Aalborg Universitet #### Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and BuA production from 2G glycerol in a chemostat process Varrone, Cristiano; Skiadas, Ioannis; Gavala, Hariklia N. Published in: Chemical Engineering Journal DOI (link to publication from Publisher): 10.1016/j.cej.2018.04.071 Creative Commons License Unspecified Publication date: 2018 Document Version Version created as part of publication process; publisher's layout; not normally made publicly available Link to publication from Aalborg University Citation for published version (APA): Varrone, C., Skiadas, I., & Gavala, H. N. (2018). Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and BuA production from 2G glycerol in a chemostat process. *Chemical Engineering Journal*, 347, 525-534. https://doi.org/10.1016/j.cej.2018.04.071 #### **General rights** Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal - If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim. #### Accepted Manuscript Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and BuA production from 2G glycerol in a chemostat process Cristiano Varrone, Ioannis V. Skiadas, Hariklia N. Gavala PII: S1385-8947(18)30644-2 DOI: https://doi.org/10.1016/j.cej.2018.04.071 Reference: CEJ 18871 To appear in: Chemical Engineering Journal Received Date: 3 February 2018 Revised Date: 10 April 2018 Accepted Date: 12 April 2018 Please cite this article as: C. Varrone, I.V. Skiadas, H.N. Gavala, Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and BuA production from 2G glycerol in a chemostat process, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.04.071 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and 1 2 BuA production from 2G glycerol in a chemostat process 3 Cristiano Varrone a,b*, Ioannis V. Skiadas A, Hariklia N. Gavala 4 5 ^a Technical University of Denmark, Department of Chemical and Biochemical Engineering, Lyngby, Denmark 6 ^b Present address: Aalborg University, Department of Chemistry and Biosciences, Copenhagen, Denmark 7 8 9 *Corresponding author: Cristiano Varrone. Department of Chemical and Biochemical Engineering 10 Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs Lyngby, Denmark. 11 E-mail: cristiano.varrone@gmail.com; cva@bio.aau.dk. 12 13 14 **ABSTRACT** 15 This study investigated the possibility to perform statistical optimization of an enriched mixed microbial 16 consortium, MMC, fed in continuous with a highly inhibiting 2G glycerol, for the joint production of 1,3 propanediol (1,3 PDO) and butyric acid (BuA). Key variables taken into consideration were HRT, pH 17 18 and feed concentration. The optimized process reached a glycerol consumption rate of 137 g/L/d and a 19 maximum predicted production rate of 82.61 g/L/d and 21.13 g/L/d for 1,3 PDO and BuA, respectively. 20 This corresponded to a 2.2 and 1.9-fold increase compared to the non-optimized process. The model was 21 able to satisfactorily predict the joint maximum production of 1,3 PDO and BuA (22.6 and 8.1 g/L 22 respectively) of the steady state also in non-sterile conditions, implying thus that MMC can be a robust 23 and reliable biological production platform. 24 25 Key words: HRT, continuous fermentation, statistical optimization, joint production, mixed microbial consortia, 26 2G crude glycerol. 27 28 29 INTRODUCTION 30 In the frame of a Circular Economy there is an increasing need for valorizing by-products/waste streams 31 and developing so-called "markets of secondary products" [1]. However, in order to create such 32 "secondary markets" we need to develop more efficient processes that can utilize new and renewable 33 feedstocks and become competitive compared to consolidated technologies based on non-renewable | 1 | resources. In this context, the valorization of crude glycerol derived from the biodiesel industry into | |----|--| | 2 | green chemicals and biofuels is considered of paramount importance [2] and has been largely | | 3 | investigated in the last decade, due to its increased availability. In fact, the production of crude glycerol is | | 4 | expected to surpass the commercial demand for purified glycerol [3], thus negatively affecting the | | 5 | economic viability of the small-medium sized biodiesel industries [4,5]. Consequently, crude glycerol is | | 6 | becoming a cheap and abundant feedstock, which can be used as a platform for biobased higher-value | | 7 | products. Nevertheless, valorization of crude glycerol derived from second generation (2G) biodiesel | | 8 | and, in particular, bioconversion of crude glycerol originated from the processing of animal fat has not | | 9 | been sufficiently investigated yet [6]. Bioconversion of such a feedstock could represent several | | 10 | advantages, especially due to its lower costs. | | 11 | Clearly, a major challenge in the biological exploitation of low-grade feedstocks is the development of | | 12 | microbial strains and/or communities able to withstand the inhibiting compounds, such as organic | | 13 | solvents, long chain fatty acids or salts, present in the crude glycerol [7]. A major advantage, on the other | | 14 | hand, is represented by the possibility to convert this substrate into a large number of very different | | 15 | compounds, including 1,3 propanediol, 2,3 butanediol, ethanol, butanol, volatile fatty acids, lactic acid, | | 16 | succinic acid, dihydroxyacetone, polyesters, acrolein, hydrogen, methane, polyhydroxyalkanoates, | | 17 | trehalose, vitamin B12, β-carotene, etc. [8–11]. | | 18 | So far, most studies have investigated the use of pure strains, which are easier to control, and often lead | | 19 | to high yields. Glycerol-fermenting species that can be typically found in literature comprise for instance | | 20 | Citrobacter freundii, Klebsiella pneumonia, K. oxytoca, K. planticola, Enterobacter agglomerans, | | 21 | Enterobacter aerogenes, Clostridium pasteurianum, C. butyricum, C. acetobutylicum, Escherichia coli, | | 22 | Lactobacillus sp., Bacillus sp., etc. [12-18]. In most cases, their fermentation pathways have been | | 23 | explored and the processes optimized. On the other hand, an increasing number of studies are suggesting | | 24 | that exploring the available diversity in nature to developing mixed microbial consortia (MMC) is a | | 25 | promising alternative approach, that can provide interesting results (for instance in terms of conversion | | 26 | efficiencies, reduced substrate and operating costs due to unnecessary substrate pretreatment or | | 27 | sterilization, etc.), particularly in the case of industrial waste feedstock containing compounds of | | 28 | undefined composition [19–22]. In fact, the ability of the enriched MMC to create synergistic effects can | | 1 | help degrading complex substrates with different grades of impurities, such as i.e. different | |----|---| | 2 | concentrations of salts, ashes, soaps, methanol or long chain fatty acids that can be found in different | | 3 | crude glycerol types (which depend on the characteristics of the initial feedstock and the | | 4 | transesterification process used) [6]. The exploitation of such synergies can thus represent an important | | 5 | strategy in the conversion of waste to bioproducts, where the combination of biological and chemical | | 6 | pathways leads to the development of a so-called "carboxylation platform" (with MMC | | 7 | processes being used to generate a mixture of carboxylates as intermediate platform chemicals towards | | 8 | generation of complex chemicals and fuels [19]). | | 9 | Besides their ability to metabolize a wider range of carbon sources, MMC further offer the advantage of | | 10 | cheaper inocula generation and maintenance, higher robustness against contaminations, as well as a more | | 11 | cost effective alternative to genetically engineered strains [23,24]. This is of particular importance in the | | 12 | case of 2G crude glycerol derived from meat processing waste, which is known to have increased | | 13 | inhibiting effect in comparison to crude glycerol types derived from plant and/or cooking oils [25]. | | 14 | Nonetheless, the successful development of this type of bioprocesses depends not only on the availability | | 15 | of robust strains and/or communities, but also on the optimization of the process parameters of the | | 16 | fermentation, which will improve the efficiency and stability of the process itself [26,27]. | | 17 |
