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English Abstract

Power electronic circuits are used in variety of applications ranging from
small power supplies in computers to more specialized applications such as;
satellite, airplane, medical equipments and different war-machines. In all of
these applications, static power converters are an essential subsystem whose
failure leads to the imminent and total stoppage of the equipment. Dc-link
capacitor is commonly used in all of these equipments as smoothening en-
ergy element of the converters. As a fact, in energy conversion converters,
a group of series/parallel connected capacitors (capacitor bank) or a single
capacitor is normally used as dc-link filter. The system may be malfunction
if one or more capacitor reaches end-of-life. Since failure of a single element
may lead to collapse of the entire system, it is needed to develop some kind
of mechanism, which will alert the operator in advance for predictive main-
tenance before failure, such mechanism is known as "Condition Monitoring".

Recently, the academic research have been focusing on monitoring the
conditions and the health status of dc-link capacitors. Industry applications
require more reliable power electronics products with preventive mainte-
nances. Therefore, an in-depth analysis of prior-art condition monitoring
methods (advantages, shortcomings) have been done from the following as-
pects: a) end-of-life indicator (e.g. C, ESR); b) how to estimate the indicator
(e.g. sense current, voltage); c) algorithm to obtain the value of the indicator
(online or offline); d) accuracy study and sensitivity analysis; e) hardware
and software realization (reliability, cost, and complexity of the additional
software algorithm and hardware circuits).

From analysing the prior-art methods it was found that, the existing
capacitor condition monitoring methodologies are suffering from low es-
timation accuracy and/or extra hardware cost, where such shortcomings
are preventing these methodologies to be considered in practical applica-
tions. Therefore, development of new condition monitoring technology that
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English Abstract

is based on software solutions with reducing the needs of extra hardware
is beneficial with respect to the cost and complexity, and therefore could be
more convenient for practical applications in the industry field.

This project develops new method using an Artificial Neural Network
(ANN) algorithm in order to monitor the change of the capacitance of an elec-
trolytic capacitor for dc-link application in order to apply predictive mainte-
nance. The software based method is proposed in order to solve the existing
issues of the prior-art research.

The ANN method estimates the end-of-life indicator (e.g. capacitance)
using only the input/output terminal information of the power converter,
which are readily available from the feedback signals of existing digital con-
troller. The trained ANN is implemented with the Digital Signal Processor
(DSP) which is normally existing for control purposes. In order to investigate
the proposed method under different conditions, the ANN condition moni-
toring method is applied on dc-link capacitor in a Front-End diode bridge
converter. Moreover, the impact of training data quality and amount on
the ANN accuracy are studied. Analysing the estimation error under differ-
ent capacitance conditions, different reduction level of the capacitance initial
value and different loading conditions are also given.
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Dansk Abstrakt

Effektelektroniske kredsløb anvendes i mange forskellige applikationer lige
fra små strømforsyninger i computere til mere specialiserede applikationer
såsom; satellitter, fly, medicinsk udstyr og i militære systemer. I alle disse ap-
plikationer er effektelektroniske omformere et væsentligt delsystem, hvor fejl
fører til uheld og evt. total standsning af systemet. Kondensatorer er almin-
deligt anvendte i effektelektroniske systemer som energilagrende elementer.
I effektelektroniske systemer bliver en enkelt kondensator eller flere konden-
satorer anvendt i en kondensatorbank, som normalt bruges i jævnspændings-
delen. Systemet kan få en funktionsfejl, hvis en eller flere kondensatorer når
deres end-of-life. Da svigt i et enkelt element kan føre til sammenbrud af hele
systemet, er det nødvendigt at udvikle et system, som kan gøre operatøren
opmærksom på dette på forhånd og foretage forebyggende vedligeholdelse
før svigt. Sådan en mekanisme er kendt som ”tilstandsovervågning” ("Con-
dition Monitoring") af et system.

I den sidste tid har tilstandsovervågning af DC-link kondensatorer for at
estimere deres levetid tiltrukket en del opmærksomhed, da industrielle an-
vendelser kræver mere pålidelige produkter med forebyggende vedligehold.
Derfor er en grundig analyse i denne afhandling af kendte tilstandsovervågn-
ingsmetoder (fordele, ulemper) foretaget ud fra følgende aspekter: a) end-
of-life indikatorer; b) hvordan man kan finde indikatoren (fx måle strøm,
spænding); c) algoritme til at opnå værdien af indikatoren (online eller of-
fline); d) metodernes nøjagtighed og følsomhed; e) realisering af hardware og
software (pålidelighed, omkostninger og kompleksiteten af de ekstra software-
algoritmer og hardware-kredsløb).

Fra analysen af de kendte metoder er det konstateret, at de eksisterende
tilstandsovervågningsmetoder af kondensatorer giver enten forøgede hardware-
omkostninger eller en dårlig estimeringsnøjagtighed, hvilket er udfordringer,
der skal løses i industrielle anvendelser. Derfor vil udvikling af en ny til-
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Dansk Abstrakt

standsovervågningsteknologi med softwareløsninger uden ekstra hardware-
omkostninger være mere lovende for industrielle anvendelser. Dette pro-
jekt udvikler en ny software-baseret metode ved hjælp af en neuralt netværk
(ANN) algoritme til at overvåge ændringen af de elektriske parametre i elek-
trolytkondensatorer til DC-link’en i en effektkonverter, som arbejder under
stressede forhold, og det påtænkes at anvende den til forebyggende vedlige-
holdelse. Den software-baserede metode er foreslået for at kunne løse de
eksisterende problemer.

ANN-metoden estimerer end-of-life-indikatorer (fx kondensatorens ka-
pacitans) ved hjælp af måling på indgangsterminalen og udgangsterminalen
af omformeren, som er let tilgængelige fra allerede eksisterende digitale
styringer. Den udviklede ANN algoritme udføres med en Digital Signal
Processor, der normalt bruges med henblik på kontrol af motoren. For at
undersøge den foreslåede metode under forskellige betingelser er ANN til-
standsovervågningsmetoden anvendt på en DC-link-kondensator i en diodeen-
sretterbro, som typisk anvendes i en motorstyring. Desuden er kvaliteten af
træningsdata for ANN’en og dens nøjagtighed undersøgt. En fejlanalyse un-
der forskellige DC-link kapacitansværdier er beskrevet, såvel som at forskel-
lige niveauer af kapacitansreduktionen i forhold til den oprindelige værdi
under forskellige belastningstilstande også er undersøgt. Det er konkluderet,
at den foreslåede metode kan implementeres i en fremtidig motorstyring.
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Chapter. 1

Introduction

This chapter is the introduction of the documented Ph.D. project, which includes
project motivation, background in capacitors, problem formulation, project objectives,
limitations and thesis structure.

1.1 Introduction

This chapter presents a background of the dc-link capacitors in power elec-
tronic converters. It includes a description of their common types, construc-
tion, and mode of failures. Moreover, a general reliability assessment of ca-
pacitors from different aspects (e.g. physics-of-failure, design, health man-
agement, and condition monitoring) is also addressed. Then, in order to
show a clear understanding of the flow of this research work, a structure of
this thesis is also given. Finally, a list of the published work by the author of
this PhD thesis is given by the end of this chapter.

1.1.1 DC-link capacitors in power electronic converters

Capacitors are one of the reliability critical components in power electronic
systems. They are widely used for the purpose of reduce the voltage ripples
in the dc-link and to equalize the power difference between the input side
and the load side. They are also a storage element that can be used in the
AC-side [4]. Fig. 1.1 shows the generic block diagram of a capacitive dc-link
based power electronic converter [80]. Stage I and stage II could be different
circuit topologies. Table 1.1 lists some scenarios for each power electronic
stage [80].
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Power 
Electronic 
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ESR

+

_

DC-Link Capacitor

 

Fig. 1.1: Block diagram of a capacitive dc-link based power electronic converter with parasitic
elements [80].

Table 1.1: Different Scenarios for Different Power Electronic Converters [80].

Power Electronic Stage I Power Electronic Stage II

AC/DC DC/AC or DC/DC or Load

DC/DC Load

DC DC/AC

However, selection of the capacitor type depends on different factors such
as; dc-link voltage rating, capacitance value, operating frequency, physical
size, operating temperature, cost and so on. Moreover, the design of the dc-
link is required to have the matching between the capacitor characteristics
and the application specifications [88]. In dc-link applications, three types of
capacitors are widely used, the Electrolytic Capacitors (E-Caps), the Metal-
lized Polypropylene Film Capacitors (MPPF-Caps) and the high capacitance
Multi-Layer Ceramic Capacitors (MLC-Caps). In the following subsections,
E-Caps and MPPF-Caps are discussed on details. Their constructions and
mode of failures are also listed.

Electrolytic capacitors (E-Caps)

Electrolytic Capacitors (Fig. 1.2) are widely used in power converters due
to the fact that they help to filter out/reduce the AC ripple voltage and also
serve for coupling and decoupling applications [4]. They are also widely used
due to their large capacitance and relatively small size [4]. The advantage of
their small size property is due to the very thin dielectric layer where the
distance between the plates is very small [4] [3]. Most of the electrolytic
capacitors are polarized, which means that the polarity of the applied DC
voltage must be the correct corresponding polarity; i.e. positive terminal to
the positive end of the capacitor and negative terminal to the negative end of
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Fig. 1.2: JIANGHAI 22 µF, 400 V electrolytic capacitor.

the capacitor [73]. Otherwise, the insulation will break down due to incorrect
polarization, and hence, the capacitor may be permanently damaged [73]. In
addition to the polarization disadvantage where applying an AC voltage is
not applicable, the considerable voltage rating for electrolytic capacitor is
relatively low [76].

Construction and mode of failures A major part in the construction of elec-
trolytic capacitors is the oxide layer. A group of metals that are called "Valve
Metals" are considered as electrically insulating oxides, and thereby, they can
serve as an oxide layer [5]. The valve metals are; tantalum, aluminium, zirco-
nium, hafnium, titanium, and niobium. Since the thickness of the dielectric
layer in the capacitor is effected by the electrochemical changes, it is very
important that the selected metal type of the dielectric layer can permit an
accurate control of this thickness. Only two of the aforementioned metals
(i.e. aluminium and tantalum) are having the advantage of accurate control
for their thickness with respect to the electrochemical changes [8].

 

 

 

 

 

 

 

 

Electrolytic Capacitors  

Aluminum Electrolytic Capacitors Tantalum Electrolytic Capacitors 

 

Solid Electrolyte Non-Solid 
Electrolyte Solid Electrolyte Non-Solid 

Electrolyte 

Organic / 
Inorganic 
solvents 

MnO2 

Polymer 

Sulphuric acid 
(wet slug) 

MnO2 

Polymer 

Fig. 1.3: The different types of metals and electrolytes in electrolytic capacitors [5].
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As the basic construction principles of electrolytic capacitors for both
aforementioned types (Al-Caps and tantalum capacitors), each of these two
capacitor families are using non-solid and solid manganese dioxide or solid
polymer electrolytes, so a great spread of different combinations of anode
material and solid or non-solid electrolytes are available. These combinations
are illustrated in Fig. 1.3 [5].

Al-Caps are consisting of three main parts; an aluminium foil, a capacitor
paper, and an aluminium oxide layer. The aluminium foil that in contact with
the oxide layer acts as the "Anode". The capacitor paper (electrolytic spacer)
acts as the "Cathode". While the aluminium oxide layers acts as a dielectric
material. Once the capacitor paper (electrolyte) gets in contact with the oxide
layer, the oxide layer serves as an excellent insulation surface. Eventually, a
higher capacitance becomes available according to the effective surface pro-
duced by the etched aluminium foil [5]. As mentioned earlier, Al-Caps are
consisting of two aluminium foils with a capacitor paper inserted in between.
After wounding the two foils and paper an impregnation process with elec-
trolyte is applied. A simple illustrative structure of an Al-Caps is shown in
Fig. 1.4.

Aluminum foil electrodes

Electrolytic spacer

Aluminum oxide film (dielectric)

+
+
+
+
+

_
_
_
_
_

+_

 

Fig. 1.4: The construction of an aluminium electrolytic capacitor [5].

Since the oxide layer has rectifying properties, an electrolytic capacitor
has polarity. But if an oxide layer is attached to both cathode and anode, a
bipolar capacitor type would be produced. This type refers to a "non-solid"
Al-Caps, in which the electrolytic paper is soaked with a liquid electrolyte.
Another type of Al-Caps is the "solid" type, in which uses a solid electrolyte
1.4. Although E-Caps are commonly used because of their low cost and small
size, they still remain one of the most unreliable electrical components. Based
on a collected examples of failures in power electronics systems [93], E-Caps
are sharing 30% of the failure root cause distribution for power electronic
systems as shown in Fig. 1.5. Here are three systematic mode of failures
caused due to three failure mechanisms [4]:

1) Over-voltage – a leakage current in the dielectric layer due to an exces-
sive voltage, results a short circuit mode of failure.

2) Disconnection of terminals – the soldering joints are affected by the
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vibration stressor, and hence an open circuit mode of failure is the
result.

3) Over Temperature – an excessive heat dries out and vaporize the elec-
trolyte, and thereby, the life of the E-Caps is shortened causing a wear-
out mode of failure.

 

PCB
26%

Capacitors
30%Solder joints

13%

Semiconductors
21%

Others 
7%

Fig. 1.5: Failure root cause distrbution for power electronic systems [93].

Metallized Polypropylene Film capacitors (MPPF-Caps)

Due to their unique self healing properties, low Equivalent Series Resistance
(ESR), and wide filtering bandwidth; MPPF-Caps (Fig. 1.6) have become an
acceptable substitute to E-Caps.

Fig. 1.6: EPCOS 110 µF, 450 V MPPF capacitor.

Since MPPF-Caps provide a well-balanced performance for high voltage
applications, they are preferable in the aerospace and other fault-tolerant
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applications. Moreover, from the manufacturing point of view, MPPF-Caps
are metal based and they can withstand against the environmental changes
such as temperature and humidity fluctuations. Comparing MPPF-Caps with
E-Caps, MPPF-Caps are featuring the following advantages:

1) High voltage capabilities.

2) High peak and Root Mean Square (RMS) current capabilities.

3) Non-polarized.

4) Robustness (withstand up to twice rated voltage for short time).

5) Higher capacitance with lower volume.

6) Solid metal based technology.

Construction and mode of failures Film capacitors are consisting of two
dielectric layers (plastic film) covered with metal foils (electrodes). These
layers are attached to a terminal ends and wounded into a cylindrical shape
before getting encapsulated [43]. A cross-section view of a film capacitor is
shown in Fig. 1.7.

Contact Layer 

Terminal 

Coating Box Protective Film 

Metal Foil 

Dielectric 

Fig. 1.7: Cross-section of a film capacitor [43].

Film capacitors are classified into two types with respect to the metal foil
type as listed below [43]. Two different configuration of the electrode can be
applied as seen in Fig. 1.8.

1) Film capacitors; where two layers of plastic film are used as dielectric
layers. Each is covered with a thin metal foil which acts as the elec-
trodes and usually they are made out of aluminium. The direct contact
between the dielectric layer and the electrode is the main advantage,
where surges of high current can be handled [43].

2) Metallized film capacitors; where two metallized metal foils are cover-
ing the dielectric layers. The difference in this type is tat, a thin layer
of vacuum-deposited is attached to the aluminium metallization side to
serve as electrodes [43].
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Film / foil 

Metallized Film 

Dielectric 

Fig. 1.8: Electrode configurations in film capacitors [43].

The configuration with metallizing the film is the reason that MPPF-Caps
are having the "self-healing" property. It is applied when "the electrical prop-
erties of the capacitor are restored rapidly after a local breakdown to the
values before the breakdown" [43] [7]. The self-healing property is beneficial
where damaging the capacitor can be avoided in case of short circuits and/or
breakdowns of the dielectric material. A "zero defect" capacitors can be made
with considering this kind of property in the design stage, where a capacitor
with large capacitance and relatively small case can be produced. However,
since a direct contact between the dielectric and electrode is not applied in
the metallized film capacitors, a main disadvantage of that is the limited cur-
rent surge rating. Moreover, It is important to mention that there are many
type of failures that might occur, and not all of them will necessarily lead to
the self-healing property [43] [7].

As the failure modes of E-Caps and their failure mechanism were dis-
cussed, similarly, MPPF-Caps mode of failures and their failure mechanism
are listed as following:

1) Over-current – a flow of an over-current will cause the dielectric film to
breakdown, and thereby, a moisture absorption by film will occurred,
resulting in a short circuit mode of failure.

2) Connection instability – the area of the electrode is reduced due to
moisture absorption, in addition to a heat contraction of dielectric film
will affect the connection stability, and hence an open circuit mode of
failure is the result.

3) Dielectric loss – an exposure to an excessive amount of humidity dries
out and vaporize the dielectric and shortens the life of the capacitor
causing a wear-out mode of failure.

Regarding the discussion of the two types of capacitors, summary of some
specific advantages and shortcomings with respect to their performance are
collected by [40] in Table 1.2. E-Caps could achieve the highest energy density
and lowest cost per joule, but with relatively low ripple current ratings and
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high ESR, and hence some wear-out issues due to the evaporation of elec-
trolyte material. MPPF-Caps could provide a well-balanced performance for
high voltage applications (e.g. above 500 V) in terms of cost per joule, capaci-
tance, ESR, ripple current ratings, and reliability. Nevertheless, they have the
shortcomings of large volume and moderate upper operating temperature.

Table 1.2: Performance Comparison of Two Types of Capacitors for dc-links
(+++ superior, ++ intermediate, + inferior) [40].

Aspects E-Caps MPPF-Caps

Capacitance +++ ++

Voltage ++ +++

Ripple current + +++

ESR + +++

Dissipation Factor (DF) + +++

Frequency range + ++

Capacitance stability ++ +++

Over-voltage capability ++ +++

Temperature range ++ +

Energy density +++ +

Reliability under electro-
thermal stress

+ +++

Cost per joule +++ ++

1.1.2 General reliability assessment of capacitors

As referred earlier, in the field of power electronic converters, dc-link capaci-
tors are considered as high significant component. They have a direct impact
to the size, cost, efficiency, and failure rate of the power converter, and hence
contribute to the converter’s overall reliability. Therefore, reliability studies
on the dc-link capacitors are very important in order to achieve reliable and
robust converters. In Fig. 1.9, it can be seen that, today’s perspective toward
the reliability assessment of power electronic devices should be considered
by three main aspects [40].

Analytical Physics

According to Fig. 1.9, it can be seen that understanding the reliability physics
of a power electronic component is a major aspect. Moreover, understanding
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Fig. 1.9: Aspects of power electronics reliabilty assessment [40].

the failure mechanisms and the mode of failures of power electronic com-
ponents are essential to the reliability lifetime prediction, and hence also
the reliability improvements. In regards to the reliability of dc-link capac-
itor from Physics-of-Failure (PoF) point of view, in Chapter 1, the mode of
failures, the failure mechanisms, and the basic construction are discussed in
section 1.1.1 for both E-Caps and MPPF-Caps. From the capacitor user’s view
point, understanding the nature of the capacitor helps to design more reliable
and robust power converters through an optimum selection of the capacitor’s
specifications. Therefore, design and verification comes as the second major
aspect in capacitors reliability.

Design and verification

The Design For Reliability (DFR) process varies from designer to designer,
due to the different reliability tools and different product requirements. In
spite of these differences, there are always a common pattern, which covers
the process of identification, validation, verification, and control. By follow-
ing this common pattern it is guaranteed that the reliability is well considered
during the design phase. The DFR applied to the dc-link capacitors is dis-
cussed in this section. Different scenarios of reliability-oriented design are
reviewed in [88], and they are presented in Fig. 1.10. Fig. 1.10 shows the
main existing solutions of dc-link capacitor design. The widely used design
is shown in Fig. 1.10(a) either by using an Al-Caps or MPPF-Caps. Many
research efforts have been carried out in two directions;

1) Reduce the dc-link requirements [87].

2) Achieve an optimal design of dc-link capacitor bank [70].
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Fig. 1.10: Some types for solutions for dc-link capacitors design [88].

In the first direction, if replacing the Al-Caps with MPPF-Caps is feasi-
ble, then, the energy storage requirements can be reduced, and thereby, high
level of reliability is achieved with no additional increase in both volume and
cost [87]. Fig. 1.10(b) shows a recent design proposed by [34] that combines
between 40 mF Al-Caps, and 2 mF MPPF-Caps for a 250 kW inverter appli-
cation. If this solution is considered, the current stresses are reduced, and
hence, the reliability of the Al-Caps bank is enhanced.

According to the first research direction, the design concept shown in Fig.
1.10(c) is to synchronize the current iDC1 and iDC2 through a designed control
scheme that helps reducing the ripple current [42]. This design solution is
feasible for the application where the two power stages connected through
the dc-link are having a common control in their operating frequencies [42].

Although the design for reliability stage will improve the reliability of the
capacitor part, the additional circuit components and/or control scheme will
produce new failure potentials in the dc-link part. Therefore, a control con-
figuration that monitor the the behaviour of the designed dc-link capacitor is
important in sake of reliability evaluation of the whole dc-link part. There-
fore, this monitoring is needed to quantify the impact of these new solutions.

10



1.1. Introduction

Control and monitoring

Improving the reliability of a power electronic converter is not restricted to
the design phase only, it should also continue to the operation phase for
further improvements. Therefore, power components maintenance in power
electronic converters is essential for reliability improvements. Taking dc-link
capacitor as an example; the maintenance decision flow chart shown in Fig.
1.11 is a general guideline that explains how to decide a suitable kind of
maintenance.

DC-link capacitors 
in service

Critical 
applicationYes No

Preventive 
Maintenance

Periodic 
Maintenance

Run to failureNo

Yes

Predictive 
Maintenance

Corrective 
Maintenance

Condition 
Monitoring

Fig. 1.11: Maintenance decision guidelines.

Controlling and monitoring the conditions of a power electronic converter
during the operation is the third important aspect according to Fig. 1.9. Ac-
cording to [40], there are three main strategies that can improve the reliabil-
ity of a power electronic converter: a) Prognostics, Health Management and
Control (PHMC); b) active thermal control; and also c) fault tolerant control.

a) Prognostics Health Management and Control (PHMC) The term (prog-
nostics) is defined as "An engineering discipline focused on predicting the time at
which a system or a component will no longer perform its intended function." [82].
This unintended/unplanned functionality is mostly due to a failure that
makes the system unable to operate in its normal conditions any more. In
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order to make a decision, the Remaining Useful Life (RUL) is a very impor-
tant factor that needs to be considered. Prognostics is able to predict the
component performance in the future based on an assessment of the sys-
tem degradation with respect to its normal operating conditions. Linking
between the failure mechanism studies of a given system and its life-cycle
management is so called "Prognostics and Health Management (PHM)". The
Prognostics, Health Management, and Control (PHMC) strategy will deliver
methods; protocols; and tools for robust sensing; diagnostics; prognostics;
and control that enable users and/or manufacturers to respond to planned
and un-planned performance changes, and hence enhance the overall relia-
bility system. The principle of condition monitoring spouts from the PHMC
strategy. The condition monitoring principle is a major sub-aspect in the
power electronics reliability, as shown in Fig. 1.9 and further detailed discus-
sion is presented in this thesis.

b) Active thermal control Analysis of the thermal performance of power
converters shows that some of the semiconductor components are exposed
to more stress than the others, and this an uneven thermal distribution can
be seen more in power converter with complex design (i.e multi-level power
converter). Therefore, it is important to apply a technique that helps in reg-
ulating the thermal stress in a given application. An example of that is the
regulation of the losses in an IGBT modules in order to prevent the failures;
such as power cycling and over temperature [67].

c) Fault-tolerant control Requirements and conditions of a safe operation
of a power electronic converter are very important and should always be fol-
lowed by the users. Operating beyond these conditions may affect the nature
of the components and eventually lead to damage of the power converter.
Fault tolerance is defined as, "A property that enables a system to continue oper-
ating properly in the event of the failure of (or one or more faults within) some of its
components" [59]. Designing a fault-tolerant control scheme allows the system
to maintain operating in its normal conditions but with lower performance
instead of shutting it down [55]. This kind of operating condition is referred
as "Graceful Degradation".

1.1.3 Capacitor condition monitoring

As discussed in section 1.1.2, condition monitoring principle comes from the
PHMC strategy, and it is a major sub-aspect in power electronics reliability.
The research in this project is focusing on improving the reliability of the
dc-link capacitors in power electronic converters. In the following subsec-
tion, the definition of condition monitoring principle in general is presented.

12



1.2. Problem formulation

Moreover, the motivation behind it and why it is important for dc-link capac-
itor are also discussed.

Definition and motivation

In general, condition monitoring principle is defined as, "a real-time measure-
ment of a component parameter, such that if it drifts away from a healthy condition
an appropriate action can be taken" [94]. In some applications this real-time mea-
surement is not directly reachable with a measurement device. Therefore, an
alternative way is to estimate this parameter instead of measuring it. Con-
dition monitoring is a principle that estimates and predicts the health status
and operating conditions of a given system or component. It is very rec-
ommended to be applied in safety-critical systems and reliable applications,
such as; air-crafts, wind turbines, and electric vehicles. Applying condition
monitoring helps in applying preventive maintenance instead of corrective
maintenance through predicting future failures.

According to a review based on condition monitoring for Device relia-
bility in power electronics presented in [94], semiconductor and soldering
failures in device modules are sharing totals 34% of converter system failures
as shown earlier in Fig. 1.5, while for E-Caps, they are sharing 30% of the
failure distribution in power electronic components.

As a fact, in energy conversion systems, a group of series/parallel con-
nected capacitors (capacitor bank) or a single capacitor is normally used as
dc-link filter. In systems using capacitor banks, although the system will
keep operating under a failure of a single capacitor, it is very recommended
to replace all the capacitors in order to ensure reliable operation. The rec-
ommendation to replace all capacitors is due to the fact that, other capaci-
tors may exposed to an increased stress, and thereby, the capacitors life-time
degradation is accelerated [80].

Due to the aforementioned preamble on condition monitoring and dc-
link capacitors, monitoring the health status and operating condition of dc-
link capacitors is one of the most critical aspects that must be considered in
modern design of power electronic converters [78].

1.2 Problem formulation

In most applications that require power conversion, a dc-link capacitor is
located between the two power stages. Dc-link capacitors are essential for
filtering purposes by reducing the voltage ripples and equalizing the power
difference between the input side and the output side. As a smoothing en-
ergy element, dc-link capacitors are exposed to a high stressful environment.
Exposure to stressors (e.g. over voltage, over temperature, humidity ...etc) by
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Chapter 1. Introduction

time will affect the initial conditions of the capacitor construction (e.g. va-
porization of electrolyte material) causing a capacitance degradation which
shortens the life time of the capacitor. Since failure of a single element may
lead to collapse of the entire system, development of a monitoring system
that monitors the health condition of the capacitor before reaching End-of-
Life (EOL) is required. An EOL criterion for a capacitor is decided based on
the Capacitance (C) and/or the Equivalent Series Resistance (ESR) compared
with their initial values. The absence of cost-effective and practical solutions
are the main reasons why capacitor condition monitoring is not adopted by
industry. A main challenge is the way to obtain the dc-link current without
the usage of extra hardware and/or extra signal injection. Therefore, new
methodologies that overcome the aforementioned challenge are needed.

1.3 Project objectives

The hypotheses of this project is that, the health status of the dc-link capacitor
should be known by estimating its capacitance value, also the objective of this
project can be achieved by answering the following questions:

• How does capacitor condition monitoring improve the reliability of a
given power electronic dc-link based system?

In energy conversion power electronic systems, a capacitor bank or a single
capacitor is normally used. The systems could be stop operating properly if
a single capacitor degrades. In systems using capacitor banks, although the
system will keep operating under a failure of single capacitor, it is very rec-
ommended to replace all the capacitors in order to ensure reliable operation.
The recommendation to replace all capacitors is due to the fact that, other
capacitors may exposed to an increased stress, and thereby, the capacitors
life-time degradation is accelerated. The estimation of capacitance value can
be correlated to the capacitor reliability in one of the following three options:

1) An indicative sign that decide if the capacitor have failed or not by
comparing the estimated status to a specific EOL criteria.

2) A capacitor degradation level, where the difference between the esti-
mated value and the specific EOL threshold criteria is observed. For this
option, a detailed degradation curve for the capacitance or the equiva-
lent series resistance is not necessary.

3) An estimation of the Remaining Useful Lifetime (RUL). Where degrada-
tion curves of the capacitance or the equivalent series resistance under
certain conditions are required to be known. In such cases, an acceler-
ated degradation testing data must be conducted.
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1.4. Limitations of the project

• What are the main shortcomings in the previous methodologies?

The existing methodologies of capacitor condition monitoring require ad-
ditional hardware circuitry in order to obtain the dc-link capacitor current.
Those extra circuits are used whether for measuring the dc-link capacitor cur-
rent (e.g. PCB based Rogowski coils) and/or external signal injection. Extra
hardware leads to high cost and high complexity as well. Moreover, com-
paring the resulted accuracy with respect to the required effort makes it less
attractive for practical industry applications.

• How can the main disadvantages of the previous methods be avoided?

Methodologies based on software solutions with limited or no hardware
are expected to be preferable for practical applications, which normally re-
quires high reliability performance and low cost solutions. Such software-
based methodologies could be beneficial in two ways: a) it could be applied
for already existing power converters by upgrading and integrating the algo-
rithm in their digital controllers; b) as nowadays the cost of digital controllers
are getting reduced, hence, it could be also applied for new power converters.

1.4 Limitations of the project

The proposed capacitor condition monitoring method in this project is lim-
ited to Electrolytic Capacitors (E-Caps). Both simulation and experimental
case studies are limited to 4 kW power converters with an operating switch-
ing frequency of 10 kHz. Two different topologies are considered in this
project for capacitor condition monitoring based on ANN algorithm. Differ-
ences are with respect to the load type, line inductance location and nom-
inal dc-link capacitance value. The first topology is a resistive load front-
end diode bridge converter with line inductance located between three-phase
voltage source and the diode bridge. The nominal dc-link capacitance value
is limited to 1.1 mF.

The second topology is a three-phase front-end diode bridge motor drive
provided by Danfoss where dc-link inductances are considered. Additionally,
the nominal power level of the system is up to 7.5 kW, but as stated earlier,
for the cases studied in this project, up to 4 kW power level is considered.
Two series capacitors are connected as a dc-link capacitor bank equals to 0.5
mF with 800 V operating dc-link voltages.

1.5 Thesis outline and structures

This thesis deals with development of new methods that monitors the health
status of the E-Caps for dc-link application under stressed conditions by esti-
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mating the changes in the electrical parameters of the capacitor. An in-depth
analysis of prior-art condition monitoring methods (advantages, shortcom-
ings) have been done and it was found that the existing methodologies of
condition monitoring applied for capacitors are having deficiencies regard-
ing the accuracy level and hardware cost. Therefore, development of new
condition monitoring technology based on software solutions and minimum
usage of hardware components will significantly be more cost-effective.

This project develops new methods using an Artificial Neural Network
(ANN) algorithm in order to estimate the capacitance value which represent
the health status of the electrolytic capacitors in dc-link application. The
application of the method is condition monitoring of capacitors under field
operation in power electronic systems in order to apply predictive mainte-
nance. The software based method is proposed in order to solve the existing
issues of the prior-art research.

