Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Model-based Noise PSD Estimation from Speech in Non-stationary Noise

Nielsen, Jesper Kjeer; Kavalekalam, Mathew Shaji; Christensen, Mads Graesbgll; Boldt,
Jesper Binsow

Published in:
IEEE International Conference on Acoustics, Speech, and Signal Processing

DOl (link to publication from Publisher):
10.1109/ICASSP.2018.8461683

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Other version

Link to publication from Aalborg University

Citation for published version (APA):

Nielsen, J. K., Kavalekalam, M. S., Christensen, M. G., & Boldt, J. B. (2018). Model-based Noise PSD
Estimation from Speech in Non-stationary Noise. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (pp. 5424-5428). Article 8461683 IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/ICASSP.2018.8461683

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 13, 2024


https://doi.org/10.1109/ICASSP.2018.8461683
https://vbn.aau.dk/en/publications/05b412dd-0a7e-4b31-9b3d-cff8625881bb
https://doi.org/10.1109/ICASSP.2018.8461683

Variational Bayesian Inference for
Model-based Noise PSD Estimation

Jesper Kjeer Nielsen!, Mathew Shaji Kavalekam!, Mads Graesbell Christensen!,
and Jesper Boldt?
1 Audio Analysis Lab, CREATE, Aalborg University
2 GN ReSound

Last compiled: April 17, 2018

1 Introduction

This document gives the details of the variational Bayesian (VB) noise power spectral density
(PSD) estimator proposed in our ICASSP-paper [2]. In the first section of the document, a
general description of the VB approach is given to joint parameter estimation and model
comparison. If the reader is familiar with the VB approach, this section can be skipped. In
the second section, the VB algorithm is applied to the model described in [2]. We strongly
encourage the reader to read the ICASSP paper before continuing reading this document.

2 A VB tutorial

Suppose we wish to compute the posterior distribution

K
p(0]x) = kZ p(0]x, M) p(Mlx) (1)
=1

for the model parameters 6, but cannot do this analytically. Sometimes, we can simplify the
problem considerably if we introduce latent variables s. An example of this is for Gaussian
mixture models where the introduction of latent variables allows us to use the EM-algorithm
to produce a solution. If we let z = [sT 0] ", the joint posterior over the latent parameters
and the model parameters is

K
p(zlx) = kZ p(z|x, M) p(Mlx) . (2)
=1



Often, this posterior cannot be computed analytically, so we assume that it factorises for each
model M; as

M
p(zlx, M) = qi(z) = [ [ 9 (zi) 3)
i1

where we have divided z into M non-overlapping subgroups. In the sequel, we will use
the more compact notation g; = g;(z;). Also note that even though we do not assume any
factorisation for p(My|x), we will only obtain an approximation g(My) of it since we use
gx(z) instead of p(z|x, My). Thus, we have that

M
p(z, Milx) = q(z, M) = q(M)qe = (M) [ T qic - (4)

i=1

Thus, we have now reformulated the problem from finding p(z, Mk|x) to that of finding
the different factors gj and g(Mjy). If we select the factorisation in a clever way, it is much
easier to find these factors (using VB) than it is to find the exact posterior p(z, My|x). The
art of applying the VB framework is, therefore, to elicit a signal model (i.e., an observation
model p(x|z, My) and prior distributions p(z| Mj) and p(Mj)) and a factorisation so that the
various factors can easily be computed while still being a good approximation to the exact
posterior. In the sequel, we assume that we have elicited these and focus on describing how
the various factors of the elicited factorisation are computed from the signal model.
For any pdf g, we have that the log of the model evidence can be written as [1, p. 473]

. p(z Myfx)
Inp(x) = L(q) —k;q(/\/lk)/qkln 10 (M) dz ()
where B
B " p(z,x, My)
L(q) —k_Zlq(Mk)/qkl (M) dz . (6)

It turns out that maximising the lower bound £(g) w.r.t. g produces the best approximation
to the posterior p(z, Mk|x). To perform this maximisation, the lower bound is first rewritten
as

L(g) = k:Zlq(Mk)ﬁk(Qk) + kglq(Mk)l q(My)

)



where

x!Mk)dz

£elgy) = [ et P52 ®
= /biklnp(zrx’Mk)dZ—/len%dz )

[ M K
= /q]'k /1np(z,x|/\/lk) (Hqikdzi)] de _/Zlnqik (Hqikdzi> (10)

i i#j i=1 i=1

[ M
= /ij /lnp(z,x\/\/lk) (HQidei>] dzj — Z/%kln%kdzi (11)
I -1

i#]