So far, most optimization studies for bioprocesses have focused on fermentations using pure cultures, to | | 18 | guarantee stability and easier process control. A previous work by the authors showed the possibility to | | 19 | apply statistical optimization also to MMC, when working with a properly enriched and stable functional | | 20 | consortium (sensu Adav [28]), that can be considered as a "superorganism" acting in a stable and | | 21 | reproducible way, from a metabolic/functional point of view [27]. | | 22 | Statistical optimization is often applied for the improvement of biotechnological processes [26,29,30]. It | | 23 | is typically performed in batch mode, allowing for statistical independent experiments [27], higher | | 24 | amounts of replicates and faster operation times. Moreover, it allows to evaluate the interaction among | | 25 | the different variables, which cannot be determined when changing one variable at a time [31], and | | 26 | provides mathematical models that can describe both, chemical and biochemical processes [32]. There is | | 27 | a large number of studies dedicated also to the use of statistical optimization of fermentation processes. | | 28 | Most of them were used to optimize the medium composition and/or main key performance variables of | | batch processes [33–37]. In some cases the authors have subsequently validated the results in continuous | |---| | mode [23]. However, optimal conditions obtained in batch operations are not necessarily corresponding | | to the best ones in continuous mode, since they do not take into consideration important factors of | | continuous processes, such as the dilution rate/hydraulic retention time (HRT) and, more importantly, its | | effect on the other parameters. Interestingly, the use of continuous processes might offer several | | advantages in terms of future industrial applications, also in the case of glycerol valorization processes | | [32,38]. Such advantages may include higher volumetric production rate (with an important impact on | | the reduction of the reactor size and capital investment), as well as a more intensive use of the equipment, | | while facilitating operations from a control standpoint [7,39,40]. Nonetheless, only extremely few studies | | have addressed statistical optimization in continuous mode, mainly focusing on chemical reaction | | processes [41,42]. Moreover, there are not many studies concerning continuous operations for glycerol | | fermentation processes [7,43–46] and to the best of our knowledge none regarding statistical optimization | | including the HRT, which has a fundamental effect on the fermentation process. The study by Silva and | | colleagues [47] is, to our knowledge, the only one investigating the effect of HRT and pH on glycerol | | fermentation for H ₂ production by MMC and applied a first-order regression model (so rather a screening | | design) on the experimental data to predict yields at different pH and HRT values. However, the focus of | | the study was on the discussion of microbial diversity, so the authors did not perform a complete | | statistical optimization that would consider the interactions among variables. Dubey and colleagues [48], | | on the other hand, performed a complete statistical optimization to a bioprocess in CSTR (not involving | | glycerol), without considering the effect of HRT though. Since one of the major advantages of growing | | microbes in chemostats over batch cultures is exactly the ability to experimentally control the growth rate | | of cells [49] through the HRT, it would be important to take this into consideration when working in | | continuous operation. | | In a previous study the authors have selected different MMC and tested their stability in continuous | | processes [6,7]. The overall idea was to develop a two-stage process in which glycerol fermentation | | would be coupled to the production of polyhydroxyalkanoates (PHA) through the selective consumption | | of butyric acid, while leaving intact the 1,3 PDO, thus facilitating its recovery [50] (or eventually through | | the conversion of 1,3 PDO and butyric acid to PHA [51]). Therefore, the joint production of 1,3 PDO and | | 1 | butyric acid is of particular interest for the full exploitation of the crude glycerol as a carbon source (in | |----|---| | 2 | fact butyric acid is considered as a preferred substrate for PHA production [52]), leading to the | | 3 | production of two high-value compounds. In such a two-stage approach, maximizing the production of | | 4 | these specific metabolites (1,3 PDO and butyric acid) is thus a necessary prerequisite to obtain the | | 5 | highest amount of high-value products. Moreover, the co-production of 1,3 PDO and butyric acid has | | 6 | concrete industrial application potentials in itself. In fact, in May 2017 the industrial biochemicals | | 7 | company METEX, which is specialized in fermentation processes, announced that its strategic priority | | 8 | was to become the "market leader of natural butyric acid for animal feed and benchmark producer of | | 9 | GMO-free 1,3 PDO for cosmetic applications". METEX is planning to conclude the construction of their | | 10 | facilities in 2018 and reach a production capacity of 24 Kt (with 20 Kt of 1,3 PDO and 4 Kt of butyric | | 11 | acid) [53]. | | 12 | The aim of the present study was to significantly contribute to creating new knowledge and to develop | | 13 | the first step of this process by 1) applying statistical optimization to the continuous process, taking into | | 14 | consideration the effect of the HRT on the substrate concentration and pH; 2) using MMC grown on non- | | 15 | purified 2G crude glycerol; and 3) increasing the productivities and product concentrations of both, 1,3 | | 16 | PDO and butyric acid. | | 17 | | | 18 | MATERIAL AND METHODS | | 19 | 2.1 Inoculum | | 20 | The MMC was previously enriched from heat-treated anaerobic sludge, collected from the Municipal | | 21 | Wastewater Treatment plant in Lundtofte (DK), as described in [6]. It was chosen among a total of 8 | | 22 | different MMC tested, based on its better performance in terms of stability, kinetics and production [7]. | | 23 | The community was mainly characterized by <i>Clostridium</i> , representing by far the main genus (with an | | 24 | average relative abundance of 34.25%), followed by Blautia (26.33%), Unclassified genera (6.21%), | | 25 | Klebsiella (6.07%), Pseudomonas (5.93%) and Ruminococcus (5.50) [7]. For statistical reasons, to | | 26 | guarantee the same activation conditions throughout the statistical experiments, a large amount of MMC | | 27 | was prepared beforehand and frozen into aliquots, to be used as inoculum for the pre-activation. | | 28 | 2.2 Inoculum storage and activation | | 1 | Inoculum samples were stored in the freezer at -18°C. Prior to use, the frozen mixed culture was | |----|--| | 2 | transferred to the refrigerator at 4°C, for 2 hours, and then for an additional hour at room temperature, | | 3 | before being inoculated. 125 mL serum vials were used for batch experimentation. 45 mL of synthetic | | 4 | growth medium (described in the following paragraph) were flushed for 5 minutes with a mixture of 80% | | 5 | N ₂ and 20% CO ₂ , in
order to obtain anaerobic conditions, prior to inoculation, and incubated at 37°C and | | 6 | 150 rpm. Gas and liquid samples were collected regularly. Batches at 24 h fermentation (exponential | | 7 | phase) were used as inoculum for continuous experiments. In all experiments, 10% v/v inoculum was | | 8 | used to start up the continuous fermentation. | | 9 | 2.3 Growth Medium | | 10 | BA medium was prepared from the following stock solutions (chemicals in g/L of double distilled | | 11 | water): (A) NH ₄ Cl, 100; NaCl, 10; MgCl ₂ ·6H ₂ 0, 10; CaCl ₂ ·2H ₂ 0, 5; (B) K_2HPO_4 ·3 H ₂ O, 200; (C) trace | | 12 | $metal \ and \ selenite \ solution: FeCl_2 \cdot 4H_20, \ 2; \ H_3BO_3, \ 0.05; \ ZnCl_2, \ 0.05; \ CuCI_2 \cdot 2H_20, \ 0.038; \ MnCl_2 \cdot 4H_20, 4H_20$ | | 13 | $0.05; (NH_4)6Mo_70_{24}\cdot 4H_20, 0.05; AlCl_3, 0.05; CoCl_2\cdot 6H_20, 0.05; NiCl_2-6H_20, 0.092; AlCl_3, 0.05; $ | | 14 | ethylenediaminetetraacetate, 0.5; concentrated HCl, 1 mL; Na ₂ SeO ₃ ·5H ₂ O, 0.1; (D) NaHCO ₃ 52 g/L; (E) | | 15 | vitamin mixture according to Wolin and colleagues [54]. The following stock solutions were added to | | 16 | 974 mL of redistilled water: A, 10 mL; B, 2 mL; C, 1 mL; D, 50 mL; E, 1 mL [55]. | | 17 | Crude glycerol was provided by Daka Biodiesel (Denmark) and was used as the only carbon source. This | | 18 | crude glycerol was obtained from the transesterification of animal fats and butchery waste (based on | | 19 | animal fat categories 1 and 2 according to the EU regulation numbers 1069/2009 and 142/2011) and | | 20 | represented a highly inhibiting matrix for non adapted/pure strains. The main characteristics of this type | | 21 | of crude glycerol have been presented elsewhere [6]. | | 22 | 2.4 Continuous Experiments | | 23 | Continuous experiments were