
 

  

 

Aalborg Universitet

A Realistic Radio Channel Model Based in Stochastic Propagation Graphs

Pedersen, Troels; Fleury, Bernard Henri

Published in:
Proceedings 5th MATHMOD Vienna

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen, T., & Fleury, B. H. (2006). A Realistic Radio Channel Model Based in Stochastic Propagation Graphs.
In Proceedings 5th MATHMOD Vienna: 5th Vienna Symposium on Mathematical Modelling and Simulation.
Volume 1: Abstract Volume. Volume 2: Full Papers CD. (pp. 324-331). <Forlag uden navn>.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 28, 2024

https://vbn.aau.dk/en/publications/8fdb1b60-b121-11db-8b72-000ea68e967b


Volume 1 Abstract Volume
Volume 2 Full Papers CD

:
:

ISBN 3-901608-30-3

5th Vienna Symposium on Mathematical
Modelling

5 MATHMOD
th

IENNA

ARGESIM Report no. 30

Proceedings

February 8-10, 2006
Vienna University of Technology,
Austria

A
R

G
E
S

I
M

R
e
p
o
r
t



 



ARGESIM Report no. 30 
 
 
 
 
 

I. Troch, F. Breitenecker (Eds). 
 
 
 

Proceedings 
5th MATHMOD Vienna 
 
 

Volume 1: Abstract Volume 
Volume 2: Full Papers CD 
 
 
5th Vienna Symposium on Mathematical 
Modelling 
 
February 8-10, 2006 
Vienna University of Technology, Austria 
 
 
 
 
 
 
ARGESIM - Verlag, Vienna, 2006 
ISBN 3-901608-30-3 
 
 
 



 
ARGESIM Reports 
 
Published by ARGESIM and ASIM, Arbeitsgemeinschaft Simulation,  
Fachausschuss GI im Bereich ITTN – Informationstechnik und Technische Nutzung der 
Informatik 
 
Series Editor:  

Felix Breitenecker (ARGESIM / ASIM) 
Div. Mathematical Modelling and Simulation, Vienna University of Technology 
Wiedner Hauptstrasse 8 - 10, 1040 Vienna, Austria 
Tel: +43-1-58801-10115, Fax: +43-1-58801-10199 
Email: Felix.Breitenecker@tuwien.ac.at 

 
 
 

ARGESIM Report no. 30 
 
 
Titel:  Proceedings 5th MATHMOD Vienna –  

5th Vienna Symposium on Mathematical Modelling 
  Volume 1: Abstract Volume 
  Volume 2: Full Papers CD 
 
Editors:  Inge Troch, Felix Breitenecker 

Div. Mathematical Modelling and Simulation,  
Vienna University of Technology 
Wiedner Hauptstrasse 8 - 10, 1040 Vienna, Austria 
Email: Inge.Troch@tuwien.ac.at 

 
 
 
 
ISBN 3-901608-30-3 
 
Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der 
Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf 
photomechanischem oder ähnlichem Weg und der Speicherung in Datenverarbeitungsanlagen bleiben, 
auch bei nur auszugsweiser Verwertung, vorbehalten. 
 
©  by ARGESIM / ASIM, Wien, 2006 
 
ARGE Simualtion News (ARGESIM) 
c/o F. Breitenecker, Div. Mathematical Modelling and Simulation, Vienna Univ. of Technology 
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria 
Tel.: +43-1-58801-10115, Fax: +43-1-58801-42098 
Email: info@argesim.org; WWW: http://www.argesim.org 
 

 



A REALISTIC RADIO CHANNEL MODEL BASED ON

STOCHASTIC PROPAGATION GRAPHS

Troels Pedersen and Bernard H. Fleury

Aalborg University, Institute of Electronic Systems, Information and Signals Division,

Frederik Bajersvej 7A, DK-9220, Aalborg East, Denmark.

email: troels@kom.aau.dk

The design and optimisation of modern radio communication systems require realistic models of

the radio propagation channel, which incorporate dispersion in delay, Doppler frequency, direction

of departure, direction of arrival, and polarisation. Often radio communication systems are assessed

by Monte Carlo simulations in which stochastic models are used to generate synthetic realisations of

the response of the radio channel.

Traditional stochastic radio channel models reflect the statistical properties of the (time-variant or

time-invariant) impulse response of the channel between the input of any antenna element at the

transmitter site and any antenna element at the receiver site. The probability distributions of the

parameters of the channel impulse response are generally difficult to obtain from environment

parameters such as the scatterer size and density. Instead, the model parameters are often inferred

from measurements. Motivated by experimental results conventional models implement an

exponentially decaying power-delay-profile by including various ad-hoc constraints on the random

model parameters. These approaches, however, do not reflect the underlying physical mechanisms

that lead to this decaying behaviour.

In this contribution we present a stochastic model of the radio propagation environment based on a

random propagation graph. A propagation graph is defined by a set of vertices (the transmitter, the

receiver and the scatterers) and a set of edges (visibility between scatterers). The position of the

scatterers and the edges of a propagation graph are drawn randomly according to some probability

density functions.

