where briefly 

presented together with the parasitic components of the device which will influence 

the behavior of the device during both switching and conduction.  

Afterwards the evolution of SiC power MOSFETs during the last 25 years was 

investigated, starting with the first demonstrated SiC power MOSFET up to current 

times. Highlighting the big progress research in the manufacturability of SiC power 

MOSFET has achieved.  

Next the test setup designed for the 10kV 10A 4H-SiC MOSFET was 

described and its inductance and current sharing was investigated in order to 

validate it. While the circuit does not allow for non-destructive testing or other 

exotic tests, its low inductance design and simplicity make it ideal for testing the 

10kV 10A 4H-SiC MOSFET during different scenarios, from simple switching 

 
Figure 3-42 Turn-off of 10kV 10A 4H-SiC MOSFET as a function of drain current at room 

temperature 
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behavior as a double-pulse tester, to short-circuit or avalanche breakdown by 

simply removing or inserting the diode and inductor as needed.  

The characteristics of the device were also investigated both during static and 

dynamic conditions. During the DC-characterization the device showed 

improvements over the previous attempts at designing a 10kV 4H-SiC 

MOSFET [71] as the 𝑅𝐷𝑆,𝑜𝑛 of the first generation 10kV 10A 4H-SiC MOSFET 

showed an overall positive temperature coefficient. While at low gate biases where 

the channel resistance is dominant the device on-state resistance shows a negative 

positive coefficient, at high gate biases, where the SiC power MOSFET would 

normally operate the on-state resistance has a positive temperature coefficient. This 

would allow the chips to be parallel in high power modules without concerns 

regarding uneven current sharing. From the DC-characteristics it was also observed 

that the device behavior for gate voltages above 18V is almost identical. This would 

allow for the device to be turned on with a gate voltage of 18V instead of the 

maximum 20V while obtaining the same performance during operation. On the 

other hand the smaller voltage would allow for a 2V gate oscillation without 

exceeding the manufacturer maximum allowable gate voltage of 20V. The device 

channel resistance was also extracted based on measurements at very low 𝑉𝐷𝑆 in 

order to limit the influence of the drain bias on the total drain resistance. The 

“internal” transconductance of the device was also extracted and calculated as the 

measured “external” transconductance showed a decrease in current which was not 

correct.  

In the last part of the chapter the dynamic characteristics of the DUT where 

investigated. The device switching performance was investigated at three different 

drain voltages of 4kV, 5kV and 6kV for two different turn-on gate voltages of 15V 

and 18V at temperatures ranging from 25°C up to 125°C in steps of 25°C. As 

expected, the lower gate voltage will increase the device losses as the channel is 

still limiting the current and contributing to the total on-state resistance. 

 It was observed that during turn-on the parasitic capacitance of the JBS diode 

used in the test setup would generate an overshoot in the current due to the high 

𝑑𝑣/𝑑𝑡 experienced during turn-on. Despite this, due to the fast switching 

capabilities of the device, the losses are relatively small, under 7mJ for a 𝑉𝐷𝑆=6kV 

and 𝐼𝐷=10A. 

 Moreover during turn-on the device losses decreased with temperature due to 

a decrease with temperature of the threshold voltage and the plateau voltage. The 

decrease in the plateau voltage with temperature is attributed to an increase in the 

internal transconductance of the device with temperature, allowing for the device to 

be turned on faster for a higher junction temperature while the drain current, 

drain-source voltage and gate voltage are kept constant.   



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

72 

During turn-off, the losses of the device for a given drain current and 

drain-source voltage increase with temperature for a given gate voltage. This is 

related to the same decrease in threshold voltage and plateau voltage as difference 

between the voltage applied to the gate of the device and the above mentioned 

voltages is smaller, thus the current which is sinked as the charges in the gate are 

removed is also smaller. This was also experimentally investigated.  

Overall the first generation 10kV 10A 4H-SiC MOSFET showed good 

DC-characteristics and consistent switching behavior. The device gate-driving 

requirements are minimal, allowing the end user to obtain fast switching times and 

high blocking capabilities by using a voltage controlled unipolar device with a basic 

gate driver instead of complex series connected devices which might require 

complex current control gate-drivers.  
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Chapter 4.  

Short-Circuit Analysis of 10kV 4H-SiC 

MOSFETs 

In this chapter the short-circuit capabilities of the 10kV 10A 4H-SiC MOSFET will 

be investigated and the degradation mechanisms associated with the short-circuit 

will be investigated. 

4.1. Introduction 

SiC power MOSFETs have potentially better electrical performance than their 

Si counterparts and are a promising solution for future high power, high voltage the 

SiC power devices are not yet cost competitive with Si device for same ratings and 

voltage in the 1.2kV range, they are considered in applications which require high 

efficiency, compact power converters [4], [101]-[103] under harsh environment 

which would allow them to operate at high ambient temperature. Similar 

investigations performed for the 10kV 4H-SiC MOSFETs have shown them to be a 

suitable replacement for 6.5kV Si IGBTs or series connection of lower voltage Si 

devices in power applications with high voltage DC-links, where the SiC power 

device could potentially outperform their competition [39]-[43], [72], [81], [83], 

[104]-[108]. 

In order for such devices to be fully considered, the ability to guarantee their 

reliability and safety is crucial, especially during harsh, abnormal operations and 

stressful conditions which define their operating condition and might provide 

helpful design rules and engineering improvements to the end user and to the 

manufacturer in order to push the device performance boundaries [31], [109], [110]. 

Nowadays, power semiconductor devices employed in converters are expected to 

be able to operate for short amount of times outside their designed safe operating 

area (SOA) during transients. Short-circuit is one of the most stressful events which 

might be encountered by a power device in a grid connected application and the 

power devices should show a short-circuit withstand time sufficiently long for the 

protection circuits to interact and take actions in order to remove the fault, through 

control of the active device gate signal or though external circuit breakers. 

Since SiC unipolar power devices with voltage ratings above 10 kV have only 

been available since 2004 [70], to the authors knowledge, up to the time of the 

writing no prior investigations into the short-circuit behavior and degradation of 

such devices has been published.  
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The research in the field has instead focused on commercially available 1.2kV 

4H-SiC devices and their behavior and degradation during short-circuit events. 

Despite the fact that the devices ratings are different, the manufacturing process is 

similar, thus insights from the lower voltage devices could contribute to a better 

understanding of the behavior of 10kV 4H-SiC MOSFETs during short-circuit 

events. 

4.2. Overview of the short-circuit behavior in 4H-SiC MOSFETs 

In recent year, in the case of 1.2 kV SiC MOSFETs, research has been carried 

out on the reliability and robustness of SiC devices under short-circuit transients. 

The main investigation is focusing on hard-switching faults where the device 

turns on and goes into short-circuit with the full DC-link voltage applied across its 

power terminals. This type of fault is encountered in all inverter applications and is 

associated with a gate driver fault in a half-bridge configuration, where one device 

remains one while the other one switches, leading to the full DC-link energy being 

discharged across the device which is turning on.  

In [34], [111]-[114] the authors investigate the behavior of 1.2 kV SiC 

unipolar power devices during short-circuit events. The devices show good 

performance during the transient with short-circuit withstand time  up to 80 µs, but 

the studies cannot be fully considered as they do not represent real life applications 

scenarios due to the selected testing conditions, which range from too small DC-

link voltages, under 400 V or smaller, to incorrect gate-source voltages, 10 V-15 V. 

In this case a DC-link voltage of at least 600 V would be required and a gate-source 

voltage similar to the real life applications should be used. At the same time, the 

main advantage of the SiC devices is their fast switching times, which would 

determine a system designer to use the maximum allowable turn-on voltage, 

generally 20 V, when turning on the device, in order to have a very fast turn on in 

power electronics applications.  