Condition Monitoring of Capacitors for DC-link Application in 
Power Electronic Converters 

Chapter 2. Condition Monitoring of Capacitors-An Overview

References

Chapter 6. Conclusions

Chapter 1. Preamble

Chapter 3. Artificial Neural Network Algorithm-Background.

Chapter 4. Methodologies of Artificial Neural Network for the Condition

Monitoring of DC-link Capacitor

Chapter 5. Test of  DC-link Capacitor Estimation Proposed Methodology    
Applied to a Practical Motor Drive System

Fig. 1.12: Detailed paper-based thesis structure.

16



1.5. Thesis outline and structures

The structures and details of this paper-based thesis can be seen in the
diagram shown in Fig. 1.12. The introduction of this thesis is presented in
Chapter 1 and includes a background of the dc-link capacitor types, their con-
struction and mode of failure, general reliability assessment methods. More-
over, problem formulation, project motivation, objectives and limitations of
this project are also included.

In Chapter 2, an overview of the existing technologies of capacitor condi-
tion monitoring and a classification according to their methodologies is given.
The given overview is beneficial to both the academic research and the indus-
try. The following two purposes are served by this overview: a) identify the
limitations of the existing technologies and the promising aspects of them; b)
explore the points of strength to develop future research that contribute to
more practical applications.

In Chapter 3, the background of the ANN algorithm technology to be used
in this project is given. It also discusses the basic concept of the ANN and
its structure, and then describes the training process. In addition, description
of the ANN type and its mathematical details used in this project is discussed.

Applying of the proposed method in simulation is analysed in Chapter 4.
The proposed condition monitoring method based on ANN is applied on a
three-phase front-end diode bridge converter where the dc-link voltage is not
controlled and thereby only unidirectional power flow. In order to validate
the proposed condition monitoring method, a proof of the concept using a
Digital Signal Processor (DSP) is also presented. The proposed ANN is im-
plemented in a DSP to verify the capacitor condition monitoring in practice.
However, Chapter 4 is a mid-way step between simulation and practice. This
is due to the fact that, the inputs to the ANN integrated with the DSP are
still sourced from simulation. In addition, part of Chapter 4 concerns also the
integration steps of the trained ANN with the DSP and issues of Analog-to-
Digital Conversion (ADC) and Digital-to-Analog Conversion (DAC).

In Chapter 5, verification of condition monitoring based on ANN algo-
rithm is applied on a 4 kW three-phase front-end diode bridge motor drive.
The motor drive is provided by Danfoss. The approach to apply the proposed
methodology is to estimate the total capacitance value of the dc-link capac-
itor bank using a trained ANN. The ANN is trained and tested using input
and output terminal information from the practical. In addition, capacitance
estimation based on measured dc-link voltage harmonics are also included.
Finally, a conclusion is provided in Chapter 6 including main contributions
and future work.
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Chapter. 2

Condition Monitoring of
Capacitors - an overview

In this chapter, an overview of the existing technologies to do capacitor condition
monitoring and a classification according to their methodologies is given. This given
overview is one of the main contribution in this PhD project and it is a direct copy
from my paper [80] which is published during my PhD study with the following
details:
H. Soliman, H. Wang and F. Blaabjerg, “A Review of the Condition Mon-
itoring of Capacitors in Power Electronics Converters,” IEEE Transactions
on Industry Applications, 2016. The following two purposes are served by this
overview: a) identify the limitations of the existing technologies and the promising
aspects of them; b) explore the points of strength to develop future research that con-
tribute to more practical applications.

2.1 Introduction

The condition monitoring of semiconductor devices used in power electronics
is well reviewed in [94]. In addition to active semiconductor devices, capac-
itors are another type of components which fail more frequently than other
components in power electronic systems [94]. During the last two decades,
there are a large number of scientific publications on the condition monitor-
ing of capacitors, of which the relevant ones are collected and reviewed in
this chapter [11–32, 35–39, 41, 44–47, 49–54, 56–58, 60–66, 68, 69, 71, 72, 75,
77, 81, 83–86, 91, 92, 95]. Nevertheless, the developed technologies are rarely
adopted in industrial applications, due to the complexity, increased cost, and
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Chapter 2. Condition Monitoring of Capacitors - an overview

other relevant issues. Therefore, an overview of the existing methods is ben-
eficial to both the industry application and academic research. It serves the
following two purposes: a) a benchmark of different condition monitoring
solutions and identify the most promising aspects and limitations of them; b)
trace the process history of the technology evolution and explore the future
research opportunities that have the potential to contribute to more practical
applications.

A single capacitor or a capacitor bank is usually used in power electronics
conversion systems. If the single capacitor reaches its End-Of-Life (EOL), the
systems may be malfunction. For the systems with capacitor banks, once one
of the capacitor fails, the other capacitors may withstand increased stresses,
which then accelerate the degradation of them. Therefore, the time-to-failure
of the multiple capacitors could vary. In order to ensure a reliable opera-
tion, it is recommended to replace the entire bank once one of the capacitors
reaches the end-of-life [10].

A simplified equivalent model of capacitors is shown in Fig. 2.1(a), and
the corresponding frequency characteristics is plotted in Fig. 2.1(b). It can be
seen that the capacitor impedance is distinguished by three frequency regions
dominated by capacitance (C), the Equivalent Series Resistance (ESR) and the
Equivalent Series Inductance (ESL), respectively.

  

C ESR ESL

(a) A simplified equivalent model of capacitors.

  

Z

ωω1 ω2

ESR

1/ωC ωLESL

Region I Region II Region III
Dominated by Dominated by Dominated by

(b) The impedance characteristics of capacitors.

Fig. 2.1: The equivalent model and impedance characteristics of capacitors [80].

The majority of the condition monitoring methods for both individual
capacitors and capacitor banks are based on the estimation of the capacitance
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2.1. Introduction

C and Equivalent Series Resistance (ESR), which are typical indicators of the
degradation of capacitors [88].

According to the degradation curves in Fig.2.2(a), and based on the block
diagram shown in Fig. 2.2(b), an end-of-life or a threshold criteria is needed
before going further and decide the health condition of the capacitor. For
electrolytic capacitors, the widely accepted end-of-life criteria is 20% capaci-
tance reduction or double of the ESR. For film capacitors, a reduction of 2%
to 5% capacitance may indicate the reach of end-of-life. The range in between
the initial value of capacitance/ESR and the aged value, is the condition mon-
itoring range, as shown in Fig. 2.2(a).

 

 

Co = Initial capacitance. CEOL = Capacitance at End-Of-Life. 
ESRo = Initial equivalent series resistance. ESREOL = equivalent series resistance at End-Of-Life. 
*CEOL could be larger or smaller than ESREOL, it depends on the application and the capacitor type. 

C / ESR

Time (years)End of useful time*

Co

CEOL

Condition Monitoring Range

ESRo

ESREOL

( )ESR f t=

(t)C f=

(a) Capacitance and ESR curves as an indication of capacitor degradation level.

Threshold 

criteria  

o Status indices 

o Remaining Useful 

Lifetime (RUL) 

 

o Degradation level 

 

 

Parameter(s) 

estimation  

 (e.g. C, ESR …) 

Curve fitting 

function

  

(b) Major steps in condition monitoring of capacitors.

Fig. 2.2: Key indicators of condition monitoring and their steps [80].

The selection of those end-of-life criteria are based on two aspects to con-
sider: 1) The capacitor degradation rate becomes considerably faster (e.g.
dC/dt , dESR/dt) after the capacitance or ESR reaches the specified end-of-life
criteria, 2) The power electronic conversion systems may not function ap-
propriately when the capacitance drops or the ESR increases to a specified
level [89]. The estimated capacitance C or ESR value can be correlated to the
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Chapter 2. Condition Monitoring of Capacitors - an overview

health conditions of the capacitor in one of the following:

1) An EOL indication by comparing the estimated value to the specific end-
of-life criteria.

2) A degradation level, by observing the difference between the estimated
value of C and/or ESR and the specific EOL criteria. For this purpose,
a detailed C or ESR degradation curve is not necessary.

3) An estimation of the Remaining Useful Lifetime (RUL). It requires the
knowledge of the C and/or ESR degradation curves under specific op-
eration conditions, which are usually obtained from the accelerated
degradation testing data.

An overview of the reliability of capacitors in dc-link applications is pre-
sented in [88]. Failure mechanisms, lifetime models and dc-link design so-
lutions are discussed. A brief discussion on the condition monitoring of ca-
pacitors is also given. Since the scope of [88] does not focus on the condition
monitoring, no detailed discussion and critical comparison of the prior-art
methods are provided. The review in this chapter intends to fill the gap in
the literature and conducts a comprehensive overview on the research topic.
Section 2.2 gives the classification of the existing condition monitoring meth-
ods. Section 2.3 outlines the technology development history of capacitor
condition monitoring for the last two decades and the benchmark of these
technologies. A summary of the future research opportunities is given in
Section 2.4.

2.2 Classification of condition monitoring literature
according to their methodologies

As shown in Fig. 2.3, the capacitors condition monitoring methods can be
classified from three perspectives. Availability is the first perspective, where
the health indicator can be obtained during the operation of the system, and
thereby it is called an online condition monitoring. If an interruption of
the system is required to obtain the health indicator it is called an offline
condition monitoring. The second perspective shows the type of the health
indicator that is used for the condition monitoring. The third perspective is
the methods to obtain the values of the specific indicator.

Accordingly, Fig. 2.3 shows the classification of the methods to obtain
different health indicators. They are divided into three categories to be dis-
cussed and they are mainly applied for single-stage DC-DC converters, DC-
AC inverters, and two stage AC/DC/AC converters. The topologies that are
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methodologies
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Fig. 2.3: A classification of capacitor condition monitoring technology and their indicators [80].

iC

iS

L
iL io

VS

C

ESR

ESL

VC

VESRVDC

VESL

D

RoD1

S1

(a) The boost converter circuit.

iC

iS

L

iL io

VS

C

ESR

ESL

D
Ro

S1

VC

VESRVDC

VESL

(b) The buck converter circuit.

Fig. 2.4: Condition monitoring applications for single-stage DC-DC converters discussed in this
thesis [80].
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Fig. 2.5: Condition monitoring applications for two-stage AC/DC/AC power converters being
discussed in this chapter [80].

discussed in this section are shown in Fig. 2.4 and Fig. 2.5, where Fig. 2.4(a)
is a boost converter and Fig. 2.4(b) is a buck converter.

Fig. 2.5 shows a generic structure of AC/DC/AC converters with either
a diode-bridge rectifier or PWM rectifier as the first AC-DC stage. The def-
initions of the voltages, currents, and components are shown in the figure.
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2 fi - current through the capacitance in the frequency filter, rhR - braking rheostat,  𝑉𝑉DC - dc-link voltage, 𝑉𝑉C - capacitor voltage, 𝑖𝑖C - capacitor 
current, 𝑉𝑉Cf - capacitor voltage at certain switching frequency, 𝑖𝑖Cf_ - capacitor current at certain switching frequency, 𝛥𝛥𝛥𝛥C - capacitor ripple 
voltage, 𝛥𝛥𝛥𝛥Cf - fundamental capacitor ripple current, 𝛥𝛥𝛥𝛥Cf - fundamental capacitor ripple voltage, 𝜗𝜗𝑜𝑜𝑜𝑜,0 - initial volume of E-Caps, 𝜗𝜗𝑜𝑜𝑜𝑜 - 
volume of E-Caps, ESRo - initial value of equivalent series resistance, ESRHOT - ESR at operating temperature, H - heat transfer per surface 
area, S - surface area, ∆T - element temperature rise, 𝛥𝛥𝛥𝛥L - inductor ripple current, 𝑅𝑅 - load resistance, 𝑉𝑉S  - solar PV voltage, 𝑇𝑇S - switching 
time, D - duty cycle, L - inductor,  𝐵𝐵𝐵𝐵𝐵𝐵[𝑃𝑃C] - output capacitor power from band pass filter, ANFIS - Adaptive Neuro Fuzzy Inference 
System,  ANN - Artificial Neural Network. 
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Fig. 2.17  Based on software – no extra hardware 
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1500/2500 µF - 12 kW [32] 

Table 2.1: Condition Monitoring Methods of Capacitors in Power Electronic Converters from Different 
Literature [70].

Part of the representative condition monitoring methods discussed in [15] -
[41] are listed in Table 2.1. Table 2.1 categorise the respective methods, the
applied health indicator, and also the principle for the indicator estimation.
The information of the application case in terms of topology, power rating,
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2.2. Classification of condition monitoring literature according to their
methodologies

and capacitance value are listed. A brief discussion of the advantages and
disadvantages is also included. More specific details of these methods and
applications will be discussed in this section.

2.2.1 Capacitor ripple current sensor based methods

The basic concept in this category is to obtain the capacitance and/or ESR
by using the capacitor voltage and ripple current information at region I and
region II, respectively (as illustrated in Fig. 2.1(b)). Some of the presented
methods in the literature have applied this concept [17, 19–24, 26, 28, 31]. To
obtain the voltage and current information at a certain frequency, external
signals are injected. The signal is injected into the power electronic circuits
with the frequency of interest. A large number of papers discuss the methods
in this category. The capacitor voltage information is readily available since
it is usually required for the control of power electronic converters, (e.g., the
dc-link voltage). The ripple current is measured by an additional current
sensor. The current sensors used for capacitor current measurements can be
divided into classical current sensors (e.g., resistors, hall sensors) and Printed
Circuit Board (PCB) based Rogowski coils. PCB based Rogowski coils are a
designed PCBs which are fixed to the capacitor terminal to sense both the
capacitor currents and voltages.

Classical current sensors

Without signal injection Methods that are using direct classical current sen-
sors are not very common. Three examples illustrate the concept of using a
direct sensor [15], [49] and [83]. All are using a direct current sensor to ob-
tain the capacitor ripple current which is in addition to the ripple voltage
obtained through an existing voltage sensor. In [15], the Root-Mean-Square
(RMS) value of the capacitor current measured by a current sensor is ob-
tained. The average capacitor power (PC) can be calculated by multiplying
the capacitor’s current and capacitor’s ripple voltage. The calculation of the
ESR is achieved by (2.1)

ESR =
PC

i2C
(2.1)

where iC is the current flowing through the dc-link capacitor.
In [49], the measured capacitor current is filtered by a Band Pass Filter

(BPF) before calculating the RMS value. The usage of the filter is due to the
calculation of ESR in a certain range of frequencies -as discussed previously-
and it is given in (2.2) as
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ESR =
VC f

iC f
(2.2)

where, VC f and iC f are the dc-link capacitor voltage and current at a certain
switching frequency, respectively.
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Fig. 2.6: ESR computational circuit in capacitors [83].

In [83], an electronic module is designed and integrated with an elec-
trolytic capacitor. The electronic circuit is able to calculate the ESR by sensing
the capacitor ripple current and voltage. The calculated ESR value are then
compared with the initial value of the ESRo in order to decide the capacitor
status. The computational circuit is shown in Fig. 2.6.

Although this method requires additional hardware and the maximum
error of the ESR estimation is 10%, the main advantage is the usage of a
toroidal core to sense the ripple current. The authors claimed that the addi-
tional parasitic inductance due to the usage of the toroidal core is negligible
in this application case.

It is important to notice that the estimation of the ESR based on the av-
erage capacitor power is achieved with 10% estimation error, which is ac-
ceptable in some applications. Moreover, it is achieved without the usage of
filters, which also reduces effort and cost. But in some applications, the usage
of the filter is required in order to achieve higher accuracy with an estimation
error lower than 10%.

With signal injection An alternative way is to externally inject a desirable
signal of current or voltage at a certain frequency into the circuit where the
capacitor of interest is located. This basic methodology is the most widely
used. Various applications and different methods can be used, and most are
applied on an experimental setup as illustrated in Fig. 2.7.
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 Fig. 2.7: Experimental setup with signal injection used in [20]- [28].

In [20] and [19], an experimental technique that allows the determination
of the ESR value of aluminium electrolytic capacitors based on sinusoidal
analysis technique is reported. The technique has been applied on a capaci-
tor existing in an LC filter with 25 V input voltage, and 4700 µF filter capac-
itor. However, the technique presented some drawbacks due to the fact that
both capacitance and inductance values are frequency dependent. In these
two references, the estimated ESRs from the experimental test are not com-
pared with the simulations. This is due to the fact that both tests are done
at different frequencies. Moreover, the obtained results are not compared to
the initial values due to the lack of information from the manufacturer of the
tested capacitors. The manufacturer is typically providing the data sheets
with a dissipation factor (DF) at 120 Hz.

In order to overcome the aforementioned shortcomings, different algo-
rithms were used in [17, 21–24, 26, 28, 31]. Laplace transform algorithm
in [21], Newton Raphson (NR) in [22] and [24], Discrete Fourier Transform
(DFT) in [17, 26, 28], and Least Mean Square (LMS) in [23, 31]. All the algo-
rithms are used to calculate the relationship between the input voltage and
the output voltage of the experimental circuit shown in Fig. 2.7. The differ-
ences between these algorithms are summarized at the end of this section.

In [22] and [17], the same setup as shown in Fig. 2.7 is used to estimate the
equivalent circuit of the capacitor by using the NR method and DFT, respec-
tively, instead of Laplace analysis. The measured values of the capacitance
and ESR are compared with those obtained in [21]. The NR based method
gave values, which were very close to the measured values using an LCR
meter with a maximum error of 1.5%. Comparing the obtained values based
on the DFT method in [17] with the values obtained by the Laplace transform
method in [21], the DFT method estimated the ESR with a maximum error
of 8%, and the method using the Laplace method estimated the ESR with a
maximum error of 18%.

Another method based on DFT analysis is considered in [26] and it is
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applied on the same setup as shown in Fig. 2.7. The method estimated the
ESR and capacitance with a maximum error of 11% and 2.8% respectively.
In [23], a simple modification to the same setup shown in Fig. 2.7 is carried
out to estimate the ESR and capacitance. The modified circuit uses a control
circuit to charge and discharge the capacitor. Therefore, from the relationship
between the capacitor current and the capacitor voltage, the capacitance value
is estimated by applying an LMS Algorithm using a sinusoidal curve fitting
technique instead of using the Laplace transform.

Based on the same method proposed in [23] and the setup shown in Fig.
2.7, a wider range of frequencies and temperatures are considered in [31] for
the estimation of ESR and capacitance. In addition, [31] uses two methods;
a) based on sinusoidal generator, b) based on charge/discharge circuit, and
compares each method. It is concluded that for the ESR estimation the first
method is better, while the opposite is correct for the capacitance estimation.

Analysis 
Algorithm 

Operating frequency 
[Hz] 

(C) Estimation 
error [%] 

(ESR) Estimation 
error [%] 

Laplace 
Transform 

120  17.6% [10] N/A 
750  N/A 18% [11] 
10 k N/A 5% [10] 

Discrete Fourier 
Transform  
(DFT) 

750  N/A 8% [11] 
1 k 2.8% [12] 11% [12] 

10 k N/A 10% [10]   12% [16] 
Newton-Raphson 
(NR) 

120  1.5% [10] 8.4% [15] 

Least Mean 
Square 
(LMS) 

1 kHz Method (1)* 2.6% [13] 
1.0% [14] 

0.4% [14] 

Method (2)* 0.3% [14] 9.7% [14] 

*Method (1): based on sinusoidal generator.  Method (2): based on charge/discharge circuit.

Table 2.2: A Summary of Condition Monitoring Analysis Algorithms [70].

Table 2.2 summarizes the comparison between all algorithms with respect
to the operating frequency. Based on the review of these algorithms, the
following can be concluded:

1) In order to use the Laplace transform algorithm, a certain requirement
must be fulfilled. The requirement is that the input resistance R must
be two to three times higher than both the ESR and the ESL. Otherwise,
the Laplace transform algorithm shows high error percentages.

2) The NR Algorithm is an iteration based algorithm, and from the results
listed in Table 2.2, NR is recommended for the frequency region I, and
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hence, for capacitance estimation.

3) The DFT algorithm is considering only the first harmonic component in
the computation of the gain and phase displacement between the input
and output voltage, and hence, it needs low effort.

4) All of the four algorithms are applied for offline condition monitoring of
capacitors.

C

ESR

ESLThree phase 
inverter

Grid

Lg Lcon

Cinitial

 

Fig. 2.8: LCL filter interfaced PWM inverter connected to the grid [47].

For the LCL filter of a grid connected PWM converter shown in Fig. 2.8, a
condition monitoring method is proposed in [60] and [47]. This methodology
is based on using the corresponding variation in the filter capacitor operat-
ing frequency region as the capacitance drop is an indication to the health
status. Assuming the capacitance is reduced up to 80% of the initial value,
the frequency caused due the drop is calculated by

f =
1

2π
×

√
Lcon + Lg

Lcon × Lg × 0.8Cinitial
(2.3)

where Lcon is the line inductance on the converter side, Lg is the line in-
ductance on the grid side, and Cinitial is the initial value of the capacitance.
The initial frequency corresponding to the initial capacitance is 2185 Hz. Due
to a 20% capacitance drop, the corresponding frequency to is 2440 Hz. To ob-
tain the frequency of the aged capacitor, a voltage is injected into the reference
voltage of the capacitor in the LCL filter with the frequency ωinj. Although
this method is similar to the one proposed in [14] since both are using voltage
injection, the difference is the usage of the measured capacitance frequency
and comparing it to the initial frequency to identify the deterioration of the
capacitor. Moreover, as shown in Fig. 2.9.
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Fig. 11. Quality factor and Gain curve of Band Pass Filter. 

Fig. 12. Gain curve of High Pass Filter. 
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Before the deterioration of a capacitor, when the capacitance 
of the filter-side capacitor keeps the initial value, the magnitude 
gain is expressed as in (18). However, if the capacitance 
decreases up to the fault-point, the magnitude gain is calculated
as in (19) because the injected frequency is equal to the 
resonant frequency of the LCL-filter. The proportion value r of 

(14) 

(15) 

(16) 

(17) 

[dB]

frequency [Hz]

Change of frequency with respect to 
capacitance decrease 

80% of initial 
capacitance

initial 
capacitanceωinj

Fig. 2.9: Difference of dB gain between initial capacitance and faulty capacitance. [47].

The resonant frequency is moved by the decrease in capacitance, the re-
sponse gain to the injection component is increased from point β to point
α due to the changed transfer function of the LCL filter. Thereby, the re-
placement time of the capacitors is determined according to the following
condition:

(α− β) ≥ 80% (2.4)

where (α) and (β) are the dB frequency magnitude of the initial and degraded
capacitance, respectively.

PCB based Rogowski coils

Capacitor condition monitoring based on PCB based Rogowski coils is sum-
marized in this sub-section. Sample of a PCB based Rogowski current sensors
is shown in Fig. 2.10.

 

PCB based Rogowski coils Capacitor  

Fig. 2.10: Sample of a PCB based Rogowski current sensor connected to a capacitor [84, 92].
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(b) ESR estimation based on Rogowski coil current sensor [84, 92].

Fig. 2.11: Condition monitoring by ESR estimation based on designed PCBs.

The methods described in [84] and [92] are based on the Rogowski current
sensor concept, where a designed PCB is fixed to the capacitor terminal to
sense both capacitor’s current iC,ac and voltages VC,ac as shown in Fig. 2.11(b).
The difference between Rogowski based methods and the method in [83] is
illustrated in Fig. 2.11. The advantage with the Rogowski based methods is
the avoidance of using extensive filters since the total active power PC drawn
by the capacitor is represented by the ESR. In Fig. 2.11(a), VC f and iC f are
the capacitor voltage and current at a certain frequency, respectively.

2.2.2 Circuit model based methods

Without signal injection

Instead of the current sensors connected in series with the capacitors, the
capacitor ripple currents can also be obtained indirectly based on the opera-
tion principle of PWM switching converters [91], and the switching status of
DC-DC power converters with LC filters [39].

An on-line condition monitoring method based on capacitance estimation
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is presented in [91], and the capacitance is estimated by

C =
1

∆VDC

∫
iCdt (2.5)

Referring to Fig. 2.5, the electrical information i1, ia,out, ib,out and VDC are
obtained by using the three existing current sensors and one voltage sensor,
respectively. These sensors are already existing for the control purpose of the
converter. The electrical information iC, i2, ic,out are estimated indirectly.

The capacitor ripple current iC is calculated using the difference between
the input current sensor i1 and the current flows to the inverter i2 which is
based on the transistor switching sequences. The assumption of this calcula-
tion is that the three phase output currents are balanced.

Due to the high switching frequency in the DC-DC converters, the impedance
of the electrolytic capacitor is dominated by the ESR. Since the ESR is very
small compared to the load resistance, the output ripple voltage is deter-
mined by the capacitor ESR and the inductor ripple current. For a DC-DC
power converter operated in steady state, three factors in which the induc-
tor current depends on remains unchanged. The factors are duty cycle, the
inductance, and the difference between input and output voltage. Therefore,
the amplitude of the output AC ripple voltage is determined directly by the
ESR. The experimental test is based on a comparison between the output rip-
ple voltage in the case of using predetermined un-aged capacitor, with the
output ripple voltage in case of using an aged capacitor.

In [16], an online methodology that belongs to this category and requires
no signal injection is proposed. The methodology is applied on a dc-link
capacitor in a boost converter as shown in Fig. 2.4(a). The boost converter is
supplied from a PV panel. The main advantage of this methodology is that,
the sensing voltage for the Maximum Power Point Tracking (MPPT) purpose
is utilized for the ESR and capacitance estimation according to (2.6) and (2.7),
respectively.

ESR =

[
VS|t=0

−VS|t=DTs

]
× L

VS × DTs
(2.6)

C =
VS × DTs

8× L×
[

VS|
t= DTs

2

−VS|
t= (1+D)Ts

2

] (2.7)

where, VS, Ts, D, and L are the solar PV voltage, switching time, duty
cycle, and the inductor, respectively as illustrated in Fig. 2.12.
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Fig. 2.12: Voltages waveform with respect to sampling time and duty cycle. [16].

However, the ESR and the capacitance can be estimated only during
steady state, when the MPPT system settles to a point. Since the same sensing
voltage is used for the MPPT, ESR and capacitance estimation, the condition
monitoring method is implemented in the same microcontroller, which is
also used for the MPPT. This helps to avoid additional hardware, and hence
reduces the cost.
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G
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Fig. 2.13: General traction power converter scheme. (a) dc-link capacitor. (b) Frequency filter. (c)
Braking chopper. [37].

Another methodology that is applied to the capacitor condition monitor-
ing is based on the circuit model presented in [37]. The condition monitoring
is based on the capacitance estimation of a dc-link Metallized Polypropylene
Film (MPPF) capacitor in a traction system. The general traction power con-
verter topology for the railway trains is shown in Fig. 2.13. In respect to the
operation nature of the traction systems, during the capacitor discharge pe-
riod, the obtained equivalent circuit of the dc-link is shown in Fig. 2.14. Nor-
mally in the traction system applications both current and voltage sensors
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Fig. 2.14: Equivalent dc-link circuit during dc-link capacitor discharge [37].

are already installed and available in some auxiliary measurement blocks.
Thereby, an insertion of an additional current sensor in series with the dc-
link capacitor or a voltage sensor is avoided, and the dc-link capacitor will be
obtained by applying the Least Mean Square (LMS) optimization algorithm
to

C
dvDC

dt
+

1
Rrh
×VDC = −i2F (2.8)

where C, i2F, L2F, C2F, Rrh, VDC are the dc-link capacitor, current passes
through the frequency filter, frequency filter inductance, frequency filter ca-
pacitance, braking rheostat, and dc-link voltage, respectively in the motor.

A similar concept that estimates the ESR and the capacitance at a certain
time is also presented in [95]. The estimation is applied to a dc-link capacitor
in a three phase diode bridge AC/DC/AC converter that drives an induc-
tion motor as shown in Fig. 2.5. The main idea is to apply the condition
monitoring method whenever the motor is stopped. During this instant, the
equivalent circuit is given as shown in Fig. 2.15.

i2

D S1 Las+Lbs

Va,b

D4

ia,out+ib,out

iC

C

ESR

ESL

VC

VESRVDC

VESL

Ras+Rbs

La+Lb

ia,in+ib,in

 

Fig. 2.15: Equivalent circuit of the 3-phase AC/DC/AC converter shown in Fig. 2.5 when the
motor is stopped [95].

In Fig. 2.15, La, Lb, Las, Lbs, Ras, Rbs, are the line inductances of phase A
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and phase B, the stator inductances and resistances of phase A and phase B,
respectively.

With signal injection

A few examples that are based is on the circuit model methodology in ad-
dition to external signal injection are proposed in [54, 58, 62, 68, 71, 72].
The current injection methods in [71], [62], [68], and [72] are applied on the
PWM AC/DC/AC converter, while in [54] and [58] they are applied to a
sub-module capacitor in a modular multilevel converter, and a drive system
for electric vehicles, respectively.

VDC_mid

VC_mid

iC_mid

Sampled DC-
link voltage 

VESR

-icia ia-ic

Re-constructed idc

VDC

VC

TS TS
 

Fig. 2.16: Behavior of the dc-link current and voltage according to the gating pulses in an
AC/DC/AC converter shown in Fig. 2.5 [71].

The injected current is of a frequency lower than the line frequency, in-
ducing two voltages, which follows the relationship of

VDC = VC + VESR (2.9)

By considering the generation of the zero voltage vectors in the switching
periods, the values at the mid-point of the switching periods are used in
order to obtain the ESR value as
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ESR =
VESR

iC
=

VDC_mid −VC_mid
iC_mid

(2.10)

where the term (mid) in the subscripts indicates the quantities measured at
the midpoint of the normal sampling period as in the signals shown in Fig.
2.16.

In [62] the estimated capacitance is obtained by 2.5. Although it can be
noticed that the current injection method is applied on various applications,
the need of external signals, extra hardware and filters are the main short-
comings in such a method.

2.2.3 Data and advanced algorithm based methods

In this category, the power electronic converters are treated as a black-box or
semi-black-box. Black-box approaches are based on the information of volt-
ages and currents at the input side and output side only. The internal proper-
ties of the converters are assumed unknown. Semi-black-box approaches use
also some of the available information inside the power converter structure.
The relationship between the parameters to be estimated and the available
parameters (e.g., input and output side terminal voltage and current infor-
mation, dc-link voltage) are obtained through the data training.

In [14], a low frequency AC voltage is injected to the dc-link reference,
which is used as training data in order to find the identification model based
on a Support Vector Regression (SVR) method. After using a set of training
data, a function that finds the relationship between the capacitor’s power
PC and its corresponding capacitance is designed, and the capacitance C is
determined according to

C =
BPF[PC]

BPF[1/2][∆V2
C

dt ]
(2.11)

where, the term BPF[PC] refers to the capacitor’s power filtered by using
a Band Pass Filter. The cut-off frequency of the used BPF equals to 30 Hz.
As claimed in [14], this method is simpler than the current injection, since
the estimation is based on the capacitor power and no dc-link ripple current
information is required. Since the SVR is an algorithm, which is based on off-
line trained data, the Recursive Least Square (RLS) algorithm can be applied
to allow the estimated capacitance to be updated, when new data become
available [61].

A method for condition monitoring of capacitors based on data training
using software algorithms is presented in [57]. Its structure is shown in Fig.