= /%‘k /lnp(zer/lk) (Hﬂlide') _lnq]‘k] dzj — E./q”‘ Inggdz; . (12)

i#] i

Given the data x and the pdfs gj for i # j, the integral in the bracket is a function of z;.
However, this function does not necessarily integrate to one, but such a function can easily be
defined as

In (zj|x, M) = Eiyj[In p(z, x| My)] — InZy (13)

where [E;.i[In p(z, x| My )] and Zj are the expectation operator w.r.t. to [];;gix and the nor-
malisation constant so that fi(z;|x, M) integrates to one, respectively. These are given by

]Ei#j[lnp(z,x|/\/lk)] = /1np(z,x|./\/lk) (Hqikdzi> (14)
i#]
ij = /exp {IEZ?é][ln p(z,x|/\/lk)]}dzj . (15)

Consequently, we can now write Ly () as

ﬁk(qk) = /q]k [11’1 ﬁ(zj\x, Mk) + In Z]'k —1In q]k] de — ;/ qik lnqikdzi (16)
17]
= —KL(qj/|p(zjlx, Mx)) +In Zy + ) _ H|q] (17)
i#j

where KL(qjk||p(zj|x, My)) and H|[gj] are the Kullback-Leibler (KL) divergence and the en-
tropy, respectively.

We have now written the lower bound £(g) in a form which allows us to maximise it
w.rt. to gj. Since the KL divergence is the only term which depends on the functional g, we
maximise the lower bound by minimising the KL divergence. Fortunately, this is easy since
the minimum of the KL divergence is zero, and this minimum value is obtained if and only if

9k = P(zjlx, My) (18)

3



and the solution to the optimisation problem, therefore, is that
Ingj = E;xj[In p(z, x| My)] + const. (19)

The above solution is not a closed-form solution since the expectation operator depends on
{qik}i-j which are also unknown. However, if we optimise for the individual g;;’s iteratively,
we are guaranteed to converge to a solution [1, p. 466].

2.1 The VB Lower Bound

For every model order, we can keep an eye on the convergence by monitoring the lower bound
Ly (qx)- For the optimal form of g, the KL divergence vanishes, and the lower bound is given
by

ﬁk(qk) =In Z]'k + ZH[%k] (20)

i#j

Since this should hold for all j’s, we can stop the algorithm when L (gx) is nearly the same for
all j’s. An alternative formulation for the lower bound can also be constructed directly from
the definition of Li(gy) as

Li(qx) = /qklnp(z,x|j\/lk)dz— /qklnqkdz (21)
M
= /qklnp(x|z,/\/lk)dz+/qklnp(z|/\/lk)dz+ZH[qik] (22)
i=1
M
= Ey, [In p(x|z, My)] + Eg, [Inp(z[ My)] + ) Hlgue] - (23)

i=1

2.2 The VB Model Comparison

We can also do model comparison in the VB framework. To do this, we rewrite £(g) as

<& X p(My)
L(q) = k:Zlq(Mk)ﬁk(qk) +k221q(Mk)1n q(M:) (24)
K
= IEQ(Mk) [In (p(My) exp(Li(qx))) — Ing(My)] . (25)

Given the data x and the joint pdf gy, the first term in the bracket is a function of the model
M. This function, however, does not necessarily integrate to one, but such a function can
easily be defined as

In p(Milx) = Li(qx) +Inp(My) — InZ; (26)
where Z is a normalisation constant given by
K
Z =Y p(My) exp [Li(qx)] - (27)
k=1



Using these definitions, we can write £(g) as

L(q) = —KL(g(My)|[p(Mi|x)) +In Z;

which is clearly maximised for

or, equivalently,

for any j.

q(My) = p(Mylx)

Ing(My) = Li(qx) + In p(Mj) + const.

=1InZj+)_H[gi] + In p(My) + const.
i#]

3 Noise PSD Estimation Using VB

(28)

(29)

(30)
31)

We will now apply the VB framework to solve the problem of computing the posterior distri-
bution on the excitaiton noise variances from a mixture of two periodic AR processes. That is,

we observe

where

y=s+e
2 My) = N(0,0¢Re(by))
5, M) = N(0,02Rs(ay))
Rs(ay) = N"'FDg(ay)F?
R.(by) = N 'FDe(by)F

[Fly = exp(j2t(n—1)(I—1)/N), nl=1,...,N
As(ay) = diag(F™ [a] 0])
Ae(by) = diag(F! {blz O}T)
)—1

Moreover, we assume that the prior for the excitation noise variances are given by

P((Te2|Mk) = InV'g(“e,kr :Be,k)
p(02| My) = Inv-G (ag g, Bs )

(32)