One of the main failures found during short-circuit for such devices has been 

attributed a failure of the gate oxide [31], [34], [112]-[121]. One key advantage of 

SiC MOSFETs is related to the high electric field ratings of the gate oxide, which at 

the same time is a naturally occurring oxide for SiC, making this part of the 

fabrication easier [75], [115].  This high electric field rating allows for the design of 

very fast unipolar power devices which will in terms allow for lower switching 

frequencies [115], [122]. Considering that the gate oxide is generally in the 50 µm-

100 µm thick [75], [123] and has a oxide field rating in the range of 4-6 MV/cm, in 

order to maintain good reliability and lifetime of the device, the maximum field 

experiment by the oxide should be limited. In the case of Si NMOS devices, for ten 

year lifetime expectancy, the gate oxide field is limited to 4-5 MV/cm [75]. Full 
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studies regarding this problem can be found in [75], [123].Since SiC devices have a 

low channel mobility a high inversion channel is desired, at the same time, for the 

typical oxide thickness, the electrical field in the dielectric ranges between 2-4 

MV/cm, thus the gate oxide is susceptible different defects associated with the high 

electric fields experienced by it, such a tunneling, interface states, and charge traps 

especially when operating at high junction temperatures. This becomes even more 

concerning, when the device will turn on with a large bias across the drain-source 

terminals, which will create an even large electric field across the gate dielectric. 

The studies analyzed the reliability of the gate oxide during short-circuit transients 

and observed an increased gate leakage current after systematic stressing which 

would leak to an eventual loss of gate control, where the gate would short to the 

source terminal [117], [119]-[121], thus losing the control of the device, in a non-

destructive manner, or shorting of the gate to the drain terminal [121], which would 

suggest a complete failure of the device structure. 

Another failure mechanism during short-circuit was associated to thermally 

generated leakage currents. Due to the increased temperatures inside the device 

during short-circuit transient, electro-thermal runaway of the device or even 

destructive leakage currents after turn-off could be observed [112]-[114], [116], 

[118]-[121]. This is observed as an increase in current towards the end of the short-

circuit pulse or, more often, as tail currents during turn-off. It is the result of two 

concomitant phenomena, on one hand carrier mobility in the channel and drift 

region decrease with temperature and leakage current generated by thermally 

induced impact ionization. The main contributors to the device leakage current are: 

thermally generated currents [124], diffusion currents [3], [125], [126] and 

avalanche multiplications currents [127]-[129]. A full discussion regarding leakage 

currents in 1.2 kV 4H-SiC MOSFETs can be found in [119]. 

In some studies [34], [113], [114], [116]-[118], [130], the degradation of SiC 

devices has been noted after prolonged or cyclic short-circuit pulses, presented as a 

peak short-circuit current decrease, linked to an increase in the device’s measured 

on-state resistance and, as a consequence of the localized heating on the surface 

metalization, reconstruction of the aluminum metalization on the source side. The 

main reasons for the decrease in the conduction capabilities of the devices, were 

associated mainly with degradation of the gate and changes in the threshold voltage, 

mainly attributed to, among others, charge and interface traps SiO2/SiC interface. 

For the surface aluminum reconstruction and degradation, as the most plausible 

solution, current crowding on the surface was given. None the less, the majority of 

the studies performed on 1.2 kV SiC MOSFETs agreed that the temperature during 

the short-circuit transient is the most important factor in the degradation and failure 

of SiC devices during short-circuit.  

Figure 4-1 shows a theoretical representation of the observed short-circuit 
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waveforms in the case of 1.2 kV devices [31], [34], [112]-[121], [123]. The short-

circuit event can be split up in five stages and are going to be explained in a 

simplified manner bellow [119]. 

Stage 1, from 𝑡1 to 𝑡2: the device is turned at the chosen DC-link voltage and 

the currents ramps up rapidly due to the, ideally, low inductance design of the test 

setup. The device switches from the linear region to the saturation region due to the 

very high 𝑉𝐷𝑆 experienced by the device. The current keeps increasing due to the 

positive temperature coefficient of the channel up to a temperature of 
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Figure 4-1 Theoretical short-circuit behaviour observed in 1.2 kV 4H-SiC MOSFETs 
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approximately 600 K [127] and at the same time a decrease in device threshold 

voltage with temperature. As the device is supporting the full DC-link voltage and 

the saturation currents reaches values twenty times larger than the nominal current, 

a considerable amount of energy is dissipated in the device. 

Stage 2, from 𝑡2 to 𝑡3: The device is in saturation while sustaining the full 

DC-link voltage. The temperature inside the device continues to increase due to the 

increased power loss. As the temperature has surpassed 600 K, the carrier mobility 

in the device starts to decrease, thus, the saturation current starts to decrease with 

time. Despite the fact that the threshold voltage is still decreasing, its impact is 

smaller than that of the decreasing mobility. Electron saturation velocity has also 

been shown to decrease with temperature, mainly due to phonon [131], [132]. The 

device could still be turned-off safely in this interval, if the temperature inside the 

device has not reached critical levels.  

Stage 3, from 𝑡3 to 𝑡4: At this point the temperature inside the device has 

given rise to the before mentioned leakage currents generated by the thermally 

induced impact ionization. The slope of the device saturation current becomes 

positive as the decrease as the impact of the decreasing mobility is smaller than that 

of the leakage currents. This is an optional stage and most of the times will lead to a 

destruction of the device after turn-off, similar to the one reported in the case of Si 

IGBTs in [133]. 

Stage 4, from 𝑡4 to 𝑡5: At this point the device is switched off and tail currents 

appear as the current decreases to zero. The tail currents are given by the high 

leakage current in the device, same ones that generated the change of slope in stage 

3. If stage 3 was not present during short-circuit the temperature inside the device 

might still be within safe limits and the device might survive the turn off, on the 

other hand, the presence of stage 3 will most of the times result in a destruction of 

the device. 

Stage 5, from 𝑡4 onwards: The device turns off, and depending on the 

temperature inside the device, the device might go into thermal runaway and fail or 

safely survive the short circuit. The presence of stage 3 and magnitude of the tail 

currents in stage 4 are a tell sign of the device survivability. 

4.3. Maximum short-circuit withstand capability of 10kV SiC 
MOSFETs 

Short-circuit analysis of the 10 kV device is highly relevant, both in order to 

assess the requirements of the protection circuits which need to be developed in 

order to protect the device from short-circuit but also in order to gain insight into 

the failure mechanisms of the device. 
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Similar to the investigation performed in [120] and [121] for the 1.2 kV 4H-

SiC MOSFETs, the 10 kV 10 A 4H-SiC MOSFET was investigated in order to 

observe its maximum short-circuit withstand time and the full results were 

presented in [30]. The opinions regarding the testing procedure for the maximum 

short-circuit withstand time are split between two different testing procedures: 

single pulse until device failure or increasing length repetitive pulses until device 

failure. While the first case is more widely used and ensures the device is not 

degraded before failure, the failure times give a false approximation of the 

maximum failure time, because there are no guarantees of what the device is 

capable of safely turn off. And this would require subsequent single shot test on 

new devices in order to properly determine the maximum short-circuit time. The 

second testing procedure provides a more conservative value for the maximum 

short-circuit withstand time. This is due to the device degradation in the increasing 

length pulse before failure. An advantage of this testing procedure is due to the fact 

that after a single investigation, a conservative estimation of the maximum short 

circuit time can be obtained. In the case of the 10 kV 10 A 4H-SiC MOSFET the 

second testing procedure was chosen as cost associated with the device and 

packaging it would make it unfeasible to test multiple devices for the study. 

The 10 kV 10 A 4H-SiC MOSFET was placed in the test circuit presented in 

chapter 3.4 after the inductor and diode where removed, as shown in Figure 4-2 and 

the DC-link voltage was set to 6 kV. The gate voltage during the short-circuit was 

chosen at 𝑉𝐺𝑆=+18V/-5V in order to ensure that the gate oxide will not get affected 

in case the gate driver will malfunction and overshoot the maximum allowable gate 

voltage, 𝑉𝐺𝑆=+20V. At the same time, based on the measured I-V characteristics of 

the device, the different between the chosen gate voltage and the maximum 

allowable gate voltage shows only minor variations in the current. 