run in two 1L INFORS HT Multifors Reactors (using a working volume of | | 24 | 0.5 L), with the software IRIS loaded on the relevant controllers. Offgas flow was measured through a | | 25 | Ritter MilliGas counter (Type MGC-1). pH was controlled through the addition of alkali (KOH 4 M) and | | 26 | the temperature was kept at 37 °C. The reactor was flushed for 20 minutes with a mixture of 80% $N_{\rm 2}$ and | | 27 | $20\%~\text{CO}_2$ to obtain anaerobic conditions prior to inoculation (10 % v/v). The feed vessels were also | | 28 | flushed with 80% N ₂ and 20% CO ₂ and maintained under the same atmosphere throughout the | - 1 experiments, to secure anaerobic conditions. The medium was sterilized in 20L blue cap bottles, in order - 2 to avoid the introduction of non-controlled variability, due to eventual microbial growth (which would - 3 have unpredictable effects on the substrate composition). Tubes and media were changed every 4-5 days. - 4 The sterilization in the 20L blue caps caused a certain loss of volume, due to water evaporation, that - 5 determined up to 10% increase of the initial glycerol concentration. The outlet vessel was changed - 6 regularly and was connected with a vessel filled with water, to discharge pressure and to prevent air inlet - 7 [7]. HRT values were calculated based on the average volume of liquid discharge every day in the - 8 effluent. Oscillations from the set value were observed, due to typical imprecision of small peristaltic - 9 pumps and the occasional growth of biofilm inside the tubes. Substrate consumption rate (R_{Glv}) during - steady state was calculated according to the following equation: - 11 $R_{Gly} = (Gly_0 Gly) \cdot D$ Eq. 1 - Where D is the dilution rate (h⁻¹), Gly₀ is the glycerol concentration in the feed and Gly the concentration - of glycerol in the reactor at steady state. For a data consistency check, a carbon recovery (Rc) was - calculated [7] using the average values of the metabolites obtained at each steady state (expressed as - carbon moles), divided by the carbon moles of glycerol consumed. #### 16 2.5 Statistical Optimization - Based on the previous experiments in continuous mode [7], three design variables were chosen to be - 18 investigated: pH (range 5-7), HRT (range 6h-18h) and glycerol concentration (10-50 g/L). The response - variables were: butyrate production rate (g/L/d), butyrate concentration (g/L), 1,3 PDO production rate - 20 (g/L/d) and 1,3 PDO concentration (g/L). The ranges were chosen (based on preliminary results) in a way - to avoid experimental conditions that would lead to cell washout [7]. Statistical optimization was - performed by applying an Inscribed Central Composite (ICC) Design, using the software Design Expert - 9 (Stat-Ease, USA). The software defined 17 experimental conditions (runs), with three replicates at the - 24 central point, which were used to evaluate the variability of the system and perform the ANOVA and - response surfaces. Each run was performed for a period of 20 HRTs, in order to guarantee the - establishment of steady state and the ability to maintain it [7]. The average values of the responses - obtained during the steady state (corresponding to an operation period of approximately 6 HRTs with less - than 30% deviation) were used for the statistical model. Response Surface Methodology (RSM) was thus - 1 applied to investigate the experimental region and predict the optimal conditions, according to the - 2 second-order polynomial function: $$3 y = \beta_0 + \sum \beta_i X_i + \sum \beta_{ii} X_i^2 + \sum \beta_{ij} X_i X_j$$ Eq. 2 - Where y is the predicted response, β_0 a constant, β_i the linear coefficients, β_{ii} the squared coefficients, - 5 and β_{ii} the cross-product coefficients. The joint maximization of 1,3 propanediol and butyric acid was - 6 evaluated using the "desirability" (D) concept for the optimization of dual goals, according to Oddone - 7 and colleagues [56], where the desirability for an experimental response value can range between 0 (for - 8 the lowest value) and 1 (in the case of the highest observed value). #### 9 **2.6 Analytical Methods** - Detection and quantification of glycerol, ethanol, 1,3 PDO, lactic acid and VFAs were obtained with a - 11 Shimadzu HPLC equipped with a Aminex HPX-87H column (BioRad) operated at 60°C, as previously - described [6,27]. In brief, a solution of 12mM H₂SO₄ was used as eluent at a flow rate of 0.6 mL/min. - Samples were diluted 1:5 with deionized H₂O, acidified with a 10% w/w solution of H₂SO₄, centrifuged - for 10 min at 10000 rpm and filtered with a 0.22 mm membrane, before injection. The concentrations and - standards used for the calibration curves are reported in Table S1. The HPLC method and reproducibility - of results were tested before starting this study, to evaluate the potential effect of instrumental variability. - Microbial biomass was estimated through the determination of Total Suspended Solids (TSS), according - to standard methods [57]. Absorbance of samples was measured every day at an optical density of 600 - nm (OD600) and microbial biomass concentration was calculated based on the correlation curve of TSS - 20 concentration with OD. - 21 The yields were calculated as the ratio between the product concentration (expressed in g) and the - 22 glycerol consumed (in g), while productivities were obtained by dividing the average concentration, - 23 measured during the steady state, by the HRT. 24 - 25 3 RESULTS AND DISCUSSION - 26 **3.1 Statistical Optimization** | 1 | The main results of the experimental runs of the ICC Design are reported in Table 1, while additional | |----|---| | 2 | information about the concentration of the main metabolites and the cell biomass can be found in Table 2 | | 3 | (carbon recovery is shown in Table S2). The best productivities were obtained with a glycerol (feed) | | 4 | concentration of 41.9 g/L, HRT of 8.4 h and pH of 6.6 (Run 17), which showed a rate of up to 60 g/L/c | | 5 | and 15 g/L/d for 1,3 PDO and BuA, respectively, while reaching a maximum glycerol consumption rate | | 6 | of 137 g/L/d. It is worth noting that this condition represented the best compromise for joint maximized | | 7 | productivity and concentration of products, also reaching one of the highest biomass concentrations (or | | 8 | around 2 g/L; Table 2). Run 15 (41.9g/L;15.6h HRT; pH 6.6), which had a higher HRT, reached the | | 9 | highest 1,3 PDO and BuA concentrations, with 20.7 g/L and 6.2 g/L respectively. High concentrations | | 10 | were also obtained in Run 6, using 50 g/L glycerol, 12h HRT and pH = 6. | | 11 | [Table 1] | | 12 | Low biomass, together with high residual glycerol concentration in the reactor, seemed to be associated | | 13 | to low pH (and high feed concentration), as can be seen in run 7, run 14 and 16 (Table 2). Run 7 in | | 14 | particular, showed a very poor performance for all responses, with low concentrations and production | | 15 | rates, together with a very low biomass concentration (0.43 g/L). The experiment was performed at the | | 16 | lowest pH (set at 5) and led to a high residual substrate concentration (23.5 g/L compared to a feed | | 17 | concentration of 30 g/L) in the fermentation broth (Table 2), despite the relatively high HRT (12h). A | | 18 | similar situation was observed in the case of the experiment 16, run at a pH 5.4 (41.9 g/L and 8.4 h | | 19 | HRT), which showed the lowest BuA concentration (0.02 g/L) as well as the lowest cell concentration | | 20 | (with only 0.24 g/L) and yield (see Table S3). At the same time, this condition also led to the highest | | 21 | residual glycerol concentration in the reactor, reaching more than 31 g/L. A similar situation was | | 22 | observed in the case of Run 14, which was performed at the same conditions, but with a higher HRT. | | 23 | [Table 2] | | 24 | It must be underlined that at low pH, the effective maximum growth rate (μ_{max}) may be much smaller | | 25 | than for instance at pH=7 [40]. This might be due to higher