36



2.2. Classification of condition monitoring literature according to their
methodologies

2.17. The method is applied to a power electronic converter shown in Fig.
2.17(b) and based on Adaptive Neuro-Fuzzy Inference System (ANFIS) algo-
rithm. The methodology is based on collecting data and training the ANFIS
on them in sake of predicting future non-trained outputs according to the ba-
sic structure shown in Fig. 2.17(a). The supply voltage Vs and ripple voltages
V1 and V2 of both filter capacitors C1 and C2 are inputs to the ANFIS.

 

ANFIS
Network

VS

Index%V1

%V2

0
1
2

→
 →
 →

Normal conditions
Capacitor ageing for C1

Capacitor ageing for C2

(a) Structure of Adaptive Neuro-Fuzzy Inference System (ANFIS)
network [57].
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 (b) Power electronic converter circuit [57].

Fig. 2.17: Condition monitoring of capacitors based on data training proposed by [57].

Both V1 and V2 are going through an interpolation process before imple-
menting them in order to assure that a strong mapping between the input
and output is obtained.

In order to investigate the ageing process, V1 and V2 are calculated at
the end-of-life states and denoted by V1th and V2th, respectively. A relation-
ship between the supply voltage and the end-of-life voltages is linearly in-
terpolated using curve fitting techniques. The two factors V̂1th and V̂2th are
obtained, where V̂1th and V̂2th are the estimated values of V1th and V2th ac-
cording to Vs respectively. Finally, in order to obtain the data implemented
as input to the ANFIS, a percentage value is calculated as the following
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%V1 =
V1m
V1th
× 100 (2.12)

%V2 =
V2m

V2th
× 100 (2.13)

where V1m and V2m are the measured values of V1 and V2 respectively at any
current level.

The ANFIS network is trained on 366 pair of input and output. The net-
work estimates one index out of two indices for capacitance and ESR of
both capacitors in the converter. Moreover, the ANFIS can show decreas-
ing/increasing percentages in the capacitance and the ESR, respectively. The
method based on the ANFIS gives a high accuracy (0.5% maximum error)
according to the results and it is useful for fault detection.

2.3 Historical summary of the existing methodolo-
gies of condition monitoring

The technology evolution of the capacitor condition monitoring technologies
is illustrated in Fig. 2.18 with respect to the history. Different methods are
represented according to the selected indicators, online or offline, and the
methodologies discussed in Section 2.2. The maximum estimation error cor-
responding to each methodology is also given in Fig. 2.18.

Since the estimation accuracy is an important performance factor, Fig.2.19
compares the estimation errors with respect to the range of capacitance C
and ESR. The comparison is according to the available data in different liter-
atures and with respect to the methodologies classified earlier in Section 2.2.
It can be seen that the lowest error percentages are captured by the meth-
ods that belongs to methodology III. This conclude that software solutions
(e.g. requires less/no extra hardware and/or signal injection) have a strong
potential to be considered in the future condition monitoring methods.

Fig. 2.20 summarizes the share of the considered lifetime indicators, and
the share of each methodology listed in this chapter. Almost 60% of the
used health indicator is captured by the ESR. This percentage conclude that
(E-Caps) are the widely used capacitor type in power electronic applications.

2.4 Summary

Based on the above analysis, the following conclusion can be given in the
overview:
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Fig. 2.18: History of the condition monitoring technology development for capacitors from 1993-
2015 [80].
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Fig. 2.19: Comparison of the parameter estimation in prior-art literatures [80].
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Fig. 2.20: Sharing percentages of the used methods and the considered indicators summarized
in Fig. 2.18 [80].

1) Fig. 2.19 shows that the condition monitoring methods based on Method-
ology III have achieved a relatively higher accuracy than those based
on Methodology I and Methodology II.

2) The majority of the condition monitoring methods are based on themethod-
ology I as shown in Fig. 2.20, which is based on capacitor ripple current
measurements.

3) Fig. 2.20 shows that the ripple voltage estimation is the least considered
indicator. However, the capacitor ripple voltage is the main factor in
ESR and capacitance estimation.

4) According to the development history shown in Fig. 2.18, the ESR is a
common indicator for capacitor condition monitoring due to the widely
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2.4. Summary

usage of electrolytic capacitors where both capacitance and ESR can in-
dicate the health status. For film capacitors, the capacitance is a pre-
ferred indicator, since the ESR of the film capacitors are significantly
smaller than that for the electrolytic capacitors.

5) It can be noted from Fig. 2.18 that the majority of the condition monitoring
methods are online. By considering that the degradation of capacitors
are usually very slow, offline condition monitoring is sufficient in most
applications (e.g., in motor drives) to detect the wear out of capacitors.
It implies that simpler estimation methods can be applied (e.g., during
the start-up of motor drives).

6) The capacitor ripple current sensor based methods are not attractive for
practical industry applications due to they need additional hardware
circuitry, meaning cost and extra reliability issues are introduced into
the circuit. Table 2.4 shows the hardware/software complexity with re-
spect to each methodology. It can be seen that the hardware complexity
is reduced compared to an increase in software complexity.

7) Software based methods with reduced or no additional hardware efforts
are expected to be attractive for industry applications, which requires
high reliability performance and low cost. The advantages of this kind
of methods are twofold: a) it could be applied for both new power con-
verters or existing power converters by upgrading the algorithms in the
digital controllers; b) it is a trend that the cost of digital controllers and
computation resources is reducing. Moreover, methods that are based
on software algorithms are less exposed to be copied from other users
or competitors.

8) Cost-effective and low-inductive current sensing methods could overcome
many of the shortcomings of existing current sensor based methods.
PCB-based Rogowski coils are promising for the capacitor current mea-
surement, while more research efforts are needed to achieve better in-
tegration with the capacitors and more robust and cost-effective design.

9) Integrated implementation of condition monitoring, protection, and other
ancillary functions for capacitors in applications requiring high reliabil-
ity performance.
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to detect the wear out of capacitors. It implies that
much simpler estimation methods can be applied
(e.g., during the start-up of motor drives).

7) The capacitor ripple current sensor based methods
are not attractive for practical industry applications
due to its addition of hardware circuitry, cost and
the reliability issues of the introduced circuit. Table
IV shows the hardware/software complexity with
respect to each methodology. It can be seen that the
hardware complexity is reduced against the increase
in software complexity.

TABLE I. THE ASSOCIATED LEVELS OF COMPLEXITY
WITH RESPECT TO EACH METHODOLOGY.

Methodology Hardware Complexity Software Complexity 
I + + + + 

II + + + + 

III + + + + 

8) Condition monitoring of capacitors discussed here
is limited to the wear out detection. To extend the
scope, in reliability critical applications, the online
monitoring of the operation status (e.g., hot spot
temperature, abnormal voltage and current stresses)
is of much interest. For this perspective, the online
monitoring of capacitance and ESR value might be
necessary to indirectly monitor the temperature and
other abnormal stressors.

9) New methods based on software solutions and exist-
ing feedback signals, without adding any hardware
cost, could be attractive for industry applications.

TABLE I
THE ASSOCIATED LEVELS OF COMPLEXITY WITH RESPECT

TO EACH METHODOLOGY.

Methodology Hardware Complexity Software Complexity

I + + + +

II + + + +

III + + + +

V. CONCLUSIONS

The condition monitoring technologies are classified by the
authors into three categories from their methodology point
of view. The indicators that represents the health status of
the capacitor and the used approach to calculate them are
also reviewed. Different iteration/estimation algorithms used
for capacitor condition monitoring applications are grouped.
A comparison between these algorithms and the estimated

TABLE II
THE ASSOCIATED LEVELS OF COMPLEXITY WITH RESPECT

TO EACH METHODOLOGY.

Methodology Hardware Complexity Software Complexity

I + + + +

II + + + +

III + + + +

TABLE III
THE ASSOCIATED LEVELS OF COMPLEXITY WITH RESPECT

TO EACH METHODOLOGY.

Methodology Hardware Complexity Software Complexity

I + + + +

II + + + +

III + + + +

Table 2.4: The Associated Levels of Complexity With Respect to Each 
Methodology [70].

Methodology   Hardware Complexity     Software Complexity

I + + + +
II + + + +
III + + + +

maximum percentage error by each of the algorithms are
discussed in details. Moreover, remarks on weather the health
indicator is useful to be considered or not are also discussed.
The technology evolution and benchmark of the state-of-the-
art condition monitoring methods for capacitors from 1993
to present are listed. Remarks on both the promising aspects
and shortcomings of the key methods and their applicability in
practical industry applications are provided. From the authors
point of view, future research opportunities in the condition
monitoring of capacitors include the following main aspects:

1) Software based methods with reduced or no
additional hardware efforts expect to be attractive
for industry applications which requires high
reliability performance. The advantages of this kind
of methods lie in twofold: a) it could be applied
for both new power converters or existing power
converters by upgrading the algorithms in the digital
controllers; b) it is a trend that the cost of digital
controllers and computation resources is reducing.

2) Cost-effective and low-inductive current sensing
methods could overcome many of the shortcomings
of existing current sensor based methods. PCB-

10) Condition monitoring of capacitors discussed here is limited to the wear
out detection. To extend the scope, in reliability critical applications, the
online monitoring of the operation status (e.g., hot spot temperature,
abnormal voltage and current stresses) is also of much interest. For this
perspective, the online monitoring of capacitance and ESR value might
be necessary to indirectly monitor the temperature and other abnormal
stressors.

11) Based on the investigation carried out in this chapter, Fig. 2.21 shows that
new methods based on software solutions and existing feedback sig-
nals, without adding any hardware cost, could avoid the critical short-
comings in the existing methodologies, and hence could be attractive
for industry applications.

In the next chapter, a proposed methodology based on data and advanced
algorithm is presented. The Artificial Neural Network (ANN) algorithm is
selected for condition monitoring based on capacitance estimation. The fol-
lowing bullets explains why ANN is selected for solving this problem:

• ANN algorithm belongs to Methodology III (e.g. data and advanced al-
gorithm), therefore, ANN have the properties mentioned earlier.

• Condition monitoring based on capacitance estimation is classified as
a prediction, regression and curve fitting problem and ANN is specifi-
cally designed for such kind of problems.

• Condition monitoring is defined as; "By accumulating component life data,
preventive maintenance activities can be refined. This activity should consist
of taking measurements to determine equipment condition. Data should be col-
lected over time". Therefore, accumulated measurements is essential for
condition monitoring. ANN is based on using part of the accumulated
data for the training stage, then, accumulated measurements are not
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Capacitor Condition Monitoring

Extra HardwareYes No

I. Capacitor Ripple Current Sensor 
based Method

External Signal 
Injection 

No

Yes

Limited to Certain 
Application

Yes

No

II. Circuit Model based Method

III. Data and Advanced Algorithm 
based Method

Fig. 2.21: Capacitor condition monitoring decision guideline.

needed any more, due to the ANN prediction ability using untrained
data.

• ANN toolbox in MATLAB is a friendly use toolbox. The frequent up-
dates applied to the ANN toolbox by MATLAB are improving the ANN
algorithm and promoting it to be adopted in critical and practical ap-
plications.

• The ANN toolbox is very flexible to generate different versions of trained
ANN. Trained ANN can be generated as a SIMULINK model, C/C++
code file, or M-code file.

• Integration of ANN within an existing and/or under-constructing sys-
tem can be achieved simply.
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• The ANN has a common platform with other software program (e.g.
Code Composer Studio (CCS), LABVIEW, dSPACE).
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Chapter. 3

Artificial Neural Network
Algorithm - Background

In this chapter, the background of the ANN algorithm technology to be used in this
project is given. It also discusses the basic concept of the ANN and its structure, and
then describes the training process and the training types. In addition, a description
of the ANN type used in this project is discussed.

3.1 Introduction

The Artificial Neural Network (ANN) is the proposed algorithm to be used in
this thesis to overcome the existing challenges in capacitor condition monitor-
ing applications. In addition, part of this thesis concerns also the integration
of the trained ANN inside a Digital Signal Processor (DSP) in order to be
suitable for practical applications.

3.2 Basic concept and structure

Artificial neural networks were originally designed to model the functional-
ity of the biological neural networks, which are a part of the human brain.
The human brain is the decision system for the human which has millions
of neuron interacted and connected in a complicated way. The brain is more
powerful and faster than any computer processor in handling complicated
problems related to human performance problems. The human brain has
multiple layers of neurons that interact with each other in parallel. The par-
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Chapter 3. Artificial Neural Network Algorithm - Background

allel interaction means that each neuron receives input lines from all neurons
in the previous layer (input layer) and sends different output lines to all neu-
rons in the next layer (output layer) [90].

The brain has powerful decision abilities to solve various complex prob-
lems like motion, posture, mathematical calculations, etc. The decision abil-
ities in the human brain are gained by memorizing and learning previous
cases that are similar to these problems. Likewise, ANN is an intelligent
mathematical algorithm that consists of three main layers; input layer, hid-
den layer, and output layer. Fig. 3.1 shows a general structure of an ANN,
where (x0,n) represents the input vector/matrix, (h0,m) is the number of hid-
den neurons, and (u0,y) is the output vector/matrix. The input layer could be
a vector or a matrix that contains a given system’s inputs. The hidden layer
represents the core of the ANN and contains amount of units called "hidden
neurons".
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Fig. 3.1: Generic structure of an Artificial Neural Network [90].

The main mathematical calculations to process the available inputs and
provide the required output takes place inside the hidden layer. Similar to
the human neurons in the brain where the hidden neurons receives and sends
sets of data from the input layer to the output layer. The received and sent
data to and from the neuron differs depending on the weight value of the
channel that are used for data transfer. The weight of the channel means,
the value/gain that is multiplied by the carried data (i.e., multiplying the
weights value by the coming data from the previous neuron) before passing
the result to the next neuron. The weight value changes by changing the
intended task and it is decided by learning and memorizing performing that
task. The optimization of the weight value decided by learning is explained
sufficiently in the following section.

The complexity of the ANN depends on the problem to be solved. More-
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3.3. Training process

over, it depends on the amount of inputs that the ANN need to handle in
order to create a correlation between inputs and the required outputs to be
predicted. Complex problems requires more hidden neurons. Usually, single
hidden layer is able to predict any non-linear system [33]. Beside, researchers
have acknowledged that a better performance for the ANN is achieved when
using one hidden layer considering the change of the hidden neurons amount
according to the needs. The reasons for not using more than one hidden layer
are as follows:

1) Multiple hidden layers expose the ANN to more noise because more
neurons and connected channels between the layers will exist, and
hence, an unstable network performance will be the case.

2) The curve fitting becomes very specialized towards certain training
cases. This reduces the prediction ability of the ANN towards new
inputs other than the trained ones.

3) Multiple hidden layers increase the risk to reach a local optimized solu-
tion. Eventually, locally optimized ANN will produce wrong predicted
outputs.

As stated previously, the ANN could need more hidden neurons accord-
ing to the complexity of the problem and the amount of data the ANN needs
to handle. Therefore, calculation and selection of the optimal or nearly-
optimal amount of hidden neurons is an important task. In [48], it is sug-
gested that the sufficient amount of hidden neurons is calculated by:√

(y + 2)n + 2
√

n
y + 2

(3.1)

where, y, n are the number of outputs and the number of the training
sets, respectively. However, in the absence of an exact method to calculate
the optimal amount of hidden neurons, the trial and error method is the most
primitive one. It is usually common to achieve nearly-optimal output when
adopting the trial and error method. The user would change the amount of
hidden neurons during the training process in most applications till the best
trained ANN is generated.

3.3 Training process

In the phase of creating a new ANN, the training phase is the most important
part for a proper performance. Basically, there are two different types of
training; supervised and unsupervised training. The supervised training is
used in regression problems, where a set of training data that includes inputs
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Chapter 3. Artificial Neural Network Algorithm - Background

and their corresponding outputs is used. The unsupervised training is used
in clustering problems, where only the inputs are known. In this thesis,
the supervised training is considered. Fig. 3.2 explains the theory of the
supervised training. The ADALINE is an abbreviation for Adaptive Linear
Neuron which is the simplest artificial neural network model [74].
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Fig. 3.2: Simplest Artificial Neural Model - (ADALINE) [74].

As shown in Fig. 3.2, the model consists of n inputs, a linear accumu-
lation functions, and an adaptive algorithm. The adaptive algorithm is for
error minimization purposes. The minimization function is the Least Mean
Square (LMS). The output estimated by the model is described by the follow-
ing mathematical formula:

u =
n

∑
i=0

wixi (3.2)

where, wi is the ith weight value of the channel, and xi is the ith input to the
model.

Since condition monitoring applications are regression and prediction
problems, this thesis is considering a supervised training based on a curve
fitting regression solution. Regression means creating a curve (i.e as shown
in Fig. 3.3) that passes and fits between the training data set. A factor called
regression response (R) is always observed during the training process. The
regression factor is a value between 0 and 1. As long as the regression factor
is close to 1, a strong correlation between inputs and outputs can be achieved.

The training process starts by data collection for capacitor condition mon-
itoring. The collected data will be prepared as training sets. In addition, the
source of input/output training sets should be a reliable source in order to
predict the exact output for the provided training sets. The collected training
sets and their sources are well described in the following chapters.
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Fig. 3.3: Curve Fitting Regression Diagram [6].

After preparing and feeding the training sets to the appropriate layers in
the network, the next step is to optimize the network parameters. The amount
of hidden neurons is optimized and changed during the training process al-
lowing the network to achieve the highest performance, (i.e the highest re-
gression factor). The training process is finished, when the generated output
stopped improving. When the training process is finished, and the generated
regression factor is satisfied, then the network can be generated and ready
to be used. Otherwise, re-training the network is necessary in order to avoid
poor results. Low regression response mean that the network is not able
to handle the correlation between inputs and outputs. Therefore, two paths
can be considered to overcome this problem. First, increasing the amount of
hidden neurons in the hidden layer and re-train the network. Increasing the
amount of hidden neurons will expand the dimension of the fitting curve to
fit more training data. In the case that an increase of the hidden neurons do
not improve the network, it means that the amount of training sets are not
sufficient, and more training sets are required as a second path.

In the following chapters, the amount of training sets and the amount of
hidden neurons and their impact on the ANN accuracy will be discussed.
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3.4 Feed-Forward artificial neural network

Feed-Forward Artificial Neural Network (FFANN), which can be seen in Fig.
3.1, is one of the most common types of ANN. The inputs which are repre-
sented as a set of circles are included in the input layer. The input enter the
hidden layer by the neurons weight. The hidden neurons are represented as
circles inside with a sigmoidal transfer function. The output layer receives the
output of the hidden layer by another neurons weight. Inside each neuron
there is linear transfer function as shown in the same figure, to provide the
final results (estimated outputs). Generally, the sigmoidal and linear transfer
functions are used on the hidden and output layers, respectively [33].

FFANN is normally used in applications including classification and re-
gression problems. The advantages of using FFANN are as following:

1) Working well for many applications and especially curve fitting of the
time series data (i.e., data that come in different times and values).

2) Generalizing the system prediction at any input or extrapolating off-
grid training phase. After the network is trained, it will be able to
predict any new input, even those are out of the training limits.

3.5 Summary

In this chapter, the neural fitting application (nftool) in Matlab software is
used for capacitor condition monitoring. The tool helps selecting the training
data sets, creating and training a network, and evaluating its performance us-
ing Least Mean Square (LMS) error and regression analysis. A feed-forward
artificial neural network will be used to estimate the dc-link capacitance
value. In the following chapter, the proposed capacitor condition monitor-
ing based on ANN is applied and presented.
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Chapter. 4

Methodologies of Artificial Neural
Network for the Condition

Monitoring of DC-link Capacitor
and Proof - of - Concept

This chapter includes the simulation analysis of the proposed methodology applied
on three-phase power converter. Moreover, a proof of concept in a hardware platform
is also presented. The given work in this chapter is copied and derived from my pa-
pers [78], [81] which are published during my PhD study with the following details:

[78] H. Soliman, H. Wang and F. Blaabjerg, “Capacitance estimation for
dc-link capacitors in a back-to-back converter based on Artificial Neural
Network algorithm”.
[81] H. Soliman, B. Gadalla, H. Wang and F. Blaabjerg, “Condition monitor-
ing of dc-link capacitors based on artificial neural network algorithm”..

4.1 Introduction

As shown in Fig. 4.1, the main objective of this chapter is to simplify the pro-
posed ANN methodology with respect to the amount and/or type of ANN
inputs. In this chapter, three different ANNs (ANN1, ANN2 and ANN3)
are studied. Methodology simplification is studied in order to minimize the
amount of ANN inputs. Moreover, the impact of input/output current on
the ANN estimation accuracy is also studied.
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Monitoring of DC-link Capacitor and Proof - of - Concept
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Fig. 4.1: ANN methodology simplification in terms of ANN inputs.

4.2 System configuration

The proposed condition monitoring method is applied to estimate the capaci-
tance value of the dc-link capacitor in a three phase AC/AC power converter
as shown in Fig. 4.2. Specifications of the converter are listed in Table 4.1.

Table 4.1: Specifications of The Case Study of Three-Phase Inverter with Diode Bridge Rectifier
Front-End. .

Load Type Resistive

Input AC Voltage (VL−L) 400 V

Output AC Voltage (VL−L) 400 V

Rated DC-link Voltage (Vdc) 500 V ∼ 565 V

Full Power Level (Po) 4 kW

Nominal Capacitance (C0) 1100 µF

Line Inductance (La), (Lb), (Lc) 3.67 mH

The AC/AC power converter consists of two power stages; 1) front-end
diode bridge rectifier connected to three phase input voltage power supply;
2) IGBT bridge connected to a three phase resistive load. The two power
stages are connected to each other through a dc-link capacitor.

In this simulation model, the dc-link voltage is uncontrolled and the three
phase output voltages fed to the resistive load are controlled using feedback
control as shown in Fig. 4.3. The measured output voltage (Vabc,out−mes) is
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Fig. 4.2: An AC-AC power converter with a capacitor dc-link [81].

compared to the reference output voltage (Vabc,out−re f ) in the Direct–Quadrature
(dq) axis. A comparison takes place in the voltage regulator where the ob-
tained difference between reference and measured signal is adjusted. Based
on this adjustment, a transformation from dq to three phase system (abc)
is required before generating the Pulse Width Modulation (PWM) signals.
The generated signal controls the IGBT bridge to maintain the output voltage
constant at the nominal value. However, the signal controls only the volt-
age, and therefore, the variation of the load power is considered during the
capacitance estimation.
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Fig. 4.3: Generation of the PWM control signals to the IGBT bridge of the convetrer simulation
model shown in Fig. 4.2.

4.2.1 Structure and optimizing of artificial neural network

Considering the ANN algorithm as a concept for capacitance estimation has
first been discussed in [79]. The main motivation is that the estimated value
of C is possible to be obtained using the available input and output termi-
nal information of the converter, without sensing the capacitor current iC.
The available information are phase A input/output; voltages Va,in, Va,out ,
currents ia,in, ia,out, and the ripple dc-link voltage ∆vdc, respectively. The
aforementioned information will be used as input to the ANN that is referred
as ANN1, while the corresponding value of C is used as a target. The basic
structure is shown in Fig.4.4. Afterwards, ANN1 is responsible to estimate
the value of C when using different inputs than the trained ones.

To collect a training set, the capacitance values in the range between 900
µF and 1300 µF with 10 µF step are used as targets to the network in this
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Fig. 4.4: Structure of the proposed ANN1 for capacitance estimation.

1 2 3 4 5

x 10
−3

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Required capacitance value

E
st

im
at

ed
 c

ap
ac

ita
nc

e 
va

lu
e

R=0.99998

 

 
Fitting line
Training data

Fig. 4.5: Regression response of the trained ANN1.

case. Those 41 datasets have single phase A RMS input/output voltages,
currents, and the ripple dc-link voltage. Since different loading conditions
of the converter are also considered, three training sets of 41 data under the
respective loading level of 4 kW, 3 kW and 3 kW are used. The total amount
of training datasets are 123 data. All the 123 datasets are fed to a single
hidden layer ANN1 consisting of 10 neurons using the Neural Fitting Tool
nftool in MATLAB software. Where a single hidden layer consisting of 10
neurons are the simplest design specifications for a given ANN. The iteration
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algorithm used in this training is Levenberg-Marquardt, which typically takes
more memory but less calculation time.

As stated in chapter 3, the training automatically stops when the gener-
ated correlation stops improving. The trained ANN1 has achieved a regres-
sion of R= 0.99998 as shown in Fig. 4.5 using this method. Therefore, the
trained ANN1 is acceptable and generated for testing purposes.

4.2.2 Testing of the trained ANN1

In this subsection, the trained ANN1 is tested for verification. The input to
the ANN1 are stored in the Matlab workspace, which are sent to the ANN’s
input layer as a group set. Each group set results in one corresponding output
(estimated C value). The same group set of inputs are saved in the input layer
until a new set is available in the workspace.

In order to simulate a capacitance drop, two capacitors C1 and C2 are
connected in parallel through switches in order to have the option to switch
between them. At the instant of 5 sec, C2 will be switched on instead of C1,
and a capacitance drop from 1100 µF to 880 µF is simulated. Fig. 4.6 shows
the capacitance value estimated by the trained ANN1 and their correspond-
ing error percentages.
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Fig. 4.6: Capacitance estimation of a simulated capacitance drop of 220 µF from 1100 µF to 880
µF at 4 kW power level.
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Fig. 4.7: Capacitance estimation of a simulated capacitance drop of 50 µF from 1100 µF to 1050
µF at 4 kW power level.

The estimated results verify that the trained ANN1 can respond to the
changes in the capacitance value, and the value of the capacitor can be easily
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Fig. 4.8: Trained ANN1 accuracy against changes in load power.

identified. Moreover, the trained ANN1 is tested to identify the reduction of
50 µF out of 1100 µF and the resulting estimation is shown in Fig. 4.7. For
the initial stage, the estimated value is 1098 µF and for the degraded case,
the estimated value is 1048 µF, which gives a maximum error of 0.5%.

To test the robustness of the trained ANN1 against loading power varia-
tions, the ANN1 is tested to estimate the nominal capacitance value of 1100
µF during a load power change. The estimated results with their correspond-
ing errors are shown in Fig. 4.8.
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Fig. 4.9: Estimation error analysis by different trained ANNs under 4 kW powel level.

As stated in chapter 3, the amount of training datasets affect the ANN
accuracy. In order to show the impact of the training datasets on the ANN
estimation accuracy, another network (ANN1?) is trained by using 63 dataset
instead of 123 dataset and considers the same conditions of (ANN1?) which
is trained earlier. 20 µF step instead of 10 µF step is considered during collec-
tion of training datasets for ANN1?. Fig. 4.9 shows that the errors estimated
by ANN1? are higher than the ones estimated previously by the ANN1, im-
plying a trade-off between the estimation accuracy and the required compu-
tation resource.

The last accuracy analysis is performed in order to analyse the error of the
estimated capacitance with respect to different degree of changes of the origi-
nal capacitance value of 1100 µF and the results are shown in Fig. 4.10. It can
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Fig. 4.10: Error analysis under different levels of capacitor reduction at rated power level.

be noted that the estimation errors of the proposed ANN1 are below 0.3%.
That means it can respond and estimate correctly the capacitance values even
under a very low level of capacitance reduction as of 0.1% changes.

In the light of the presented results, the following remarks are given:

1) The simulation results of the proposed method based on ANN1 verify
that the condition monitoring methods based on only a software solu-
tion can be an attractive alternative for practical industry applications.

2) It can be noted from the results that the trained ANN1 is capable to
respond for a very small change of the capacitance, and estimate the
capacitance value within the range which the network is trained.

3) It should be noted that the accuracy of a trained ANN strongly depends
on the amount, quality, and accuracy of the data used in the training.

Although of the positive remarks above, it have been realized that the
proposed method can be improved. The dc-link capacitance value could be
estimated using less information. Estimation of the capacitance using the rip-
ple dc-link voltage ∆vdc and phase A input current ia,in, or phase A output
current ia,out can be sufficient. Moreover, it is also addressed that using in-
stantaneous training information is not a realistic method in practice. There-
fore, an improved method in collecting the training information is considered
in further investigations in this thesis.

4.3 Training data preparation for ANN improve-
ment

In this section the same basic structure in the previous subsection is used, but
with two inputs to the ANN instead of five. Moreover, in order to investigate
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the impact of input current and output current on the estimation accuracy,
two ANNs are trained. In addition to ∆vdc, the first ANN (ANN2) is trained
using phase A input current ia,in, and the second ANN (ANN3) is trained
using phase A output current ia,out as shown in Fig. 4.11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11: Simplified structure of the two ANNs (ANN2 and ANN3) applied for front-end diode
bridge and back-to-back converters.

Also the same front-end diode converter as shown in Fig. 4.2 is considered
with rating conditions referred in Table 4.1.

Since the amount of inputs are reduced, the strength of the correlation be-
tween inputs and targets has become more challenging. Therefore, another
training algorithm called Bayesian Regularization is considered, which is suit-
able for the challenging problems. In addition, different amount of hidden
neurons (70 hidden neurons) are selected.

Since the ripple dc-link voltage depends on both the capacitance and the
loading conditions, the prepared training datasets are collected from the op-
eration of five different power loading conditions. The same previously oper-
ational power of 4 kW is also considered. The boundaries of the power levels
are between 4 kW power and 400 W as 10% of the selected operating power.
For each power level, there are 41 data of the capacitance values used to train
the ANNs, covering the range between 900 µF and 1300 µF with 10 µF step.
Each capacitance value corresponds to one value of the input current and
one value of the ripple dc-link voltage. The process of the training datasets
collection is as following:

1) Starting from the lower boundary of the capacitance range (900 µF), the
front-end diode bridge converter SIMULINK model starts running with
1 µs sampling time.

2) During the simulation, the Root Mean Square (RMS) values of phase
A input current ia,in, phase A output current ia,out, and ripple dc-link
voltage ∆vdc are sent and saved into the MATLAB memory workspace.
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3) After the simulation under a specific dc-link capacitance stops, 1e6 + 1
instantaneous values for each parameter (sampling time of 1e−6 is con-
sidered for the simulation) are available. A designed Matlab code cal-
culates the mean and peak of the least 7,000 instantaneous values for
each 0.1 sec simulation time. In order to have enough time to simulate
different cases and avoid the transient time, the simulation time is se-
lected to be 1.3 sec. By the end of each 0.1 sec, one average RMS value
for the phase A input current ia,in, A output current ia,out, and one peak
RMS value of the ripple dc-link voltage ∆vdc are available. An explana-
tion diagram for the Matlab code is shown in Fig. 4.12
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Fig. 4.12: Explanation of the designed Matlab code to prepare the training data of Phase A input
and output current and ripple dc-link voltage.

4) By reaching the upper boundary of the capacitance range (1300 µF),
4 datasets are available. One dataset for phase A input current ia,in,
One dataset for phase A output current ia,out, and one dataset for ripple
dc-link voltage ∆vdc, and one dataset for the capacitance. Each dataset
consists of 41 data.

5) The above process is done for the operating power level of 4 kW, 3 kW,
2 kW, 1 kW, and 400 W respectively. Finally, there are 205 data in each
dataset.

In addition to the ripple dc-link voltage ∆vdc, the datasets of phase A in-
put current ia,in and the datasets of phase A output current ia,out are loaded
to the input layer of ANN2 and ANN3 respectively as a matrix with a dimen-
sion of 2× 205. While the dataset of the capacitance is loaded to the output
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layer of both ANNs as a matrix with a dimension of 1× 205. Due to the usage
of the average values, the error of the estimated capacitance is reduced. The
trained ANNs can be used to estimate the dc-link capacitance under different
loading conditions with any capacitor value within the trained range.