(42)
(43)



whose hyperparameters we initially assume known. The latens variable of our model is s
whereas the model parameters are 02 and o2. Note that the AR parameters are given by the
model. From the above model, it also follows that

p(yls, 02, M) = N (s, 0 Re(by)) (44)

so that joint distribution over the observations, the latent variables, and the model parameters
factorise as

p(y,s, 02,02 My) = p(yls, 02, Mi)p(s|od, Mi) p (02| M) p (02| M) - (45)

In our VB algorithm, we seek to compute and approximation of the joint posterior p(s, 02, 02| M)
using the factorisation

p(s, 02,05 | My) = qi(s,02,02) = q1(s) g2 (02) 43 (02) (46)

where the factors can be viewed as approximations to the marginal posteriors with

q1x(s) =~ p(sly, Mx) (47)
Qo (02) = p(o2ly, My) (48)
g3 (02) ~ p(ogly, My) . (49)

We also wish to compute an approximation q(My) of the posterior pmf for the models. Before
we can do that, however, we first have to find the functional expression of the factors g, their
entropies H|[q;|, and the normalisation constants Z.

3.1 Functional expressions for the factor g (s)
According to the above tutorial, we have that
Ing1k(s) = Eiz[In p(z, y| Mi)] + const. (50)

Inserting the expression for p(z,y|My) in the expectation operator, we obtain

Ein[Inp(z,y|Mp)] = Eiallnp(yls, 02, Mi)] + Eia[lnp(s|og, My)]
+ Ejza[In p(03 | Mi)] + Eia[Inp(03 | Mp)] . (51)

Of the four terms, the first two terms depend on s whereas the last two do not. However, we
still have to compute the last two terms in order to compute the normalisation constant Zj.



Since
In p(y]s,ag,/\/lk) =—(N/2) ln(ZmTez) —(1/2)In |det(Re(by))|
- 2(173 (y— )R (bi) (y = s) (52)
1np(s|(752,./\/lk) =—(N/2) 1n(27'w§) —(1/2)In |det(Rs(ay))]

~ 20 TR (ay)s (53)
In p(02 | M) = g In o — InT () — (s +1) Inod — ’;k (54)
In p(o'ezyMk) = ek In ﬁe,k - lnr(‘xe,k) - (‘Xe,k + 1) In aez - li.eék ’ (55)
we have for the four terms that
]Ei#l[lnp(y‘sl Ugl Mk)] = /%k lnp ’s/aezl ~/\/lk)d0-e2 (56)
= — (N/2)In(27) — (N/2) Eg,,[InoZ] — (1/2) In |det(Re (by)))|
(1/2>( )TR—1<bk)<y =) By [oe ] (57)
N/2 {ln IE,M 2] + Egy, [Ino?]} (58)
Eialinp(slo?, M) = [ (02 In p(s|o?, My)do? 59)
= —(N/2) ln(Zn) — (N/2)Eg,[Ino?] — (1/2) In |det(Rs(ay))|
— (1/2)s"R;* (a)s Eqy, [05 ] (60)
= lnN(O,IEqZk[ ]R (ay))
N/2 {lnIEqZk ] + IEsz [ln(T ]} (61)
Ej1[In p(03| My)] = agpeIn Bog — InT (i) — (s + 1) Byy [In0?]
— Bs By [057] (62)
Eiz[In (02| My)] = tepIn fey — InT(aes) — (wex + 1) Egy [In07]
— Bej Eqy 2] (63)
By only retaining the terms from these four expressions which depend on s, we obtain that
q1k(s) & N (s, g oz ] Re(by) )N (0, By [0 R (ax)) (64)
from which we can derive that
qik(s) = N(8, Es) (65)
-1
Es = [Egulos 2R (ae) + By o 2 R: (b1 (66)
= Es By, [0 *JRe (B )y - (67)



and that

[N (s, B o 2 IRe (BN (0, o IR (@) ds =
N (0T, o * R () + B oz 2 Re(Br) - (68)

by using standard Bayesian inference. Thus, the log-normalisation factor In Zy is given by

InZix = In [/ exp {Eiz[Inp(z,y|My)]} ds (69)
= In N0, lqui (05| Rs(a) +]Eq3k (02 2] Re(by))

- (N/2) {ln]E‘hk 72] + Egy [lna ] +InEg, [0 ] + Eg,, [ln(T ]} (70)

Eiz1[In p (07 | My)] + Bia [In p(02] My)] - (71)

Finally, since g1x(s) is a multivariate Gaussian distribution, its entropy is given by

Hlgi] = (N/2)In(2rexp(1)) 4+ (1/2) In|det(Zs)| . (72)