energy requirements for maintenance and | | 26 | might explain why the combination of low pH and low HRT led to a very low cell concentration, while at | | 27 | higher pH the same HRT did not have the same effect. The inhibitory effect of pH on glycerol | | 28 | consumption and cell growth was also observed in a batch study by Yang and colleagues [32], who | - 1 reported a rapid increase in glycerol consumption in the pH range from 4.0 to 7.0, and no cell growth - 2 inhibition in the range from 6.5 to 8. #### 3 3.2 Statistical Model - 4 Four responses were calculated for each experimental run, namely butyric acid production rate (Y_{BuA Rate}), - butyric acid concentration (Y_{BuA Conc}), 1,3 PDO rate (Y_{PDO Rate}) and 1,3 PDO concentration (Y_{PDO Conc}). - 6 Multiple regression analysis was applied to the experimental data, in order to model the four responses. A - 7 second-order polynomial function (based on Eq.2) was therefore fitted to correlate the relationship - 8 between the design variables and the responses. Quadratic equations for the significant terms are shown - below (factors having p > 0.05 were excluded; for the complete ANOVA see also Table S4): 11 $$Y_{PDO Conc} = 12.5 + 5.7 A + 6.1 C + 7.3 AC - 6.0 A^2$$ Eq.3 $$Y_{PDO \ Rate} = 26.6 + 12.3 \ A - 14.9 \ B + 13.4 \ C - 5.7 \ AB + 15.3 \ AC - 10.2 \ BC - 12.0 \ A^2 + 6.2 \ B^2 - 2.7 \ C^2$$ Eq.4 13 $$Y_{BuA Conc} = 3.7 + 0.9 A + 0.8 B + 1.8 C + 3.0 AC - 2.5 A^2$$ Eq.5 $$Y_{BuA\ Rate} = 5.5 + 1.9\ A - 2.8\ B + 3.9\ C + 5.9\ AC - 1.4\ BC - 2.97\ A^2 + 3.9\ B^2 + 2.2\ C^2$$ Eq.6 - 15 - where A, B and C are the coded factors of pH, HRT (h) and glycerol concentration (g/L), respectively. - Analysis of variance ANOVA showed that the fitting models were highly significant for all responses (p- - value < 0.0003). The lack of fit (LOF) was not significant (> 0.05), suggesting that the models were able - to represent adequately the data within the experimental region [58]. The coefficient of determination (R- - square) was higher than 0.94, thus explaining more than 94 % of the total variability in all cases (Table - 21 3), with a Predicted R-square ranging between 0.89 and 0.96 (a comparison between the Observed versus - Predicted values for all four responses is shown in Table S5). - 23 [Table 3] - Glycerol concentration (C) and pH (A), as well as their interaction (AC), showed a significant positive - effect (p-value < 0.05) on all responses. Higher concentrations of the feed, together with a higher pH, - were thus beneficial for the glycerol conversion into 1,3 PDO and BuA. The quadratic effect of pH (A²), - on the other hand, was always negative. With the exception of Y_{PDO Conc}, HRT was also significant and - showed a negative effect in the case of Y_{PDO Rate} and Y_{BuA Rate}, meaning that lower HRT favoured higher - productivities, within the studied range. On the contrary, HRT showed a positive effect on $Y_{BuA Conc}$, thus 1 implying that an increase in the HRT would favour BuA production (as confirmed by the sensitivity 2 analysis, which showed an 80% increase; Fig. S6), in good agreement with Papanikolaou and colleagues 3 [46]. 4 The three-dimensional response surfaces for all responses are shown below. They are based on the 5 equations 3-6 and display the influence of the variables on the four responses, keeping one variable constant at its optimum level, while changing the other two within the experimental range. The response 6 7 surfaces show the interactions between HRT and pH (Fig. 1 A-D) and between glycerol concentration 8 and pH (Fig. 2 A-D). 9 [Fig 1 A-D] 10 The model predicted a maximum 1,3 PDO production rate of 82.6 g/L/d (at pH 6.9, and HRT of 6.2 and a 11 glycerol concentration of 46.9 g/L), and a maximum butyric acid production rate of 21.1 g/L/d (with pH 12 6.9, 6.1h HRT and a glycerol concentration of 45.1 g/L). This corresponds to a 2.2 and 1.9-fold increase 13 in the production rates of 1,3 PDO and BuA, compared to the non-optimized process [7]. Moreover, a 14 maximum 1,3 PDO concentration of 25.1 g/L was predicted by the model (with pH 6.8, 11.1 h HRT and 15 49.7 g/L glycerol), while the maximum predicted butyric acid concentration was 8.0 g/L (with pH 6.4, 17.8h HRT and a glycerol concentration of 48.6 g/L). 16 17 [Fig 2 A-D] 18 Comparable results were reported by Chatzifragkou et al., who reached a maximum productivity of 45 19 g/L/d 1,3 PDO (with an HRT of 12.5 h), obtaining, however, significant amounts of residual glycerol 20 inside the chemostat [43]. Similar productivities were also observed by Papanikolaou and colleagues 21 when growing a pure strain of C. butyricum on crude glycerol, using single-stage continuous cultures in 22 comparable conditions: 1,3 PDO production rate reached around 80 g/L/d (3.3 g/L/h) with a feed of 60 23 g/L [46]. Even though the authors also reported higher feed concentrations, it is important to bear in mind 24 that the feedstock used in the present study was crude glycerol from animal fat-based biodiesel 25 production, while most of the literature studies focus on plant oils and/or cooking oils [6,27,46]. 26 Therefore, a straight-forward comparison is very difficult. In fact, it has been reported that impurities (i.e. 27 (high amount of sulfur and LCFA, very low pH, etc) in crude glycerol (CG) derived from meat 28 processing waste cause increased inhibition in comparison to impurities in CG derived from pure | 1 | substrates [59,60]. In a previous study, for instance, a hexane-extraction step was applied in order to | |----|---| | 2 | reduce the concentration of lipids and (long chain) fatty acids present in the 2G crude glycerol and | | 3 | evaluate its potential inhibitory effect on the microbial growth [6]. The assumption was that high | | 4 | concentration of LCFA could have a negative interaction with the cell membranes of Gram positive | | 5 | anaerobic bacteria of the anaerobic sludge. It is known that adapted MMC have the ability to create | | 6 | synergistic effects which can improve the degradation of complex substrates (also containing different | | 7 | impurities), both in sterile and non-sterile conditions [6], thus making them of particular interest in | | 8 | fermentation processes [61,62]. For this reason, the use of an adapted MMC was of particular importance | | 9 | in the present study, since preliminary tests had shown inhibition of pure cultures already with 10 g/L of | | 10 | this type of crude glycerol [63], and here effective fermentation of up to 50 g/L glycerol succeeded. | | 11 | Similarly, the study by Khanna and colleagues showed that the percentage of unutilized glycerol by the | | 12 | pure strain Clostridium pasteurianum was 89.5% (with an initial glycerol concentration of only 5 g/L) | | 13 | and increased up to 93.9% when using 25 g/L of glycerol [64]. | | 14 | It is worth noting that the response surfaces did not show a clear peak (see also [23,48,65,66]), which | | 15 | could suggest that the optimum points were rather at the border of the design boundaries. This might | | 16 | represent a drawback in the application of statistical optimization using chemostats, since the curve of | | 17 | productivity will always lead to a dramatic drop when the dilution rate reaches the critical value (causing | | 18 | cell washout). This means that the shape of the response surface will not reach a clear peak, when the | | 19 | system approaches the maximum growth rate. It might therefore be questioned whether a more extended | | 20 | range of the parameters would not have allowed to reach an even higher performance, even though | | 21 | preliminary results with higher feed concentration (60 g/L) did not improve product concentration or | | 22 | rates (while lower HRT, with a feed concentration of only 35 g/L, was already causing a biomass loss of | | 23 | 30%) [7]. It is also worth emphasizing that in the present study, run 16 (41.9g/L;8.4h HRT; pH 5.4) | | 24 | represented already a limit condition, leading to a very low biomass concentration (0.239 g/L, compared | | 25 | to 2.18 g/L of run 1) and a high residual glycerol concentration, which was approaching the feed | | 26 | concentration (thus suggesting the approaching of the wash out dilution [40]). The critical dilution rate | | 27 | was most probably affected by a combination of low HRT, together with the low pH and high glycerol | | 28 | concentration (see Table 2). This experimental condition (run 16) was repeated twice in order to exclude | | 1 | eventual experimental mistakes, but it commined to represent the mint of the experimental boundaries, | |----|--| | 2 | and had to be excluded from the model calculation (since it was causing a decrease of $LOF < 0.05$ in the | | 3 | case of Y_{BuA}). | | 4 | 3.3 Validating the model by maximizing the joint production of 1,3 propanediol and butyric acid | | 5 | When developing statistical models it is important to validate them by testing an experimental condition | | 6 | that was not used to build the model itself. Since the scope of the present work was to optimize the | | 7 | fermentation step of crude glycerol (with the idea to use BuA to stimulate production of PHA and | | 8 | recover of 1,3 PDO, in a further step), the validation was run in a way to maximize both, the production | | 9 | of BuA and 1,3 PDO at the same time, within the conditions used for the optimisation. The reason behind | | 10 | this, was that maximizing the titers would allow to achieve the highest amount of high-value products | | 11 | (1,3 PDO and PHA) in a two-stage process (see also [50]), with butyric acid being used as a preferred | | 12 | carbon source for the PHA production [52]. The mathematical model predicted that maximum joint | | 13 | production would be