The propagation process is modelled as follows. The transmitter vertex emits an electromagnetic

signal illuminating a subset of the vertices. As a signal propagates along an edge of the propagation

graph, it is delayed and attenuated depending on the length of the edge. When the signal arrives at a

scatterer it is re-radiated by the scatterer. The interaction between the signal and a scatterer is

modelled as a scatter-gain weighting all signals arriving at this scatterer. From a realisation of the

propagation graph the received signal of a specific communication system can be computed.

Simulations show that under the assumption of an inverse squared distance power decay, the

proposed model yields the often observed exponentially decaying power-delay-profile. This effect

stems from the structure of the propagation graph and is not obtained by introducing any artificial

constraints. The channel realisations obtained from the model also exhibit a transition from specular

contributions for small delays to a diffuse part at long delays with a mixture of specular and diffuse

contributions at intermediate delays. This feature is also observed experimentally, especially in

investigations for ultra wide band systems. The model for the power-delay-profile can be easily

extended to include dispersion in direction of departure and direction of arrival.

This work was partly supported by NEWCOM, the Network of Excellence in Wireless Communication.
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Abstract. In this contribution a propagation model is derived based on the so-called propagation
graph. It is shown by means of Monte Carlo simulations that the obtained model as a result of its
inherent structure predicts an exponentially decaying power-delay-profile as commonly reported
from measurements. Furthermore, the power-delay-profile obtained with the proposed model exhibit
a transition from specular components at small delays to diffuse components at long delays. This
feature was also observed, especially in experimental investigations for ultra wide band systems.

1. Introduction

The design and optimisation of modern radio communication systems require realistic models of the
radio propagation channel, which incorporate dispersion in delay, Doppler frequency, direction of
departure, direction of arrival, and polarisation. Often radio communication systems are assessed by
Monte Carlo simulations in which stochastic models are used to generate synthetic realisations of
the response of the radio propagation channel.

Traditional stochastic radio channel models reflect the statistical properties of the (time-variant or
time-invariant) impulse response of the channel between the input of any antenna element at the
transmitter site and any antenna element at the receiver site. The probability distributions of the
parameters of the channel impulse response are generally difficult to obtain from environment
parameters such as the scatterer size and density. Instead, the model parameters are often inferred
from measurements. Motivated by experimental results conventional models implement an
exponentially decaying power-delay-profile by including various ad-hoc constraints on the random
model parameters. The two contributions [1] and [2] follow this approach. In these models a key
parameter for modelling the arrival times of individual signal components is the “cluster arrival
rate”. However this parameter is difficult to derive from a propagation environment. In the model
given in [3] the scattering coefficients are corrected to obtain the effects observed from
measurements like the exponential decay of the power-delay-profile. These approaches, however, do
not reflect the underlying physical mechanisms that lead to this decaying behaviour.

A different approach is followed Franceschetti in [4] where the radio propagation mechanism is
modelled as a “stream of photons” performing a continuous random walk in a cluttered environment
with constant clutter density. The transmitted signal is a pulse of finite duration. When a photon
interacts with an obstacle, it is either absorbed (with a certain probability) or scattered and changes
direction. The Franceschetti model is mainly a descriptive model for the delay power spectrum; it is
not possible to obtain realisations of the channel impulse responses from this model. Furthermore,

This work was partly supported by NEWCOM, the Network of Excellence in Wireless Communication
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Fig. 1. One realisation of a propagation graph with six scatterers.

the model does not cover the transition from specular to diffuse signal contributions as observed in
[5].

In this contribution we present a stochastic model of the radio-propagation environment based on a
random propagation graph. The model can incorporate dispersion in delay, (bi)-directions, Doppler
frequency, etc. The aim is to obtain a stochastic model that leads to realisations of the channel
response with features similar to those observed in measured responses.

The remaining part of the paper is organised as follows. Section 2 reviews the needed fundamentals
of directed graphs. In Section 3 the stochastic propagation graph is described. Using this model, we
give an example of the resulting power-delay-profile in Section 4. Concluding remarks are adressed
in Section 5.

2. Directed Graphs

Following [6] we define a directed graph G as a pair (V, E) of disjoint sets (of vertices and edges)
together with the two mappings init : E → V and term : E → V assigning every edge e ∈ E an
initial vertex init(e) and a terminal point term(e). An edge e ∈ E that fulfils init(e) = term(e) is
called a loop. Two edges e and e′ are parallel if init(e) = init(e′) and term(e) = term(e′). A walk
(of length K) in a graph G is a non-empty alternating sequence 〈v1, e1, v2, e2, . . . , eK , vK+1〉 of
vertices and edges in G such that init(ek) = vk and term(ek) = vk+1, 1 ≤ k < K . A path is a walk,
with no parallel edges and where the vertices v2, . . . , vK−1 are distinct. If a path that fulfils
v1 = vK , is called cycle.