The used iteration algorithm in this training is the Bayesian Regularization
[1], which typically takes longer time but it is definitely better for challenging
problems. Moreover, the used training algorithm avoids the overfitting issues
by stopping the training automatically, when the generated results stop to be
improved.
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Fig. 4.13: Regression response of the trained ANNs (ANN2 and ANN3) based on the improved
training data.

The regression response of the trained ANNs (ANN2 and ANN3) are
shown in Fig. 4.13. It can be noted that all of the 205 input data are aligned
to the fitting line and the values of R is close to 1 giving a strong regression.
Based on the results, the network stopped training and the ANNs are gener-
ated and ready to be tested. In the final step in generating the trained ANNs,
Matlab toolbox offers to generate the trained ANNs as a SIMULINK model
for each ANN. In the following sections, the testing of the trained ANNs
SIMULINK models are studied.

4.3.1 Capacitance estimation under different conditions

In this section, the generated ANN2 and ANN3 are tested under different
case studies for verification purpose. The same converter as shown in Fig.
4.2 is used. The two ANNs are fed with updated dataset every 0.1 sec. For
ANN2, each dataset consists of one averaged value of the root-mean-square
of the input current ia,in and dc-link ripple voltage ∆vdc, while for ANN3,
each dataset consists of one averaged value of the root-mean-square of the
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output current ia,out and dc-link ripple voltage ∆vdc. Three cases are studied
for the trained ANNs in the following subsections.

Case I: Constant capacitance conditions

In this case, the trained ANN2 and ANN3 are tested to check whether they
are able to estimate the correct value of the capacitance or not. Two random
values within the trained capacitance range C1 = 1182 µF and C2 = 975 µF
are chosen for this test. ANN2 and ANN3 are fed with the same peak values
of ∆vdc shown in Fig. 4.14. The behaviour of the phase A input and output
current is shown in Fig. 4.15.
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Fig. 4.14: Zoom-in on the behaviour of the original dc-link voltage, its ripple and the calculated
peaks of the ripple used to feed the trained ANN2 and ANN3 for the estimation of C1=1182 µF.
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Fig. 4.15: Behaviour of the original RMS phase A input and output current and the selected
mean values used to feed the trained ANN2 and ANN3 for the estimation of C1 = 1182 µF.

The estimated capacitance values from ANN2 and ANN3 are shown in
Fig. 4.16. Moreover, the corresponding percentage error of each capacitance
values for both ANNs are shown in Fig. 4.17.

In Fig. 4.16 it can be seen that the estimated capacitance values are aligned
with the actual values with very low estimation errors, which are less than
0.4% as shown in Fig. 4.17.
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Fig. 4.16: The capacitance estimation of C1=1182 µF and C2=975 µF by the trained ANN2 and
ANN3 at 4 kW load.
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Fig. 4.17: The corresponding error of the capacitance estimation in Fig. 4.16 by the trained ANN2
and ANN3 at 4 kW load.

Case II: Varying load conditions

In this test, the impact of the load (power) variation on the estimation accu-
racy for both ANN2 and ANN3 is analysed. A simulated drop in the load
power is subject to the model. The load power is dropped from 4 kW to 400
W at the instant of 0.7 sec.
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Fig. 4.18: Zoom-in on the behaviour of the original dc-link voltage, its ripple and the calculated
peaks of the ripple used to feed the trained ANN2 and ANN3 for the estimation of 1182µF under
load variation.

The behaviour of dc-link voltage and its ripple are shown in Fig. 4.18. It
can be seen that the dc-link voltage amplitude is increased, while the ripple
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Fig. 4.19: Behaviour of the original RMS phase A input and output current and the selected
mean values used to feed the trained ANN2 and ANN3 for the estimation of 1182µF under load
variation.
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Fig. 4.20: The capacitance estimation by the trained ANN2 and ANN3 under load variation.
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Fig. 4.21: The capacitance estimation error by the trained ANN2 and ANN3 under load variation.

voltage is decreased. In addition, the behaviour of the phase A input ia,in and
output ia,out current are shown in Fig. 4.19. It can also be seen that the input
current amplitude is dropping according to the updated loading condition.

The estimation of capacitance values and their corresponding errors are
shown in Fig. 4.20 and Fig. 4.21, respectively. It can be seen that the variation
impact took place just after 0.1 sec. In addition, both ANNs are still able to
estimate the correct capacitance value even after the updated loading condi-
tions with an estimation error less than 0.5%. Moreover, Fig. 4.21 shows that
ANN2 estimated the capacitance value with less error at the case of a load
variation. However, ANN3 has higher estimation accuracy during nominal
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conditions.

Case III: Varying capacitance conditions

In this test a 1% drop in capacitance is simulated by using two capacitors
connected in parallel.
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Fig. 4.22: Zoom-in on the behaviour of the original dc-link voltage, its ripple and the calculated
peaks of the ripple used to feed the trained ANN2 and ANN3 for the estimation of 1100 µF with
11 µF capacitance drop.
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Fig. 4.23: Behaviour of the original RMS phase A input and output current and the selected
mean values used to feed the trained ANN2 and ANN3 for the estimation of 1100 µF with 11 µF
capacitance drop.
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Fig. 4.24: The capacitance estimation by the trained ANN2 and ANN3 under 11 µF capacitance
drop.
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Fig. 4.25: The capacitance estimation error by the trained ANN2 and ANN3 under 11 µF capac-
itance drop.

Where C1 equals to 1089 µF, and C2 equals to 11 µF and connected through
a switch to have the option to switch between 1100 µF and 1089 µF. The
behaviour of the dc-link voltage, its ripple, and the behaviour of the phase A
input and output currents, are shown in Fig. 4.22 and Fig. 4.23, respectively.

It can be noted that the dc-link voltage and its ripple increased against
the drop in the dc-link capacitance value. In addition, the input current is
also had a neglected slight drop with respect to the capacitance drop, which
means that estimation of capacitance in case of loading variation is more
dependant on the variation in the dc-link voltage ripple.

In Fig. 4.24 and Fig. 4.25 the estimated capacitance value with the cor-
responding estimation error are given. Both ANNs are able to estimate a
correct value of capacitance before, after, and during the capacitance varia-
tion instant with estimation error less than 0.3%.

The following remarks and comments are based on the resulting capaci-
tance estimation obtained by the trained ANN3.

1) In the resulting estimation error in the previous three cases, it can
be seen that ANN3 have achieved more accuracy comparing to the
achieved ones by ANN2.

2) It can be seen that the trained ANN3 estimates the actual value in
steady state with a maximum error less than 0.4% as shown in Fig.
4.17.

3) The trained ANN3 detects 1% variation in the capacitance value with
maximum error less than 0.2% as shown in Fig. 4.25.

4) A proof of the concept is beneficial in order to validate the proposed
capacitor condition monitoring based on ANN. Therefore, an imple-
mentation of the trained ANN3 in a Digital Signal Processor (DSP) is
given in Section 4.4.
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4.4 Proof of Concept Using a Digital Signal Pro-
cessor (DSP)

In order to proof the concept, the proposed ANN3 is implemented in a Digital
Signal Processor (DSP). The main objective is to verify that a trained ANN in
Matlab can be integrated in a hardware controller. In addition, the validation
part in this section aims to proof the concept by feeding the DSP with digital
data, but those data are obtained from the front-end diode bridge SIMULINK
model shown in Fig. 4.2. The used DSP is Texas Instrument TMS320F28335
[2]. Code Composer Studio (CCS v5.4) is used for interacting with the C-
code files. Since the CCS v5.4 version does not have the option to connect
directly to Matlab, therefore, the code composer version (CCS v3.3) is used as
an intermediate step in addition to CCS v5.4.

TMS320F28335 
DSP

Code Composer Studio 
(CCS v3.3)

Trained ANN3 
SIMULIMK ModelConvert the trained 

ANN3 into a C-code

Fig. 4.26: The process of the ANN3 establishement to DSP from Matlab

The establishment process of the (CCS v3.3) from Matlab is shown in Fig.
4.26 and explained in the following steps:

1) Connecting the DSP board to the PC using the proper USP cable.

2) Run the (CCS v3.3) program on the PC and connect the DSP board, a
green led on the DSP board is turned on, then the (CCS v3.3) program
is closed.

3) Inside the Matlab editor, command 1 and command 2 are written, re-
spectively. The lines in-between are generated automatically after en-
tering command 1 as status of the establishment progress.

» cc=ticcs % command 1
TICCS Object:
Processor type : TMS320C28xx
Processor name : TMS320C2800-0
Running? : No
Board number : 0
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Processor number : 0
Default timeout : 10.00 secs
RTDX channels : 0
» cc.visible(1) % command 2

4) Once the above commands are entered, the (CCS v3.3) program is re-
opened again, and the DSP board is ready to be uploaded with the
trained ANN3.

5) When the trained ANN3 is built inside the DSP, an equivalent project
that consists of the C-code and header files is generated and saved as a
project folder.

6) Afterwards, the (CCS v5.4) is opened. The (CCS v5.4) imported the built
project as "Legacy CCS v3.3 Projects". Finally, the ANN3 can be fed with
inputs according to the registered ports.

However, the ANN3 should fulfil important specifications that met the
requirements of the DSP as it is a new environment instead the Matlab. The
process of preparing and implementing the ANN3 in the DSP is explained
and illustrated in details in the following section.

4.4.1 ANN3 preparation and implementation in DSP

 

Fig. 4.27: The process of ANN3 implementation in DSP using the input signals from AC-AC
convetrer shown in Fig. 4.2.

The block diagram shown in Fig. 4.27 illustrates the implementation pro-
cess with the following steps:

S1) The training datasets obtained from the front-end diode bridge SIMULINK
model and used earlier in Chapter 4.1, are collected and stored in an
excel sheet.

S2) In a real prototype applications, readings of current and voltage are fed
to the DSP into a digital form. Therefore, three gain factors (i.e shown
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in the equations 4.1, 4.2, and 4.3) are calculated to obtain the equivalent
digital values of phase A input current ia,out, ripple dc-link voltage ∆Vdc,
and capacitance values.

S3) The DSP maximum voltage rating of a digital input DSPmax,volt1 equals
to 3 V, and the maximum number of bits DSPmax,bits are 4096 bits, there-
fore, the calculated gain factors are based on 2.7 V DSPmax,volt2 , and
4096 bits as usable peak limits. Moreover, 10 Amp, 0.04 V, and 1300
µF are used as the maximum limits for phase A input current imax,a,in,
ripple dc-link voltage ∆Vmax,dc, and capacitance Cmax, respectively.

S4) Based on the previous considerations mentioned in S3, the gains are
calculated as the following:

KI =
DSPmax,volt2 × DSPmax,bits

imax,a,out × DSPmax,volt1

=
2.7× 4096

10× 3
= 368 (4.1)

KV =
DSPmax,volt2 × DSPmax,bits

∆Vmax,dc × DSPmax,volt1

=
2.7× 4096
0.04× 3

= 92160 (4.2)

KC =
DSPmax,volt2 × DSPmax,bits

Cmax × DSPmax,volt1

=
2.7× 4096
0.0013× 3

= 2835692 (4.3)

Where, KI , KV , and KC, are the gain factors, phase A input current ia,out, rip-
ple dc-link voltage ∆Vdc, and capacitance C, respectively.

S5) Afterwards, all the collected datasets stored in the excel sheet are mul-
tiplied by the corresponding gain factor, and hence, three datasets each
consisting of 205 data are put into a digital form and ready to be used
as training data.

S6) The same ANN3 structure shown in Fig. 4.11 is applied to train the
available digital data. The regression response is the same as that in
Fig. 4.13.

S7) The implementation of the trained ANN3 in the DSP is achieved by
generating a C-code, that is equivalent to the generated SIMULINK
trained ANN3 model. Afterwards, this C-code is compiled using the
Code Composer Studio (CCS), and then, a new ANN3 is built by the
DSP

S8) In sake of testing the trained ANN3 by the DSP, the streaming of data
coming from the front-end diode bridge converter SIMULINK model
are first converted into digital forms according to (4.1), (4.2) and (4.3).
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The estimated capacitance value in a digital format is converted into a
physical value according to (4.3).

4.4.2 Testing Results of the Implemented ANN3 in DSP

In this section, three different capacitance values are selected to be estimated
by the trained ANN3 on the DSP system. This is done by adjusting the
capacitance value in the simulation model of the converter. The estimated
results by the DSP are listed in Table 4.2.

Table 4.2: Estimated Capacitance Values and the Corresponding Error Percentages by DSP Used
in a front-end diode bridge Converter.

Actual C value Estimated by DSP Estimation error

1182 µF 1182.2 µF 0.02 %

1093 µF 1093.2 µF 0.02 %

975 µF 974.9 µF 0.01 %

0.25% 

0.03% 
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Fig. 4.28: The capacitance estimation by the trained ANN3 in DSP at 4 kW load.

The error of the estimated capacitance values from the DSP is less than
0.1%. To verify the simulation results presented in Chapter 4.1, similar three
case studies are applied on the implemented ANN3 in DSP. The estimated
capacitance by using the DSP are presented in Fig. 4.28 to Fig. 4.31. It can be
seen in Fig. 4.28 that the maximum error is 0.25% and 0.03%, respectively, for
the two estimated capacitors. In Fig. 4.29 and Fig. 4.30, it can be noted that
the maximum error is 18% during the transient load variation from 4 kW to
400 W. During steady state, the errors are below 0.35%.
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Fig. 4.30: Estimation error by ANN3 using a DSP corresponding to Fig. 4.29 under load varia-
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Fig. 4.31: Estimation error analysis using DSP with a capacitance variation at 4 kW load.

4.5 Summary

The following remarks and comments are based on the resulting capacitance
estimation obtained from the DSP operation.
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4.5. Summary

1) The proposed capacitor condition monitoring method based on ANN3
is implemented in both simulation software and DSP.

2) It can be seen that the trained ANN3 estimates the actual value in
steady state with a maximum error of 0.25%.

3) An error of 9% is observed at the instant of load variation, which should
then be discarded when operating.

4) The trained ANN3 estimates the correct value during the steady state
operation with error less than 0.8%.

5) The trained ANN3 detects 1% variation in the capacitance value with
maximum error equal to 0.73% at the instant of drop.

5) Although a proof of the concept is given, feeding a trained ANN with
signals obtained from practical application still required for further ver-
ification. Therefore, a practical case study that applied on a motor drive
is given in Chapter 5.
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Chapter. 5

Application of the Proposed
Method to a Practical Motor Drive

System

This chapter presents a verification of condition monitoring based on ANN algorithm.

5.1 Introduction

In order to validate the proposed capacitor condition monitoring method
based on ANN, an experimental study is conducted in this chapter. The
ANN methodology is applied on a practical motor drive system. As stated
earlier, simplifying the ANN methodology is one of the main objectives in
this project. Therefore, more simplified ANN method is also proposed.

Since the AC component (dc-link voltage ripple) is both capacitance and
load dependent, using dc-link voltage ripple and current information is im-
portant in order to differentiate between the impact of capacitance and load
change as shown in Fig. 5.1. Another alternative is to use the dc-link voltage
harmonics which includes both DC and AC components, where the DC com-
ponent is only load dependent. Therefore, as shown in Fig. 5.2, in addition to
the ANN trained on dc-link voltage ripple and current (ANN4), a new sim-
plified ANN is trained on dc-link voltage harmonics (ANN5), and thereby, an
analysis of the dc-link voltage harmonics using Fast Fourier Transform (FFT)
is also given in this chapter. The structure of the proposed ANNs in this
section are shown in Fig. 5.3.
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5.2. System configuration

5.2 System configuration

The validation of the proposed methodology is applied on a 4 kW three-
phase, front-end diode bridge motor drive provided by Danfoss [9]. The
circuit diagram of the experimental platform is shown in Fig. 5.4, and the
considered operating conditions and specifications of the motor drive are
listed in Table 5.1.
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LbsRbs

Rcs
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C1 C2 C3 C4 C5 C6 C7 C8 C9

Capacitance steps PCB

Fig. 5.4: An AC-AC power conversion system using a front-end diode bridge with a capacitor
dc-link.

Table 5.1: Specifications of the Front-End Motor Drive from Danfoss [9].

Parameter Rating

Rectifier Input AC Voltage (VL−L) 400 V

AC IGBT Inverter Output Voltage (VL−L) 400 V

Nominal DC-link Voltage (Vdc) 550 V

Operating Power Level (Po) 4 kW

Nominal Rotor Speed (Nr) 1500 rpm

Nominal Torque (T) 26 N.m

Nominal DC-link Capacitance (C0) 500 µF

DC-link Inductances (Ldc) 4 mH

A description of the experimental platform is shown in Fig. 5.5. The mo-
tor drive consists of different stages as listed in the Table in Fig. 5.5. The
rectifier bridge converts the three-phase AC input fed from the main supply
(grid) to DC current to supply inverter power. In order to filter the interme-
diate DC voltage, DC reactors are connected in the dc-bus. The DC reactors
are also reducing the RMS current and harmonics on the AC side, and rais-
ing the power factor reflected back to the line. An installed capacitor bank (2
E-caps connected in series each 1000 µF) stores the DC power and provides
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Fig. 5.5: Overview of the experimental platform used for applying the capacitor condition mon-
itoring based on ANN. (a). Equivalent circuit of the motor drive. (b). Front-end diode bridge
motor drive provided by Danfoss. (c) Equivalent circuit of the designed capacitance PCB. (d).
Designed PCB capacitance board.

ride-through protection for short power losses. The equivalent capacitor of
the complete DC bus is 500 µF with a total rated dc-link voltage of 800 V.
Although the nominal dc-link voltage across the capacitor bank is 800 V, in
this project, the motor drive is operated at 4 kW with 550 V dc-link voltage.
Finally, a full bridge inverter that converts the DC into a controlled PWM AC
waveform to control output voltage to the motor.

In order to apply varying conditions to the dc-link capacitor in the motor
drive, a capacitor Printed Circuit Board (PCB) shown in Fig. 5.5(d) is de-
signed and connected in parallel with the existing nominal dc-link capacitor
(C0) as shown in Fig. 5.5(c). The PCB consists of additional 9 individual (C1
- C9) steps of identical E-Caps, each step equals to 11 µF to analyse different
capacitor values. The first time the system is operated at nominal conditions
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with nominal capacitance C0; afterwards, the system is operated by adding
additional capacitances in a step. Each time the system is in operation, a
corresponding waveform of the dc-link voltage and phase A output current
are obtained and imported into Matlab. These imported waveforms are then
processed for the relevant ANN training purposes. Considering three power
levels, eventually [2x30] dataset is available for training and/or testing pur-
poses.

5.3 Simulation Case of ANN4

Comparing to the previous simulation cases in Chapter 4, In this chapter,
only 10 steps of capacitance are considered (C0 - C9). Therefore, a simulation
case study is analysed first in order to show the feasibility of the proposed
method with few steps of capacitance. In the simulation case, similar motor
drive system is modelled in Matlab with the specifications listed in Table 5.1.
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Fig. 5.6: Regression response of the proposed trained ANN4 based on simulation training
dataset.

The process of training data collection and training is the same as de-
scribed in Section 5.2. The regression response of ANN4 based on simulation
is satisfactory as shown in Fig. 5.6. It can be noted that ANN4 is trained using
[2x30] dataset. The behaviour of the dc-link voltage at nominal power level
obtained from the simulation is shown in Fig. 5.7. Moreover, the motor speed
and torque waveforms are shown in Fig. 5.8. ANN4 is tested to estimate the
capacitance value at constant capacitance condition under different loading
conditions. The estimated capacitance by ANN4 with the corresponding es-
timation error are listed in Table 5.2.
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Fig. 5.7: Behaviour of the dc-link voltage at nominal power level obtained from the simulation.
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Fig. 5.8: The motor speed and torque waveforms obtained from simulation.

Table 5.2: Simulation Results for Estimated Capacitance by ANN4 Under Different Loading
Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 565.1 µF 0.16% 2 kW

555 µF 555.7 µF 0.12% 3 kW

544 µF 543.2 µF 0.15% 4 kW

566 µF 566.9 µF 0.16% 4 kW
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In order to simplify the training data collection process, additional ANN
is trained based on minimum and maximum boundaries; (C0, C1, C8 and C9).
The ANN trained based on boundaries is referred to as ANN4BOUNDARY. The
regression response of ANN4BOUNDARY based on simulation is satisfactory
as shown in Fig. 5.9. It can be noted that ANN4BOUNDARY is trained using
[2x12] dataset. It is Expected that ANN4BOUNDARY is able to estimate the in-
between capacitance values which ANN4BOUNDARY did not consider in the
training.
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Fig. 5.9: Regression response of the proposed trained ANN4BOUNDARY based on simulation
training dataset.

ANN4BOUNDARY is tested to estimate the capacitance value at constant
capacitance condition under different loading conditions. The estimated ca-
pacitance by ANN4BOUNDARY with the corresponding estimation error are
listed in Table 5.3. More detailed discription of the training based on bound-
aries is given in the experimental case study.

Table 5.3: Simulation Results for Estimated Capacitance by ANN4BOUNDARY Under Different
Loading Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 565.2 µF 0.14% 2 kW

555 µF 556 µF 0.18% 3 kW

544 µF 549.9 µF 1.0% 4 kW

566 µF 566.8 µF 0.14% 4 kW
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By comparing the estimated error from Table 5.2 and Table 5.3, it is con-
cluded that using boundaries information could be satisfying for capacitance
estimation.

5.4 Experimental Case of ANN4

For ANN4, the estimation is based on the dc-link voltage harmonics. Three
different power ratings including the nominal power level are also consid-
ered. The training data are obtained from the motor drive shown in Fig. 5.4.
The training data collected for ANN4 with respect to capacitance steps and
the three considered power levels are shown in Fig. 5.10.
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Fig. 5.10: Measured dc-link voltage ripple ∆Vdc and phase A output current ia,out dataset for
training and testing of ANN4.

It can be seen that the dc-link voltage ripple and output current have a
linear relationship with respect to the capacitance and loading power vari-
ation. For each power rating, there are 10 dataset of the capacitance values
used to train ANN4. These 10 dataset are in the range between 500 µF and
599 µF with 11 µF step. Since there are 3 power levels are considered, 30
training dataset are collected. ANN4 is fed with a training dataset dimension
of [2x30].

The regression response of ANN4 is shown in Fig. 5.11. For ANN4 the
regression response equals to 0.99913. The regression response for ANN4
means a very strong correlation between inputs and targets. Since the re-
gression response is satisfactory, trained ANN4 is generated as a SIMULINK
models for capacitance estimation. Afterwards, the generated ANN4 is ready
for testing.
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Fig. 5.11: Regression response of the proposed trained ANN4 based on experimental training
data.
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Fig. 5.12: Process of the proposed capacitor condition monitoring methodology based on the
proposed ANN4.

The process of the capacitor condition monitoring method for ANN4 is
shown in Fig. 5.12. For ANN4, the corresponding phase A output current
ia,out and dc-link voltage ripple ∆Vdc from each capacitance step are obtained
in MATLAB. In order to obtain the AC ripple of the dc-link voltage, the dc-
link voltage measured in the motor drive is streamed to a MATLAB model
that extracted the AC ripple of the dc-link voltage. Moreover, since ANN4 is
considering the rms current, an rms block in MATLAB model is considered
as well.

In order to test the generated ANN4, 2 case studies are applied. The pur-
pose of studying these cases are in the sake of testing the trained ANN4 and
whether it is able to estimate the capacitance value under different condi-
tions. Analysing the estimation error for ANN4 is also included. Accuracy
analysis with respect to the training data amount, source and type are also
given.
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5.4.1 Constant Capacitance Condition

In this case study, different capacitance values are selected to be estimated by
the trained ANN4 used on the test system.

Fig. 5.13: Captured signals of the dc-link voltage and Phase A and B output current waveforms
at C = 533 µF and the corresponding harmonic amplitude at 300 Hz operating at 4 kW.
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Fig. 5.14: The capacitance estimation of C = 533 µF capacitor by the trained ANN4 under different
loading conditions.

Table 5.4: Experimental Results for Estimated Capacitance by ANN4 Under Different Loading
Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 561.6 µF 0.8% 2 kW

555 µF 553.8 µF 0.2% 3 kW

544 µF 543.2 µF 0.15% 4 kW

566 µF 564.9 µF 0.2% 4 kW
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The dc-link capacitance value in the motor drive is adjusted to 533 µF. The
corresponding waveform of dc-link voltage and output current are captured
with a window width of 0.5 sec as shown in Fig. 5.13. The estimated results
and the estimation error by ANN4 are shown in Fig. 5.14. More capacitance
estimation results are listed in Table 5.4.

5.4.2 ANN4 Boundaries Training

0

2

4

6

8

10

12

2 kW 3 kW 4 kW

D
C

-l
in

k 
R

ip
pl

e 
V

ol
ta

ge
 [
V

]

Loading Power Level

Phase A output current [Amp]

500 μF

511 μF

588 μF

599 μF

 [Amp]  [Amp]  [Amp]

Fig. 5.15: Considered boundaries of dc-link voltage ripple ∆Vdc and phase A output current ia,out
dataset for training ANN4BOUNDARY .
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Fig. 5.16: Regression response of the proposed trained ANN4BOUNDARY .
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In this case study, the impact of training data amount, type and source is
investigated. The purpose is to analyse the ANN behaviour and estimation
error with respect to the considered training dataset. The same structure of
ANN4 is studied in this section and referred to as ANN4BOUNDARY. The
considered training dataset for ANN4BOUNDARY is shown in Fig. 5.15. It can
be seen that the considered training dataset are covering only the minimum
and maximum boundaries. ANN4BOUNDARY is fed with a training dataset
dimension of [2x12]. The regression response of ANN4BOUNDARY is shown
in Fig. 5.16. The trained ANN4BOUNDARY is expected to estimate the values
between these boundaries. Similar setting in 5.4.1 is considered. The esti-
mated results and the estimation error by ANN4BOUNDARY are shown in Fig.
5.17. More capacitance estimation results are listed in Table 5.5.
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Fig. 5.17: The capacitance estimation of C = 533 µF by the trained ANN4BOUNDARY under
different loading conditions.

Table 5.5: Experimental Results for Estimated Capacitance by ANN4BOUNDARY Under Different
Loading Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 572.1 µF 1% 2 kW

555 µF 569.2 µF 2.5% 3 kW

544 µF 539.7 µF 0.8% 4 kW

566 µF 555.8 µF 1.8% 4 kW
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5.5 DC-link voltage harmonics analysis

As stated earlier in this chapter, an alternative to estimate dc-link capacitance
values based on ANN is to consider DC and AC components which can
be found in dc-link voltage harmonics. Therefore, studying the impact of
capacitance value on the dc-link ripple voltage has motivated this research to
investigate the behaviour of the dc-link voltage harmonics.
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Fig. 5.18: DC-link voltage harmonic analysis under constant loading and balanced grid condi-
tions with respect to the capacitance variation.

Analysing the dc-link voltage signals using Fast Fourier Transform (FFT)
have proved the expectations to find a liner relationship between the capaci-
tance value and the harmonics amplitude. The analysis is applied to a Front-
End diode bridge motor drive as shown in Fig. 5.4. For a balanced grid
conditions, the analysed dc-link voltage harmonics are classified into 2 fea-
tures F1 and F2 with respect to their frequencies. For a simulation analysis,
the impact of capacitance variation at constant loading conditions and bal-
anced grid conditions on the harmonic amplitudes is shown in Fig. 5.18.

It can be seen that feature F2 is the most dominant feature, where the
capacitance variation impact can be reflected into the harmonic amplitude.
Based on this reflection, the ANN is able to identify the capacitance value.
Moreover, the harmonics amplitude are also reflecting the loading power
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level. Therefore, a proposed ANN that estimates the capacitance value based
on the dc-link voltage harmonic amplitude is also given in this chapter.

Since a simulation case study in Section 5.3 has proved the feasibility of
training an ANN on few dataset, an experimental case is studied directly in
the following section.

5.6 Simulation Case of ANN5

As stated earlier in Section 5.3, a simulation case study is analysed first in
order to show the feasibility of the proposed method with few steps of ca-
pacitance.
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Fig. 5.19: Regression response of the proposed trained ANN5 based on simulation training
dataset.

In the simulation case, similar motor drive system is modelled in Matlab
with the specifications listed in Table 5.1. The regression response of ANN5
based on simulation is satisfactory as shown in Fig. 5.19. It can be noted
that ANN5 is trained using [1x30] dataset. As presented in Section 5.3, the
behaviour of the dc-link voltage at nominal power level, the motor speed and
torque waveforms obtained from the simulation is shown in Fig. 5.7 and Fig.
5.8. ANN5 is tested to estimate the capacitance value at constant capacitance
condition under different loading conditions. The estimated capacitance by
ANN5 with the corresponding estimation error are listed in Table 5.6.

In order to simplify the training data collection process, additional ANN
is trained based on minimum and maximum boundaries that corresponds
to the capacitance steps; (C0, C1, C8 and C9). The ANN trained based on
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5.6. Simulation Case of ANN5

Table 5.6: Simulation Results for Estimated Capacitance by ANN5 Under Different Loading
Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 566.5 µF 0.08% 2 kW

555 µF 554.1 µF 0.16% 3 kW

544 µF 544.9 µF 0.16% 4 kW

566 µF 561.9 µF 0.8% 4 kW
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Fig. 5.20: Regression response of the proposed trained ANN5BOUNDARY based on simulation
training dataset.

boundaries is referred to as ANN5BOUNDARY. The regression response of
ANN5BOUNDARY based on simulation is satisfactory as shown in Fig. 5.20. It
can be noted that ANN5BOUNDARY is trained using [1x12] dataset. It is Ex-
pected that ANN5BOUNDARY is able to estimate the in-between capacitance
values which ANN5BOUNDARY did not consider in the training. ANN5BOUNDARY
is tested to estimate the capacitance value at constant capacitance condition
under different loading conditions. The estimated capacitance by ANN5BOUNDARY
with the corresponding estimation error are listed in Table 5.7. More detailed
description of the training based on boundaries is given in the experimental
case study.

By comparing the estimated error from Table 5.6 and Table 5.7, it is con-
cluded that using boundaries information could be satisfying for capacitance
estimation.
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Table 5.7: Simulation Results for Estimated Capacitance by ANN5BOUNDARY Under Different
Loading Conditions.

Actual Value ANN4Estimation ANN4Error Power Level

566 µF 553 µF 2.3% 2 kW

555 µF 553.5 µF 0.3% 3 kW

544 µF 549.5 µF 1.0% 4 kW

566 µF 574.5 µF 1.5% 4 kW

5.7 Experimental Case of ANN5

For ANN5, the estimation is based on the dc-link voltage harmonics. Three
different power ratings including the nominal power level are also consid-
ered. The training data are obtained from the motor drive shown in Fig. 5.4.
The training data collected for ANN5 with respect to capacitance steps and
the three considered power levels are shown in Fig. 5.21.
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Fig. 5.21: Collected dc-link voltage harmonics dataset for training and testing of ANN5.

A linear relationship between dc-link voltage harmonic amplitudes and
the capacitance and loading power variation can be seen. For each power
rating, there are 10 dataset of the capacitance values used to train ANN5.
These 10 dataset are in the range between 500 µF and 599 µF with 11 µF step.
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ANN5 is using the corresponding dc-link voltage harmonics component at
300 Hz frequency to each capacitance step. Since there are 3 power levels are
considered, 30 training dataset are collected. ANN5 is fed with a training
dataset dimension of [1x30].
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Fig. 5.22: Regression response of the proposed trained ANN5.