reached under the following conditions: $pH = 6.4$, $HRT = 17.6$ and 49.3 g/L of | | 14 | glycerol. Therefore, two reactors were set-up and run in parallel under such conditions. One of the | | 15 | reactors was run in non-sterile conditions to evaluate the robustness of the model as well as the selected | | 16 | MMC, which was able to convert animal fat derived 2G crude glycerol also without sterilization [7]. | | 17 | Figure 3 (A-B) shows the distribution of the main metabolites (over a time of 264 h) of the two reactors. | | 18 | Steady state results were calculated from the concentration of 120h to 264h, corresponding to | | 19 | approximately 8 HRTs. The average results of the validation test are reported in Table 4: | | 20 | [Fig 3 A-B] | | 21 | The experimental results of the concentrations reported in Table 4 (actual values) represent the average | | 22 | of the two experiments (in sterile and non-sterile conditions) and showed a difference of 9-10% between | | 23 | the predicted and experimental values, which confirms the validity of the models [67,68]. This is | | 24 | considered a satisfactory result, especially when modelling a process with mixed cultures and non-sterile | | 25 | conditions, which can lead to reduction in operational costs [69]. It is worth noting that one of the main | | 26 | drawbacks of the use of CSTR in fermentation process, that is the risk of contamination, was clearly not | | 27 | an issue, since the process operated under non-sterile conditions did not show significant variations from | | 28 | the predicted results. This represents an important advantage of using adapted MMC, where the | | 1 | synergistic mechanisms and the adaptation to this substrate makes the community not only better tolerate | |----------|--| | 2 | inhibition, but also outcompete non-selected strains that can be present, due to the lack of sterilization | | 3 | (with significant reduction of operating costs). | | 4 | Statistical optimization provided thus important information to improve the fermentation of a 2G glycerol | | 5 | and can be used as a decision-making tool [70], especially in the view of managing multi-stage processes, | | 6 | due to the possibility to maximize different (individual or joint) responses at the same time. To our | | 7 | knowledge this is the first study to model the interaction among HRT, pH and substrate concentration for | | 8 | the joint production of BuA and 1,3 PDO from a fat-derived (non purified) crude glycerol. | | 9 | [Table 4] | | 10
11 | 4 CONCLUSIONS | | 12 | The results presented in this study confirmed the possibility to perform statistical optimization of an | | 13 | enriched MMC fed in continuous with a highly inhibiting (non-purified) 2G glycerol and model | | 14 | satisfactorily the interactions between HRT, pH and feed concentration. The adapted MMC reached a | | 15 | glycerol consumption rate of 137 g/L/d. Maximum predicted production rates were 82.6 g/L/d and 21.1 | | 16 | g/L/d for 1,3 PDO and BuA, respectively. This corresponded to a 2.2 and 1.9-fold increase compared to | | 17 | the non-optimized process. The model was able to predict the joint maximum production of 1,3 PDO and | | 18 | BuA (22.6 and 8.1 g/L respectively) also in non-sterile conditions, implying also that MMC can actually | | 19 | be a robust and reliable biological production platform to work with. Despite the challenge of modelling | | 20 | a continuous process when approaching the critical (wash out) dilution, the experimental design proved | | 21 | to be a valuable and flexible decision-making tool. | | 22 | | | 23 | ACKNOWLEDGEMENT | #### ACKNOWLEDGEMENT - 24 The authors wish to thank the European Commission for the financial support of this work, under FP7 - Grant Agreement no.613667 (acronym: GRAIL) and declare that there is no conflict of interest. 25 #### **REFERENCES** - [1] European Commission, Closing the loop An EU action plan for the Circular Economy. Comunication from the Comission to the European Parliament. Brussels. 2.12.2015 COM(2015) 614 final., 2015. - [2] M. Gonçalves, M. Mantovani, W.A. Carvalho, R. Rodrigues, D. Mandelli, J. Silvestre Albero, Biodiesel wastes: An abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction, Chem. Eng. J. 256 (2014) 468–474. doi:10.1016/J.CEJ.2014.07.013. - [3] O. Babajide, Sustaining Biodiesel Production via Value-Added Applications of Glycerol, J. Energy. 2013 (2013) 1–7. doi:10.1155/2013/178356. - [4] S.S. Yazdani, R. Gonzalez, Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry., Curr. Opin. Biotechnol. 18 (2007) 213–9. doi:10.1016/j.copbio.2007.05.002. - [5] P.P.P. Meyer, S. Pankaew, A. Rukruang, C. Tongurai, C. Engineering, E. Prince, A. Energy, P. Oil, O.C. Faculty, S.P.O. Box, G. Chromatography, T.C. Detector, F.I. Detector, Biohydrogen production from crude glycerol, in: Proc. 17th World Hydrog. Energy Conf. 15 19 June 2008; Brisbane, Aust., 2008: pp. 1–2. http://www.scopus.com/inward/record.url?eid=2-s2.0- - 84873547508&partnerID=tZOtx3y1. - [6] C. Varrone, T.M.B. Heggeset, S.B. Le, T. Haugen, S. Markussen, I. V Skiadas, H.N. Gavala, Comparison of Different Strategies for Selection / Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel, Biomed Res. Int. 2015 (2015) 14. doi:10.1155/2015/932934. - [7] C. Varrone, G. Floriotis, T.M.B. Heggeset, S.B. Le, S. Markussen, I. V. Skiadas, H.N. Gavala, Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3-propanediol and butyric acid, Biochem. Eng. J. 128 (2017) 149–161. doi:https://doi.org/10.1016/j.bej.2017.09.012. - [8] D.T.D.D.T. Johnson, K.A. Taconi, The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production, Environ. Prog. 26 (2007) 338–348. doi:10.1002/ep.10225. - Production: A Survey of Current Research Activities., in: Proc. Am. Soc. Agric. Biol. Eng. Meet., Proceedings of the American Society of Agricultural and Biological Engineers (ASABE) Meetig. Paper Number: 066223, Portland, Oregon, 2006. http://www.scopus.com/inward/record.url?eid=2-s2.0- - 84873532392&partnerID=tZOtx3y1. - [10] G.P. da Silva, M. Mack, J. Contiero, Glycerol: a promising and abundant carbon source for industrial microbiology., Biotechnol. Adv. 27 (2009) 30–9. doi:10.1016/j.biotechadv.2008.07.006. - [11] J.R.M. Almeida, L.C.L. Fávaro, B.F. Quirino, Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste., Biotechnol. Biofuels. 5 (2012) 48. doi:10.1186/1754-6834-5-48. - [12] H. Biebl, Fermentation of glycerol by *Clostridium pasteurianum*-batch and continuous culture studies., J. Ind. Microbiol. Biotechnol. 27 (2001) 18–26. doi:10.1038/sj/jim/7000155. - [13] F. Barbirato, A. Bories, Relationship between the physiology of *Enterobacter* agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions., Res. Microbiol. 148 (1997) 475–84. doi:10.1016/S0923-2508(97)88345-3. - [14] A. Bories, E.H. Himmi, J.J. Jauregui, C. Pelayo-Ortiz, V.A. Gonzales, Fermentation du glycérol chez des Propionibactéries et optimisation de la production d'acide propionique, Sci. Aliments. 24 (2004) 121–136. doi:10.3166/sda.24.121-136. - [15] Y. Dharmadi, A. Murarka, R. Gonzalez, Anaerobic fermentation of glycerol by *Escherichia coli: a new platform for metabolic engineering., Biotechnol. Bioeng. 94 - (2006) 821-9. doi:10.1002/bit.21025. - [16] Z. Zheng, Q. Hu, J. Hao, F. Xu, N. Guo, Y. Sun, D. Liu, Statistical optimization of culture conditions for 1,3-propanediol by *Klebsiella pneumoniae* AC 15 via central composite design., Bioresour. Technol. 99 (2008) 1052–1056. doi:10.1016/j.biortech.2007.02.038. - [17] M. Metsoviti, A.P. Zeng, A.A. Koutinas, S. Papanikolaou, Enhanced 1,3-propanediol production by a newly isolated *Citrobacter freundii* strain cultivated on biodieselderived waste glycerol through sterile and non-sterile bioprocesses, J. Biotechnol. 163 (2013) 408–418. doi:10.1016/j.jbiotec.2012.11.018. - [18] A. Chatzifragkou, S. Papanikolaou, D. Dietz, A.I. Doulgeraki, G.-J.E. Nychas, A.-P. Zeng, Production of 1,3-propanediol by *Clostridium butyricum* growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process., Appl. Microbiol. Biotechnol. 91 (2011) 101–12. doi:10.1007/s00253-011-3247-x. - [19] M.T. Agler, B.A. Wrenn, S.H. Zinder, L.T. Angenent, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform., Trends Biotechnol. 29 (2011) 70–8. doi:10.1016/j.tibtech.2010.11.006. - [20] C. Varrone, R. Liberatore, T. Crescenzi, G. Izzo, A. Wang, The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of - crude glycerol into ethanol and hydrogen, Appl. Energy. 105 (2013) 349-357. - [21] I. Ntaikou, C. Valencia Peroni, C. Kourmentza, V.I. Ilieva, a. Morelli, E. Chiellini, G. Lyberatos, Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system, J. Biotechnol. 188 (2014) 138–147. doi:10.1016/j.jbiotec.2014.08.015. - [22] H. Moralejo-Gárate, R. Kleerebezem, A. Mosquera-Corral, M.C.M. van Loosdrecht, Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments., Water Res. 47 (2013) 1209–17. doi:10.1016/j.watres.2012.11.039. - [23] B. Kanjilal, I. Noshadi, E.J. Bautista, R. Srivastava, R.S. Parnas, Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum, Appl. Microbiol. Biotechnol. 99 (2015) 2105–2117. doi:10.1007/s00253-014-6259-5. - [24] B.