Because no previous investigations for such a device have been presented until now 

in literature, and in order to observe the behavior of the device during different 

length of the SC, the initial width of the pulse was chosen at 𝑡𝑆𝐶,𝑖𝑛𝑖𝑡= 500 ns. This 

 
Figure 4-2 Simplified test setup schematic for short-circuit investigation [89] 
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ensures the device has sufficient time to turn on. Afterwards the pulse width was 

increased in steps of 100 ns until catastrophic failure was observed. A break of 

approximately 3 minutes was allowed between each pulse in order to ensure the 

device cooled down. 

In order to aid the reader all the measured pulses for the investigation are 

shown in Figure 4-3. As it can be observed, during the entire study, the gate voltage 

remains stable during the entire investigation. Since the 𝑉𝐺𝑆 waveforms look 

identical and no variation can be observed, in future plots they will not be included, 

in order to simplify the figures. At the same time 𝑉𝐷𝑆 looks stable through the entire 

investigation. The length of the 𝑉𝐺𝑆 pulse for each of the pulses in the waveforms 

can be calculated by multiplying the pulse number with 0.1 µs and then adding 0.4 

 
Figure 4-3 Evolution of 𝑉𝐺𝑆, 𝑉𝐷𝑆 and 𝐼𝐷 during maximum short-circuit capability 

investigation.The figure shows all the 82 pulses of the investigation overlapped in order to 

highlight the evolution of the current in relation to the pulse number 



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

80 

µs to it.  

Figure 4-4 shows the waveforms for the first pulse in this investigation. The 

current rises up to 190 A before the MOSFET is turned off and the total short-

circuit energy for the pulse is 0.42 J. Compared to classical Si devices, which have 

a saturation current during short-circuit 3-5 times higher than their nominal rating, 

the saturation current in the case of the 10 kV 10 A 4H-SiC MOSFET is 20 times 

larger than the nominal rated current. This could be explained by a derating of the 

device performance due to thermal management considerations. The device was 

only in the first stage of the short-circuit (Figure 4-1) during the short-circuit pulse. 

Figure 4-5 shows the 20
th

, 55
th

,81
st
 and 82

nd
 pulses during the investigation in 

relation to the 1
st
 pulse. Pulse 20 represents the maximum peak saturation current of 

the device (266 A) reached at the end of stage one of the short-circuit (Figure 4-1). 

Subsequent pulses with longer length will enter the second stage of the 

short-circuit. The short-circuit energy of pulse 20 was 3.24 J. 

After the 55
th

 pulse the device started showing aging and degradation as a 

decrease in peak saturation currents. The pulse shows a change in sign of the 

saturation current ramp, 𝑑𝑖/𝑑𝑡. While in stage one the 10 kV 10 A 4H-SiC 

MOSFET current showed a positive temperature coefficient, after it passed 2.4 µs, 

the short-circuit current started decreasing. This change is current shape has been 

 
Figure 4-4 10 kV 10 A SiC MOSFET current and voltage waveforms for pulse 1 (500 ns) 

short-circuit at a 𝑉𝐺𝑆 = +18 𝑉 / −5 𝑉 [30] 
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observed in the low voltage 1.2 kV 4H-SiC MOSFETs. The rising characteristics of 

the current can be attributed to the increasing temperature of the device due to the 

large short-circuit energy. Up to a junction temperature of approximately 600K the 

mobility of the device especially in the MOS channel, but also in the bulk region, 

will increase [34], [116], [117], [119], [127], [132], allowing for the device 

resistance to decrease. At the same time the threshold voltage has a positive 

temperature coefficient as shown in chapter 3.5.1 [34], [119]. As the MOSFET 

surpasses 600 K, when the saturation current reaches its peak, in enters the second 

stage of the short-circuit and the current starts showing the negative temperature 

coefficient. This can be explained by the decrease of the mobility in the MOS 

channel and drift regions with temperature increase [34], [117], [119], [127], [132]. 

At the same time the electron saturation velocity starts decreasing with temperature, 

mainly due to phonon scattering [131], [132]. The threshold voltage is still 

decreasing with the increase in temperature, but its influence on the saturation 

current is much smaller than that of the other two mechanisms. 

Pulse 81 shows a decrease in peak saturation current down to 239A. This is 

the last pulse the device could safely turn-off while supporting a 𝑉𝐷𝑆=6 kV, despite 

the obvious degradation of the device. 

Pulse 82 was the last pulse in the study of the maximum short-circuit 

 
Figure 4-5 10 kV 10 A SiC MOSFET current and voltage waveforms short-circuits at a 

𝑉𝐺𝑆 = +18 𝑉 / −5 𝑉: pulse 1 (500 ns), pluse 20 (2.4 µs , pluse 55 (5.9 µs) , pluse 81 (8.5 µs) 

and pluse 82 (8.6 µs)  
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withstand time. The device was turned off after 8.6 µs, and failed after turn-off, 

exploding. This made impossible the post-degradation analysis of the device. 

4.3.1. THERMAL MODEL AND SIMULATION OF 10 KV 10 A 4H-SIC 
DURING SHORT-CIRCUIT  

Investigations into the short-circuit behavior of lower voltage 4H-SiC 

MOSFETs have shown that during short-circuit, the generated heat flux does not 

propagate all the way to the drain terminal of the device [119]. In order to evaluate 

the evolution of temperature in the 10 kV 10 A 4H-SiC MOSFET during short-

circuit pulses, a 1-D, time dependent, thermal simulation was implemented in 

COMSOL FEM solver to observe how the temperature propagates in the device 

[89]. The model for the short-circuit investigation considers a 1 mm copper 

substrate, a thin layer of SAC 305 solder layer on top, 0.5 mm SiC MOSFET chip 

with a 5 µm aluminum surface. A layer of silicone gel was added to the top in order 

to mimic the actual device. The dissipated power measured during short-circuit 

experiments was modeled as a heat source with a triangular profile, similar to that 

of the electric field in the device. As to simplify the simulation, the temperature was 

averaged in three distinct regions: 1) the aluminum metalization layer on top of the 

device; 2) the region at the top of the SiC chip where the short-circuit energy is 

dissipated based on the electric field, as it was discussed in [112], [114], [118], 

[119], [130]; and 3) the remaining volume of the SiC chip.  

Figure 4-6 shows the simulated average temperature profiles in the three 

 
Figure 4-6 Temperature profile of the volumes in the device for the 55th pulse during the 

investigation 
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above mentioned volumes of the device during the short-circuit. Because the 

simulation assumes all the materials in the device are solid, the aluminum 

metalization average temperature above its melting temperature (660 °C) has been 

cropped. On the graph, the 660 K value at which the mobility in the device was 

found to change from positive temperature coefficient to negative temperature 

coefficient has also been marked [119], [127]. The peak temperature in the chip top 

region reached 689 °C, and the aluminum reached its melting point before the short-

circuit pulse ended, at 5.9 µs. This was the last pulse before the device started 

showing degradation signs in the peak saturation current. 

Figure 4-7 shows the simulated temperature profiles in the 10 kV 4H-SiC 

MOSFET during the 81
st
 short-circuit pulse, the last pulse that the device managed 

to safely turn-off. The degradation of the device and decrease in peak saturation 

current during short-circuit can also be observed in the ramp of the simulated 

temperature profiles. There is an observable increase in the time needed for the 

aluminum metalization layer to reach its melting point, but as the pulse was longer, 

the peak temperature of the chip top region reached 831 °C.  

The simulated temperature during the last pulse of the short-circuit 

investigation is shown in Figure 4-8. The peak simulated temperature of the chip 

top average reached a temperature of 851 °C. The chip body average temperature 

reached 200 °C and the aluminum reached its melting point at the same time as the 

 
Figure 4-7 Temperature profile of the volumes in the device for the 81st pulse during the 

investigation 
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previous pulse.  

Overall, the thermal simulations show that the simulated temperatures inside 

the device exceed the maximum allowable junction temperature of 175 °C from the 

first few microseconds. Based on the simulation, the mobility change in 

temperature coefficient seems to happen also around 2.4 µs. The similarity between 

the thermal model and the observations in literature seems to support the thermal 

simulations.  