The regression response of ANN5 is shown in Fig. 5.22. For ANN5 the
regression response equals to 0.99939. The regression response for ANN5
means a very strong correlation between inputs and targets. Since the re-
gression response is satisfactory, trained ANN5 is generated as a SIMULINK
models for capacitance estimation. Afterwards, the generated ANN5 is ready
for testing.

From 
Workspace FFT Analysis

Trained 
ANN5

Display on  oscilloscope

Measured dc-link voltage SIMULINK/PLECS  platform

300 Hz 
component 
selectiopn

C value 
(µF)

Fig. 5.23: Process of the proposed capacitor condition monitoring methodology based on the
proposed ANN5.

The process of the capacitor condition monitoring method for ANN5 is
shown in Fig. 5.23. For ANN5, the dc-link voltage waveform is imported to
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Matlab workspace and applied to an FFT analysis. Only the 300 Hz compo-
nent is considered in capacitance estimation. In order to test the generated
ANN5, 2 case studies are applied. The purpose of studying these cases are
in the sake of testing the trained ANN5 and whether it is able to estimate the
capacitance value under different conditions. Analysing the estimation error
for ANN5 is also included. Accuracy analysis with respect to the training
data amount, source and type are also given.

5.7.1 Constant Capacitance Condition

In this case study, different capacitance values are selected to be estimated
by the trained ANN5. The dc-link capacitance value in the motor drive is
adjusted to 533 µF.

Fig. 5.24: Captured signal of the corresponding dc-link voltage harmonic amplitude at C = 533
µF, and at 300 Hz operating at 4 kW.
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Fig. 5.25: The capacitance estimation of C = 533 µF by the trained ANN5 under different loading
conditions.

The estimated results and the estimation error by ANN5 are shown in Fig.
5.25. More capacitance estimation results are listed in Table 5.8.
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Table 5.8: Experimental Results for Estimated Capacitance by ANN5 Under Different Loading
Conditions.

Actual Value ANN5Estimation ANN5Error Power Level

566 µF 560.4 µF 0.1% 2 kW

555 µF 555.4 µF 0.07% 3 kW

544 µF 545.3 µF 0.2% 4 kW

566 µF 570.2 µF 0.75% 4 kW

5.7.2 ANN5 Boundaries Training

In this case study, the impact of training data amount, type and source is
investigated. The purpose is to analyse the ANN behaviour and estimation
error with respect to the considered training dataset. The same structure of
ANN5 is studied in this section and referred to as ANN5BOUNDARY. The
considered training dataset for ANN5BOUNDARY is shown in Fig. 5.26.

It can be seen that the considered training dataset are covering only the
minimum and maximum boundaries. ANN5BOUNDARY is fed with a training
dataset dimension of [1x12]. The regression response of ANN5BOUNDARY is
shown in Fig. 5.27.
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Fig. 5.26: Considered boundaries of dc-link voltage harmonics dataset for training
ANN5BOUNDARY .
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Fig. 5.27: Regression response of the proposed trained ANN5BOUNDARY .
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Fig. 5.28: The capacitance estimation of C = 533 µF by the trained ANN5BOUNDARY under
different loading conditions.

The trained ANN5BOUNDARY is expected to estimate the values between
these boundaries. Similar setting in 5.4.1 is considered. The estimated results
and the estimation error by ANN5BOUNDARY are shown in Fig. 5.28. More
capacitance estimation results are listed in Table 5.9.
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Table 5.9: Experimental Results for Estimated Capacitance by ANN5BOUNDARY Under Different
Loading Conditions.

Actual Value ANN5Estimation ANN5Error Power Level

566 µF 554.7 µF 2% 2 kW

555 µF 558.4 µF 0.6% 3 kW

544 µF 538.4 µF 1% 4 kW

566 µF 558.5 µF 1.3% 4 kW

5.8 Summary

An experimental validation of capacitor condition monitoring based on ANN
is presented in this chapter. The experiments are conducted on a three-phase
motor drive. A switchable capacitor bank is designed to change the capaci-
tance value and connected to the existing dc-link capacitor for data collection
and testing purposes. Importing the dc-link voltage and phase A output cur-
rent to MATLAB have been applied. The imported parameters are used to
train and test the ANN. Two proposed ANNs that estimate the capacitance
value are studied with respect to the considered parameters. The dc-link
voltage harmonic analysis is also discussed in this chapter. The dc-link volt-
age harmonics behaviour shows a linear relationship with respect to the ca-
pacitance variation. This linear relationship have been an advantage to the
capacitor condition monitoring.

Two case studies are applied to the proposed ANNs. By comparing the
estimated capacitance and their estimation error from Table 5.4 and Table 5.8,
it can be seen that capacitance estimation based on dc-link voltage harmonics
gave slightly lower estimation error. However, for both ANN4 and ANN5,
the maximum estimation error is 1.3% and 1.2%, respectively. For the case
study presented in Section 5.4.2 and Section 5.6.2, the estimation error for
both ANN4BOUNDARY and ANN5BOUNDARY are much higher -as expected-
comparing it to the case study in Section 5.4.1 and Section 5.6.1. The higher
estimation error is due to the lower training dataset. It can be also noted
that capacitance estimation based on dc-link voltage harmonics gave slightly
higher estimation accuracy. However, the maximum estimation error based
on dc-link voltage harmonics is 2%. While the maximum estimation error
based on dc-link voltage ripple and current is 2.5%.
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Chapter. 6

Conclusions

6.1 Summary and Future Work

This Chapter summarizes the main conclusions and the research outcomes.
The main contribution and future research in the field of capacitor condition
monitoring are also given.

The main goal of this project is to investigate the existing capacitor con-
dition monitoring methodologies in order to develop a new cost-effective
method to monitor the change of the electrical parameters of capacitors for
dc-link application. The hypotheses of this project is that the health status of
the dc-link capacitor can be estimated by estimating its capacitance value.

Chapter 1 in this thesis presents the introduction of this research project,
which includes a background in dc-link capacitor types, their construction
and mode of failure, general reliability assessment methods. It is also include
problem formulation, project motivation, objectives and limitations assump-
tions done in the work.

In Chapter 2, the existing capacitor condition monitoring methodologies
are reviewed and classified. The review identifies the limitations and short-
comings of the existing methodologies and the promising aspects of them.
Moreover, through tracing the history of the technology evolution, the review
is able to explore the points of strength. Thereby, development of future re-
search that contribute to more practical applications can be achieved.

In Chapter 3, a discussion on the concept and structure of ANN algorithm
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technology is given. Description of the training process, the ANN type and
its mathematical structure is also presented.

Applying the proposed ANN on three-phase front-end diode bridge con-
verter for capacitor condition monitoring purposes is presented as a contribu-
tion in Chapter 4. This Chapter can be divided into three stages with respect
to the ANN training data amount, type and source. First, the ANN is trained
based on an input/output terminal information that are corresponding to a
certain value of capacitance. The input/output terminal information are cur-
rents and voltages in addition to dc-link ripple voltage. Secondly, in order
to achieve high capacitance estimation accuracy with the least possible infor-
mation, the amount of the training data is reduced by considering only input
current and dc-link ripple voltage. Finally, in order to be convincing from
practical applications in industry, the ANN considered the output current
and dc-link ripple voltage for the purpose of capacitance estimation in order
to use already existing signals.

As a proof of concept to the proposed methodology in Chapter 4, a DSP is
used as a hardware platform. The ANN is trained in Matlab based on the in-
formation provided by the simulation converter, and afterwards trained ANN
is generated as a SIMULINK model. The proof of the concept is to integrate
the trained ANN into the DSP by converting the SIMULINK model into an
equivalent C-code that is compatible with DSP. The ANN is tested and esti-
mated accurate capacitance values. Since the ANN is trained on simulation
information, it is also tested based on simulation information. Therefore, val-
idating the proposed methodology based on practical information is essential
in order to enrich the research in the field of capacitor condition monitoring.

A motor drive provided by Danfoss is used as a practical validation in
Chapter 5. In order to apply data collection in practice, a PCB with capacitors
is designed and connected in parallel to the existing dc-link capacitor. The ca-
pacitor board is also used for testing purposes. The connected capacitor PCB
has no impact on the operation of the motor drive. Importing the dc-link
voltage and phase A output current to MATLAB have been applied. The im-
ported parameters are used to train and test the ANN. Two proposed ANNs
that estimate the capacitance value are studied with respect to the considered
parameter. The dc-link voltage harmonics analysis is also discussed. The dc-
link voltage harmonics behaviour shows a linear relationship with respect to
the capacitance variation. This linear relationship have been an advantage to
capacitor condition monitoring.
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6.2 Main Contributions

The main contributions in this research can be summarized in the following
points:

• Review of existing capacitor condition monitoring methodologies: The
most common methods of capacitor condition monitoring are reviewed
and classified into 3 categories. It serves as the purpose to identify
the existing limitations of the existing methodologies and exploring the
points of strength to develop future research that contribute to more
practical applications by tracing the process history of condition mon-
itoring technology. The given review is also highlighting the life-time
indicators that should be considered for capacitor condition monitoring
nevertheless the methodology. Moreover, the review explains also the
availability type of the existing methods and whether online or offline
methodologies are essential for all the applications or just certain ones.
Finally, the review gave a better understanding of the required method-
ology that could be the way-out of the existing shortcomings and to be
more attracted to industry.

• Studying the impact of training data type, source and amount is also
done. Generating the ANN after training process and integrating it
inside a hardware platform -DSP- is successfully applied. The ANN
performance evaluation under different structure is also presented.

• New software condition monitoring method: Using Artificial Neural
Network (ANN) as a software algorithm for capacitor condition moni-
toring is proposed. Starting with a proposed ANN that estimate the ca-
pacitance of the dc-link capacitor in two different simulation topologies
have presented. The first proposed ANN considered all the existing
input/output terminal information. Afterwards, less information are
considered in order to achieve high accuracy with less requirements.
Therefore, the ANN succeed to estimate the capacitance based on dc-
link voltage ripple and single phase output current. The ANN achieved
high estimation accuracy under different capacitance and loading con-
ditions. Analysing the dc-link voltage harmonics have been a great
advantage for capacitor condition monitoring. Investigating into the
capacitance value impact on the dc-link voltage harmonic amplitudes
under different loading conditions is discussed. An experimental vali-
dation of the proposed ANNs is conducted. Whether the ANN is con-
sidering dc-link voltage ripple and single phase output current, or dc-
link voltage harmonics, the capacitance estimation accuracy is high and
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acceptable.

6.3 Future Work

• Film-Capacitor condition monitoring: As the Metallized Polypropylene
Film Capacitors (MPPF-Caps) are discussed from construction and mode
of failure aspects; as a future work, the proposed condition monitoring
based on ANN algorithm can be applied. A Three-Phase Back-to-Back
converter topology can be considered for this future work.

• New methods to obtain the required training data: As a future work, differ-
ent criteria of training data collection is with interest. The new criteria
in based on software, where the dc-link capacitance value itself will
be varied as a replacement of the capacitor PCB. A designed code that
change the operating frequency range, and hence, change the dc-link
capacitor characteristic will be investigated. The impact of the intended
criteria is not yet investigated.

• Transient detection and discard of estimated capacitance during transients:
Taking into consideration some transient case studies could be an in-
teresting investigation. The transient conditions will take place during
operation and could be divided in tow-folds; a) changing the loading
condition at a certain instant by speeding up the motor, and hence, in-
creasing the power level, b) varying the capacitance value of the dc-link
capacitor. For both folds, the corresponding waveforms of dc-link volt-
age and single phase output current will be captured. The captured
waveforms will be applied for signal processing in order to feed them
to the trained relevant ANN. The purpose is to investigate whether the
ANN is able to estimate the capacitance value, and how high the esti-
mation error and/or accuracy would be.

• Experimental validation under un-balanced grid conditions: As stated ear-
lier in this project, the experimental part is conducted under balanced
grid conditions. Considering un-balanced grid conditions is beneficial
in order to generalize the proposed methodology and to apply it for
wider operation conditions. Moreover, in case of un-balanced grid con-
ditions, other frequency components than 300 Hz will be dominant. It
is expected to have two more dominant features; a) F3 feature which
will appear as a 100 Hz frequency component, b) F4 feature which will
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appear as a 200 Hz frequency component. Both feature will be included
as training data in addition to the 300 Hz components in order to gener-
ate general ANN the is able to estimate the capacitance under balanced
and un-balanced grid conditions.

• Clustering ANN and K-Nearest Neighbour (KNN): Investigate on new soft-
ware algorithms is also intended as a future work. Since the proposed
ANN for capacitance estimation considers different power levels, it can
be noted that the capacitance steps are repeated in the target layer of
the ANN. Therefore, it could also be considered as clustering problems,
and hence, clustering and classifying solvers could be applied such as
Clustering ANN and/or KNN. In the aforementioned algorithms, the
capacitance value itself is no longer estimated, but the capacitance value
will be classified in a pre-known category.
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A Review of the Condition Monitoring of Capacitors
in Power Electronic Converters

Hammam Soliman, Student Member, IEEE, Huai Wang, Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—Capacitors are one type of reliability-critical compo-
nents in power electronic systems. In the last two decades, many
efforts in academic research have been devoted to the condition
monitoring of capacitors to estimate their health status. Industry
applications are demanding more reliable power electronics
products with preventive maintenance. Nevertheless, most of the
developed capacitor condition monitoring technologies are rarely
adopted by industry due to the complexity, increased cost, and
other relevant issues. An overview of the prior-art research in
this area is therefore needed to justify the required resources and
the corresponding performance of each key method. It serves
to provide a guideline for industry to evaluate the available
solutions by technology benchmarking, as well as to advance the
academic research by discussing the history development and
the future opportunities. Therefore, this paper first classifies the
capacitor condition monitoring methods into three categories,
then the respective technology evolution in the last two decades is
summarized. Finally, the state-of-the-art research and the future
opportunities targeting for industry applications are given.

Index Terms—Capacitance estimation, capacitance measure-
ment, capacitor health status, condition monitoring, electrolytic
capacitors (E-Caps), film capacitors, reliability.

I. INTRODUCTION

CONDITION monitoring is an important method to es-
timate the health condition of power electronic compo-

nents, converters, and systems. It is widely applied in reliable
or safety-critical applications, such as wind turbines, electrical
aircrafts, electric vehicles, etc., enabling the indication of future
failure occurrences and preventive maintenance.
In [1], the condition monitoring of semiconductor devices

used in power electronics is well reviewed. Besides active semi-
conductor devices, capacitors are another type of components
that fail more frequently than other components in power elec-
tronic systems [2]. In the last two decades, there are a large
number of scientific publications on the condition monitoring
of capacitors, of which the relevant ones are discussed in this
paper [3]–[64]. Nevertheless, the developed technologies are
rarely adopted in industrial applications, due to the complexity,
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Fig. 1. Key indicators of conditionmonitoring and their steps. (a) Capacitance
and ESR curves as an indication of capacitor degradation level. (b) Major steps
of condition monitoring of capacitors.

increased cost, and other relevant issues. Therefore, an overview
of the existing methods is beneficial to both the industry ap-
plication and academic research. It serves the following two
purposes.
1) Benchmark different condition monitoring solutions and
identify the promising aspects and limitations of them.

2) Trace the process history of the technology evolution and
explore the future research opportunities that have the
potential to contribute to more practical applications.

Three types of capacitors are generally available for
power electronic applications, which are electrolytic capacitors
(E-Caps), metallized poly propylene film capacitors (MPPF),
and multilayer ceramic capacitors [65]. These types can be used
in power conversion systems, filter applications, and snubber
circuits.
In power electronics conversion systems, a single capacitor or

a capacitor bank is usually used. The systems may malfunction
if the single capacitor reaches the end of life. For the systems
with capacitor banks, the time to failure of the multiple capaci-
tors could vary. Once one of them fails, the other capacitors may
withstand increased stresses, which accelerates their degrada-
tion. To ensure a reliable operation, it is recommended to replace
the entire bank once one of the capacitors reaches the end of
life [66].
The majority of the condition monitoring methods for both

individual capacitors and capacitor banks are based on the

0093-9994 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Equivalent model and impedance characteristics of capacitors. (a) Simplified equivalent model of capacitors. (b) Impedance characteristics of capacitors.

estimation of the capacitance C and equivalent series resis-
tance (ESR), which are typical indicators of the degradation of
capacitors [67]. Based on the degradation curves in Fig. 1(a),
and according to the block diagram shown in Fig. 1(b), an end of
life or threshold criterion is needed before going further and de-
cide the health condition of the capacitor. For aluminumE-Caps,
the widely accepted end-of-life criterion is 20% capacitance re-
duction or double of the ESR. For film capacitors, a reduction
of 2%–5% capacitance may indicate the reach of end of life.
The range in between the initial value of capacitance/ESR and
the aged value is the condition monitoring range, as shown in
Fig. 1(a).
In [68], [69], the selection of those end-of-life criteria is based

on two aspects to consider.
1) The capacitor degradation rate becomes considerably
faster (e.g., dC/dt , dESR/dt) after the capacitance or ESR
reaches the specified end-of-life criteria.

2) The power electronic conversion systems may not func-
tion appropriately when the capacitance drops or the ESR
increases to a specified level.

The first aspect of the above consideration is usually the
primary reason for the choice of the end-of-life criteria. The
estimated capacitance or ESR value can be correlated to the
capacitor health conditions in one of the following three ways.
1) An indication whether the capacitor fails or not, by com-
paring the estimated value to the specific end-of-life cri-
teria.

2) A degradation level of the capacitor, by observing the
difference between the estimated value and the specific
end-of-life criteria. For this purpose, detailed capacitance
or ESR degradation curve is not necessary.

3) An estimation of the remaining useful lifetime (RUL). It
requires the knowledge of the capacitance or ESR degra-
dation curves under specific operation conditions, which
are usually obtained from the accelerated degradation test-
ing data.

Fig. 2(a) shows a simplified equivalent model of capacitors
and Fig. 2(b) plots the corresponding frequency characteristics.
It can be noted that the capacitor impedance is distinguished by
three frequency regions dominated by capacitance (C), the ESR
and the equivalent series inductance (ESL), respectively. An
overview of the reliability of capacitors in dc-link application
is presented in [67]. The failure mechanisms, lifetime models,
and dc-link design solutions are discussed. A brief discussion
on the condition monitoring of capacitors is also given. Since
the scope of [67] does not focus on the condition monitoring,

no detailed discussion and critical comparison of the prior-art
methods are provided. This paper intends to fill the gap in the lit-
erature and conducts a comprehensive overview on the research
topic. Section II gives the classification of the existing condition
monitoring methods. Section III outlines the technology devel-
opment history of capacitor conditionmonitoring for the last two
decades and the benchmark of these technologies. Section IV
presents the future research opportunities.

II. CLASSIFICATION OF CONDITION MONITORING
TECHNOLOGIES FOR CAPACITORS

The condition monitoring methods for capacitors can be clas-
sified from three perspectives as shown in Fig. 3. The first per-
spective is the availability. If the health indicator can be obtained
during the operation of the system, it is called an online condi-
tion monitoring. If an interruption of the system is required to
obtain the health indicator, it is called an offline condition mon-
itoring. The second perspective shows the type of the health
indicator that is used for the condition monitoring. The third
perspective is the methods to obtain the values of the specific
indicator.
Accordingly, Fig. 3 shows the classification of the methods

to obtain different health indicators. They are divided into three
categories to be discussed in this paper.
The condition monitoring methods reviewed in this paper are

mainly applied for single-stage dc–dc converters, dc–ac invert-
ers, and two-stage ac/dc/ac converters. Figs. 4 and 5 show the
topologies that will be discussed in this section. Fig. 4(a) is a
boost converter and Fig. 4(b) is a buck converter.
Fig. 5 shows a generic structure of ac/dc/ac converters with ei-

ther a diode-bridge rectifier or pulse-width modulation (PWM)
rectifier as the first ac–dc stage. The definitions of the voltages,
currents, and components are shown in the figure. Part of the rep-
resentative condition monitoring methods discussed in [3]–[64]
are listed in Table I. Table I shows the category of the respective
method, the applied health indicator, and the principle for the
indicator estimation. The information of the application case
in terms of topology, power rating, and capacitance value are
listed. A brief discussion of the advantages and disadvantages
is also included. More specific details of these methods and
applications will be discussed in this section.

A. Capacitor Ripple Current Sensor Based Methods

The basic concept in this category is to obtain the capacitance
and/or ESR by using the capacitor voltage and ripple current
information at regions I and II, respectively [as illustrated in
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Fig. 3. Classification of capacitor condition monitoring technology and their indicators.

Fig. 4. Condition monitoring applications for single-stage dc–dc converters discussed in this paper. (a) Boost converter circuit. (b) Buck converter circuit.

Fig. 5. Condition monitoring applications for two-stage ac/dc/ac power converters to be discussed in this paper.

Fig. 2(b)]. Some of the presented methods in the literature have
applied this concept [8]–[17]. To obtain the voltage and current
information at a certain frequency, external signals are injected.
The signal is injected into the power electronic circuits with
the frequency of interest. A large number of papers discuss
the methods in this category. The capacitor voltage information
is readily available since it is usually required for the control
of power electronic converters (e.g., the dc-link voltage). The
ripple current is measured by an additional current sensor. The
current sensors used for capacitor current measurements can
be divided into classical current sensors (e.g., resistors, hall
sensors) and printed circuit board (PCB) based Rogowski coils.
PCB-based Rogowski coils are designed PCBs that are fixed
to the capacitor terminal to sense both capacitor’s current and
voltages.

1) Classical Current Sensors:
a) Without signal injection: Methods that are using direct

classical current sensors are not very common. Three examples
illustrate the concept of using a direct sensor [3]–[5]. All are us-
ing a direct current sensor to obtain the capacitor ripple current,
in addition to the ripple voltage obtained through an existing
voltage sensor. In [3], the root-mean-square (rms) value of the
capacitor current measured by a current sensor is obtained. The
average capacitor power (PC ) can be calculated by multiply-
ing the capacitor’s current and capacitor’s ripple voltage. The
calculation of the ESR is achieved by (1)

ESR =
PC

i2C
(1)

where iC is the current flowing through the dc-link capacitor.



SOLIMAN et al.: REVIEW OF THE CONDITION MONITORING OF CAPACITORS IN POWER ELECTRONIC CONVERTERS 4979

TABLE I
CONDITION MONITORING METHODS OF CAPACITORS IN POWER ELECTRONIC CONVERTERS

Methodology C /ESR Used Approach Topologies Advantages/
Disadvantages Capacitance;

Power rating

Used in
Ref.

I C (E-Caps) C = 1
Δ v c

∫
ic dt Fig. 5 Diode bridge Avoids the use of extensive filters. 4700 μF;

15 kW
[6]

2200 μF;
15 kW

[7]

ESR
(E-Caps)

ESR = V DC−V c
i c

Fig. 5 PWM IGBT bridge Extra effort and many filters to be used
because of the current injection.

2500 μF;
3 kW

[21]

63.5 mΩ
ESR

(E-Caps)
ESR = Δ V c f

Δ i c f Fig. 4(b) Buck converter Requires additional hardware for
implementation.

2200 μF;
40 W

[5]

[55]

ESR
(E-Caps)

ESR
E S R o

=
(

ϑ o l , O
ϑ o l

)2
Fig. 5 Diode bridge High accuracy level of ESR estimation. 470 μF; 0.4

Ω
[41]

ESRH O T = Δ T ×H ×S
I 2 [42]

C (E-Caps) C = 1
Δ v c

∫
ic dt Fig. 5 PWM IGBT bridge Extra effort and many filters to be used

because of the current injection.
6150 μF;
3 kW

[22]

ESR
(E-Caps)

ESR = P c
i 2
c

Fig. 5 Diode bridge Simple analog circuit is required for the
capacitor voltage measurement.

1800/5600
μF; 6 kW

[4]

II ESR
(E-Caps)

ESR ∝ Vc Fig. 4(b) Buck converter Forming an LC filter is important for achieving
the proposed approach.

68 μF; 72 W [29]

C (MPPF-
Caps)

C d v c
d t + 1

R r h
Vc = −i2 f Fig. 11 Fig. 12 Applied for specific kind of application

systems (traction systems).
9 mF;
1.2 MW

[38]

ESR
(E-Caps)

ESR ∝ Vc Fig. 4(b) Buck converter Difficult due to requirement for additional
measurements and prior data for the reference
model.

2200 μF;
40 W

[34]

ESR
(E-Caps)

ESR = Δ v c ×R
R ×Δ I L −Δ v c

Fig. 4(a) Boost converter The temperature effect is considered. N/A [39]

ESR
(E-Caps)

ESR = Δ v c ×R
R ×Δ I L −Δ v c

Fig. 4(b) Buck converter The temperature effect is considered. N/A [59]

C(E-Caps
and

MPPFCaps)

C = 1
Δ v c

∫
ic dt Fig. 5 Diode bridge Low accuracy under dynamic operation. 80 μF;

1.1 kW
[28]

C(E-Caps
and

MPPFCaps)

C = 1
Δ v c

∫
ic dt Fig. 5 Diode bridge Applied on both E-Caps and MPPFCaps. 470 /muF;

250 mΩ
[43]

C(E-Caps) C = 1
Δ v c

∫
ic dt Fig. 5 Diode bridge Low accuracy under dynamic operation. 3280 μF;

100 W
[44]

C and ESR
(E-Caps)

C = V s D T s

8 L

(
V S

t = D T s
2

−V S
t =

(1 + D )T s
2

) Fig. 4(a) Boost converter The condition monitoring method can be
implemented in the same microcontroller used
for MPPT purpose.

47 μF;
750 W

[45]

III C(E-Caps) C = BPF[P c ]

BPF

[
1 / 2

Δ v 2
c

d t

] Fig. 5 PWM IGBT bridge Current measurement is not required. 3950 μF;
3 kW

[20]

C(E-Caps) Trained information on ANFIS Fig. 16(b) Based on software no extra hardware is
required.

1500/2500
μF; 12 kW

[32]

C(E-Caps) Trained information on ANN Fig. 5 Diode bridge Based on software and existing information no
extra hardware or extra sensors are required.

5000 μF;
10 kW

[31]

i2 f —current through the capacitance in the frequency filter;R r h—braking rheostat; Vd c—dc-link voltage; VC —capacitor voltage; iC —capacitor current; VC f—capacitor voltage
at certain switching frequency; iC f−—capacitor current at certain switching frequency; ΔvC —capacitor ripple voltage; Δ iC f—fundamental capacitor ripple current; ΔvC f—
fundamental capacitor ripple voltage; ϑo l , 0 !—initial volume of E-Caps; ϑo l—volume of E-Caps; ESRo—initial value of ESR; ESRH O T—ESR at operating temperature;
H—heat transfer per surface area; S—surface area;ΔT—element temperature rise;ΔIL —inductor ripple current; R—load resistance; VS —solar PV voltage; TS —switching time;
D—duty cycle; L—inductor; BPF[PC ]—output capacitor power from band pass filter; ANFIS—Adaptive Neuro Fuzzy Inference System; ANN—Artificial Neural Network.

In [4], the measured capacitor current is filtered by a band
pass filter (BPF) before calculating the rms value. The usage of
the filter is due to the calculation of ESR in a certain range of
frequencies—as discussed previously—and is given in (2) as

ESR =
VCf

iCf
(2)

where VCf and iCf are the dc-link capacitor voltage and current
at a certain switching frequency, respectively.
In [5], an electronicmodule is designed and integratedwith an

electrolytic capacitor. The electronic circuit is able to calculate
the ESR by sensing the capacitor ripple current and voltage. The
calculated ESR value are then compared with the initial value

of the ESRo to decide the capacitor status. The computational
circuit is shown in Fig. 6.
Although this method requires additional hardware and the

maximum error of the ESR estimation is 10%, the main advan-
tage is the usage of a toroidal core in sensing the ripple current.
The authors claimed that the additional parasitic inductance due
to the usage of the toroidal core is negligible in this application
case.
It is important to notice that the estimation of ESR based on

the average capacitor power is achieved with 10% estimation
error, which is acceptable in some applications. Moreover, it is
achieved without the usage of filters, which reduces time and
cost. But in some applications, the usage of the filter is required
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Fig. 6. ESR computational circuit in capacitors [5].

Fig. 7. Experimental setup with signal injection used in [8]–[17].

in order to achieve higher accuracy with estimation error lower
than 10%.

b) With signal injection: An alternative way is to exter-
nally inject a desirable signal of current or voltage at a certain
frequency into the circuit where the capacitor of interest is lo-
cated. This methodology is the most widely used methodology.
Various applications and different methodologies can be used,
and most of the methodologies are applied on an experimental
setup as illustrated in Fig. 7.
In [8] and [9], an experimental technique that allows the

determination of the ESR value of aluminum E-Caps based
on sinusoidal analysis technique and close to their resonance
frequencies is reported. The technique has been applied on a
capacitor existing in an LCfilter with 25 V input voltage, and
4700μF filter capacitor. However, the technique presented some
drawbacks due to the fact that both capacitance and inductance
values are frequency dependent. In these two references, the
estimated ESRs from the experimental test are not compared
with the simulations. This is due to the fact that both tests are
done at different frequencies. Moreover, the obtained results
are not compared to the initial values; this is due to a lack
of information from the manufacturer of the tested capacitors.
The manufacturer is typically providing the data sheets with
dissipation factor (DF) at 120 Hz.
In order to overcome the aforementioned shortcomings, dif-

ferent algorithms were used in [10]–[17]. Laplace transform
algorithm in [10], Newton–Raphson (NR) in [11] and [16], dis-
crete Fourier transform (DFT) in [12], [13], and [17], and least
mean square (LMS) in [14] and [15]. All the algorithms are used
to calculate the relationship between the input voltage and the

TABLE II
SUMMARY OF CONDITION MONITORING ANALYSIS ALGORITHMS

Analysis
Algorithm

Operating
frequency

(C )Estimation
error

percentage

(ESR) Estimation
error

percentage

Laplace
Transform

120 Hz 17.6%[1 0 ] N/A

750 Hz N/A 18%[1 1 ]

10 kHz N/A 5%[1 0 ]

Discrete Fourier
Transform
(DFT)

750 Hz N/A 8% [11]

1 kHz 2.8%[1 2 ] 11%[1 2 ]

10 kHz N/A 10% [10] 12% [16]
Newton–
Raphson
(NR)

120 Hz 1.5%[1 0 ] 8.4%[1 5 ]

Least Mean
Square (LMS)

1 kHz Method (1)* 2.6%[1 3 ]
1.0%[1 4 ]

0.4%[1 4 ]

Method (2)* 0.3%[1 4 ] 9.7%[1 4 ]

∗Method (1): based on sinusoidal generator. Method (2): based on charge/discharge circuit.

output voltage of the experimental circuit shown in Fig. 7. The
differences between these algorithms are summarized at the end
of this section.
In [11] and [12], the same setup (as shown in Fig. 7) is used

to estimate the equivalent circuit of the capacitor by using the
NR method and DFT, respectively, instead of Laplace analy-
sis. The measured values of capacitance and ESR are compared
with those obtained in [10]. The NR–based method gave values,
which were very close to the measured values using an LCRme-
ter withmaximum error of 1.5%. Comparing the obtained values
based on the DFTmethod in [12] with the values obtained by the
Laplace transform method in [10], the DFT method estimated
the ESR with a maximum error of 8%, and the method using
the Laplace method estimated the ESR with a maximum error
of 18%.
Another method based on DFT analysis is considered in [13]

and it is applied on the same setup as shown in Fig. 7. The
method estimated the ESR and capacitance with a maximum
error of 11% and 2.8%, respectively. In [14], a simple modi-
fication to the same setup in Fig. 7 is carried out to estimate
the ESR and capacitance. The modified circuit uses a control
circuit to charge and discharge the capacitor. Therefore, from
the relationship between the capacitor current and the capacitor
voltage, the capacitance value is estimated by applying an LMS
algorithm using a sinusoidal curve fitting technique instead of
using Laplace.
Based on the same method proposed in [14] and the setup

shown in Fig. 7, a wider range of frequencies and temperatures
are considered in [15] for the estimation of ESR and capacitance.
In addition, [15] uses twomethods: 1) based on a sinusoidal gen-
erator; and 2) based on charge/discharge circuit, and compares
each method. It is concluded that for the ESR estimation the first
method is better, while the opposite is correct for the capacitance
estimation.
Table II summarizes the comparison between all algorithms

with respect to the operating frequency. Based on the review of
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Fig. 8. LCL filter interfaced between grid and PWM inverter [19].

these algorithms, the following can be concluded.
1) In order to use the Laplace transform algorithm, a certain
requirement must be fulfilled. The requirement is that the
input resistance R must be two to three times higher than
both the ESR and the capacitor reactance. Otherwise, the
Laplace transform algorithm shows high error percent-
ages.