Liu, K. Christiansen, R. Parnas, Z. Xu, B. Li, Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol, Int. J. Hydrogen Energy. 38 (2013) 3196–3205. doi:10.1016/J.IJHYDENE.2012.12.135. - [25] V.L. Pachapur, P. Kutty, S.K. Brar, A.A. Ramirez, Enrichment of Secondary Wastewater Sludge for Production of Hydrogen from Crude Glycerol and Comparative Evaluation of Mono-, Co- and Mixed-Culture Systems., Int. J. Mol. Sci. 17 (2015) 92. doi:10.3390/ijms17010092. - [26] P. Kumar, T. Satyanarayana, Optimization of culture variables for improving glucoamylase production by alginate-entrapped *Thermomucor indicae-seudaticae* using statistical methods., Bioresour. Technol. 98 (2007) 1252–1259. doi:10.1016/j.biortech.2006.05.019. - [27] C. Varrone, B. Giussani, G. Izzo, G. Massini, A. Marone, A. Signorini, A. Wang, Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture, Int. J. Hydrogen Energy. 37 (2012) 16479–16488. doi:10.1016/j.ijhydene.2012.02.106. - [28] S.S. Adav, D.-J. Lee, A. Wang, N. Ren, Functional consortium for hydrogen production from cellobiose: concentration-to-extinction approach., Bioresour. Technol. 100 (2009) 2546–50. doi:10.1016/j.biortech.2008.12.014. - [29] G.P. da Silva, C.J.B. de Lima, J. Contiero, Production and productivity of 1,3-propanediol from glycerol by *Klebsiella pneumoniae* GLC29, Catal. Today. 257 (2015) 259–266. doi:10.1016/J.CATTOD.2014.05.016. - [30] C. Verdugo, D. Luna, A. Posadillo, E.D. Sancho, S. Rodríguez, F. Bautista, R. Luque, J.M. Marinas, A.A. Romero, Production of a new second generation biodiesel with a low cost lipase derived from *Thermomyces lanuginosus*: Optimization by response surface methodology, Catal. Today. 167 (2011) 107–112. doi:10.1016/J.CATTOD.2010.12.028. - [31] Z.-Y. Wen, F. Chen, Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom *Nitzschia laevis*, Biotechnol. Bioeng. 75 (2001) 159–169. doi:10.1002/bit.1175. - [32] X. Yang, D.S. Kim, H.S. Choi, C.K. Kim, L.P. Thapa, C. Park, S.W. Kim, Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by *Klebsiella pneumoniae*, Chem. Eng. J. 314 (2017) 660–669. - [33] N. Vivek, G. Astray, B. Gullón, E. Castro, B. Parameswaran, A. Pandey, Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach, Biochem. Eng. J. 126 (2017) 109–117. doi:10.1016/J.BEJ.2017.07.003. - [34] C. Long, J. Cui, Z. Liu, Y. Liu, M. Long, Z. Hu, Statistical optimization of fermentative hydrogen production from xylose by newly isolated *Enterobacter* sp. CN1, Int. J. Hydrogen Energy. 35 (2010) 6657–6664. doi:10.1016/j.ijhydene.2010.04.094. - [35] S.B. Imandi, V.V.R. Bandaru, S.R. Somalanka, S.R. Bandaru, H.R. Garapati, Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste., Bioresour. Technol. 99 (2008) 4445–50. doi:10.1016/j.biortech.2007.08.071. - [36] S. Kathiresan, R. Sarada, S. Bhattacharya, G.A. Ravishankar, Culture media optimization for growth and phycoerythrin production from *Porphyridium purpureum*, Biotechnol. Bioeng. 96 (2007) 456–463. doi:10.1002/bit.21138. - [37] R. Gheshlaghi, J.M. Scharer, M. Moo-Young, P.L. Douglas, Medium optimization for hen egg white lysozyme production by recombinant *Aspergillus niger* using statistical methods, Biotechnol. Bioeng. 90 (2005) 754–760. doi:10.1002/bit.20474. - [38] C. Len, R. Luque, Continuous flow transformations of glycerol to valuable products: an overview, Sustain. Chem. Process. 2 (2014) 1. doi:10.1186/2043-7129-2-1. - [39] N. Okafor, Modern industrial microbiology and biotechnology, SCIENCE PUBLISHERS An imprint of Edenbridge Ltd., British Isles., Enfield, New Hampshire, 2007. - [40] J. Villadsen, Fundamental bioengineering, Wiley-Blackwell, 2016. - [41] I. Ullah, M.I. Ahmad, M. Younas, Optimization of Saponification Reaction in a Continuous Stirred Tank Reactor (CSTR) Using Design of Experiments, Pak. J. Engg. Appl. Sci. 16 (2015) 84–92. - [42] P. Luangpaiboon, Continuous Stirred Tank Reactor Optimisation via Simulated Annealing, Firefly and Ant Colony Optimisation Elements on the Steepest Ascent, Int. J. Mach. Learn. Comput. 1 (2011) 58–65. http://ijmlc.org/papers/09-L0303.pdf (accessed October 3, 2017). - [43] A. Chatzifragkou, S. Papanikolaou, D. Dietz, A.I. Doulgeraki, G.J.E. Nychas, A.P. Zeng, Production of 1,3-propanediol by *Clostridium butyricum* growing on biodieselderived crude glycerol through a non-sterilized fermentation process, Appl. Microbiol. Biotechnol. 91 (2011) 101–112. doi:10.1007/s00253-011-3247-x. - [44] M. González-Pajuelo, J.C. Andrade, I. Vasconcelos, Production of 1,3-Propanediol by *Clostridium butyricum* VPI 3266 in continuous cultures with high yield and productivity, J. Ind. Microbiol. Biotechnol. 32 (2005) 391–396. doi:10.1007/s10295-005-0012-0. - [45] K. Menzel, A.-P. Zeng, W.-D. Deckwer, High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by *Klebsiella pneumoniae*, Enzyme Microb. Technol. 20 (1997) 82–86. doi:10.1016/S0141-0229(96)00087-7. - [46] S. Papanikolaou, P. Ruiz-Sanchez, B. Pariset, F. Blanchard, M. Fick, High production of 1,3-propanediol from industrial glycerol by a newly isolated *Clostridium butyricum* strain., J. Biotechnol. 77 (2000) 191–208. - http://www.ncbi.nlm.nih.gov/pubmed/10682279 (accessed January 23, 2017). - [47] F. Silva-illanes, E. Tapia-venegas, M.C. Schiappacasse, E. Trably, G. Ruiz-filippi, Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol, Energy 2017. Press. (2017). doi:https://doi.org/10.1016/j.energy.2017.09.073. - [48] K.K. Dubey, D. Kumar, P. Kumar, S. Haque, A. Jawed, Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives, ISRN Chem. Eng. 2013 (2013) 1–6. doi:10.1155/2013/865618. - [49] N. Ziv, N.J. Brandt, D. Gresham, The Use of Chemostats in Microbial Systems Biology, J. Vis. Exp. (2013), doi:10.3791/50168. - [50] A. Burniol-Figols, C. Varrone, S.B. Le, A.E. Daugaard, I. V. Skiadas, H.N. Gavala, Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia, Water Res. (2018). doi:10.1016/j.watres.2018.02.029. - [51] A. Burniol-Figols, C. Varrone, A.E. Daugaard, S.B. Le, I. V Skiadas, H.N. Gavala, Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia, Water Res. 128 (2018) 255–266. doi:10.1016/j.watres.2017.10.046. - [52] L. Marang, Y. Jiang, M.C.M. van Loosdrecht, R. Kleerebezem, Butyrate as preferred substrate for polyhydroxybutyrate production., Bioresour. Technol. 142 (2013) 232–9. doi:10.1016/j.biortech.2013.05.031. - [53] A. Charles, METabolic EXplorer presents its new development project and discloses its new ambitions., (2017). https://www.metabolic-explorer.com/2017/05/12/metabolic-explorer-presents-its-new-development-project/ (accessed February 2, 2018). - E.A.A. Wolin, M.J.J. Wolin, R.S.S. Wolfe, Formation of methane by bacterial extracts, J Biol Chem. 238 (1963) 2332–2386. http://www.scopus.com/inward/record.url?eid=2-s2.0 84872292644&partnerID=tZOtx3y1 (accessed November 11, 2014). - [55] I. Angelidaki, S.P. Petersen, B.K. Ahring, Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite., Appl. - http://www.ncbi.nlm.nih.gov/pubmed/1366749 (accessed May 27, 2015). Microbiol. Biotechnol. 33 (1990) 469-72. [56] G.M. Oddone, C.Q. Lan, H. Rawsthorne, D.A. Mills, D.E. Block, Optimization of fedbatch production of the model recombinant protein GFP inLactococcus lactis, Biotechnol. Bioeng. 96 (2007) 1127–1138. doi:10.1002/bit.21192. - [57] APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 2005. - [58] S.L. Martínez, R. Romero, R. Natividad, J. González, Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol, Catal. Today. 220–222 (2014) 12–20. doi:10.1016/J.CATTOD.2013.08.022. - [59] V.L. Pachapur, P. Kutty, S.K. Brar, A.A. Ramirez, Enrichment of secondary wastewater sludge for production of hydrogen from crude glycerol and comparative evaluation of mono-, co- and mixed-culture systems, Int. J. Mol. Sci. 17 (2016). doi:10.3390/ijms17010092. - [60] S.J. Sarma, S.K. Brar, Y. Le Bihan, G. Buelna, C.R. Soccol, Hydrogen production from meat processing and restaurant waste derived crude glycerol by anaerobic fermentation and utilization of the spent broth, J. Chem. Technol. Biotechnol. 88 (2013) 2264–2271. doi:10.1002/jctb.4099. - [61] P.A. Selembo, J.M. Perez, W.A. Lloyd, B.E. Logan, Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures., Biotechnol. Bioeng. 104 (2009) 1098–106. doi:10.1002/bit.22487. - [62] A. Gadhe, S.S. Sonawane, M.N. Varma, Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition, Int. J. Hydrogen Energy. - 39 (2014) 1306-1314. doi:10.1016/j.ijhydene.2013.11.022. - [63] S. Kalafatakis, Application of forward osmosis for water recovery and effluent upconcentration: the case of fermentative butanol production from crude glycerol. PhD Thesis. Chemical Engineering, DTU., 2017. - [64] S. Khanna, S. Jaiswal, A. Goyal, V.S. Moholkar, Ultrasound enhanced bioconversion of glycerol by *Clostridium pasteurianum*: A mechanistic investigation, Chem. Eng. J. 200–202 (2012) 416–425. doi:10.1016/J.CEJ.2012.06.040. - [65] A. Lymperatou, H. Gavala, I. Skiadas, Optimization of Aqueous Ammonia Soaking of manure fibers by