4.4. Investigation of degradation during short-circuit in 
10kV-SIC MOSFETs 

Since the degradation and failure of the device are of high interest in order to 

improve and better understand the device, a new study was done in order to 

evaluate the cause of the reduction in device peak current during short-circuit. 

Because the initial study which investigated the maximum short-circuit withstand 

capability was destructive, and no intermediate measurements of the device were 

performed in order to observe the failure, the new study was planned in order to 

allow for a better identification of the structure degradation, and if possible, to 

identify the cause of the degradation. The full study has been published in [89]. 

While testing more devices in a similar manner represent good practice, due to 

the scarcity of the 10 kV 10 A 4H-SiC MOSFETs and the associated costs of 

 
Figure 4-8 Temperature profile of the volumes in the device for the 82nd pulse during the 

investigation 
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packaging and fabricating the device, only a single device was used for the 

following investigation.  

The testing procedure is similar to the one in the previous chapter, where the 

device is shorted across the capacitors for a time varying from 0.5 µs up to 7.5 µs in 

steps of 0.1 µs. A break of at least ten minutes between each short-circuit even was 

allowed in order for the device to cool down and the setup to be reinitialized. As the 

gate voltage measurements in the previous investigation showed no variation in the 

gate voltage and the gate driver showed a clean output voltage with no overshoots, 

the turn-on gate-source voltage was increased up to the maximum allowable gate 

voltage, of 20 V.  

Initially the device was fully characterized in the B1506A curve tracer at room 

temperature in order to obtain a reference for the unstressed device and to be used 

as comparison throughout the investigation. The devices was also fully 

characterized, at room temperature, periodically throughout the test in the curve 

tracer, initially every tenth short-circuit event, and towards the end, every fifth 

short-circuit even in order to observe degradations in the different regions of the 10 

kV 10 A 4H-SiC MOSFET as the degradation rate increased. Visual inspection was 

also performed when the device was placed in the curve tracer in order to observe 

any degradation on the device surface metalization. 

In order to simplify the explanation the investigation was split into eight test 

cycles, representing the tests performed between each characterization. Test cycle 

zero defines the initial characterization of the device before it was stressed. 

Figure 4-10 shows the eight test cycles, containing all the short-circuit pulses 

performed throughout the investigation. A full characterization at room temperature 

was performed after the last pulse of each test cycle. Between each test cycle a 

break of twelve hours was allowed in order to ensure any degradation observed in 

the device is permanent, and not temporary as reported in [31]. 

Because the gate-source voltage waveforms show no variations, they will not 

be included in future figures, in order to simplify the plots. 

The first pulse of the investigation had a length of 0.5 µs and the waveforms 

acquired during the short-circuit are shown in Figure 4-9. The peak saturation 

current reached 201 A. Considering the same pulse length in the previous 

investigation, the 2 V higher gate voltage in this investigation yielded an increase of 

11 A in peak saturation current for the first pulse. The drain-source voltage showed 

good stability also in this case.  
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Figure 4-11 displays the waveforms associated with the 10
th

, 20
th

, 30
th

 and 40
th
 

in reference with the 1
st
 pulse of the investigation. After these pulses a 

characterization was performed, but no degradation was observed. The peak 

saturation current during short-circuit, of 269 A, for this investigation was reached 

during pulse 20, with a length of 2.4 µs. As the pulse length increased above 2.4 µs, 

 
Figure 4-9 10 kV 10 A SiC MOSFET current and voltage waveforms for a 500 ns 

short-circuit [89] 

 
Figure 4-10 Evolution of 𝑉𝐺𝑆, 𝑉𝐷𝑆 and 𝐼𝐷 during the study. Each color represents the 

waveforms associated with the eight test cycles of the study.[89] 
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the current changed the temperature coefficient and started to decrease with time 

due to the internally generated heat, as explained earlier in chapter 4.2. Observing 

the figure, no degradation can be observed in the current waveforms for the 

different pulse length, as they overlap. 

 
Figure 4-11 10 kV 10 A SiC MOSFET short-circuit current before degradation was observed 

for different SC pulse length [89] 

 
Figure 4-12 10 kV 10 A SiC MOSFET short-circuit waveforms; blue – 0.5 µs pulse, red – 

2.4 µs pulse, light green – 5.4 µs pulse [89] 



CHARACTERISATION AND ANALYSIS OF HIGH VOLTAGE SILICON CARBIDE MOSFETS 

 

 

88 

In Figure 4-12, with light green, the 50
th

 pulse is shown with a peak saturation 

current of 266.5 A. This was the first sign of degradation observed in the peak 

saturation current during the short-circuit. The degradation measured was 

approximately 3A or a bit over 1%. The first and 20
th

 pulse are also included in the 

figure in order to aid the observation of the degradation in peak current. After this 

pulse a full characterization was performed, but the variations in electrical 

parameters were negligible. 

Figure 4-13 shows the recorded waveforms for the 60
th

, 65
th

, 71
st
 pulses and as 

a reference the 1
st
 and 20

th
 pulses in order to aid in the observation of the 

degradation. Each of the 3 pulses are the last one in their cycle, thus a full 

characterization was performed after them. Pulse 60 had a length of 6.4 µs and a 

peak saturation current of 266 A. For the 65
th 

pulse, the decrease in saturation 

current was more evident, with a peak of 275.8 A for a pulse length of 6.9 µs. Pulse 

71 was the last one in the investigation, as the short-circuit energy, pulse length and 

degradation in the peak current were approaching the device limits observed earlier. 

Its peak saturation current decreased to 248.8 A.  

4.4.1. DEVICE DEGRADATION ANALYSIS 

4.4.1.1 Degradation observations in the electrical parameters 

 
Figure 4-13 10 kV 10 A SiC MOSFET short-circuit waveforms; blue – 1st pulse, red –20th 

pulse, light green – 60th pulse, black – 65th pulse, pink 71st pulse [89] 
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Table 4-1 summarizes each test cycle, and the variation in the electrical 

parameters observed in the device after each full characterization. This should allow 

an easy correlation between pulse length, peak current, pulse number and observed 

degradation in electrical parameters. The zero test cycle is used as a reference 

against which, each next characterization is compared in order to identify deviation 

in the electrical parameters. Some of the data acquired during the characterization is 

extensive and sometimes measured parameter variation can be redundant. In order 

not to confuse the reader, only the relevant variation in parameters will be 

presented.  

4.4.1.1.1 Device resistance variation 

Figure 4-14 shows the I-V measurements performed periodically at the end of 

each test cycle at a gate-source voltage of 7 V. At this voltage, the 𝑅𝑐ℎ is 

dominating the device on-state resistance, so any variation in 𝑅𝐷𝑆,𝑜𝑛 will mainly be 

attributed to the channel region resistance, allowing for identifying degradations in 

the channel resistance.  

As it is difficult to observe the data variation in Figure 4-14, different 

drain-source voltage values have been selected, and the current variation for those 

voltages throughout the test has been summarized in Figure 4-14. By observing the 

figure the first slight variation in the current carrying capability of the device, at 

different drain biases for a 𝑉𝐺𝑆=7 V, starts after the fourth test cycle, with a minor 

increase in 𝑅𝐷𝑆,𝑜𝑛, which would translate in a small degradation of the channel 

resistance. This was also observed in the peak saturation current during short-circuit 

during the 50
th

 pulse, where a small decrease in the peak was observed.  

The degradation becomes more evident in the channel resistance after the sixth 

test cycles and continues through the rest of the characterizations, showing a 

Table 4-1 Measurement and degradation summary [89] 

Test 

cycle 

Pulse 

numbers 

Pulses length 

[µs] 

Peak 𝑰𝑫𝒔𝒂𝒕 

during interval 

[A] 

Characterization data 

observation 

0 0 0 0 OK (reference) 

1 1-10 0.5-1.4 258.4 OK 

2 11-20 1.5-2.4 268.2 OK 

3 21-30 2.5-3.4 268.4 OK 

4 31-40 3.5-4.4 267.9 Small increase in  Rch 

5 41-50 4.5-5.4 266.2 Small increase in  Rch 

6 51-60 5.5-6.4 266.1 Increase in Rch 

7 61-65 6.5-6.9 257.8 Increase in RDS,on 

8 66-71 7-7.5 248.8 Increase in Rch 
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systematic increase in the channel resistance, which was shown to be permanent, as 

it did not recover even after a twelve hour break. 