2) The NR Algorithm is an iteration-based algorithm, and
from the results listed in Table II, NR is recommended
for the frequency region I, and hence, for capacitance
estimation.

3) The DFT algorithm is considering only the first harmonic
component in the computation of the gain and phase
displacement between the input and output voltage, and
hence, it takes low effort.

4) All of the four algorithms are applied for offline condition
monitoring of capacitors.

For the LCL filter of the grid-connected PWM converter
shown in Fig. 8, a condition monitoring method is proposed
in [18] and [19].
This methodology is based on using the corresponding vari-

ation in the filter capacitor operating frequency region as the
capacitance drop is an indication to the health status. Assuming
that the capacitance is reduced up to 80% of the initial value,
the frequency caused due the drop is calculated by

f =
1
2π

×
√

Lcon + Lg

Lcon × Lg × 0.8Cinitial
(3)

where Lcon is the line inductance on the converter side, Lg is
the line inductance on the grid side, and Cinitial is the initial
value of the capacitance. To obtain the frequency of the aged
capacitor, a voltage is injected into the reference voltage of
the capacitor in the LCL filter with the frequency calculated
previously. Although this method is similar to the one proposed
in [20] since both are using voltage injection, the difference is
the usage of measured capacitance frequency and comparing
it to the initial frequency to identify the deterioration of the
capacitor. Moreover, the replacement time of the capacitors is
determined according to the following condition:

(α − β) ≥ 80% (4)

where (α) and (β) are the dB frequency magnitude of the initial
and degraded capacitance, respectively.

2) PCB-Based Rogowski Coils: Capacitor condition moni-
toring based on PCB-based Rogowski coils is summarized in

Fig. 9. Condition monitoring by ESR estimation based on designed PCBs.
(a) ESR estimation done within the capacitors ohmic frequency range as il-
lustrated in Fig. 2(b) [5]. (b) ESR estimation based on Rogowski coil current
sensor [6], [7].

this section. The methods described in [6] and [7] are based on
the Rogowski current sensor concept, where a designed PCB
is fixed to the capacitor terminal to sense both capacitor’s cur-
rent ic,ac and voltages Vc,ac. The difference between Rogowski
based methods and the method in [5] is illustrated in Fig. 9. The
advantage in the Rogowski based methods is the avoidance of
using extensive filters since the total active power Pc drawn
by the capacitor is represented by the ESR. Where, Vcf and
icf are the capacitor voltage and current at a certain switching
frequency, respectively.

B. Circuit Model-Based Methods

1) Without Signal Injection: Instead of the current sensors
connected in series with the capacitors, capacitor ripple currents
can also be obtained indirectly based on the operation principle
of PWM switching converters [28], and the switching status of
dc–dc power converters with the LC filters [29].
An online condition monitoring method based on capacitance

estimation by (10) is presented in [28]. As referring to Fig. 5,
the electrical information i1 , ia,out, ib,out and Vdc are obtained by
using the three existing current sensors and one voltage sensor,
respectively. These sensors are already existing for the control
purpose of the converter. The electrical information iC , i2 , ic,out

are estimated indirectly.
The capacitor ripple current iC is calculated using the differ-

ence between the input current sensor i1 and the current flows
to the inverter i2 which is based on the transistor switching
sequences. The assumption of this calculation is that the three
phase output currents are balanced.
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Fig. 10. Voltages waveformwith respect to sampling time and duty cycle [45].

Due to the high switching frequency in dc–dc converters, the
impedance of the electrolytic capacitor is dominated by the ESR.
Since the ESR is very small compared to the load resistance,
the output ripple voltage is determined by the capacitor ESR
and the inductor ripple current. For a dc–dc power converter
operated in a steady state, three factors in which the inductor
current depends on remains unchanged. The factors are duty
cycle, the inductance, and the difference between input and
output voltage. Therefore, the amplitude of the output ac ripple
voltage is determined directly by the ESR. The experimental
test is based on a comparison between the output ripple voltage
in the case of using predetermined unaged capacitor, with the
output ripple voltage in case of using an aged capacitor.
In [45], an online methodology that belongs to this category

and requires no signal injection is proposed. The methodology
is applied on a dc-link capacitor in a boost converter as shown
in Fig. 4(a). The boost converter is supplied from a photovoltaic
(PV) panel. The main advantage in this methodology is that the
sensing voltage for the maximum power point tracking (MPPT)
purpose is utilized for the ESR and capacitance estimation ac-
cording to (5) and (6), respectively

ESR =

[
VS |t = 0 − VS |t = D T s

] × L

VS × DTs
(5)

C =
VS × DTs

8
× L ×

[
VS |t = D T s

2
− VS |

t =
(1 + D )T s

2

]
(6)

where VS , Ts , D, and L are the solar PV voltage, switching
time, duty cycle, and the inductor, respectively, as illustrated in
Fig. 10.
However, the ESR and the capacitance can be estimated only

during a steady state, when the MPPT system settles to a point.
Since the same sensing voltage is used for the MPPT purpose
is used for ESR and capacitance estimation, therefore, the con-
dition monitoring method is implemented in the same micro-
controller which is also used for the MPPT. This helps to avoid
additional hardware, and hence reduces the cost.
Another methodology that is applied to the capacitor condi-

tion monitoring based on the circuit model is presented in [38].
The condition monitoring is based on capacitance estimation
of a dc-link MPPF capacitor in a traction system. The general
traction scheme of the railway trains is shown in Fig. 11. Re-
garding to the operation nature of the traction systems, during

Fig. 11. General traction scheme. (a) dc-link capacitor. (b) Frequency filter.
(c) Braking chopper [38].

Fig. 12. Equivalent dc-link circuit during dc-link capacitor discharge [38].

Fig. 13. Equivalent circuit of the three-phase ac/dc/ac converter shown in
Fig. 5 when the motor is stopped [43].

the capacitor discharge period, the obtained equivalent circuit of
the dc-link is shown in Fig. 12. Normally in the traction system
applications both current and voltage sensors are already in-
stalled and available in some auxiliary measurement blocks.
Thereby, an insertion of an additional current sensor in series
with the dc-link capacitor or a voltage sensor is avoided, and
the dc-link capacitor will be obtained by applying the LMS
algorithm to

C
dvDC

dt
+

1
Rrh

× VDC = −i2F (7)

where C, i2F , L2F , C2F , Rrh , and VDC are the dc-link capaci-
tor, current passes through the frequency filter, frequency filter
inductance, frequency filter capacitance, braking rheostat, and
dc-link voltage, respectively.
A similar concept that estimates the ESR and the capacitance

at a certain time is also presented in [43]. The estimation is ap-
plied on a dc-link capacitor in a three phase diode bridge ac/dc/ac
converter that drives an induction motor as shown in Fig. 5. The
main idea is to apply the conditionmonitoringmethodwhenever
the motor is stopped. During this instant, the equivalent circuit
is given as shown in Fig. 13.
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Fig. 14. Behavior of the dc-link current and voltage according to the gating
pulses in an ac/dc/ac converter shown in Fig. 5 [21].

In Fig. 13,La ,Lb ,Las ,Lbs ,Ras ,Rbs , are the line inductances
of phase A and phase B, the stator inductances and resistances
of phase A and phase B, respectively.

2) With Signal Injection: A few examples that are based
on the circuit model methodology, in addition to external sig-
nal injection, are proposed in [21]–[26]. The current injection
methods in [21], [22], [24], and [26] are applied on the PWM
ac/dc/ac converter, while in [23] and [25] they are applied to
a submodule capacitor in a modular multilevel converter, and
a drive system for electric vehicles, respectively. The injected
current is of a frequency lower than the line frequency, inducing
two voltages which follows the relationship of

VDC = VC + VESR. (8)

By considering the generation of the zero voltage vectors at
switching periods, the values at the mid-point of the switching
periods are used in [21] to obtain the ESR value as

ESR =
VESR
iC

=
Vdc mid − VC mid

iC mid
(9)

where the term (mid) in the subscripts indicates the quantities
measured at the mid-point of the normal sampling period as in
the signals shown in Fig. 14.
In [22] the estimated capacitance is obtained by

C =
1

ΔVDC

∫
iC dt. (10)

Although it can be noticed that the current injection method is
applied on various applications, the need of external signals,
extra hardware, and filters is the main shortcoming in such a
method.

C. Data and Advanced Algorithm Based Methods

In this category, the power electronic converters are treated as
a black box or semiblack box. Black-box approaches are based
on the information of voltages and currents at the input side and

Fig. 15. Structure of ANN of capacitance estimation [31].

output side only. The internal properties of the converters are
assumed unknown. Semiblack-box approaches use also some of
the available information inside the power converter structure.
The relationship between the parameters to be estimated and
the available parameters (e.g., input and output side terminal
voltage and current information, dc-link voltage) are obtained
through data training.
In [20], a low-frequency ac voltage is injected to the dc-link

reference, which is used as training data in sake of finding the
identification model based on support vector regression (SVR).
After using a set of training data, a function that finds the re-
lationship between the capacitor’s power and its corresponding
capacitance is designed, and the capacitance is determined ac-
cording to

C =
BPF[PC ]

BPF[1/2][ΔV 2
C

dt ]
(11)

where the term BPF[PC ] refers to the capacitor’s power filtered
by using the BPF and it equals to 3 kW. The cut-off frequency of
the used BPF equals to 30 Hz. As claimed in [20], this method is
simpler than the current injection, since the estimation is based
on the capacitor power and no dc-link ripple current information
is required. Since the SVR is an algorithm, which is based
on offline trained data, the recursive least-squares algorithm is
applied to allow the estimated capacitance to be updated, when
new data become available [30].
Two recent methods for condition monitoring of capacitors

based on data training using software algorithms are presented
recently in [31] and [32]. Their structures are shown in Figs. 15
and 16, respectively.
The method described in [31] is based on the artificial neural

network (ANN) algorithm. It is applied for the dc-link capacitor
condition monitoring in a diode-bridge front-end three phase
motor drive as shown in Fig. 5.
The main motivation behind using ANN for capacitance es-

timation is to avoid the usage of a direct/indirect current sensor.
The capacitance value is estimated based on the existing control
information and the power level of the power converter. This
is convenient for the industry applications, where input/output
current of the converter and the dc-link voltage are already ex-
isting information. No extra hardware circuitry and no injection
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Fig. 16. Condition monitoring of capacitors based on data training proposed
by [32]. (a) ANFIS network [32]. (b) Power electronic converter circuit [32].

TABLE III
SIMULATION RESULTS FOR ESTIMATED CAPACITANCE (AT 7 KW) USING

METHODOLOGY III

Ca c t . = 1300 μF C e s t . = 1296 μF Error = 0.3%
Ca c t . = 1743 μF C e s t . = 1747 μF Error = 0.23%
Ca c t . = 2600 μF C e s t . = 2589 μF Error = 0.5%
Ca c t . = 3200 μF C e s t . = 3203 μF Error = 0.09%
Ca c t . = 3854 μF C e s t . = 3850 μF Error = 0.1%
Ca c t . = 4265 μF C e s t . = 4257 μF Error = 0.18%

of external signals are required, and thereby minimizing both
complexity and cost. In Fig. 15, the basic structure of the ANN
is illustrated; normally, the structure of any neural network con-
sists of three types of layers: input layer, hidden layer, and
output layer. In this ANN, the capacitance value is the target
to be estimated, while the input/output terminal information of
the converter and the dc-link voltage are the inputs to the ANN.
Parts of the results are shown in Table III. The maximum esti-
mated error is 0.5%, where Cact. and Cest. refer to the actual
and estimated capacitance, respectively.
The method described in [32] is applied to a power electronic

converter shown in Fig. 16(b) and based on adaptive neuro-fuzzy
inference system (ANFIS) algorithm.
The methodology is based on collecting data and training

the ANFIS on them for the sake of predicting future nontrained
outputs according to the basic structure shown in Fig. 16(a). The
supply voltage Vs and ripple voltages V1 and V2 of both filter
capacitors C1 and C2 are inputs to the ANFIS. Both V1 and V2
are going through an interpolation process before implementing
them in order to assure that a strong mapping between the inputs
and outputs is obtained.
In order to investigate the ageing process, V1 and V2 are

calculated at the end-of-life states and denoted by V1th and

V2th, respectively. A relationship between the supply voltage
and the end-of-life voltages is linearly interpolated using curve
fitting techniques. The two factors V̂1th and V̂2th are obtained,
where V̂1th and V̂2th are the estimated values of V1th and V2th
according to Vs, respectively. Finally, in order to obtain the
data implemented as input to the ANFIS, a percentage value is
calculated as the following:

%V1 =
V1m

V1th
× 100 (12)

%V2 =
V2m

V2th
× 100 (13)

where V1m and V2m are the measured values of V1 and V2,
respectively, at any current level.
The ANFIS network is trained on 366 pairs of inputs and

outputs. The network estimates one index out of two indices for
capacitance and ESR of both capacitors in the converter. More-
over, the ANFIS can show decreasing/increasing percentages in
the capacitance and the ESR, respectively. The method based
on the ANFIS gives a high accuracy (0.5% maximum error)
according to the results and it is useful for fault detection.

III. HISTORY DEVELOPMENT AND BENCHMARK OF CAPACITOR
CONDITION MONITORING METHODS

The technology evolution of the capacitor condition monitor-
ing technologies is illustrated in Fig. 17 with respect to history.
Different methods are represented according to the selected in-
dicators, online or offline, and the methodologies discussed in
Section II. The maximum estimation error percentages corre-
sponding to each methodology are also given in Fig. 17.
Since the estimation accuracy is an important performance

factor, Fig. 18 compares the estimation errors with respect to the
range of capacitanceC and ESR. The comparison is according to
the available data in different literatures and with respect to the
methodologies classified earlier in Section II. It can be seen
that the lowest error percentages are captured by the methods
that belong to Methodology III. This concludes that software
solutions have a strong potential to be considered in condition
monitoring.
Fig. 19 summarizes the share of the considered lifetime indi-

cators, and the share of each methodology listed in this review.
Almost 60% of the used health indicator is captured by the
ESR. This percentage conclude that E-Caps are the widely used
capacitor type in power electronic applications.

IV. REMARKS ON THE CONDITION MONITORING
FOR CAPACITORS

Based on the above analysis, the following remarks are given
to the overview.
1) Fig. 18 shows that the condition monitoring methods
based on Methodology III achieved a relatively higher
accuracy than those based on Methodologies I and II.

2) The majority of the condition monitoring methods are
based on the first methodology as shown in Fig. 19.

3) Fig. 19 shows that the ripple voltage estimation is
the lowest considered indicator. However, the capacitor
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Fig. 17. Development history of the condition monitoring technology for capacitors.
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Fig. 18. Comparison of the capacitor parameter estimation in prior-art literatures.

Fig. 19. Sharing of the used methods for condition monitoring and the considered indicators.

ripple voltage is the main factor in ESR and capacitance
estimation.

4) According to the development history shown in Fig. 17,
ESR is a common indicator for capacitor condition mon-
itoring due to the wide usage of E-Caps where both ca-
pacitance and ESR can indicate the health status. For film
capacitors, the capacitance is a preferred indicator, since
the ESR of film capacitors are significantly smaller than
that of the E-Caps.

5) Leakage current or insulation resistance can also be used
as an indicator for E-Caps and film capacitors. They are
mainly used in offline condition monitoring since it is
relatively more difficult to estimate it online, compared to
that of ESR or capacitance.

6) It can be noted from Fig. 17 that the majority of the condi-
tion monitoring methods are online. By considering that
the degradation of capacitors are usually very slow, offline
condition monitoring is sufficient in most applications
(e.g., in motor drives) to detect the wear out of capacitors.
It implies that much simpler estimation methods can be
applied (e.g., during the start-up of motor drives).

7) The capacitor ripple current sensor based methods are
not attractive for practical industry applications due to
its addition of hardware circuitry, cost, and the relia-
bility issues of the introduced circuit. Table IV shows
the hardware/software complexity with respect to each

TABLE IV
ASSOCIATED LEVELS OF COMPLEXITY WITH RESPECT TO

EACH METHODOLOGY

Methodology Hardware Complexity Software Complexity

I + + + +
II ++ ++
III + + + +

methodology. It can be seen that the hardware complexity
is reduced against the increase in software complexity.

8) Condition monitoring of capacitors discussed here is lim-
ited to the wear out detection. To extend the scope, in
reliability critical applications, the online monitoring of
the operation status (e.g., hot spot temperature, abnor-
mal voltage, and current stresses) is of much interest. For
this perspective, the online monitoring of capacitance and
ESR value might be necessary to indirectly monitor the
temperature and other abnormal stressors.

9) New methods based on software solutions and existing
feedback signals, without adding any hardware cost, could
be attractive for industry applications.

V. CONCLUSION

The condition monitoring technologies are classified by the
authors into three categories from their methodology point
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of view. The indicators that represent the health status of
the capacitor and the used approach to calculate them are
also reviewed. Different iteration/estimation algorithms used
for capacitor condition monitoring applications are grouped.
A comparison between these algorithms and the estimated
maximum percentage error by each of the algorithms are
discussed in detail. Moreover, remarks on whether the health
indicator is useful to be considered or not are also discussed.
The technology evolution and benchmark of the state-of-the-art
condition monitoring methods for capacitors from 1993 to
present are listed. Remarks on both the promising aspects and
shortcomings of the key methods and their applicability in
practical industry applications are provided. From the authors
point of view, future research opportunities in the condition
monitoring of capacitors include the following main aspects.
1) Software-based methods with reduced or no additional
hardware efforts expect to be attractive for industry ap-
plications which requires high reliability performance.
The advantages of this kind of methods lie in twofold:
it could be applied for both new power converters or
existing power converters by upgrading the algorithms
in the digital controllers and it is a trend that the
cost of digital controllers and computation resources is
reducing.

2) Cost-effective and low-inductive current sensing methods
could overcomemany of the shortcomings of existing cur-
rent sensor basedmethods. PCB-basedRogowski coils are
promising for the capacitor current measurement, while
more research efforts are needed to achieve better integra-
tionwith the capacitors andmore robust and cost-effective
design.

3) Integrated implementation of condition monitoring, pro-
tection, and other ancillary functions for capacitors in
applications requiring high reliability performance.
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Abstract - In power electronic converters,   reliability 
of DC-link   capacitors   is one of the   critical   issues.  
The estimation   of  their   health   status   as  an  
application  of condition  monitoring have  been  an  
attractive subject  for industrial field and  hence for 
the academic  research filed as well. More reliable 
solutions are required to be adopted by  the  industry   
applications   in  which  usage  of  extra hardware,  
increased   cost,  and  low  estimation   accuracy are  
the  main  challenges.  Therefore,   development of 
new condition monitoring methods based on software 
solutions could be the new era that covers the 
aforementioned challenges.  A capacitance   
estimation   method   based   on Artificial Neural 
Network (ANN) algorithm is therefore proposed in this 
paper.  The implemented ANN estimated back 
converter.   Analysis of the error of the capacitance 
estimation   is also given.  The presented method 
enables a pure   software   based  approach with 
high parameter estimation accuracy.

Keywords - Capacitor condition monitoring; capacitor 
health status; Capacitance estimation.

I. INTRODUCTION

Condition monitoring is an important strategy to 
estimate the health condition of power electronic 
components, convert- ers and systems. It is widely 
applied in reliability or safety critical applications, such 
as wind turbines, electrical aircraft, electric vehicles, 
etc., enabling the indication of future failure 
occurrences and preventive maintenances. In [1], the 
condition monitoring of semiconductor devices used 
in power electronics is well reviewed. Besides the 
power devices, and according to [2], electrolytic 
capacitors are sharing 60% of the failure distribution 
for power converter elements as shown in Fig.1, 
therefore, capacitors are another type of reliability 
critical components.

In the last two decades, a large number of research 
results on condition monitoring of capacitors has been 
published. The majority of the condition monitoring 
methods for capacitors are based on estimation of the 
capacitance C and equivalent series resistance 
(ESR), which are indicators of the degradation of 
capacitors [3]. For aluminum electrolytic capacitors, 
the widely accepted end-of-life criteria are 20% 
capacitance reduction or double of the ESR. For film 
capacitors, a reduction of 2% to 5% capacitance may 
indicate the reach of end-of-life. Therefore, a method 
which can estimate the C value could be applied on 
both aluminum electrolytic and film capacitors. 
However, obtaining the values of C or ESR is an 
important step since it gives an indication of the 
ageing process and its acceleration. Fig. 2(a) shows a 
simplified equivalent model of capacitors and Fig. 2(b) 
plots the corresponding frequency characteristics. It 
can be noted that the capacitor impedances are 
distinguished by three frequency regions dominated 
by capacitance, ESR and the Equivalent Series 
Inductance (ESL), respectively.

Fig .1. Distribution of failure for power converetr elements [2

(a) Simplified equivalent model of capacitors

C ESR ESL
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(b) Impedance characteristic of capacitors

Fig .2.    Equivalent model and impedance characteristics of  
capacitors.

From  the  methodology  point  of  view  in  [4],  
condition monitoring methods in the literature are 
classified into three categories as the following: a) 
Capacitor ripple current sensor based methods, b) 
Circuit model based methods, and c) Data and 
advanced algorithm based methods. The following 
three subsections are defining the principle of each 
category with its corresponding examples from the 
literature.

A. Capacitor ripple current sensor based  methods

The basic principle of the this category is to estimate 
the capacitance  and/or  the  ESR by  using  the  
capacitor  ripple voltage and current information at 
region I and II (as shown in Fig. 2(b)). In [2, 5–7], an 
external current injection at low fre-quency is the 
main approach to achieve condition monitoring, it has 
been applied to PWM AC/DC/AC converter in [2], [5], 
and [7], while in [6] it has been applied to a sub-
module capacitor in moulder multilevel converter.

B. Circuit model based methods

This category is based on that instead of injecting 
external signals, the capacitor current can be 
obtained indirectly de- pending on both the circuit 
model and the operation principle of PWM switching 
converters. In [8], an on-line condition monitoring 
based on capacitance estimation is proposed, the 
capacitor ripple current is calculated using the 
difference between the input current sensor, and the 
output current flows to the inverter which is based on 
the transistor switching statues.

C. Data and advanced algorithm based  methods

This category, obtaining a strong correlation between 
the available parameters and the parameters to be 

estimated is the main concept. In [9], an external 
voltage is injected to the reference voltage of the
capacitor at low frequency, the obtained capacitor 
power is used as a training data in sake of finding an 
identification model based on Support Vector 
Regression (SVR). After using a group of training 
data, a generated function is used to analyse the 
correlation between the known capacitor power and 
its corresponding capacitance value. Although the 
previous mentioned methods have been ver- ified by 
simulation and experimental work, errors, complex-
ity, and cost increasing due to extra hardware are 
common shortcomings. Therefore, the developed 
technologies are rarely adopted in practical industry 
applications, implying that new condition monitoring 
methods based on software solutions and existing 
feedback signals, without adding any hardware cost, 
could be more promising in practical applications.

This paper aims to propose a condition monitoring 
method based on Artificial Neural Network (ANN) that 
uses existing power stage and control information 
and existing spare re- sources of digital controllers. It 
requires no extra hardware cir- cuitry (e.g., current 
sensors and corresponding signal condition circuits), 
no external signal injection, and therefore minimises 
the increased complexity and cost. Main sections in 
this paper are as the following: Section II gives the 
basic principle of ANN applied for capacitor condition 
monitoring. Section III

Fig .3.    The structure of the Artificial Neural  Network.

illustrates the applied ANN to a back to back 
converter study case.  Section IV presents the results 
achieved by the proposed method based on ANN, 
followed by the conclusion.

II. ANN FOR CAPACITOR CONDITION 
MONITORING

Implementation of capacitor condition monitoring 
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using ANN is motivated by the shortcomings that 
have been investigated earlier in this paper. Avoiding 
the usage of direct/indirect current sensors is one of 
the main advantages of using ANN to obtain the
estimated value of C. Instead of sensing the capacitor 
current iC, only the input terminal and output terminal 
information of the power converters are used as 
inputs to the ANN, while the capacitance is the ANN’s 
target, and then the network is responsible for 
estimating the value of C when using different inputs 
than the trained ones. Normally, during the operation 
of the power converter, the required terminal 
information to train the ANN is supposed to be 
available. Taking the power level of the applied 
converter into consideration while the network is 
trained, is improving the ANN’s estimated results by 
being more robust against dynamic variations of the 
loading power. Fig.3 illustrates the structure of the 
proposed ANN. The basic structure of any neural
network consists of three layers, input, hidden, and 
output layers. The input layer is where the available 
amount of data N fed to the ANN will be stored. The 

hidden layer job is to transform the inputs into a 
function that the output layer can use, while the
output layer transforms the hidden layer activations 
into a scale which the operator wanted the output to 
be on target.

III. CAPACITANCE ESTIMATION BASED ON 
ANN

Capacitance estimation based on ANN is applied to a 
back to back converter as shown in Fig. 4. The 
specifications of the converter are listed in Table I.

Capacitance values in the range between (1000μF 
and 5000μF) with 100μF step are used as targets to 
the network, each value of these 41 samples 
corresponds respectively to the single phase RMS 
input/output voltages, currents, and the DC-link 
voltage. Since the different loading condition of the 
back-to-back converter is also considered, three 
groups of 41 samples under the respective loading 
level of 10 kW, 7 kW and 4 kW are used.

Fig .4.    A back-to-back converter.

Table 1. THE SPECIFICATIONS OF THE BACK-TO-BACK CONVERTER    
PARAMETERS. 

 

Input AC Voltage (VL−L) 600 V

Output AC Voltage (VL−L) 380 V

Rated  DC-link  Voltage (Vdc) 780 V

Full Power Level  (Po) 10 kW

Capacitance (C) 5000 μF

 
 

 

Fig .5.    Regression responce of the trained  network..
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All the 123 samples are fed to a single hidden layer 
ANN consisting of 10 neurons using the Neural Fitting 
Tool (nftool) in MATLAB software. This tool is usually 
used for estimation and prediction of problems in 
which the neural network maps between a data set of 
numeric inputs and a set of numeric targets. The 
iteration algorithm used in this training is Levenberg-
Marquardt, which typically takes more memory but 
less time. The training automatically stops when  
generalisation stops improving, as indicated by an 
increase in the mean square error of the validation 
samples. During the training observing the
Regression value R is important, since Regression 
values measure the correlation between outputs and 
targets. An R value  of  1  means  a  close  
relationship,  while  0  means  a random relationship. 
Fig. 5 shows the regression response of the trained 
network in this paper. It can be noted that all the

123 input data are exactly aligned on the fitting line 
and the values of R are close to 1. Based on this 
result, the network stopped training and the ANN is 
generated to be used.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the trained network is tested for 
verification purpose. The inputs to the ANN are 
stored in the Matlab work- space, and they are sent 
to the ANN as a group set every 0.2 seconds. Each 
group set is resulting in one corresponding output 
(estimated C value). The same group set of inputs is 
sent until a new set is available in the work-space.
The same back to back converter as shown in Fig. 4 
is used for the simulation test, but with two capacitors 
C1   and C2 connected in parallel through switches to 
have the option to switch between them to simulate 
the degradation of C. At the timing (5 sec) the 
capacitor C2 will be switched on instead of C1 . Fig.6 
shows the capacitance value estimated by the trained 
ANN. The simulation results for the estimated 
parameters and their corresponding errors are shown 
in Table II. The estimated results verify that the 
trained ANN is responding for the changes in the 
capacitance value, and the statues of the capacitor 
could be easily identified.

Table 2. SIMULATION  RESULTS  FOR  ESTIMATED CAPACITANCE.. 
 

C1actual=5000μF C1estimated=4991μ
F

Error=0.18%

C2actual=4000μF C2estimated=3996μ
F

Error=0.1%

Moreover, to prove the accuracy of the trained ANN, 
the network is tested to identify the reduction of 50μF 
out of 5000μF and the resulted estimation is shown in 
Fig. 7. For the initial stage, the estimated value is 
4991μF and for the degraded case, the estimated 
value is 4945μF, which gives a 0.18% error as a 
maximum.

To test the robustness of the trained ANN against 
loading power variations, the ANN is tested to 
estimate a capacitance

Fig .6.    Tested DC-link capacitor change in a back-to-back   
converter.

Fig .7.    Trained ANN accuracy for the capacitance change shown 
in Fig. 6.

Fig .8.    Trained ANN accuracy for the loading power   change.

value of 5000μF during a loading power change. The 
esti- mated results with their corresponding errors 
percentage are shown in Fig. 8.
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Moreover, for  further verification of  the  ANN  
accuracy, a  set of random values of capacitance 
between the ranges of (1000μF-5000μF) are applied 
under three different power levels, their actual and 
estimated values are shown in Fig.9. The actual and 
estimated values of capacitance of the set applied 
under 70% power level are presented in Table III.

In sake of showing the impact of the training data 
amount on the accuracy of the trained ANN, another 
network (ANN2) is trained by using 63 samples 
instead of 123 samples considering the same 
conditions of (ANN1) which have been trained earlier 
in this paper. Fig. 10 shows that the errors estimated 
by ANN2 are higher than the ones estimated 
previously by ANN1, implying the trade-off between 
estimation accuracy and required computation 
resource.

Fig .9.    Estimation error analysis under different level of   power.

 
Table 3. SIMULATION RESULTS  FOR ESTIMATED CAPACITANCE  (AT  

7KW). 

Cactual=1300μF Cestimated=1296μF Error=0.3%

Cactual=1743μF Cestimated=1747μF Error=0.23%

Cactual=2600μF Cestimated=2589μF Error=0.4%

Cactual=3200μF Cestimated=3203μF Error=0.09%

Cactual=3854μF Cestimated=3850μF Error=0.1%

Cactual=4265μF Cestimated=4257μF Error=0.18%

Fig .10.    Estimation error analysis by different trained  ANNs.