Response Surface Methodology for unlocking the methane potential of swine manure, Bioresour. Technol. 244 (2017) 509–516. doi:10.1016/J.BIORTECH.2017.07.147. - [66] J.A. Melero, L.F. Bautista, J. Iglesias, G. Morales, R. Sánchez-Vázquez, Zr-SBA-15 acid catalyst: Optimization of the synthesis and reaction conditions for biodiesel production from low-grade oils and fats, Catal. Today. 195 (2012) 44–53. doi:10.1016/J.CATTOD.2012.04.025. - [67] L. Levin, C. Hermann, V.L. Papinutti, Optimization of lignocellulolytic enzyme production by the white-rot fungus *Trametes trogii* in solid-state fermentation using response surface methodology, Biochem. Eng. J. 39 (2008) 207–214. doi:10.1016/J.BEJ.2007.09.004. - [68] N.A.A. Adnan, S.N. Suhaimi, S. Abd-Aziz, M.A. Hassan, L.-Y. Phang, Optimization of bioethanol production from glycerol by *Escherichia coli* SS1, Renew. Energy. 66 (2014) 625–633. doi:10.1016/j.renene.2013.12.032. - [69] J. Wang, W.-W. Li, Z.-B. Yue, H.-Q. Yu, Cultivation of aerobic granules for polyhydroxybutyrate production from wastewater., Bioresour. Technol. 159 (2014) 442–5. doi:10.1016/j.biortech.2014.03.029. - [70] A. Marone, C. Varrone, F. Fiocchetti, B. Giussani, G. Izzo, L. Mentuccia, S. Rosa, A. Signorini, Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture, Int. J. Hydrogen Energy. In press (2015) 209–218. doi:10.1016/j.ijhydene.2014.11.008. #### **CAPTIONS** #### **Tables** Table 1. ICC Design: effect of pH, HRT and glycerol concentration on the responses and the substrate consumption rate. Table 2. Concentrations of glycerol, cells and main soluble metabolites in the reactor. Table 3. ANOVA results for the quadratic equations modelling the four responses. **Table 4.** Validation of the statistical model showing the difference between the predicted and the experimental results for joint 1,3 PDO and BuA production. #### **Figures** **Figure 1.** Three-dimensional response surface for the maximum 1,3 PDO concentration a), butyric acid concentration b), 1,3 PDO rate c), and butyric acid rate d), keeping glycerol concentration constant it its optimal value (for 1,3 PDO conc: 49.7 g/L; 1,3 PDO rate: 46.9 g/L; BuA conc:48.6 g/L; BuA rate: 45.1 g/L), while changing pH and HRT. **Figure 2.** Three-dimensional response surface for the maximum 1,3 PDO concentration a), butyric acid concentration b), 1,3 PDO rate c), and butyric acid rate d), keeping HRT constant it its optimal value (for 1,3 PDO conc: 11.1 h; 1,3 PDO rate: 6.2 h; BuA conc: 17.8 h; BuA rate: 6.1 h) while changing pH and glycerol concentration. Figure 3. Concentration of the main metabolites and substrate concentration in 2 reactors run for 264 h for the validation tests in sterile a) and non-sterile conditions b). The reactors were started up as a batch (with 20 g/L glycerol) and after 24 h they were shifted to continuous operation with a feed of around 50 g/L. Table 1. | Runs | | Set Paramete | ers | 1,3 PDO | BuA | R _{1,3 PDO} | R_{BuA} | $\mathbf{R}_{\mathbf{Gly}}$ | |------|-----|--------------|------|---------|-----|----------------------|-----------|-----------------------------| | | pН | HRT | Gly | g/L | g/L | g/L/d | g/L/d | g/L/d | | 1 | 6.0 | 18.0 | 30.0 | 11.9 | 5.5 | 16.2 | 7.1 | 42.3 | | 2 | 6.0 | 12.0 | 10.0 | 5.0 | 1.7 | 10.5 | 3.7 | 25.1 | | 3 | 6.0 | 12.0 | 30.0 | 13.3 | 3.5 | 27.1 | 5.6 | 62.9 | | 4 | 7.0 | 12.0 | 30.0 | 11.9 | 2.0 | 25.6 | 4.2 | 61.5 | | 5 | 6.0 | 6.0 | 30.0 | 13.1 | 3.1 | 48.2 | 11.8 | 113.8 | | 6 | 6.0 | 12.0 | 50.0 | 18.5 | 6.1 | 36.0 | 11.8 | 94.4 | | 7 | 5.0 | 12.0 | 30.0 | 1.2 | 0.4 | 2.3 | 0.9 | 8.7 | | 8 | 6.0 | 12.0 | 30.0 | 13.3 | 3.3 | 25.5 | 5.3 | 60.7 | | 9 | 5.4 | 15.6 | 18.1 | 6.6 | 2.5 | 10.7 | 3.9 | 25.5 | | 10 | 6.0 | 12.0 | 30.0 | 12.7 | 2.9 | 27.3 | 5.9 | 64.4 | | 11 | 6.6 | 15.6 | 18.1 | 7.8 | 1.6 | 11.1 | 2.0 | 29.9 | | 12 | 5.4 | 8.4 | 18.1 | 5.5 | 2.2 | 16.2 | 6.5 | 47.1 | | 13 | 6.6 | 8.4 | 18.1 | 8.1 | 1.5 | 24.9 | 5.2 | 53.9 | | 14 | 5.4 | 15.6 | 41.9 | 6.8 | 2.5 | 9.0 | 3.4 | 23.10 | | 15 | 6.6 | 15.6 | 41.9 | 20.7 | 6.2 | 31.1 | 9.7 | 65.1 | | 16 | 5.4 | 8.4 | 41.9 | 6.2 | 0.0 | 18.3 | 0.1 | 36.8 | | 17 | 6.6 | 8.4 | 41.9 | 19.0 | 4.8 | 59.3 | 15.0 | 137.4 | $RGly = glycerol\ consumption\ rate;\ R\ 1,3\ PRO = 1,3\ propanediol\ production\ rate;\ R\ BuA = butyric\ acid\ production\ rate.$ Table 2. | Run1 30 g/L; 18h HRT;pH 6 0.43 ± 0.23 11.88 ± 0.44 5.45 ± 0.32 2.69 ± 1.43 0.41 ± 0.05 2.18 ± 1.00 g/L; 12h HRT; pH 6 0.11 ± 0.07 4.96 ± 0.25 1.71 ± 0.37 0.24 ± 0.28 0.25 ± 0.17 1.18 ± 1.03 30 g/L; 12h HRT; pH 6 2.39 ± 1.39 13.26 ± 0.89 3.48 ± 0.23 2.98 ± 0.56 1.02 ± 0.08 1.37 ± 1.06 11.86 ± 1.06 2.01 ± 0.35 1.82 ± 0.34 0.523 ± 0.20 1.41 ± 1.05 30 g/L; 12h HRT; pH 6 1.65 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± 1.06 1.05 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± 1.07 ± 0.08 1.07 ± 0.08 1.07 ± 0.02 0.43 ± 0.03 ± 0.02 0.44 ± 0.23 0.25 ± 0.20 0.24 ± 0.08 0.92 ± 0.20 0.24 ± 0.08 0.92 ± 0.20 0.24 ± 0.08 0.92 ± 0.20 0.24 ± 0.08 0.92 ± 0.20 0.24 ± 0.08 0.92 ± 0. | |--| | Run2 10 g/L; 12h HRT; pH 6 0.11 ± 0.07 4.96 ± 0.25 1.71 ± 0.37 0.24 ± 0.28 0.25 ± 0.17 1.18 ± Run3 30 g/L; 12h HRT; pH 6 2.39 ± 1.39 13.26 ± 0.89 3.48 ± 0.23 2.98 ± 0.56 1.02 ± 0.08 1.37 ± Run4 30 g/L; 12h HRT; pH 7 0.81 ± 0.60 11.86 ± 1.06 2.01 ± 0.35 1.82 ± 0.34 0.523 ± 0.20 1.41 ± Run5 30 g/L; 12h HRT; pH 6 1.65 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± Run6 50 g/L; 12h HRT; pH 6 3.96 ± 1.47 18.48 ± 1.04 6.13 ± 0.87 4.55 ± 0.66 0.92 ± 0.20 2.04 ± Run7 30 g/L; 12h HRT; pH 5 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± Run8 30 g/L; 12h HRT; pH 6 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± Run9 18.1 g/L; 15.56 h HRT; pH 5.4 2.44 ± 0.32 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± Run10 30 g/L; 12h HRT; pH 6 2.06 ± 0.53 13.73 ± 1.09 2.93 ± 0.38 3.36 ± 0.85 1.17 ± 0.27 1.48 ± Run11 18.1 g/L; 15.56 h HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± Run12 18.1 g/L; 8.43 h HRT; pH 6.59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± Run14 41,89 g/L; 15.56 h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 0.48 ± Run15 41,89 g/L; 15.56 h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± Run17 41,89 g/L; 8.43 h HRT; pH 6.59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± | | Rum3 30g/L; 12h HRT; pH 6
2.39 ±1.39 13.26 ±0.89 3.48 ± 0.23 2.98 ± 0.56 1.02 ±0.08 1.37 ± Rum4 30g/L; 12h HRT; pH 7 0.81 ± 0.60 11.86 ± 1.06 2.01 ± 0.35 1.82 ± 0.34 0.523 ± 0.20 1.41 ± Rum5 30g/L; 6h HRT; pH 6 1.65 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± Rum6 50g/L; 12h HRT; pH 6 3.96 ± 1.47 18.48 ± 1.04 6.13 ± 0.87 4.55 ± 0.66 0.92 ± 0.20 2.04 ± Rum7 30g/L; 12h HRT; pH 5 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± Rum8 30g/L; 12h HRT; pH 5 4 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± Rum9 18.1g/L; 15.56h HRT; pH 5.4 2.44 ± 0.32 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± Rum10 30g/L; 12h HRT; pH 6,59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± Rum12 18.1g/L; 8,43h HRT; pH 6,59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± Rum14 41,89g/L; 15.56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 0.48 ± Rum15 41,89g/L; 15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Rum16 41,89g/L; 8,43h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Rum16 41,89g/L; 8,43h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Rum16 41,89g/L; 8,43h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Rum16 41,89g/L; 8,43h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Rum16 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± | | Run4 30g/L; 12h HRT; pH 7 0.81 ± 0.60 11.86 ± 1.06 2.01 ± 0.35 1.82 ± 0.34 0.523 ± 0.20 1.41 ± Run5 30g/L; 6h HRT; pH 6 1.65 