After observing variations in the device channel resistance, the residual 

resistance can be investigated. The main regions of the residual resistance which 

can get affect and degraded during short-circuit are the source aluminum 

metalization, JFET region and drift region. This would be seen as a variation in the 

 
Figure 4-14 Degradation in the I-V measurements of 10 kV 10 A SiC MOSFET after 

short-circuit stressing for a VGS=7 V [89] 

 
Figure 4-15 Detail of the degradation in the I-V measurements of 10 kV 10 A SiC MOSFET 

after short-circuit stressing for a 𝑉𝐺𝑆=7V observed at different drain-source voltages [89] 



 CHAPTER 4.  
SHORT-CIRCUIT ANALYSIS OF 10KV 4H-SIC MOSFETS 

 

 

91 

residual resistance, but their individual variations are not easily obtainable, as they 

can be hardly isolated from each other. 

Figure 4-17 shows the same periodically measured I-V curves of the 10 kV 

10 A 4H-SiC MOSFET but for a 𝑉𝐺𝑆=20 V this time. At this gate voltage, the 

dominant component of 𝑅𝐷𝑆,𝑜𝑛 is 𝑅𝑆, thus any variation in the device on-state 

resistance will be mainly given by the residual resistance changes.  

 
Figure 4-16 Detail of the degradation in the I-V measurements of 10 kV 10 A SiC MOSFET 

after short-circuit stressing for a 𝑉𝐺𝑆=20 V observed at different drain-source voltages [89] 

 
Figure 4-17 Degradation in the I-V measurements of 10 kV 10 A SiC MOSFET after 

short-circuit stressing for a VGS=20 V [89] 
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As before the variations of the current for different drain-source voltages were 

extracted for easier reading and are shown in Figure 4-16. The first variation in the 

residual resistance can be observed after the sixth test cycle, as a small decrease in 

current carrying capabilities at the selected drain-source voltages. The seventh test 

cycle characterization shows a permanent, larger decrease in current carrying 

capability, pointing towards a degradation in the residual resistance components, 

which manifests itself as an increase in 𝑅𝑆. The last test cycle for a 𝑉𝐺𝑆=20 V shows 

no further degradation in the residual resistance. 

The initial degradation seems to start in the channel regions, with a small 

increase in the resistance of the channel showing first after the fourth test cycle and 

a much larger increase in resistance after the sixth test cycle until the end of the 

investigation. The residual resistance only starts showing sign of degradation later 

in the investigation, with minor increase in resistance after the sixth tests cycle and 

a larger increase after the characterization at the end of the seventh test cycle. After 

the eighth test cycle, no degradation was observed in the residual resistance. 

Figure 4-18 shows variation of 𝑅𝐷𝑆,𝑜𝑛 of the device during conduction at a 

current of 10 A for different drain-source voltages. During the last three test cycles 

the resistance of the device seems to increase by 3% or 0.15 mΩ. 

In Figure 4-19 the variation of the device transfer characteristics through the 

entire investigation study is shown and confirms the degradation observed in the 

I-V measurements of the 10 kV 10 A 4H-SiC MOSFET. The characterization 

waveform for the seventh test cycle was not recorded due to a software error during 

measurement. 

 
Figure 4-18 𝑅𝐷𝑆,𝑜𝑛 degradation with stressing at different 𝑉𝐷𝑆 values for a 𝑉𝐺𝑆 [89] 
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4.4.1.1.2 Gate structure degradation 

The gate structure degradation can be observed in the threshold voltage and 

gate leakage current measurements. The measurements used to obtain the initial 

threshold voltage variation with temperature have not been recorded due to 

technical reasons. Because of this, the threshold voltage, and its variation 

throughout the test cycles had to be obtained from the transfer characteristics in 

Figure 4-19. As the measurements of the transfer characteristics are obtained with 

 
Figure 4-19 Degradation in the transfer characteristics of 10 KV 10 A SiC MOSFET after 

short-circuit stressing [89] 

 
Figure 4-20 Threshold voltage variation during the short-circuit investigation for a 10 kV 10 

A 4H-SiC MOSFET [89] 
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the device operating in the saturation region, the threshold voltage was extracted 

using a different method. By using the linear extrapolation method for a device 

operating in the saturation regime, the threshold voltage was extracted following the 

procedure described in [96]. The extracted threshold voltage is shown in Figure 

4-20. The extraction method used is affected by residual resistance, and would 

contain an offset when compared to the initial measurements of the threshold 

voltage. Despite the offset, the variation of the threshold voltage during the 

investigation can be observed as a slight increase of 0.1 V in its measured value. 

The gate leakage currents were also measured during the investigation, and are 

shown Figure 4-21. The measured values were affected by the measuring error of 

the curve tracer as it changed scale after the fifth test cycle. The scale selection is 

beyond the control of the operator. None the less, the error due to the resolution of 

the equipment has also been included. Assuming the worst case scenario, where the 

leakage currents increase up to 60 nA, the values is still well under the 

manufacturer acceptable gate leakage values.  

4.4.2. DEVICE VISUAL DEGRADATION 

As mentioned earlier, the device was visually inspected at the end of each test 

cycle, in order to observe variation of the surface metalization.  

After the sixth test cycle, the surface metalization of the 10 kV 10 A 4H-SiC 

MOSFET started showing visual degradation signs. As the device investigation was 

not finished, a microscope picture of the chip surface was taken through the 

 
Figure 4-21 Gate leakage variation during the short-circuit investigation for a 10 kV 10 A 

4H-SiC MOSFET  
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insulating silicone gel and is shown in Figure 4-22. On the top edge of the left 

bonding pad, a melted like region can be observed on the aluminum surface 

metalization, possibly due to a hot spot creation during short-circuit. The insulating 

polyamide used outside the bonding areas also shows bubble like degradation in 

different regions. The temperature reached by the aluminum metalization during the 

last pulse of the sixth test cycle will be simulated in order to investigate the 

possibility of aluminum melting. 

 
Figure 4-22 Stitched image of chip surface degradation of 10 kV 10 A 4H-SiC MOSFET after 

the sixth test cycle [89] 

 
Figure 4-23 Stitched image of chip surface degradation of 10 kV 10 A 4H-SiC MOSFET at 

the eight test cycle, the end of the investigation [89] 
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At the end of the short-circuit stressing, the device was decapsulated and 

prepared for a scanning electron microscope inspection. The removal off the 

insulating silicone gel resulted in a better microscope picture, as the refraction and 

other artifacts caused by the gel disappeared. The degradation of the device at the 

end of the short-circuit stressing can be observed in Figure 4-23. Compared to the 

previous visual investigation, the aluminum metalization showed overall signs of 

reconstruction. The previously observed melted region got more accentuated and 

more hot spot like regions appeared around the upper edges of both bonding pads 

and in the bottom edge of the left bonding pad. The insulating polyamide showed 

even more signs of bubbling on almost the entire surface of the chip. 

4.4.3. THERMAL SIMULATION OF REPRESENTATIVE PULSES 

Using the same thermal model presented in chapter 4.3.1, the average 

temperatures in the device during pulse 60, 65 and 71, which represent each of the 

last pulses of the last three test cycles, have been simulated.  

Figure 4-24 shows the simulated temperatures in the device for the 60
th

 pulse 

of the investigation, the last one in the sixth test cycle. As before, as the model 

assumes all materials stay solid, and cannot account for the phase change, the 

aluminum temperature is not simulated above its melting point. This might be an 

explanation for the visual degradation of the chip surface metalization. During the 

pulse, based on the dissipated short-circuit energy, the peak temperature of the top 

 
Figure 4-24 Thermal simulation for the 60th pulse, the last one in the sixth test cycle; solid 

blue – Average temperature for aluminum top metalization; red – chip short-circuit region; 

green – rest of chip [89] 
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region in the chip reaches 760 °C. 