The last accuracy analysis is performed to observe 
the error percentage of the estimated capacitance 
with respect to different degree of changes of the 
original value of 5000μF, the results are shown in Fig. 
11. It can be noted that the estimation errors of the 
proposed ANN are below 0.25%. It can respond and 
estimate correctly the capacitance values even under 
a very low level of capacitance reduction of 0.2% 
changes.

The following remarks are given from the results 
presented in this section:

The simulation results of the proposed method 
based on ANN verify that condition monitoring 
methods based on software solutions could be an 
attractive alternative for the practical industry 
applications.

It can be noted from the results that trained ANN 
is capable to respond to a very small change of 
capacitance

Fig .11.    Estimation error analysis under different level of 
capacitance reduction at rated power  level.

and estimate the capacitance value within the range 
in which the network is trained.

It should be noted that the accuracy of the trained 
ANN strongly depends on the amount, quality, 
and accuracy of the data used in the training.

V. CONCLUSIONS

A new capacitor condition monitoring method based
on Artificial Neural Network algorithm is proposed in 
this paper. It is applied to a back-to-back converter 
study case to estimate the capacitance value change 
of the DC-link capacitor. The proposed method 
requires no additional hardware circuit and could be 
implemented by using the spare resources of existing 
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digital controllers in most of power electronic systems, 
implying a minimum increased cost (e.g., only in the 
research and development part). The error analysis 
under different DC-link capacitance values and 
different level of capacitance reduction with respect to 
the initial value are given, achieving a maximum 
estimation error that is well below 0.5%, which could 
be acceptable in many practical applications. The 
impact of training data amount on the error analysis is 
also given.

REFERENCES

[1] S. Yang,  D. Xiang, A. Bryant, P.  Mawby,  L. Ran,  
and P. Tavner, “Condition monitoring for device 
reliability in power electronic converters: A review,” 
IEEE Transactions on Power Electronics, vol. 25,  no. 
11, pp. 2734–2752, Nov  2010.

[2] X.-S. Pu, T. H. Nguyen, D.-C. Lee, K.-B. Lee, and J.-M. 
Kim, “Fault diagnosis of dc-link capacitors in three-
phase ac/dc pwm converters by online estima- tion of 
equivalent series resistance,” IEEE Transac- tions on 
Industrial Electronics, vol. 60, no. 9, pp. 4118–4127, 
Sept 2013.

[3] H. Wang and F. Blaabjerg, “Reliability  of  capac- itors 
for dc-link applications in power electronic 
converters-an overview,” IEEE Transactions on In-
dustry Applications, vol. 50, no. 5, pp.   3569–3578,
Sept 2014.

[4] H. Soliman, H. Wang, and F.  Blaabjerg, “A  review  of 

the condition monitoring of capacitors in power 
electronic converters,” in Electromotion Joint Inter-
national Conference (ACEMP - OPTIM), 2015 IEEE,
August 2015, pp. 243–249.

[5]  D.-C.  Lee,  K.-J.  Lee,  J.-K.  Seok,  and  J.-W. Choi,
“Online capacitance estimation of dc-link electrolytic 
capacitors for three-phase ac/dc/ac pwm converters 
using recursive least squares method,” in Proceedings 
of Electric Power Applications, vol. 152, no. 6, pp. 
1503–1508, Nov 2005.

[6] Y.-J. Jo, T. H. Nguyen, and D.-C. Lee, “Condition 
monitoring of submodule capacitors in modular mul-
tilevel converters,” in Energy Conversion Congress 
and Exposition (ECCE), 2014 IEEE, Sept 2014, pp. 
2121–2126.

[7] T. H. Nguyen and D.-C. Lee, “Deterioration mon- itoring 
of dc-link capacitors in ac machine drives    by current 
injection,” IEEE Transactions on Power Electronics,
vol. 30, no. 3, pp. 1126–1130, March
2015.

[8] A. Wechsler, B. Mecrow,  D. Atkinson, J. Bennett,  and 
M. Benarous, “Condition monitoring of dc-link 
capacitors in aerospace drives,” IEEE Transactions on
Industry Applications, vol. 48, no. 6, pp. 1866– 1874, 
Nov 2012.

[9] A. Abo-Khalil and D.-C. Lee, “Dc-link capacitance 
estimation in ac/dc/ac pwm converters using voltage 
injection,” IEEE Transactions on Industry Applica-
tions, vol. 44, no. 5, pp. 1631–1637, Sept  2008.

 

299 



Aalborg Universitet

Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network
Algorithm
Soliman, Hammam Abdelaal Hammam; Gadalla, Brwene Salah Abdelkarim; Wang, Huai;
Blaabjerg, Frede
Published in:
IEEE 5th International Conference on Power Engineering, Energy, and Electrical Drives

Publication date:
2015

Document Version
Publisher final version (usually the publisher pdf)

Link to publication from Aalborg University

Citation for published version (APA):
Soliman, H. A. H., Gadalla, B. S. A., Wang, H., & Blaabjerg, F. (2015). Condition Monitoring for DC-link
Capacitors Based on Artificial Neural Network Algorithm. In IEEE 5th International Conference on Power
Engineering, Energy, and Electrical Drives: POWERENG 15. (pp. 1-5). Riga, Latvia.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: september 23, 2015



Condition Monitoring for DC-link Capacitors Based
on Artificial Neural Network Algorithm

Hammam Soliman, Huai Wang, IEEE Member, Brwene Gadalla, Frede Blaabjerg, IEEE Fellow
Department of Energy Technology, Aalborg University

Aalborg 9220, Denmark

has@et.aau.dk, hwa@et.aau.dk, bag@et.aau.dk, fbl@et.aau.dk

Abstract—In power electronic systems, capacitor is one of
the reliability critical components . Recently, the condition
monitoring of capacitors to estimate their health status
have been attracted by the academic research. Industry
applications require more reliable power electronics prod-
ucts with preventive maintenances. However, the existing
capacitor condition monitoring methods suffer from either
increased hardware cost or low estimation accuracy, being
the challenges to be adopted in industry applications.
New development in condition monitoring technology with
software solutions without extra hardware will reduce the
cost, and therefore could be more promising for industry
applications. A condition monitoring method based on
Artificial Neural Network (ANN) algorithm is therefore
proposed in this paper. The implementation of the ANN
to the DC-link capacitor condition monitoring in a back-
to-back converter is presented. The error analysis of
the capacitance estimation is also given. The presented
method enables a pure software based approach with high
parameter estimation accuracy.

I. INTRODUCTION

Condition monitoring is an important strategy to estimate

the health condition of power electronic components, convert-

ers and systems. It is widely applied in reliability or safety

critical applications, such as wind turbines, electrical aircraft,

electric vehicles, etc., enabling the indication of future failure

occurrences and preventive maintenances. In [1], the condition

monitoring of semiconductor devices used in power electronics

is well reviewed. Besides the power devices, capacitors are

another type of reliability critical components. In the last

two decades, a large number of research results on condition

monitoring of capacitors have been published. From this paper

point of view, condition monitoring methods in the prior-art

are classified into three categories according to their method-

ologies, as the following: a) Capacitor ripple current sensor

based methods, b) Circuit model based methods, and c) Data

and advanced algorithm based methods. The basic principle

of the first category is to estimate the capacitance and/or

the Equivalent Series Resistance ESR by using the capacitor

ripple voltage and current information at low and medium

frequencies (as shown in Fig. 1(b)). In [3-6], an external

current injection at low frequency is the main approach to

achieve condition monitoring, it have been applied on PWM

AC/DC/AC converter in [3], [4], and [6], while in [5] is applied

to a sub-module capacitor in moulder multilevel converter.

In the second category, instead of injecting external signals,

the capacitor current can be obtained indirectly depending on

both the circuit model and the operation principle of PWM

switching converters. In [7], an on-line condition monitoring

based on capacitance estimation is proposed, the capacitor

ripple current is calculated using the difference between the

input current sensor, and the output current flows to the

inverter which is based on the transistor switching statues.

In the third category, obtaining a strong correlation between

the available parameters and the parameters to be estimated

is the main concept. In [8], an external voltage is injected to

the reference voltage of the capacitor at low frequency, the

obtained capacitor power is used as a training data in sake

of finding an identification model based on Support Vector

Regression (SVR). After using a group of training data, a

generated function is used to analyse the correlation between

the known capacitor power and its corresponding capacitance

value. Although the previous mentioned methods have been

verified by simulation and experimental work, errors, com-

plexity, and cost increasing due to extra hardware are common

shortcomings. Therefore, the developed technologies are rarely

adopted in practical industry applications, implying that new

condition monitoring methods based on software solutions and

existing feedback signals, without adding any hardware cost,

could be more promising in practical applications.

The majority of the condition monitoring methods for

capacitors are based on estimation of the capacitance C and

(ESR), which are indicators of the degradation of capacitors

[2]. For aluminum electrolytic capacitors, the widely accepted

end-of-life criteria is 20% capacitance reduction or double

of the ESR. For film capacitors, a reduction of 2% to 5%

capacitance may indicate the reach of end-of-life. Therefore,

a method which can estimate the C value could be applied

on both aluminum electrolytic and film capacitors. However,

obtaining the values of C or ESR is an important step. Fig.

1(a) shows a simplified equivalent model of capacitors and

Fig. 1(b) plots the corresponding frequency characteristics. It

can be noted that the capacitor impedances is distinguished

by three frequency regions dominated by capacitance, ESR
and the Equivalent Series Inductance (ESL), respectively.

This paper aims to propose a condition monitoring method

based on Artificial Neural Network (ANN) that uses existing

978-1-4799-9978-1/15/$31.00 ©2015 European Union
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Fig. 1. Equivalent model and impedance characteristics of capacitors.

power stage and control information and existing spare re-

sources of digital controllers. It requires no hardware circuitry

(e.g., current sensors and corresponding signal condition cir-

cuits), no external signal injection, and therefore minimizes

the increased complexity and cost. Main sections in this paper

are as the following: Section II gives the basic principle of

ANN applied for capacitor condition monitoring. Section III

illustrates the applied ANN to a back to back converter study

case. Section IV presents the results accomplished by the

proposed method based on ANN, followed by the conclusion.

II. ANN FOR CAPACITOR CONDITION MONITORING

The motivation behind using the ANN for condition moni-

toring is that, instead of sensing the capacitor current iC using

direct/indirect sensors, it is possible to obtain the estimated

value of C by applying the ANN, of which only the input

terminal and output terminal information of the power convert-

ers are needed. Normally the required terminal information to

train the ANN supposed to be available during the operation,

the aforementioned information are used as an inputs to the

training network, while the corresponding C value is used as a

target, and then the network is responsible for estimating the

value of C when using different inputs than the trained ones.

The power level of the applied converter is also taken into

consideration while the network is trained. Fig.2 illustrates

the structure of the proposed ANN. The basic structure of

any neural network consists of three layers, input, hidden, and

output layers. The input layer is where the available amount

of data N fed to the ANN will be stored. The hidden layer job

is to transform the inputs into a function that the output layer

can use, while the output layer transforms the hidden layer

activations into a scale which the operator wanted the output

to be on target.

III. CAPACITANCE ESTIMATION BASED ON ANN

Capacitance estimation based on ANN is applied on a back

to back converter shown in Fig. 3. The ratings of the converter

N

Input Layer Hidden Layer Output Layer
Input Current

Input Voltage

DC-link Voltage

Outpu Current

Output Voltage

Capacitance

Fig. 2. Structure of the Artificial Neural Network.

are listed in Table I.

TABLE I
RATINGS OF THE BACK-TO-BACK CONVERTER PARAMETERS.

Input AC Voltage (VL−L) 600 V

Output AC Voltage (VL−L) 380 V

Rated DC-link Voltage (Vdc) 780 V

Full Power Level (Po) 10 kW

Capacitance (C) 5000 μF

Capacitance values in the range between (1000μF and

5000μF) with 100μF step are used as targets to the network,

each value of these 41 samples are corresponded respectively

to the single phase (phase A) RMS input/output voltages,

currents, and the DC-link voltage. Since the different loading

condition of the back-to-back converter is also considered,

three group of 41 samples under the respective loading level

of 10 kW, 7 kW and 4 kW are used.

All the 123 samples are fed to a single hidden layer ANN

consisting of 10 neurons using the Neural Fitting Tool nftool in

MATLAB software. This tool is usually used for estimation

and prediction problems in which the neural network maps

between a data set of numeric inputs and a set of numeric tar-

gets. The iteration algorithm used in this training is Levenberg-
Marquardt, which typically takes more memory but less time.

The training automatically stops when generalization stops

improving, as indicated by an increase in the mean square

error of the validation samples. During the training observing

the Regression value R is important, since Regression values

measure the correlation between outputs and targets. An R
value of 1 means a close relationship, while 0 means a

random relationship. Fig. 4 shows the regression response of

the trained network in this paper, it can be noted that all the

123 input data are exactly aligned on the fitting line and the

values of R is close to 1. Based on this result, the network

stopped training and the ANN is generated to be used.

2
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Fig. 3. A back-to-back converter.
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IV. SIMULATION RESULTS AND DISCUSSION

In this section, the generated network is tested for verifi-

cation purpose, the same back to back converter as shown in

Fig. 3 is used for the simulation test, but with two capacitors

C1 and C2 connected in parallel through switches to have the

option to switch between them to simulate the degradation of

C. At the timing (5 sec) the capacitor C2 will be switched on

instead of C1. Fig.5 shows the capacitance value estimated by

the trained ANN.

The simulation results for the estimated parameters and their

corresponding errors are shown in Table II. The estimated re-

sults verify that the trained ANN is responding for the changes

in the capacitance value, and the statues of the capacitor could

be easily identified. Moreover, to prove the accuracy of the

trained ANN, the network is tested to identify the reduction of

50μF out of 5000μF and the resulted estimation is shown in

Fig. 6. For the initial stage, the estimated value is 4991μF and

for the degraded case, the estimated value is 4945μF, which

gives a 0.18% error as a maximum. Moreover, for further

verification of the ANN accuracy, a set of random values

of capacitance between the ranges of (1000μF-5000μF) are

applied under three different power levels, their actual and
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Fig. 5. Tested DC-link capacitor change in a back-to-back converter.
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Fig. 6. Trained ANN accuracy for the capacitance change shown in Fig. 5.

estimated values are shown in Fig. 7. The actual and estimated

values of capacitance of the set applied under 70% power level

are presented in Table III.

TABLE II
SIMULATION RESULTS FOR ESTIMATED CAPACITANCE.

C1actual=5000μF C1estimated=4991μF Error=0.18%

C2actual=4000μF C2estimated=3996μF Error=0.1%

In sake of showing the impact of the training data amount

on the accuracy of the trained ANN, another network (ANN2)

is trained by using 63 samples instead of 123 samples consid-

ering the same conditions of (ANN1) which trained earlier in

this paper. Fig. 8 shows that the error percentages estimated

by ANN2 are higher than the ones estimated previously by

ANN1, implying the trade-off between estimation accuracy

and required computation resource.

The last accuracy analysis is performed to observe the

3
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TABLE III
SIMULATION RESULTS FOR ESTIMATED CAPACITANCE (AT 7KW).

Cactual=1300μF Cestimated=1296μF Error=0.3%

Cactual=1743μF Cestimated=1747μF Error=0.23%

Cactual=2600μF Cestimated=2589μF Error=0.4%

Cactual=3200μF Cestimated=3203μF Error=0.09%

Cactual=3854μF Cestimated=3850μF Error=0.1%

Cactual=4265μF Cestimated=4257μF Error=0.18%
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Fig. 8. Estimation error analysis by different trained ANNs.

error percentage of the estimated capacitance with respect to

different degree of changes of the original value of 5000μF, the

results are shown in Fig. 9. It can be noted that the estimation

errors of the proposed ANN are below 0.25%. It can respond

and estimate correctly the capacitance values even under a

very low level of capacitance reduction of 0.2% changes.

The following remarks are given from the results presented

in this section:

a) Simulation results of the proposed method based on

ANN verifies that condition monitoring methods based

on software solutions could be an attractive alternative

for the practical industry applications.

b) It can be noted from the results estimated by the trained

ANN that ANN is sensitive since it can respond for any

percentage of change, and estimate any capacitance value
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Fig. 9. Estimation error analysis under different level of capacitance reduction
at rated power level.

within the range which the network is trained.

c) It should be noted that the accuracy of the trained ANN

strongly depends on the amount, quality, and accuracy of

the data used in the training.

V. CONCLUSIONS

A new capacitor condition monitoring method based on

Artificial Neural Network algorithm is proposed in this

paper. It is applied for a back-to-back converter study case

to estimate the capacitance value change of the DC-link

capacitor. The proposed method requires no additional

hardware circuit and could be implemented by using the

spare resources of existing digital controllers in most of

power electronic systems, implying a minimum increased

cost (e.g., only in the research and development part). The

error analysis under different DC-link capacitance values

and different level of capacitance reduction with respect

to the initial value are given, achieving a maximum

estimation error that is well below 0.5%, which could be

acceptable in many practical applications. The impact of

training data amount on the error analysis are also given.
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Abstract—Capacitor is one of the reliability critical com-
ponents in power electronic systems. In the last two
decades, many efforts in the academic research have
been devoted to the condition monitoring of capacitors to
estimate their health status. Industry applications demand
more reliable power electronics products with preventive
maintenances. Nevertheless, most of the developed capac-
itor condition monitoring technologies are rarely adopted
by industry due to the complexity, increased cost and
other relevant issues. An overview of the prior-art research
in this area is therefore needed to justify the required
resources and the corresponding performance of each
of the key method. It serves to provide a guideline for
industry to evaluate the available solutions by technol-
ogy benchmarking, as well as to advance the academic
research by discussing the history development and the
future opportunities. Therefore, this paper firstly classifies
the capacitor condition monitoring methods into three
categories, then the respective technology evolution from
1993 to 2015 is summarized. Remarks on the state-of-the-
art research and the future opportunities targeting for
practical industry applications are given.

I. INTRODUCTION

Condition monitoring is an important strategy to estimate

the health condition of power electronic components, convert-

ers and systems. It is widely applied in reliability or safety

critical applications, such as wind turbines, electrical aircrafts,

electric vehicles, etc., enabling the indication of future failure

occurrences and preventive maintenances. In [1], the condition

monitoring of semiconductor devices used in power electronics

is well reviewed. Besides the power devices, capacitors are

another type of reliability critical components. In the last

two decades, a large number of research results on condition

monitoring of capacitors have been published, to be listed

part of them in this paper [3]-[30]. Nevertheless, to the best

knowledge of the authors, the developed technologies are

rarely adopted in practical industry applications, due to the

complexity, increased cost and other relevant issues. Therefore,

a critical overview of the existing literatures is beneficial to

both industry application and academic research. It severs to

the following two purposes: a) benchmark of different condi-

tion monitoring solutions and identify the promising aspects

and limitations of them; b) trace the history of the technology

  

C ESR ESL

(a) Simplified equivalent model of capacitors

  

Z

1 2

ESR

1/ C LESL

Region I Region II Region III
Dominated by Dominated by Dominated by

(b) Impedance characteristic of capacitors

Fig. 1. Equivalent model and impedance characteristics of capacitors.

evolution and explore the future research opportunities that

have the potential to contribute more to practical applications.

In power electronics conversion systems, a single capacitor

or a capacitor bank is usually used. The systems may be

malfunction if the single capacitor reaches end-of-life. For the

systems with capacitor banks, the time-to-failure of the mul-

tiple capacitors could vary. Once one of them fails, the other

capacitors may withstand increased stresses, which accelerate

the degradation of them. For ensuring the reliable operation,

it is recommended that all the capacitors in the bank may be

replaced once the first capacitor reaches the end-of-life.

The majority of the condition monitoring methods for both

individual capacitors and capacitor banks are based on esti-

mation of the capacitance C and Equivalent Series Resistance

(ESR), which are indicators of the degradation of capacitors

[2]. For aluminum electrolytic capacitors, the widely accepted

end-of-life criteria is 20% capacitance reduction or double

of the ESR. For film capacitors, a reduction of 2 to 5%

capacitance may indicate the reach of end-of-life. Therefore,

obtain the values of C or ESR is an important step. The

selection of those end-of-life criteria are based on two aspects

of considerations: 1) The capacitor degradation rate becomes

faster (e.g. dC/dt , dESR/dt) after the capacitance or ESR
reaches the specified end-of-life criteria, 2) The power elec-

tronic conversion systems may not function probably when

243978-1-4763-7239-8/15/$31.00 '  2015 IEEE
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the capacitance drops or the ESR increases to the specified

level. The first aspect of the above consideration is usually

the primary reason for the choice of the end-of-life criteria.

Fig. 1(a) shows a simplified equivalent model of capacitors

and Fig. 1(b) plots the corresponding frequency characteristics.

It can be noted that the capacitor impedance is distinguished

by three frequency regions dominated by capacitance, ESR and

the Equivalent Series Inductance (ESL), respectively.

An overview of the reliability of capacitors in DC-link ap-

plication is presented in [2]. The failure mechanisms, lifetime

models and DC-link design solutions are discussed. A brief

discussion on the condition monitoring of capacitors is also

given. Since the scope of [2] does not focus on the condition

monitoring, no detailed discussion and critical comparison

of the prior-art methods are provided. This paper intends to

fill the gap in the literature and conducts a comprehensive

overview on the research topic. Section II gives the classifi-

cation of the existing condition monitoring methods. Section

III outlines the technology development history of capacitor

condition monitoring from 1993 to 2015 and the benchmark

of these technologies. Section IV presents the views from the

authors and addresses future research opportunities.

II. CLASSIFICATION OF CONDITION MONITORING

TECHNOLOGIES FOR CAPACITORS

The condition monitoring technologies for capacitors can be

classified from the perspectives of health condition indicators

and the methods to obtain the values of the specific indictors.

Accordingly, Fig. 2 shows the classifications. Especially, the

way to obtain the specific electrical parameters can be classi-

fied into three categories to be briefly discussed in this paper

in the following subsections.

A. Capacitor ripple current sensor based methods

The use of a current sensor to measure the ripple cur-

rent flowing through the monitored capacitor is the widely

studied method in literatures. The basic concept is to obtain

the capacitance or ESR by using the capacitor voltage and

ripple current information at a low frequency and a specific

medium frequency (as illustrated in Fig. 1(b)), respectively.

An alternative way is to externally inject a desirable current

at certain frequency into the capacitor [3]-[6]. The current

injection methods in [3], [4], and [6] are applied in a PWM

AC/DC/AC converter, while in [5] it is applied to a sub-module

capacitor in modular multilevel converter. The injected current

is in a frequency lower than the line frequency, which induces

two voltage components across both ESR (VESR) and C (VC),

as follows

Vdc = VC + VESR (1)

and considering the generation of the zero voltage vectors at

switching periods, the values at the mid-point are used in [3]

to obtain the ESR value as in (2), and in [4] the estimated

capacitance is obtained by (3).

ESR =
VESR.mid

idc
=

Vdc.mid − VC.mid

idc.mid
(2)

C =
1

ΔVdc

∫
idcdt (3)

where the term ”mid” in the subscripts indicates the quantities

measured at the midpoint of the normal sampling period.

B. Circuit model based methods
Instead of using current sensors connected in series with

the capacitors, capacitor ripple currents can also be obtained

indirectly based on the operation principle of PWM switching

converters. To illustrate it by one example, an on-line condition

monitoring based on capacitance estimation by (3) is presented

in [7]. As shown in Fig. 3, the electrical parameters i1, i2,

i3 and vC are three existing current sensors and one voltage

sensor, respectively, for the control purpose of the converter.

The parameters highlighted by red color are estimated in-

directly. The capacitor ripple current iC is calculated using

the difference between the input current sensor i1 and the

current flows to the inverter i5 which is based on the transistor

switching sequences. The assumption of this calculation is that

the three phase output currents are balanced.

C. Data and advanced algorithm based methods
In this category, the power electronic converters are treated

as a black-box or semi-black-box. The mapping relationship
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Fig. 3. An example of condition monitoring of DC-link capacitor based on circuit model [7].
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Fig. 4. An AC-AC power conversion system with a capacitor dc-link [23].

between the parameters to be estimated and the available

parameters (e.g., input and output side terminal voltage and

current information, DC-link voltage) are obtained through

data training. In [8], a low frequency AC voltage is injected

to the DC-link reference, which is used as a training data

in sake of finding the identification model based on Support

Vector Regression (SVR). After using a set of training data, a

function that analyses the relation between a known capacitor

power and its corresponding capacitance is designed, and the

capacitance is determined according to

C =
BPF [Pcap]

BPF [1/2][ΔV 2

dt ]
(4)

where, the BPF term refers to the usage of the band pass filter.

As claimed by the author, this method is simpler than current

injection, since the estimation is based only on the capacitor

power and no DC-link ripple current information is required.

Since the SVR is an algorithm which based on an off-line

trained data, the Recursive Least Square (RLS) algorithm is

applied to allow the estimated capacitance to be updated when

new data become available [11].

One of the most recent methods proposed by the same

author of this paper is presented in [23]. The method is based

on the Artificial Neural Network (ANN) algorithm and applied

on a power electronic converter shown in Fig. 4. The main

motivation behind using ANN for capacitance estimation is

that, to avoid the usage of direct/indirect current sensor to

sense the capacitor current iC , while the capacitance value

is estimated based on the existing control information and

existing power level of the power converter. No hardware

circuitry is required and no injection of external signals,

therefore, minimizing both complexity and cost is achieved. In

N

Input Layer Hidden Layer Output Layer
Input Current

Input Voltage

DC-link Voltage

Outpu Current

Output Voltage

Capacitance

Fig. 5. Structure of the Artificial Neural Network [23].

Fig.5 the basic structure of the ANN is illustrated, normally

the structure of any neural network consists of three main

layers, input layer, hidden layer, and output layer. In this ANN

the capacitance value is the target which should be estimated,

while the input/output terminal information of the converter

and the dc-link voltage are the inputs to ANN. Part of the

results is shown in Table I. The maximum estimated error is

0.5%.

III. HISTORY DEVELOPMENT AND BENCHMARK OF

CAPACITOR CONDITION MONITORING METHODS

The technology evolution of the capacitor condition mon-

itoring technologies is illustrated in Fig. 6 with respect to

years. Different methods are represented according to the

selected indicators, online or offline, and the methodologies as

discussed in Section II. Moreover, the maximum error of the

parameter estimation of some of the methods are also included
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TABLE I
SIMULATION RESULTS FOR ESTIMATED CAPACITANCE (AT 7KW).

Cactual=1300μF Cestimated=1296μF Error=0.3%

Cactual=1743μF Cestimated=1747μF Error=0.23%

Cactual=2600μF Cestimated=2589μF Error=0.5%

Cactual=3200μF Cestimated=3203μF Error=0.09%

Cactual=3854μF Cestimated=3850μF Error=0.1%

Cactual=4265μF Cestimated=4257μF Error=0.18%

in the figure. Since the estimation accuracy is an important

performance factor, Fig.7 compares the estimation errors with

respect to the range of capacitance and ESR according to

the available data in respective literatures. The benchmark of

various condition monitoring methods are briefly summarized

in Table II. This development history figure is very important

since it gives many quick facts such as the following:

1) The majority of the condition monitoring methods

are based on the first methodology, where most of

the shortcomings are coming from.

2) The first methodology contains the highest

estimation error percentage (11%).

3) Condition monitoring methods based on the third

methodology need to be focused on, specially it

contains the minimum estimation error (0.15%).

More remarks are given in the following section.

IV. REMARKS ON THE CONDITION MONITORING FOR

CAPACITORS

Based on the above literature study and analysis, the fol-

lowing remarks are given from the authors viewpoint:

1) Capacitor ripple current sensor based methods is not

attractive for practical industry applications due to

its addition of hardware circuitry, cost and reliability

issue of the introduced circuit.

2) It can be noted from Fig. 4 that the majority of

condition monitoring methods are online. By consid-

ering that the degradation of capacitors are usually

very slow, offline condition monitoring is sufficient

in most applications (e.g., motor drives) to detect the

wear out of capacitors. It implies that some much

simpler estimation methods can be applied (e.g.,

during the start-up of motor drives).

3) Condition monitoring of capacitors discussed here

is limited to the wear out detection. To extend the

scope, in reliability critical applications, the online

monitoring of the operation status (e.g., hot spot
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TABLE II. A summary of condition monitoring methods.

2 fi - current through the capacitance in the frequency filter, , -dc-link voltage, capacitor voltage, 

dc-link current respectively all at midpoint,  VC- capacitor ripple voltage, iCf – fundamental capacitor ripple current, 

vCf – fundamental capacitor ripple voltage, –initial volume of E-Caps, –volume of E-Caps, ESRo –initial value of 

equivalent series resistance, ESRHOT –ESR at operating temperature, H- heat transfer per surface area, S- surface area, 

- element temperature rise, - output ripple voltage of dc-link capacitor, - capacitor dc-link current, ICf – RMS 

capacitor ripple current at switching frequency, VCf – RMS capacitor ripple voltage at switching frequency, -output

voltage of the low pass filter , IL –inductor ripple current, R-load resistance, -solar PV voltage, -switching time, 

D-duty cycle, L- inductor, - output capacitor power from band pass filter.

Method C/ESR Used Approach Applied 
Application

Advantages/Dis-advantages Ref.

I C
(MPPF-

caps)

2

1C
dc C f

rh

dVC V i
dt R

single phase 

rectifier to 3-

phase inverter

Applied for specific kind of 

application systems (traction 

systems).

[18]

ESR

(E-caps)
dc_ _

_

mid c mid

dc mid

V V
ESR

i
PWM back to 

back converter

Extra effort and many filters to 

be used because of the current 

injection.

[3]

ESR

(E-Caps)
CESR V Switch-mode 

power supply
Difficult due to requirement for 

additional measurements and 

prior data for the reference model

[13]

ESR

(E-Caps)
cf

cf

V
ESR

i
DC-DC Converter Requires additional hardware for 

implementation

[12]

ESR

(E-Caps)

2

,ol O

O ol

ESR
ESR

2HOT
T H SESR

I

AC Drives High accuracy level of ESR 

estimation

[24]

[25]

C
(E-caps)

1
C

C

C i dt
V

PWM back to 

back converter

Extra effort and many filters to 

be used because of the current 

injection.

[4]

C
(E-caps and 

MPPF-caps)

1
C

C

C i dt
V

 3-phase inverter Applied on both E-caps and 

MPPF-caps.

[27]

ESR

(E-Caps)
Cf

Cf

V
ESR

i
 

Boost Converter Simple analog circuit is required 

for the capacitor voltage 

measurement.

[26]

II ESR

(E-caps)
1pESR V DC-DC converter Forming an LC filter is important 

for achieving the proposed 

approach.

[17]

ESR

(E-Caps)
C

L C

V RESR
R I V

Buck converter The temperature effect is 

considered.

[22]

C
(E-Caps)

1
C

C

C i dt
V

Aerospace 

application

Low accuracy under dynamic

operation.

[7]

C
(E-Caps)

1
C

C

C i dt
V

 DC motor drive 

systems

Low accuracy under dynamic 

operation.

[28]

C and ESR
(E-Caps)

(1 D) Ts

2 2

0

8
DTst t

t t DTs

PV S

PV PV

PV PV

PV S

V DTC
L V V

V V L
ESR

V DT
 

PV boost 

converter

The condition monitoring method 

can be implanted in the same 

microcontroller used for MPPT 

purpose.