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± Run6 50g/L; 12h HRT; pH 6 3.96 ± 1.47 18.48 ± 1.04 6.13 ± 0.87 4.55 ± 0.66 0.92 ± 0.20 2.04 ± Run7 30g/L; 12h HRT; pH 5 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± Run8 30g/L; 12h HRT; pH 6 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± Run9 18.1g/L; 15.56h HRT; pH 5.4 2.44 ± 0.32 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± Run10 30g/L; 12h HRT; pH 6 2.06 ± 0.53 13.73 ± 1.09 2.93 ± 0.38 3.36 ± 0.85 1.17 ± 0.27 1.48 ± Run11 18.1g/L; 15.56h HRT; pH 6,59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± Run12 18.1g/L; 8,43h HRT; pH 5.4 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 0.93 ± Run13 18.1g/L; 8,43h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 048 ± Run15 41,89g/L; 15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± Run16 41,89g/L; 8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± Run17 41,89g/L; 8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± Run17 41,89g/L; 8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± 0.15 ± 0.27 ± 0.27 ± 0.27 ± 0.27 ± 0.27 ± | | Run5 $30g/L$; $6h$ HRT; pH 6 1.65 ± 1.72 13.11 ± 0.96 3.01 ± 0.74 2.00 ± 1.12 0.94 ± 0.23 1.70 ± 0.20 Run6 $50g/L$; $12h$ HRT; pH 6 3.96 ± 1.47 18.48 ± 1.04 6.13 ± 0.87 4.55 ± 0.66 0.92 ± 0.20 2.04 ± 0.20 Run7 $30g/L$; $12h$ HRT; pH 6 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± 0.20 Run8 $30g/L$; $12h$ HRT; pH 6 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± 0.25 Run9 $18.1g/L$; $15.56h$ HRT; pH 5.4 2.44 ± 0.32 6.60 ± 0.72 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± 0.10 Run10 $30g/L$; $12h$ HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.27 Run11 $18.1g/L$; $18.34h$ HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.20 Run13 $18.1g/L$; $18.34h$ HRT; pH 6.59 0.19 ± 0.08 8.10 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 $0.$ | | Rum6 $50g/L$; $12h\ HRT$; $pH\ 6$ 3.96 ± 1.47 18.48 ± 1.04 6.13 ± 0.87 4.55 ± 0.66 0.92 ± 0.20 2.04 ± 0.20 2.04 ± 0.20 $30g/L$; $12h\ HRT$; $pH\ 5$ 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± 0.10 0.21 ± 0.10 0.21 ± 0.02 0.43 ± 0.10 0.21 ± 0.10 0.22 ± 0.01 | | Run7 $30g/L$; $12h$ HRT; pH 5 24.92 ± 0.58 1.17 ± 0.20 0.43 ± 0.12 0.76 ± 0.10 0.21 ± 0.02 0.43 ± 0.12 Run8 $30g/L$; $12h$ HRT; pH 6 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± 0.25 Run9 $18.1g/L$; $15.56h$ HRT; pH 5.4 2.44 ± 032 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± 0.06 Run10 $30g/L$; $12h$ HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.02 Run11 $18.1g/L$; $15.56h$ HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.02 Run11 $18.1g/L$; $18.43h$ HRT; $19H$ 6.59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.07 ± 0.15 0.39 ± 0.01 0.93 ± 0.01 Run13 $18.1g/L$; $8.43h$ HRT; $19H$ 6.59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± 0.01 Run14 $41.89g/L$; $15.56h$ HRT; $19H$ 6.59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 <th< td=""></th<> | | Run8 $30g/L;12h$ HRT; $pH6$ 2.09 ± 0.65 13.26 ± 0.78 3.27 ± 0.46 3.68 ± 0.68 1.08 ± 0.25 1.32 ± 0.02 Run9 $18.1g/L;15.56h$ HRT; $pH5.4$ 2.44 ± 0.32 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 1.06 ± 0.06 Run10 $30g/L;12h$ HRT; $pH6$ 2.06 ± 0.53 13.73 ± 1.09 2.93 ± 0.38 3.36 ± 0.85 1.17 ± 0.27 1.48 ± 0.20 Run11 $18.1g/L;15.56h$ HRT; $pH6.59$ 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.20 Run12 $18.1g/L;8,43h$ HRT; $pH5.4$ 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 0.93 ± 0.01 Run13 $18.1g/L;8,43h$ HRT; $pH6.59$ 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 $0.89 \pm 0.89 \pm 0.00$ Run14 $41,89g/L;15,56h$ HRT; $pH6.59$ 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.20 0.36 ± 0.07 0.48 ± 0.00 Run15 $41,89g/L;8,43h$ HRT; $pH6.59$ 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 | | Run9 18.1g/L;15.56h HRT; pH 5.4 2.44 ± 032 6.60 ± 0.27 2.49 ± 0.13 1.48 ± 0.20 0.37 ± 0.02 $1.06 \pm$ Run10 $30g/L$;12h HRT;pH 6 2.06 ± 0.53 13.73 ± 1.09 2.93 ± 0.38 3.36 ± 0.85 1.17 ± 0.27 $1.48 \pm$ Run11 $18.1g/L$;5.56h HRT; pH 6.59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 $1.44 \pm$ Run12 $18.1g/L$;8,43h HRT; pH 5.4 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 $0.93 \pm$ Run13 $18.1g/L$;8,43h HRT; pH 6.59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 $0.89 \pm$ Run14 $41.89g/L$;15,56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 $0.48 \pm$ Run15 $41.89g/L$;8,43h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 $1.77 \pm$ Run16 $41.89g/L$;8,43h HRT; pH 6,59 0.19 ± 0.08 0.19 ± 0.0 | | Run10 $30g/L;12h$ HRT;pH 6 2.06 ± 0.53 13.73 ± 1.09 2.93 ± 0.38 3.36 ± 0.85 1.17 ± 0.27 1.48 ± 0.27 Run11 $18.1g/L;15.56h$ HRT; pH 6,59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.03 Run12 $18.1g/L;8,43h$ HRT; pH 5.4 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 0.93 ± 0.01 Run13 $18.1g/L;8,43h$ HRT; pH 6,59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± 0.01 Run14 $41.89g/L;15,56h$ HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 0.48 ± 0.07 Run15 $41.89g/L;15,56h$ HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± 0.22 Run16 $41.89g/L;8,43h$ HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.03 1.98 ± 0.01 Run17 $41.89g/L;8,43h$ HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 < | | Run11 18.1g/L;15.56h HRT; pH 6,59 0.08 ± 0.03 7.77 ± 0.22 1.55 ± 0.12 0.06 ± 0.06 0.23 ± 0.01 1.44 ± 0.03 Run12 18.1g/L;8,43h HRT; pH 5.4 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 0.93 ± 0.01 Run13 18.1g/L;8,43h HRT; pH 6,59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± 0.01 Run14 41,89g/L;15,56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 0.48 ± 0.07 Run15 41,89g/L;15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± 0.22 Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.03 1.98 ± 0.01 Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46
0.474 ± 0.03 1.98 ± 0.01 | | Run12 18.1g/L;8,43h HRT; pH 5.4 3.97 ± 1.34 5.50 ± 0.57 2.15 ± 0.29 1.07 ± 0.15 0.39 ± 0.01 0.93 ± 0.01 Run13 18.1g/L;8,43h HRT; pH 6,59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 ± 0.01 Run14 41,89g/L;15,56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 0.48 ± 0.07 Run15 41,89g/L;15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± 0.04 Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.03 Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± 0.03 | | Run13 18.1g/L;8,43h HRT; pH 6,59 0.19 ± 0.08 8.10 ± 0.35 1.49 ± 0.22 1.81 ± 0.33 0.34 ± 0.19 0.89 \pm Run14 41,89g/L;15,56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 048 \pm Run15 41,89g/L;15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 \pm Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 \pm Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 \pm | | Run14 41,89g/L;15,56h HRT; pH 5.4 30.92 ± 1.34 6.75 ± 0.85 2.51 ± 0.24 1.79 ± 0.20 0.36 ± 0.07 048 ± 0.07 Run15 41,89g/L;15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± 0.04 Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.03 Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± 0.03 | | Run15 41,89g/L;15,56h HRT; pH 6,59 0.19 ± 0.08 20.70 ± 0.68 6.22 ± 0.34 0.79 ± 0.36 0.37 ± 0.04 1.77 ± 0.04 Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.01 Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 ± 0.02 | | Run16 41,89g/L;8,43h HRT; pH 5.4 31.18 ± 2.11 6.12 ± 0.05 0.02 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.01 0.21 ± 0.14 0.28 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.28 ± 0.01 0.24 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 $0.29 0$ | | Run17 41,89g/L;8,43h HRT; pH 6,59 0.71 ± 0.27 18.99 ± 0.71 4.81 ± 0.14 3.55 ± 0.46 0.474 ± 0.03 1.98 \pm | | | | | | | | | p-value | R-square | Adjusted
R-square | Pred R-
Squared | LOF | | |----------|----------|----------|----------------------|--------------------|-------|----| | PDO Conc | < 0.0001 | 0.983 | 0.968 | 0.893 | 0.071 | | | PDO Rate | < 0.0001 | 0.996 | 0.991 | 0.964 | 0.305 | | | BuA Conc | 0.0003 | 0.940 | 0.888 | 0.784 | 0.166 | | | BuA Rate | < 0.0001 | 0.994 | 0.984 | 0.942 | 0.231 | 0- | | | | | | | | | | | | | | | | | Table 4. | | Predicted Values | Actual values | C.V. | | | |------------------|------------------|------------------|------|----|--| | Y PDO Conc | g/L
22.6 | g/L
20.7± 1.2 | 9.1 | | | | Y BuA Conc | 8.1 | 7.4 ± 0.8 | 10.3 | | | | .V. = coefficien | t Of Variability | | | 35 | | | | | | | | | | | | | | | | | P | Figure 3. #### **HIGHLIGHTS:** - Statistical optimization of a continuous fermentation process involving HRT - Experimental design using mixed microbial consortia - Validation of model also in non-sterile conditions - High substrate degradation and productivities using an animal-fat derived (2G) crude glycerol #### **GRAPHICAL ABSTRACT**