3.2 Functional expressions for the factor gy (0?)
According to the above tutorial, we have that
In g2k(07) = Eiz2[ln p(2, y| My)] + const. (73)
Inserting the expression for p(z,y|My) in the expectation operator, we obtain
Eiza[Inp(z, y| Mi)] = Eizalln p(yls, g, Mi)] + Eia[In p(s|og, My)]
+ Eiza[In p(03 | My)] + Eiza[ln p(02| My)] . (74)

Of the four terms, the second and third terms depend on ¢? whereas the first and fourth do
not. However, we still have to compute all the terms to obtain the normalisation constant Zy.
For the four terms, we have that

Esalln p(yls, 02, M) = [ a1e(s)31(c2) In p(yls, o2, M)dsdo? 75)
= — (N/2)In(27r) — (N/2) Eg [InoZ] — (1/2) In|det(Re(by))|
— (1/2) By, [(y = )R (B (y — 5) | By [0 (76)
Eizo[Inp(s|o?, My)] = /fhk s)Inp(s|o?, My)ds (77)
= — (N/2)In(27r) — (N/2)Ino? — (1/2) In |det(Rs(ay))|
1
— 207 Eg, [STRS*l(ak)s} (78)
E;z[Inp(02|My)] = aspIn By — InT(agy) — (asx + 1) Inog — [isék (79)
Ejzo[ln p(02| My)] = Eiu[Inp(o7| My)] (80)



From this, we have that

(1/2) Eg, [sTRS (ax)s] + Bsx
o?

Ingo(02) = —(N/2 4 agp + 1) Ino? —

where all the terms independent of 0?2 are absorbed in the constant. Thus,
qZk(as,z) = Inv_g(as,k/ bs,k)
where

Agf = N/2+ X
boi = (1/2) Eqy [s"R; (1) + B -

The log-normalisation factor In Z;x can now also be found to

InZyk = In U exp {JE#z[lnp(z,y!Mk)]}d%z}

= In [/(Ug)(asﬁl) exp (—IZ;) d(fsz] + g InBsx — InT(agy)
— (N/2)In(277) — (N/2) Ino? — (1/2) In |det(Rs(ay))|
+ Ei[lnp(yls, 02, My)] + Eiza[In (02| My)]

= —agrInbgy +InT(agr) + agpInBsx — InT(agx)
—(N/2)In(277) — (N/2) Ino? — (1/2) In |det(Rs(ay))|
+Eiz[Inp(yls, o2, My)] + Eiza[ln p(ol| My)]

Finally, since go (2

) is an inverse Gamma distribution, its entropy is given by
H[‘hk] = dgk + ln(bs,kr(as,k)) - (1 + as,k)lF(as,k)

where ¥ (-) is the digamma function.
3.3 Functional expressions for the factor gz;(0?)
According to the above tutorial, we have that
Ings(02) = Eizs[In p(z,y| My)] + const.

Inserting the expression for p(z,y|My) in the expectation operator, we obtain

Eiz5(In p(z, y|My)] = Eizsllnp(yls, 02, My)] + Eizs[in p(s|oZ, My)]

+ Eizs[In p(02|My)] + Eizsln (02| My)] -

~+ const.

(81)

(82)

(83)
(84)

(85)

(86)

(87)

(88)

(89)

(90)



Of the four terms, the first and the fourth terms depend on ¢2 whereas the second and third
do not. However, we still have to compute all the terms to obtain the normalisation constant
Z3i. For the four terms, we have that

Eizs[inp(yls, o2, My)] = /qm(S)lnP(y\s,U?,Mk)ds 1)
= - (N/z) In(27) — (N/2) Ino? — (1/2) In |det(Re(by))]
Eq [(y = )R (b0) (y — 9)] 92)
Ejzalin p(slo?, My)] = / 91()72x(02) In p(s[02, My)dsdo? 93)
— — (N/2)In(27) — (N/2) Ey, [Inc?] — (1/2) In |det(Rq(ay))|
— (1/2) By, [s"RS (a1)s] By o (94)
Ejzs[In p(07| My)] = Biz [In p(oZ | My)] (95)
Eiz3[In p(02|My)] = e InBex — InT (e x) — (e + 1) Inog — %ﬁk (96)
97)

From this, we have that

Ings(07) = —(N/2+ aep + 1) Inog—

(1/2) Eqgy, [(y —s)"R ' (b) (y — 5)] + Pex

t. (98
o2 + const. (98)

where all the terms independent of 0?2 are absorbed in the constant. Thus,

q3(02) = Inv-G (ae k, be ) (99)

where
fex = N/2+ gy (100)
bes = (1/2) Egy, | (y = )R (B (y — 9)| + Bes (101)