Figure 4-25 shows the simulated temperatures inside the chip during the 65
th

 

short-circuit pulse, the last pulse in the seventh test cycle. In this case, the chip top 

region average simulated temperature reached 780 °C, an increase compared to the 

 
Figure 4-25 Thermal simulation for the 65th pulse, the last one in the seventh test cycle; solid 

blue – Average temperature for aluminum top metalization; red – chip short-circuit region; 

green – rest of chip [89] 

 
Figure 4-26 Thermal simulation for the 71st pulse, the last one in the investigation; solid blue 

– Average temperature for aluminum top metalization; red – chip short-circuit region; green 

– rest of chip [89] 
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previously simulated short-circuit pulse. The aluminum average temperature also 

reached its melting temperature. 

Figure 4-26 shows the simulated temperature profiles for the 71
st
 pulse, the 

last one in the investigation. As overall short-circuit current decreased in the last 

test cycle, the simulated peak average temperatures reached in the chip also 

decrease, as the longer pulse length allowed for a better diffusion of the temperature 

in the chip mass. Nonetheless, the melting point of the aluminum surface 

metalization was still reached, and the peak chip top region average temperature 

was 768 °C. 

4.4.4. SCANNING ELECTRON MICROSCOPE INVESTIGATION 

At the end of the investigation the device was decapsulated and a post 

degradation investigation of the device structure was performed. Initially, a slot was 

cut in-between two adjacent cells in the 10 kV 10 A 4H-SiC MOSFET using a 

focused ion beam and afterwards the structure was inspected using a scanning 

electron microscope. This allowed for the top surface metalization, which connect 

the mosfet cells to the bond wires, and the top structure of the device to be 

inspected for degradation. 

Because this process is time consuming and costly, a single dig site was 

selected on the top surface metalization, shown in Figure 4-27. In order to get an 

estimate of the overall impact of the short-circuit on the device surface 

metalization, the dig site was chosen away from the melted looking regions and the 

bond wires, in an average looking location. The melted regions would have showed 

 
Figure 4-27 Location of dig site for scanning electron microscope investigation [89] 
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the worst degradation, as the degradation was already visible in the visual 

inspection, as shown in Figure 4-23 while the region adjacent to the bond wires 

might have been less degraded if the bond-wires acted like heatsink. Due to the 

proprietary nature of the chip structure and dimensions, the measuring scale has 

been removed and the image from the scanning electron microscope has been 

cropped. As this has made identifying the dig site and scan region difficult, Figure 

4-28 was created in order to aid the reader identify the region shown in the scanning 

electron microscope image. 

For a comparison and in order to better observe the degradation, a similar 

focused ion beam cut and scanning electron microscope investigation was 

performed on an unstressed 10 kV 10 A 4H-SiC MOSFET. Figure 4-29 shows a 

high magnification image of the contact region between the 4H-SiC source regions 

and the surface metalization. The dark region in the image is the 4H-SiC 

semiconductor and the middle section with the bright gray nuance, sitting on top of 

the SiC material is the aluminum source metalization. The bright, clear straight line 

represents the interface between the two materials. 

Figure 4-30 shows the scanning electron microscope image of the same 

contact region between the 4H-SiC semiconductor source regions and the aluminum 

surface metalization at the dig site shown in Figure 4-27. The aluminum surface 

metalization shows clear signs of severe reconstruction. Large voids in the 

aluminum have formed at the interface region as a result of the reconstruction. As a 

consequence of the created cavities which diminished the contact interface between 

 
Figure 4-28 Location of scanning electron microscope image in the chip structure [89] 
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the aluminum surface metalization and the SiC semiconductor, the on-state 

resistance of the 10 kV 10 A 4H-SiC MOSFET is expected to have increased. 

 
Figure 4-29 scanning electron microscope image of an unstressed 10 kV 10 A 4H-SiC 

MOSFET aluminum metalization at the source contact region between two MOSFET cells. 

Due to proprietary information the scale has been removed and the image has been cropped 

[89] 

 
Figure 4-30 scanning electron microscope image of a stressed 10 kV 10 A 4H-SiC MOSFET 

aluminum metalization at the source contact region between two MOSFET cells. Due to 

proprietary information the scale has been removed and the image has been cropped [89] 
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As the dig site was chosen outside the hot-spot like region, in an average 

looking location, the aluminum reconstruction seems to be severe. Taking also into 

consideration the visually observed polyimide degradation over large areas of the 

chip, it can be strongly assumed that the entire chip aluminum metalization ^has 

undergone high thermal stresses during the investigation, supporting the thermal 

simulation of the short-circuit pulses. It is safe to assume that the degradation is not 

only limited to the hot-spot like region, and it might be homogenous across the 

entire chip surface.  

4.4.5. DISCUSSION OF DEGRADATION 

While the degradation in peak short-circuits saturation currents also observed 

in lower voltage 4H-SiC devices in literature [112]-[114], [120], [121], the studies 

were mostly focusing on degradation and subsequent failure of the gate oxide or 

leakage current increase. The most observed failure mechanism during short circuit 

for the lower voltage SiC devices has been related to gate oxide degradation, which 

would manifest either as increased gate leakage currents or in extreme cases even 

shorting of the gate and source terminals, which would prevent the device from 

turning on [31], [34], [112]-[121]. This type of degradation was not observable in 

the 10 kV 10 A 4H-SiC MOSFET during the studies. Throughout the investigation 

the gate-source voltage showed a consistently steady form and the measured gate 

leakage currents were within the manufacturer acceptable limits at the end of 

stressing. Another degradation sign in the 1.2 kV 4H-SiC MOSFETs was observed 

as a shift in the threshold voltage after stressing [113], [114]. This was not the case 

for the 10 kV 10 A 4H-SiC MOSFET, as the threshold voltage increase was 

negligible. This type of degradation and failure does not seem to be observed for 

the 10 kV devices. 

The decrease in peak saturation currents during short circuit can be clearly 

observed for the 10 KV 10 A 4H-SiC MOSFET during the study only after the sixth 

test cycle. The characterization performed after the test cycle showed an increase in 

the channel resistance, emphasizing a degradation in the channel region of the 

device. During the same characterization, only a small variation in the device 

residual resistance was observed in the I-V measurements, performed at a 𝑉GS=20V. 

At the same time the visual inspection through the insulating gel of the aluminum 

surface metalization showed degradation signs. Thermal simulation performed with 

measured data from the last pulse in the test cycle confirmed that the surface 

aluminum metalization reached its melting point, making aluminum reconstruction 

highly likely. 

Continuing with the seventh test cycle, the peak short-circuit saturation 

currents showed a continuous decreasing trend. I-V measurements performed at the 

end of the test cycle highlighted a continued increase in channel resistance, pointing 
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to a continuous degradation of the channel region. The characterization, showed, 

that after this test cycle, also the residual resistance in the device increased, 

emphasizing a degradation in the elements associated with the residual resistance. 

The thermal simulation showed again high temperatures in the device top region 

and aluminum melting point being exceeded in the surface metalization.  

The saturation current during short-circuit and its peak continued to decrease 

throughout the last test cycle of the investigation. The device characterization, at the 

end of the test cycle, showed degradation in the channel region, as an increase in 

channel resistance. The residual resistance also increased, but only by a small 

percentage, possible due to the aluminum metalization continuous degradation.  

There are multiple factors which could explain the degradation in the channel 

resistance and, as a result, the channel resistance increase, which include, among 

others, a degradation in the device gate oxide, a shift in threshold voltage, trapped 

charges interface states or other defects which might have appeared in the SiC 

crystal structure due to the very high temperatures experienced by the device, 

especially towards the end of the investigation [134]. As a consequence of the high 

thermal stresses induced by the high density short-circuit energies, changes in the 

semiconductor material could of resulted in a degradation of the mobility in the 

crystal, and subsequently lead to an increase in channel resistance. The high 

temperatures experienced in the channel and JFET regions, and their vicinity, could 

have created different mechanisms which would negatively affect the mobility. The 

main degradation mechanism could be related to oxide charges and interface traps, 

which can generate high carrier scattering, negatively affecting the current flow. 