[29]

III C
(E-caps) 2

1
2

C

C

BPF P
C

VBPF
dt

PWM back to 

back converter

Current measurement is not 

required.

[8]

temperature, abnormal voltage and current stresses)

is of much interest. For this perspective, the online

monitoring of capacitance and ESR value might be

necessary to indirectly monitor the temperature and

other abnormal stressors.

4) New methods based on software solutions and exist-

ing feedback signals, without adding any hardware

cost, could be attractive for industry applications.
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V. CONCLUSIONS

The classification, technology evolution and benchmark

of the state-of-the-art condition monitoring methods for ca-

pacitors are reviewed in this paper. Remarks on both the

promising aspects and shortcomings of key methods and their

applicability in practical industry applications are provided.

New research opportunities, such as software based condition

monitoring methods, and online monitoring of capacitor hot

spot temperature and abnormal stresses, are addressed, which

may find themselves more attractive to be adopted in industry

products.
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Abstract—The reliability of dc-link capacitors in power
electronic converters is one of the critical aspects to
be considered in modern power converter design. The
observation of their ageing process and the estimation
of their health status have been an attractive subject for
the industrial field and hence for the academic research
field as well. The existing condition monitoring methods
suffer from shortcomings such as low estimation accuracy,
extra hardware, and also increased cost. Therefore, the
developed methods of condition monitoring that are based
on software solutions and algorithms could be the way out
of the aforementioned challenges and shortcomings. In this
paper, a pure software condition monitoring method based
on Artificial Neural Network (ANN) algorithm is proposed.
The implemented ANN estimates the capacitance of the
dc-link capacitor in a back-to-back converter. The error
analysis of the estimated results is also studied. The
developed ANN algorithm has been implemented in a
Digital Signal Processor (DSP) in order to have a proof of
concept of the proposed method.

I. INTRODUCTION

DC-link capacitors are an important element in the field of

power electronic converters. They strongly contribute to the

size, cost, efficiency, failure rate, and therefore reliability of

the power converters. Moreover, according to [1], electrolytic

capacitors are sharing 60% of the failure rate in power

electronics component. Therefore, reliability study on the DC-

link capacitors is very important in sake of achieving reliable

and robust converters. Fig. 1 from [2] shows that today’s

perspective of power electronics reliability should consider

three main aspects. Condition monitoring is an important

way to ensure reliable operation and to achieve predictive

maintenance of power electronic components and systems.

The general principle of condition monitoring is defined as

a real-time measure of a component, such that if it drifts away

from the healthy condition an appropriate action to be taken

[5]. This real-time measure in some application is difficult

to be reached directly with a measurement equipment and

therefore, an estimation of this parameter is an alternative

method. Moreover, a signature of the health status should be

presented in this component. Different parameters can indicate
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Fig. 1. Aspects of power electronics reliabilty assessment [2].
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(b) Impedance characteristic of capacitors.

Fig. 2. Equivalent model and impedance characteristics of capacitors.

the health status of a capacitor such as, the capacitance C, the

Equivalent Series Resistance (ESR), the Equivalent Series In-

ductance (LESL), the capacitor’s volume and/or temperature.

Fig. 2(a) shows a simplified equivalent model of capacitors and

Fig. 2(b) plots the corresponding frequency characteristics. It
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(a) Structure of Adaptive Neuro-Fuzzy Inference System (AN-
FIS) network [3].

C1
Single

phase grid

3-ph input

voltage

vs

v1

DC

DC

C2 v2

`
`

`
`

3-ph un-controlled

rectifier

Boost chopper Single phase 

inverter

(b) Power electronic converter circuit [3].

Fig. 3. Condition monitoring of capacitors based on data training proposed by [3].
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Fig. 4. Condition monitoring of dc-link capacitor in a back-to-back converter based on data training proposed by [4].

can be noted that the capacitor impedances are distinguished

by three frequency regions dominated by capacitance, ESR and

the LESL, respectively.

The majority of the condition monitoring methods for ca-

pacitors are based on the estimation of the capacitance and the

ESR, which are indicators of the degradation in the capacitors

[6]. The degradation level and the end-of-life criteria vary

with capacitor type. For aluminium electrolytic capacitors,

the widely accepted end-of-life criteria is 20% capacitance

reduction or double of the ESR. For film capacitors, a reduction

of 2% to 5% capacitance may indicate the reach of end-of-life.

Therefore, a method which can estimate the C value could be

interesting for both aluminium electrolytic and film capacitors.

From a methodology point of view, the condition monitoring

methods in the prior-art are classified into three categories

[7], as the following: a) capacitor ripple current sensor based

methods, b) circuit model based methods, and c) data and ad-

vanced algorithm based methods. Methodologies that belongs

to the third category are listed in [3, 4, 8–11]. Since this paper

focuses on software solutions, some recent methodologies in

the third category are reviewed. In [3, 4], two recent condition

monitoring methods based on software solutions are presented.

In [3], an Adaptive Neuro-Fuzzy Inference System (ANFIS)

algorithm is applied on the power converter converter shown

in Fig. 3(b). Based on data training, the ANFIS is able to

predict the health status of the capacitor. According to the

basic structure shown in Fig. 3(a), the ANFIS is using the

supply voltage Vs and ripple voltages V1 and V2 of both filter

capacitors C1 and C2 as inputs. While the health condition of

the capacitors are expressed in terms of index. The network

estimates one index out of two incidences for capacitance and

ESR of both capacitors in the converter.

To assure that a strong mapping between ANFIS inputs

and output, a relationship between the supply voltage and

the end-of-life- voltages is linearly interpolated using curve

fitting techniques. The two factors V̂1th and V̂2th are obtained,

where V̂1th and V̂2th are the estimated values of V1th and V2th

according to Vs respectively. Finally, in order to obtain the

data implemented as inputs to the ANFIS, a percentage value

is calculated as the following:

%V1 =
V1m

V1th
× 100 (1)

%V2 =
V2m

V2th
× 100 (2)

where V1m and V2m are the measured values of V1 and V2

respectively at any current status.

In [4] a recent method that based on the Artificial Neural

Network (ANN) algorithm is applied on the back-to-back

converter shown in Fig. 4(b). No hardware circuitry is required

and no injection of external signals, therefore, minimizing



complexity and cost are achieved. In this ANN the capacitance

value is the target, which should be estimated, while the

input/output terminal information of the converter and the dc-

link voltage are the inputs to ANN. However, some of the

voltage and phase current information may not be available

in practical applications. It is still an open question of the

performance of the ANN based method in [4] with the absence

of information about some of the voltages and currents.

To overcome the above mentioned limitation, this paper

proposes an ANN based method requiring one input side phase

current and the dc-link voltage information only. Moreover,

in order to leverage the limited available information while

achieving comparable capacitance estimation accuracy, the

available data are pre-processed before feeding to the ANN.

The proposed method retains the advantages as that presented

in [4]. It requires no hardware circuitry (e.g., current sensors

and corresponding signal condition circuits), no external signal

injection, and therefore minimizes the increased complexity

and cost. This paper is organized as the following: Section

II gives the basic principle of ANN applied for capacitor

condition monitoring. Section III illustrates the applied ANN

to a back to back converter study case. Section IV presents the

results accomplished by the proposed method based on ANN,

followed by a conclusion.

II. ANN FOR CAPACITOR CONDITION MONITORING

The use of ANN for capacitance estimation has been

inspired by [4] where the main motivation is to estimate the

capacitance values based on the available input and output

terminal information of the converter, without adding sensors

and hardware circuits. The available information will be used

as inputs to the ANN, while the corresponding value of C is

used as a target as shown in Fig. 4(a).

The basic structure of neural network consists of three

layers, input, hidden, and output layers. The input layer is

where the available data fed to the ANN are stored. The task

of the hidden layer is to transform the inputs into a function

that the output layer can use. The task of the output layer is to

transform the activations inside the hidden layer into a scale.

Based on this scale, the data entered as targets are adjusted to

fit as the desired output.

In this paper the same basic structure in [4] is used, but with

two kinds of inputs to the ANN instead of five, and different

training algorithms. As shown in Fig. 5(a), only the phase A

input current ia,in, and ripple dc-link voltage ΔVdc are used

as the ANN inputs. The details of the ANN’s structure and

the criteria of training data selection are further discussed in

the following section.

III. IMPLEMENTATION OF THE PROPOSED ANN

The proposed ANN method is applied to a back-to-back

converter as shown in Fig. 4(b). Its specifications are listed in

Table I. The implementation of the ANN method is discussed

as below.
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Fig. 5. The structure of the trained ANN and its regression response.

TABLE I
RATINGS OF THE BACK-TO-BACK CONVERTER PARAMETERS.

Input AC Voltage (VL−L) 400 V

Output AC Voltage (VL−L) 400 V

Rated dc-link Voltage (Vdc) 750 V

Full Power Level (Po) 10 kW

Capacitance (C) 1000 μF

A. Training data preparation

Since the dc-link voltage ripple depends on both the

capacitance and the loading conditions, the prepared training

data include the information from the operation under three

power levels. For each power level, there are 61 data of

the capacitance values used to train the ANN, covering the

range between 600 μF and 1200 μF with 10 μF step. Each

capacitance value is corresponding to one value of the input

current and one value of the dc-link voltage ripple. The

process of the training data collection is as following:



1) Starting from the lower boundary of the capacitance

range (600 μF), the back-to-back converter SIMULINK

model starts running with 1 μs sampling time.

2) During the simulation, Root Mean Square (RMS) values

of phase A input current ia,in, and ripple dc-link voltage

ΔVdc are sent to the workspace.

3) After the simulation under a specific dc-link capacitance

finishes, there will be 16 + 1 instantaneous values for

each parameter. A designed Matlab code calculates the

average of the last 7,000 instantaneous values saved

in the workspace to generate only one value for each

parameter. So, by the end of each single run, there will

be one average RMS value for the phase A input current

ia,in, and one average RMS value of the ripple dc-link

voltage ΔVdc.

4) When reaching the upper boundary of the capacitance

range (1200 μF), there are 3 datasets. One dataset for

phase A input current ia,in, one dataset for ripple dc-

link voltage ΔVdc, and one dataset for the capacitance.

Each dataset consists of 61 data.

5) The above process is repeated for the operating power

level of 10 kW, 7 kW, respectively. and 4 kW. Finally,

there are 183 data in each dataset.

The datasets of phase A input current ia,in and ripple dc-

link voltage ΔVdc are loaded to the ANN’s input layer as a

matrix with a dimension of 2× 183. While the dataset of the

capacitance is loaded to the output layer as a matrix with a

dimension of 1 × 183. Due to the usage of average values,

the error of the estimated capacitance is reduced. The trained

ANN can be used to estimate the dc-link capacitance under

different loading conditions with a capacitor within the set

lower and upper limits.

B. ANN structure and training algorithm

After all the datasets loaded to respective layers, an amount

of 50 hidden neurons is selected. The Neural Fitting Tool

nftool in MATLAB software [12] is used. This tool is usually

used for estimation and prediction problems in which the

neural network maps between a set of numeric inputs and

a set of numeric targets. The iteration algorithm used in

this training is Bayesian Regularization [13], which typically

takes longer time but it is definitely better for challenging

problems. Moreover, the used training algorithm avoids the

overfitting issues by stopping the training automatically when

the generated results stops improving. During the training,

the Regression factor R is important to be observed, which

measures the correlation between the desired outputs and

trained targets. An R value of 1 means a close relationship,

while 0 means a random relationship. The regression response

of the trained ANN is shown in Fig. 5(b). It can be noted that

all the 183 input data are exactly aligned to the fitting line and

the values of R is close to 1. Based on this result, the network

stopped training and the ANN is generated and ready to be

used.

IV. CAPACITANCE ESTIMATION BASED ON THE PROPOSED

ANN

The proposed ANN is applied for dc-link capacitance esti-

mation under different operation conditions. The ANN is fed

with updated information on phase A input current ia,in, and

ripple dc-link voltage ΔVdc every 0.1 sec. Three cases are

studied for the trained ANN as presented below.

A. Case I: Constant capacitance conditions

In this case, the trained ANN is tested to check whether is

able to estimate the correct value of capacitance or not. A ran-

dom value chosen for this test within the trained capacitance

range. The estimated values of the capacitance corresponding

to each set is shown in Fig. 6.
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Fig. 6. The capacitance estimation by the trained ANN at 10 kW load.

B. Case II: Varying load conditions

In this test, the impact of the load (power) variation on the

estimation accuracy is analysed. The load power is dropped

from 10 kW to 4 kW at the moment of 0.7 sec is simulated.

The estimation of capacitance values and their corresponding

errors are shown in Fig. 7 and Fig. 8, respectively. It can be

seen that the variation effect takes place just after 0.1 sec.
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Fig. 7. The trained ANN accuracy under load variation.

C. Case III: Varying capacitance conditions

In sake of proving that the trained ANN is able to detect the

degradation of a capacitor, in this test a 1% drop in capacitance

is simulated to test the ANNs estimation behaviour. The drop

is simulated with two capacitors C1 and C2 connected in

parallel, where C1 equals to 600 μF, and C2 equals to 1

μF and connected through a switch to have the option to

switch between 601 μF and 600 μF. Fig. 9 shows the estimated

capacitance value with the corresponding estimation error for

each estimation.



TABLE II
REMARKS ON SIMULATION RESULTS FROM SIMULINK.

Case study Remarks / Comments

Case I - It can be seen that the trained ANN estimates the actual value in steady state with a maximum error of 0.38%.

Case II - An error of 19% is observed during transient, which should be discarded in the estimation.

- The trained ANN estimates the correct value during the steady state operation with error less than 1%.

Case III - The trained ANN detects 1% variation in the capacitance value.
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Fig. 10. The process of ANN implementation in DSP
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A a general observation on all the results is that the esti-

mated capacitance values before 0.3 sec should be discarded

in the estimation. The low estimation accuracy before 0.3 sec

is due to the ANN’s inputs affected by the transient. This

shows that the estimated results from the trained ANN should

be considered only during steady state operation of the back-

to-back converter. Remarks to the studies are shown in Table

II.

V. PROOF OF CONCEPT

The ANN discussed in the last two sections is implemented

in a Digital Signal Processor (DSP) to verify the proposed

concept. The DSP used is Texas Instrument TMS320F28335

[14]. The block diagram shown in Fig. 10 illustrates the

implementation process with the following steps:

S1) The training datasets obtained from the back-to-back

SIMULINK model and used earlier in this paper, are

collected and stored in an excel sheet.

S2) In real prototype applications, readings of current and

voltage are fed to the DSP into a digital form. The

validation part in this paper aims to proof the concept

by feeding the DSP with digital data, but those data

are obtained from the back-to-back SIMULINK model.

Therefore, three gain factors are calculated to obtain the

equivalent digital values of phase A input current ia,in,

ripple dc-link voltage ΔVdc, and capacitance values.

S3) The DSP maximum voltage rating of a digital input

DSPmax,volt1 equals to 3 V, and the maximum number

of bits DSPmax,bits are 4096 bits, therefore, the calcu-

lated gain factors are based on 2.7 V DSPmax,volt2 , and

4096 bits as usable limits. Moreover, 16 Amp, 0.158 V,

and 1200 μF are used as the maximum limits for phase A

input current imax,a,in, ripple dc-link voltage ΔVmax,dc,

and capacitance Cmax, respectively.

S4) Based on the previous considerations in mentioned in

S3, the gains are calculated as following:

KI =
DSPmax,volt2 ×DSPmax,bits

imax,a,in ×DSPmax,volt1

=
2.7× 4096

16× 3
= 230

(3)



KV =
DSPmax,volt2 ×DSPmax,bits

ΔVmax,dc ×DSPmax,volt1

=
2.7× 4096

0.158× 3
= 23331

(4)

KC =
DSPmax,volt2 ×DSPmax,bits

Cmax ×DSPmax,volt1

=
2.7× 4096

0.0012× 3
= 3072000

(5)

Where, KI , KV , and KC , are the gain factors, phase A input

current ia,in, ripple dc-link voltage ΔVdc, and capacitance,

respectively.

S5) Afterwards, all the collected datasets stored in the excel

sheet are multiplied by the corresponding gain factor,

and hence, three datasets each consisting of 183 data

but into a digital form are ready to be used as training

data.

S6) The same ANN structure shown in Fig. 5(a) is applied to

train the available digital data. The regression response

is the same as that in Fig. 5(b).

S7) The implementation of the trained ANN in the DSP is

achieved by generating a C-code that is equivalent to the

generated SIMULINK trained ANN model. Afterwards,

this C-code is compiled using the Code Composer

Studio (CCS), and then, a new ANN is built by the DSP

S8) In sake of testing the ANN project by the DSP, the

streaming of data coming from the back-to-back con-

verter SIMULINK model are first converted into digital

forms according to (3), (4) and (5). The estimated

capacitance value in digital format is converted into the

physical value according to (5).

Five random capacitance values are selected to be estimated

by ANN on the DSP system. The estimated results by the DSP
is presented in Table III.

TABLE III
ESTIMATED CAPACITANCE VALUES AND THE CORRESPONDING ERRORS

PERCENTAGE BY DSP USED IN A BACK-TO-BACK CONVERTER.

Actual C value Estimated by DSP Estimation

error

1182 μF 1182.2 μF 0.02 %

1093 μF 1093.2 μF 0.02 %

975 μF 974.9 μF 0.01 %

786 μF 785.8 μF 0.03 %

606 μF 605.5 μF 0.09 %

The error of the estimated capacitance values from the DSP

is less than 0.1%. To verify the simulation results shown in

Section IV, the estimated capacitance results by using DSP are

presented in Fig. 11 to Fig. 14. It can be seen in Fig. 11 that

the maximum error is 0.25% and 0.027%, respectively, for the

two estimated capacitors.
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Fig. 14. The estimation error analysis by DSP with capacitance variation at
10 kW load. (Case III)

In Fig. 12 and Fig. 13, it can be noted that the maximum

error is 18% during the transient load variation from 10 kW to

4 kW. While during steady state, the errors are below 0.35%.

The summary of the comments is shown in Table IV.



TABLE IV
REMARKS ON RESULTS FROM DSP.

Case study Remarks / Comments

Case I - It can be seen that the trained ANN estimates the actual value in steady state with a maximum error of 0.25%.

Case II - An error of 18% is observed during transient, which should then be discarded when operating.

- The trained ANN estimates the correct value during the steady state operation with error less than 0.35%.

Case III - The trained ANN detects 1% variation in the capacitance value with maximum error equal to 0.04%

at the instant of drop.

VI. CONCLUSIONS

A new capacitor condition monitoring method based on

Artificial Neural Network (ANN) algorithm is proposed in

this paper. It is applied for a back-to-back converter study

case in order to estimate the capacitance value change of the

dc-link capacitor. The proposed method requires no additional

hardware circuit and can be implemented by using the extra

resources of existing digital controllers in most of power

electronic systems, implying a minimum additional invest-

ment. The method is implemented in both simulation software

and DSP. The capacitance estimation results under different

capacitance values and loading conditions are presented. It

reveals that the estimation errors are below 0.4% and 0.35%,

respectively for the simulations and the proof-of-concept by

the DSP.
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Abstract—In modern design of power electronic con-
verters, reliability of DC-link capacitors is an essential
aspect to be considered. The industrial field have been
attracted to the monitoring of their health condition and
the estimation of their ageing process status. The existing
condition monitoring methods suffer from shortcomings
such as, low estimation accuracy, extra hardware, and
increased cost. Therefore, development of new condition
monitoring methodologies that are based on advanced
software algorithms could be the way out of the afore-
mentioned challenges and shortcomings. In this paper,
a proposed software condition monitoring methodology
based on Artificial Neural Network (ANN) algorithm is
presented. Matlab software is used to train and generate
the proposed ANN. The proposed methodology estimates
the capacitance of the DC-link capacitor in a three
phase front-end diode bridge AC/DC/AC converter. The
estimation is based on the usage of single phase output
current and dc-link voltage ripple. The impact of training
data type, source and amount are also investigated for
estimation accuracy analysis. Experimental validation of
the proposed method is also conducted.

I. INTRODUCTION

Condition monitoring is an important method to observe and

estimate the health condition of power electronic components,

converters and systems. It is widely applied and demanded in

safety-critical or reliable applications, such as wind turbines,

electrical air-crafts, electric vehicles, etc., enabling the indica-

tion of future failure occurrences and preventive maintenance.

In [1], the condition monitoring principle is defined as an

online measurement of a component, such that if it drifts away

from the healthy condition an appropriate action to be taken.

According to the review on the condition monitoring of

semiconductor devices used in power electronics in [1], ca-

pacitors are another type of components that which fail more

frequently than other components in power electronic systems.

The health status of a capacitor can be indicated by three pa-

rameters; the capacitance C, the Equivalent Series Resistance

(ESR), and the Equivalent Series Inductance (LESL) [2].

Moreover, each of the aforementioned parameters are dis-

tinguished by three frequency regions. The majority of the

condition monitoring methods for capacitors are based on the

estimation of the capacitance and the ESR due to their direct

correlation to the capacitor degradation [3].

 

Co = Initial capacitance. CEOL = Capacitance at End-Of-Life.
ESRo = Initial equivalent series resistance. ESREOL = equivalent series resistance at End-Of-Life.
*CEOL could be larger or smaller than ESREOL, it depends on the application and the capacitor type.
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Fig. 1. Capacitance and ESR curves as an indication of capacitor degradation
level [4].

Based on the degradation curves in Fig. 1, an end-of-

life or threshold criteria is needed before going further and

decide the health condition of the capacitor. For Electrolytic

capacitors (E-Caps), the widely accepted end-of-life criteria is

20% capacitance reduction or double of the ESR.
This paper aims to experimentally validate a proposed

condition monitoring method by capacitance estimation using

Artificial Neural Network (ANN) that uses the single phase

A output current iout,a and dc-link ripple voltage Δvdc as

inputs. It requires no hardware circuitry (e.g., current sensors

and corresponding signal condition circuits), no external signal

injection, and therefore minimizes the increased complexity

and cost. Moreover, investigation of the training data type,

amount and source is also presented in sake of analysing the

estimation accuracy.
The main sections in this paper are as the following: Section

II gives the basic principle of ANN applied for capacitor con-

dition monitoring and illustrates the applied ANN to a front-

end diode bridge converter study case. Section III presents

the results obtained by the proposed method based on ANN

validated in a hardware prototype, followed by the conclusion

in Section IV.

II. ANN FOR CAPACITOR CONDITION MONITORING

Using ANN for capacitance estimation have firstly been

applied by [5] where the main motivation is that the estimated



(a) Proposed ANN structure.
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Fig. 3. Training data selection criteria and the trained ANN regression response.

value of C is possible to be obtained using the available input

voltage and current and output voltage and current terminal

information of the converter, in addition to the dc-link voltage

ripple, without sensing the capacitor current iC . In order

to optimize an efficient ANN that requires less information,

hence less amount of iteration; an ANN is proposed by [4]

that considered single phase A input current iin,a and dc-link

ripple voltage Δvdc as inputs. In [4] the ANN is trained based

on training data obtained from simulation, afterwards, in order

to validate the concept, the trained ANN is integrated into a

Digital Signal Processor (DSP).

In this paper the ANN is trained based on training data

obtained from an experimental platform. Moreover, the ANN

is trained to estimate the capacitance value using only the

single phase A output current iout,a and dc-link ripple voltage

Δvdc.

A. Proposed ANN structure

As stated earlier, the ANN is considering the single phase

A output current iout,a and dc-link ripple voltage Δvdc as

inputs. The basic structure of any neural network consists of

three layers, input, hidden, and output layers. The input layer

is where the available amount of data fed to the ANN will be

stored. The hidden layer task is to transform the inputs into a

function that the output layer can use, while the output layer

transforms the hidden layer activations into a scale, this is the

scale where the data entered as targets will be adjusted to be as

the desired output. In this section, the similar architecture as in

[4] is applied as given in Fig. 2(a). Amount of hidden neurons

selection is discussed in [6]. It is stated that the common

selection criteria of hidden neurons amount is trial and error.

Fig. 2(b) illustrates the impact of hidden neurons amount on

the ANN regression response, hence, the ANN estimation

accuracy. For the proposed ANN in this paper, the optimum

hidden neurons number is 75. In the following subsection, the

selection criteria of training data and the ANN structure are

discussed.

B. Training data selection

Illustration of the data collection process is shown in Fig.

3(a). It can be seen that one average value of iout,a is

calculated based on 7001 points and stored every 0.1 sec. In
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addition, one peak value of Δvdc is calculated based on 7001

points and stores every 0.1 sec.

In order to collect training data with different capacitance

values, a designed Printed Circuit Board (PCB) with 9 ca-

pacitance step is connected in parallel with the nominal dc-

link capacitors as shown in Fig. 4. Each capacitance step

equals to 11 μF. Therefore, the capacitance boundaries are

between 110 μF and 198 μF. As considered in the simulation

case, different loading conditions are considered, therefore,

the training data are collected five times starting by 40 Ω
and ending by 80 Ω resistive load. Eventually, 45 training

data sets are available to be fed to the ANN layers. For the

proposed ANN in this paper, the Neural Fitting Tool nftool

in MATLAB software [7] is used. This tool is usually used

for estimation and prediction problems in which the neural

network maps between a set of numeric inputs and a set of

numeric targets. The iteration algorithm used in this training

is Bayesian Regularization [8], which typically takes longer

time but it is suitable for challenging problems. Moreover,

the used training algorithm avoids the overfitting issues by

stopping the training automatically when the generated results

stops improving. The regression response of the trained ANN

equals to 0.9996 as shown in Fig. 3(b). Therefore, a very

strong correlation between the inputs (iout,a, ΔVdc) and the

target (C). Since the regression response of the trained ANN

is satisfactory, the trained ANN is generated as a SIMULINK

model for capacitance estimation purposes.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to validate the proposed concept, an experimental

study is carried out in this section.

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL FRONT-END DIODE BRIDGE

PROTOTYPE CONVERTER PARAMETERS.

Input AC Voltage (VL−L) 185 V

Output AC Voltage (VL−L) 185 V

Rated DC-link Voltage (Vdc) 250 V

Full Power Level (Po,max) 850 W

Resistive load corresponded to (Po,max) (RL) 40 Ω

Nominal Capacitance (C0) 110 μF

A front-end diode bridge converter prototype is built. The

circuit diagram of the built prototype is shown in Fig. 4. The

experimental platform is shown in Fig. 5 and its specifications

are listed in Table I. The training data are collected as

described earlier. In order to collect training data with different

capacitance values, a designed Printed Circuit Board (PCB)

with 9 capacitance step is connected in parallel with the

nominal dc-link capacitors as shown in Fig. 4.
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TABLE II
EXPERIMENTAL RESULTS FOR ESTIMATED CAPACITANCE BY ANN1 UNDER DIFFERENT LOADING CONDITIONS.

Actual Capacitance Value Estimated Capacitance Value Estimation Error Loading Condition

Cactual = 110 μF Cestimated = 109.6 μF Error = 0.36% RL = 70 Ω

Cactual = 143 μF Cestimated = 142.5 μF Error = 0.35% RL = 50 Ω

Cactual = 176 μF Cestimated = 176.2 μF Error = 0.1% RL = 40 Ω

Cactual = 187 μF Cestimated = 187.8 μF Error = 0.42% RL = 60 Ω

Cactual = 198 μF Cestimated = 197 μF Error = 0.5% RL = 80 Ω

The corresponding ia,out and ΔVdc from each capacitance

step are obtained in MATLAB according to the block digram

shown in Fig. 6. The dc-link voltage ripple and RMS current of

phase A are obtained based on the input signals as illustrated

in Fig. 6. In the following subsections, the trained ANN is

tested under different conditions.

A. Constant capacitance condition
In order to test the trained ANN, the dc-lnik capacitor in

the prototype is adjusted to 132 μF under full power level.

The behaviour of the dc-link voltage and single phase output

current are shown in Fig. 7.

Fig. 7. DC-link voltage and single phase AC output current.

The trained ANN estimated the correct capacitance value

as shown in Fig. 8. More estimated capacitance and their

corresponding estimation error percentages are listed in Table

II. It can be seen the ANN is tested under different loading

conditions achieving 0.5% as maximum estimation error.
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Fig. 8. Estimated capacitance by the trained ANN1.

B. Beyond the trained boundaries condition

In this subsection, the trained ANN is tested to estimate

the capacitance under loading condition of 90 Ω resistive load

which is beyond the considered training boundaries. the dc-

lnik capacitor in the prototype is adjusted to its nominal value

(110 μF). The trained ANN estimated 108.5 μF capacitance

value with 1.5% estimation error as shown in Fig. 9.
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Fig. 9. Estimated capacitance by the trained ANN2.



TABLE III
EXPERIMENTAL RESULTS FOR ESTIMATED CAPACITANCE BY ANN2 UNDER DIFFERENT LOADING CONDITIONS.

Actual Capacitance Value Estimated Capacitance Value Estimation Error Loading Condition

Cactual = 165 μF Cestimated = 168.4 μF Error = 2.0% RL = 40 Ω

Cactual = 176 μF Cestimated = 179.4 μF Error = 1.9% RL = 40 Ω

Cactual = 187 μF Cestimated = 188.7 μF Error = 0.9% RL = 40 Ω

Cactual = 143 μF Cestimated = 142.7 μF Error = 0.2% RL = 50 Ω

Cactual = 154 μF Cestimated = 151.7 μF Error = 1.5% RL = 50 Ω

Cactual = 132 μF Cestimated = 130 μF Error = 1.5% RL = 70 Ω

C. ANN boundaries training

Training data amount, type and source have a strong impact

on the ANN behaviour. It can be noted that the trained ANN

is tested for capacitance values that are in the range of the

training data. In order to investigate the ANN robustness with

respect to training data amount specifications, (ANN2) with

regression responce shown in Fig. 10 is studied.
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Fig. 10. Regression response of the trained ANN for experimental validation.

It can be seen that ANN2 is trained based on the first

two minimum and last two maximum boundaries of the

capacitance range ((C0), (C1), (C8), and (C9)). Since 5

loading conditions are considered, eventually, 20 dataset are

used in training ANN2. The estimated capacitance and their

corresponding estimation error percentages are listed in Table

III. Although that the estimation error percentages are higher

than the ones listed in Table II, but they are worthy to be

accepted in sake of saving time and effort in collecting larger

capacitance steps for training purposes.

IV. CONCLUSIONS

The major contribution of this paper is divided in twofold;

one is to experimentally validate a proposed condition mon-

itoring method by capacitance estimation using ANN, two

is to validate a proposed ANN that is trained based on the

minimum and maximum boundaries. The proposed methodol-

ogy is applied for a front-end diode bridge converter study

case in order to estimate the capacitance value change of

the dc-link capacitor. The proposed method requires no ad-

ditional hardware circuit and can be implemented by using

the extra resources of existing digital controllers in most of

power electronic systems, implying a minimum additional

investment. An accuracy analysis that shows the impact of

hidden neurons amount on ANN accuracy is discussed. The

capacitance estimation results under different capacitance val-

ues and loading conditions are also presented. Two different

training approaches are analysed. It reveals that the maximum

estimation error is 0.5% in case of considering the whole

range of the collected data for training purpose. In addition,

estimation error of 1.5% is obtained in capacitance estimation

under non-trained loading condition. For an ANN trained

based on the boundaries information, the estimation error is

not exceeding 2%. ANN trained on boundaries are beneficial

in sake of saving time and effort. Considering un-balanced

and/or transient conditions is intended in the future work.
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