10



The log-normalisation factor In Zzx can now also be found to

InZsx = In [/ exp {EEiz[In p(z,y|./\/lk)]}d032] (102)

= In [ / (02)~ex ) exp (—Zf) da&] + s In Be —InT (ae )

—(N/2) ln(27‘c) (N/2)Ing? — (1/2)In|det(Re(by))|

+ Bizs[In p(s|o7, Mi)] + Eizs[In p(02| My)) (103)
= —lexINbey +InT (ac)) + A p In Pe — INT (e x)

— (N/2)In(277) — (N/2)Ino? — (1/2) In |det(Re(by))]

+Eigs[In p(s]og, My)] + Eizs[In p(og | My)] (104)
Finally, since g3;(c2) is an inverse Gamma distribution, its entropy is given by
Hlgsr] = e +In(bejl (aek)) = (14 ae) ¥ (aek) - (105)

3.4 Evaluating the expectations

To summarize the main result above, we have that

qik(s) = N (8, Ls) (106)
42k (03) = Inv-G g, bs ) (107)
q3(07) = Inv-G (ae k, bex) (108)
where

-1
Es = [Eqylon 2R (ay) + By lon 2R (by) | (109)
§ = Ls Egy [o0 IR, (br)y (110)
asj = N/2+ o (111)
bo = (1/2) By, [sTRT (ai)s] + Bos (112)
for = N/2+ oy (113)
bej = (1/2) Eyy, (v = )RS (B1) (y — 9)] + P - (114)

Since we now have derived the form of the distributions for the factors, we can evaluate the
expectations. These are

21 @
Eg, [os7] = b (115)
— Ae k
Egs, [oe 2] = i,k (116)
E,, [STRs_l(le)S} =8TR; (ay)8 +tr <R;1(ak)23) (117)
Eg |(v — ) R (@) (y — 5)] = &"R; (Br)e + tr (R (bo)Zs ) (118)

11



where & = y — §. For the evaluation of the normalisation constants, we also have that

By [In 03] = Inbgy — ¥ (as) (119)
Eg, [In0Z] = Inbey — ¥(aey) - (120)

q3k

3.5 Computing the model factor q( M)

To evaluate the model factor g(My), we have to compute the lower bound Li(gx) for all
models. This lower bound can be computed from the normalisation factors {Z; }?_; and the
entropies for g1x(s), gox(02), and g3 (0?). Alternatively, we also have from (23) that £ (gx) can
be written as

Li(qe) = Eg [Inp(yls, 02, My)] + Eq, [In p(s|oZ, M)+
M
Eg, [In p(02|My)] + Eg, [Inp(eZ|Mi)] + Y Hlga] . (121)
i=1

Since none of the expectations depends on all three sets of unknowns, we have that

Eq [Inp(yls, 02, My)] = Ein[Inp(yls, 02, My)] (122)
= —(N/2)In(27t) — (N/2) Eg,, [Inog] — (1/2) In |det(Re(by))|
— (1/2) By, [ (y = ) RS (B (y — 5) | By [0 (123)
Ey, [In p(s|oZ, My)] = Eizs[ln p(s|oz, My)] (124)
= — (N/2)In(27t) — (N/2) Egy [Ino7] — (1/2) In |det(Rs(ay))|
— (1/2)E,, [sTRs—l(ak)s] E,, 057 (125)
Eg [Inp(02|My)] = Eiz[In p(02|Mi)] = Eiz[In p(02 | My)] (126)
= Qs k In :Bs,k - lnr<“s,k> - (‘Xs,k + 1) Iquk [ln Usz]
— Bsx By 05 7] (127)
Eg, [In p(02|My)] = Eiz1[Inp(07| Mi)] = Eiso[In p(0g| M)] (128)
= Qe k In ‘Be,k - lnr(“e,k) - (“e,k + 1) ]E%k [11‘1 O'ez}
— Bex Eqy oz 2] - (129)

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. New York, NY, USA: Springer,
2006. 1sBN: 0387310738.

[2] ]. K. Nielsen et al. “Model-based Noise PSD Estimation from Speech in Non-stationary
Noise”. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. 2018.

12



	1 Introduction
	2 A VB tutorial
	2.1 The VB Lower Bound
	2.2 The VB Model Comparison

	3 Noise PSD Estimation Using VB
	3.1 Functional expressions for the factor q1k(bold0mu mumu ssssss)
	3.2 Functional expressions for the factor q2k(s2)
	3.3 Functional expressions for the factor q3k(e2)
	3.4 Evaluating the expectations
	3.5 Computing the model factor q(Mk)

	References