The scattering process can also be amplified by an increase in SiC semiconductor 

defects, like broken bonds, dislocations and other crystal associated defects which 

can be caused by high temperatures [134]. The main causes and mechanisms that 

led to degradation in channel mobility cannot be concluded based on this 

investigation, as this would require a deeper knowledge into the device structure 

and characteristics, such as doping levels, etc. At the same time, more specific tests 

and investigations are required in order to aid in isolating the impact of each 

mechanisms. This process, besides being time consuming, is also unfeasible, as it 

would require a large number of these costly devices to be degraded. 

The increase in residual resistance could be expressed by a degradation in one 

or more of the components which define the residual resistance, and subsequently 

increase in their resistance. The degradation in the drift and JFET regions that 

would lead to an increase in their resistance can be a consequence of a decrease in 

their mobility, based on similar degradation mechanisms as in the case of the 

channel region. The SEM investigation highlighted surface aluminum metalization 

reconstruction and voids at the interface between the source region and the 

aluminum metalization which would reduce the contact area and increase the 

contact resistance of the interface. Similar to the observation in literature, 
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temperature was observed also in this case to play an important role in the overall 

degradation of resistance in the device. 

As a side note, when comparing the 10 kV 10 A 4H-SiC MOSFET with the 

1.2 kV 4H-SiC MOSFETs studied in literature, no thermally generated tail currents 

have been observed at turn-off after long pulses. While the aim of this study was to 

avoid destruction of the device, even in the case of the investigations performed in 

chapter 4.3, where the aim was to assess the maximum short-circuit withstand time 

capability, thermally generated currents, observable as tail currents during turn-off 

where not observed.  

4.5. Summary 

The 10 kV 10 A 4H-SiC first generation MOSFET short circuit capabilities 

and degradation where investigated. In the first part of the chapter an overview of 

the short-circuit in MOSFET devices was presented, together with typical 

waveforms generally experienced during the short-circuit events of such unipolar 

devices. As, up to the date of the writing, this was the first published investigation 

of 10 kV 10 A 4H-SiC MOSFETs during short-circuit, no prior arts was available 

in order to have some guidelines regarding the expected maximum short-circuit 

withstand time capability. An overview and review of observation regarding low 

voltage, 1.2 kV, 4H-SiC MOSFETs from the same manufacturer was presented and 

used as a guideline for possible observations, as the technology of the device under 

study and the literature is almost identical. Similar behavior of the short-circuit 

saturation current was observed in both 10 kV and 1.2 kV 4H-SiC devices, where 

for the initial part of the pulse the current has a positive temperature coefficient, up 

to the point when the temperature in the top region reaches 600 K, at which point 

the currents shows a negative temperature coefficient and decreases. 

As no prior study regarding the short-circuit capability of 10 kV 10 A 4H-SiC 

MOSFETs was published, a more conservative approach was initially taken in order 

to observe the behavior of the device during short-circuit and the maximum 

short-circuit time the device could withstand for a 𝑉𝐷𝑆 = 6 kV. The device was 

subjected to pulses of increasing length in order to observe its limits, both in terms 

of energy and pulse length. The initial device short-circuit saturation current was 

more than 26 times higher than the nominal rated current, in contrast to the 

typically observed ratio, in Si devices, of 5-8 times. Degradation was observed in 

the initial investigation, and thermal simulation have shown that the device 

experienced temperatures in the junction region of 1000 °C, with the surface 

metalization aluminum reaching its melting temperature after the short-circuit 

saturation currents started showing signs of degradation. The device, despite the 

degradation, managed to safely turn off a pulse of 8.5 µs with a short-circuit energy 

of 10.65 J. The investigation ended when the device failed, after it turned off a 
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pulse of 8.6 µs. The device exploded moments after turn off, pointing towards an 

increased leakage current, possibly due to the high temperature reached in the 

device structure. The failure mode made it impossible for a post failure analysis to 

be performed. The 8.5 µs short-circuit withstand time capability is a conservative 

value, as the device started showing degradation much earlier and managed to turn 

off more than 25 extra pulses before it failed, leading to the conclusion that an 

unstressed device, should be capable of turning of a pulse of at least 8.5 µs if not 

more. 

Encouraged by the findings in the first part of this chapter, a new investigation 

was set up in order to observe the degradation mechanism of the 10 kV 10 A 

4H-SiC MOSFET during short-circuit. This investigation would be similar to the 

previous one, with the difference that after a significant number of short-circuit 

pulses of increasing length a full device electrical characterization would be 

performed in order to observe the regions of the device which are degrading. 

During the robustness investigation, the initial degradation appeared in the 

channel region and as the test advanced, the residual resistance regions (drift, JFET, 

metalization, etc.) started to also show signs of degradation due to the short-circuit 

energy concentrated in the top region of the SiC chip. This was seen as an overall 

increase in device on-state resistance, both in the characterization measurements 

and during the short-circuit investigation.  

The threshold voltage variation observed through the test was insignificant, 

and its impact on the device performance was neglectable, while the measured gate 

leakage current, assuming the largest measurement errors was still within 

manufacturer acceptable limits. Thermally generated currents and degradation in 

the gate structure of the 10 kV 10 A 4H-SiC MOSFET could not be observed 

during experiments, nor measured during the characterization as in the case of 1.2 

kV 4H-SiC MOSFETs using the same technology. 

The visual inspection of the aluminum surface metalization showed signs of 

reconstruction and degradation. This was confirmed by the thermal simulation of 

the short-circuit pulses, in which the aluminum melting temperature was reached 

and surpassed, making the reconstruction of the surface metalization possible. The 

SEM investigation also confirmed that the aluminum reconstruction took place, and 

at the same time cavities have formed at the interface between the SiC MOSFET 

cells source region and the surface metalization. This would result in an increase 

residual resistance and possibly a higher temperature do to the reduction in area of 

contact and subsequent increase in contact resistance.  

While it was clear that the temperature experienced by the device during 

short-circuit is initiating the degradation observed in the device, it is not possible 

from the conducted measurements to clearly identify the main degradation 
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mechanism of the device without deeper knowledge of the device characteristics. 

Degradation of the SiC crystal structure, charges implanted in the oxide during the 

short-circuit, interface state charges or other similar material defects associated with 

the high temperature stressing and high electric field experienced during 

short-circuit are the most plausible explanation for the degradation in device 

mobility. 
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Chapter 5.  

Conclusion and future work 

The main conclusions of the PhD thesis are summarized in this chapter alongside 

recommendations for future work, which might give a better insight into the 

usefulness and applications of the devices studied. 

5.1. Summary of conclusions 

In order to overcome the challenges mentioned in Chapter 1 and to accelerate 

the adaptation of 10 kV 4H-SiC devices into the high voltage, high power market 

the Ph.D. study has focused on two main topics, required for the understanding and 

implementation of such devices in power electronics converter: characteristics of 10 

kV 10 A 4H-SiC MOSFETs and short-circuit capability and degradation. 

Chapter 2 provided an introduction into the still novel SiC unipolar power 

devices, and compared from a theoretical point of view the preferred power 

semiconductor for unipolar devices, Si, with its most promising successor in the 

high voltage range, 4H-SiC. Advancement during the past few decades on Si 

semiconductor materials have been pushing the material very close to its theoretical 

edge, while, sometimes, even surpassing them with unique structures, such as super 

junction MOSFETs. Compared to Si, SiC has been the focus of research only 

recently, and has already shown outstanding performance, and better material 

characteristics. Continuous improvements on the power semiconductor devices 

structure, similar to those in Si, could achieve even higher performances. Because 

of this uneven focus on the devices structure which would better suite each 

semiconductor material, a theoretical material comparison promised to highlight 

only the material advantages, and not the advantages gained from the research on 

the materials. During the comparison, SiC has showed significantly better 

performance in terms of both switching and conduction losses, thinner chip sizes 

and better thermal management. In all, SiC managed to surpass Si as a 

semiconductors and its promising to be the material of choice for the next 

generation high voltage power semiconductor. 

Chapter 3 investigates the history and improvements of SiC unipolar power 

devices from the first report of such a device up to current days. As the 10 kV 10 A 

is a relatively new device, which has been available only recently as an engineering 

sample, the study of the device characteristics required new a new test setup to be 

designed in order to study the characteristics of the device at the expected nominal 

operating values. The test setup was custom designed around the packaged 10 kV 

10 A 4H-SiC MOSFET with the aim of reducing as much as possible the parasitic 
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inductance in the switching loop, in order to limit the impact of the circuit on the 

device behavior and evaluate only the device under test. 

 Static and dynamic characteristics of the device are of high interest and 

required in order to efficiently design a converter, which employs such devices, and 

operate it correctly and safely. The 10 kV 10 A 4H-SiC MOSFET has been 

extensively characterized at temperatures  varying from room temperature up to 

150 °C in order to observe its expected behavior during operation. The dynamic 

behavior of the device during switching has been studied for different gate voltages, 

drain-source voltages, temperatures and drain currents in order to assess the devices 

in as many as possible situations, as to get a better understanding of the device 

behavior during switching. 

The second part, discussed in Chapter 4 has evaluated the short-circuit 

behavior of the first generation 10 kV 4H-SiC MOSFET. The short-circuit behavior 

and capability is very important in order to evaluate the robustness of power 

devices, and gives an insight for the converter designer of the minimum required 

protection times before employing such a device in an application which requires 

high availability. 

By modifying the setup used for the dynamic characterization, the short-circuit 

withstand time of the 10 kV 10 A 4H-SiC MOSFET can be investigated. As this 

was the first short-circuit study done on such a device and due to the limited 

availability of such packaged devices, a more conservative approach was taken into 

the investigation. The short-circuit capability was investigated by constantly and 

systematically increasing the pulse length until the device failed. As the device 

started showing degradation signs and increased resistance, half way in the 

short-circuit investigation, it was clear that an unstressed device, should be capable 

of supporting a short-circuit for at least as long as the device tested. Considering the 

short-circuit voltage and currents the device experienced, its capabilities seemed 

quite remarkable, considering it was never designed for such operation, being just a 

first iteration research sample. The failure of the device was destructive, after turn-

off and was most probably due to an increased leakage current in the device. 

Thermal simulation of the short-circuit revealed high temperatures throughout the 

top surface of the chip, with the aluminum surface metalization surpassing its 

melting point.  

Motivated  by the degradation observed during the search for a short-circuit 

withstand capability, a new study was performed in order to investigate the 

variation in the electrical parameters during the short-circuit degradation, in an 

attempt to better understand the device behavior during short-circuit.  

The testing procedure for the new investigation was selected to be as similar 

as possible to the previous investigation. This allowed for the device to be stressed 
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up to the limits observed earlier and at the same time avoid a destructive failure. By 

avoiding the device catastrophic failure, the chip could be decapsulated and then 

studied in a SEM in order to observe any irregularities in the structure of the 

MOSFET. In addition, the device was periodically electrically characterized and 

visually inspected in order to observe any variation in the electrical parameters 

which might provide an insight into the degradation mechanism during 

short-circuit. The observed degradation was observed in regions corresponding to 

both channel resistance and residual resistance, with first signs of degradation 

commencing in the channel region and then propagating to the residual resistance 

throughout the investigation. While in similarly designed devices with lower 

voltage ratings the degradation was mostly attributed to gate oxide degradation in 

the case of the 10 kV 10 A 4H-SiC no such degradation was observed.  

Non the less the degradation was generated by the high temperatures 

experienced by the device during short-circuit at drain-source biases of 6 kV and 

currents more than twenty-five times larger than the nominal rated current which 

would concentrate a large energy in the top portion of the 4H-SiC chip.  

After degradation the device aluminum surface metalization was visually 

inspected and showed signs of degradation, which was confirmed by the SEM 

images showing cavities that formed at the interface between the source region of 

the semiconductor material and the aluminum. This also was in accordance with the 

temperatures observed during the thermal simulation where the aluminum melting 

point was reached.  

While the study could not conclude the exact physical mechanism of the 

failure during short-circuit, it was able to highlight the process of the degradation 

and affected regions providing a new insight into the operation of the 10 kV 10 A 

4H-SiC MOSFETs. Possible degradation mechanism have been proposed, but 

further investigation into the physical degradation of the device are required in 

order to narrow down the possible degradation mechanisms during short-circuit. 

This can be used by the manufacturer in order to improve the structure and design 

of the device and at the same time by converter designer in order to proper design 

their short-circuit protection circuits and at the same time identify devices which  

have been degraded during operation, allowing them to better estimate device 

lifetime or imminent failure.  

5.2.  Main contributions from author’s point of view 

The main contributions of this Ph.D. work from point of view of the author are 

summed up as follows: 
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Design of a custom, low inductance, unified test circuit for 10 kV 10 A 4H-

SiC MOSFETs: 

 Development of custom DC-link suitable for 10 kV 10 A 4H-SiC 

MOSFETs with off-the-shelf parts; 

 Development of low inductance test setup suitable of characterizing 10 

kV 10 A 4H-SiC MOSFETs during switching, short-circuit and 

unclamped inductive switching for a wide range of temperatures with 

voltages up to 15 kV and currents in excess of 250 A; 

Analysis of the dynamic and static characteristics of 10 kV 10 A 4H-SiC 

MOSFETs: 

 Investigation of static characteristics of 10 kV 10 A 4H-SiC MOSFETs; 

 Investigation of the switching characteristics of 10 kV 10 A 4H-SiC 

MOSFET over a wide range of drain-source voltages, drain currents, 

junction temperatures and gate-source voltages; 

 Analyzing the switching losses variations and characteristics of 10 kV 10 

A 4H-SiC MOSFET over a wide range of parameters; 

Analysis of the short-circuit capability of 10 kV 10 A 4H-SiC MOSFETs: 

 Identifying the maximum short-circuit time capability of the device with a 

conservative approach; 

 Identifying the short-circuit saturation current of the 10 kV 10 A 4H-SiC 

MOSFET and variation with pulse length; 

 Simulation of device average temperatures during short-circuit operation 

and correlation between temperature and mobility in the investigated 

device; 

Analysis of the short-circuit degradation in 10 kV 10 A 4H-SiC MOSFETs: 

 Observation of degradation in 10 kV 10 A 4H-SiC MOSFETs during 

short-circuit stressing; 

 Correlation between short-circuit degradation observations and variations 

of the electrical parameters of the 10 kV 10 A 4H-SiC MOSFETs; 
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 Visual and FEM imaging degradation observations in 10 kV 10 A 4H-SiC 

MOSFETs in order to highlight the degradation impact on the device 

surface metalization; 

 Thermal simulation of the average temperatures in the device during 

short-circuit operation, and variation with time to confirm the current and 

mobility variation in relationship with short-circuit pulse variation.  

5.3. Future Work 

As the 10 kV 10 A 4H-SiC MOSFET is a very novel device which has yet to 

be fully studied, especially from the reliability point of view, there are different 

subjects which can be investigated to further improve the work. The main research 

topics for further investigation could include: 

 Further investigations into the physical structure of the device after 

degradation in order to observe physical changes in the device. This way a 

defect density increase could be observed and at the same time, each 

region of the device could be studied for alterations or crystal defects 

increase which could give a better insight into the cause of the 

degradation. 

 Investigation of the avalanche capability of the 10 kV 10 A 4H-SiC 

MOSFET. Considering a test setup capable of testing the avalanche 

capability of such a device is already available, such a study could be 

easily performed and would give a better insight into the reliability and 

suitability of such a device to be deployed in grid connected power 

converters. 

 Comparison between the third generation 10 kV and 15 kV 4H-SiC 

MOSFETs and the first generation device. Considering the advancements 

in manufacturing which were observed between the first and third 

generation in the 1.2 kV devices, the latest generation high voltage SiC 

MOSFETs should outperform the device in this study, not only during 

dynamic events, but also from the reliability point of view.  

 Development of a better thermal model for the device. A 3D model of the 

device which would also consider the phase change in the aluminum 

surface metalization could better identify the temperatures inside the 

device during short-circuit. .
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