3. Propagation graphs

A propagation graph is a special case of a directed graph. An example of a propagation graph
G = (V, E) with V = {Tx,Rx,S1, . . . ,S6} is shown in Fig. 1. The vertices of a propagation graph
model the transmitter (Tx), the receiver (Rx) and the scatterers (S1,. . . ,S6). The edges model the
visibility between vertices meaning that a signal emitted from the initial vertex is received delayed
and attenuated at the terminal vertex. In the depicted case, the signal emitted from the Tx vertex is
observed by the Rx, S1, S4 and S6 vertices, whereas a signal emitted from S3 or S5 is not
observable from any vertex. We restrict the discussion to propagation graphs with no loops nor
parallel edges. In this case we may identify the edge e with (init(e), term(e)) ∈ V 2 and write
e = (init(e), term(e)) with a slight abuse of notation. With this identification, E ⊆ V 2. If we
consider two vertices v1, v2 ∈ V then e = (v1, v2) ∈ E is fulfilled with probability Pe. As the
propagation graphs contain no loops, P(v,v) = 0. The Tx is a source, and hence there exists no edge



with Tx as terminal point, that is P(v,Tx) = 0. Likewise, the Rx vertex is considered a sink and
therefore P(Rx,v) = 0.

The spatial positions of a vertex (a scatterer) v ∈ V with respect to some arbitrary origin is given by
a spatial displacement ~rv ∈ R ⊆ R

3, where R denotes the real line and R is the region in which the
scatterers that significantly affect the propagation mechanisms between the Tx and Rx are located.
The propagation time of the signal propagating along edge e = (v1, v2) can be calculated as

∆τe = |~rv1
− ~rv2

| · c−1, (1)

where c ≈ 3 · 108 m
s is the speed of light (in air) and | · | denotes the Euclidian norm.

We model a wave interaction with a scatterer v as a scatter-gain gv weighting all signals arriving at
v. The gain can be complex if we work in complex base-band notation (e.g. of narrow-band and
wide-band signals) or a real number if we describe the signals directly (e.g. for ultra-wide-band
signals). In both cases, we restrict the magnitude of gv as |gv| < 1. In this contribution we assume
that gv = g for all v, where g is a known constant. In general gv might be modelled as a random
variable. We assume an inverse squared distance power law. Therefore the gain of the signal being
scattered by init(e) observed at term(e) is given by

ae = g · ∆τ−2
e . (2)

Note that g is not dimensionless; it is given in [s2]. Thus, ae is dimensionless.

A propagation path G is defined as a walk ` = 〈v1, e1, v2, e2, . . . , eK`
, vK`+1〉 in G that fulfils

v1 = Tx and vK`+1 = Rx. The propagation path 〈Tx, (Tx,Rx),Rx〉 is called the line-of-sight path
provided it exists. The set of all propagation paths in G is denoted by L(G). The signal received at
the Rx is a superposition of all signal components each propagating via a propagation path
` ∈ L(G). The number of signal components in the received signal therefore equals the cardinality
of L(G). This number can be finite as in the case depicted in Fig. 1 or infinite if there exists at least
one path connecting Tx and Rx with a cycle.

The delay τ` and gain α` of a propagation path ` ∈ L(G) can be calculated by repetitively using (1)
and (2) as

α` =
K`
∏

k=1

aek
and τ` =

K`
∑

k=1

∆τek
(3)

Hence, the impulse response hG(τ) of the propagation graph can be obtained as

hG(τ) =
∑

`∈L(G)

h`(τ) (4)

with h`(τ) = α`δ(τ − τ`), where δ(·) is the Dirac unit impulse.

4. Simulation Study

In the sequel we investigate the power-delay-profile of the propagation graph model by means of a
Monte-Carlo simulation. In this simulation the following scenario is assumed:

1) A constant number N of scatterers is assumed.
2) The region R is assumed to be a rectangular solid box.
3) The positions of the N scatterers S1, . . . ,SN are drawn according to a uniform distribution

defined on R.
4) The Tx and Rx have fixed coordinates, i.e. ~rTx, ~rRx ∈ R and are known vectors.



TABLE I

PARAMETER SETTING FOR THE SIMULATION

Parameters Values
R [0, 2] × [0, 3] × [0, 5] m3

~rTx [1.8, 2.0, 0.5]T m
~rRx [1.0, 1.0, 4.0]T m
N 50
g 0.1 s2

Pvis 0.08
Number of Monte Carlo runs 100

5) We define Pe as

Pe =











1 if e = (Tx,Rx),

Pvis if e = (v1, v2), where v1 ∈ V\{Tx}, v2 ∈ V\{Rx}, and
0 otherwise.

The settings are given in Table I. The region R has a volume of 30m3 which yield an scatter
density of roughly 1.7m−3. In each Monte Carlo run, the propagation graph is generated randomly
and the resulting τ`’s and α`’s are computed.

The (averaged) power-delay-profile EG [|hG(τ)|2] (assuming a small, but finite observation
bandwidth) is reported together with three individual channel realisations in Fig. 2. It appears from
the figure that the proposed model exhibits an exponentially decaying power-delay-profile. Since we
assumed an inverse squared distance power law, the exponential power decay stems from the
structure of the propagation model alone. The individual channel realisations are depicted as a
scatter plot of the (τ`, |α`|

2)’s obtained for each channel realisation. The reported individual channel
realisations all exhibit the same behaviour: for τ < ∆τ(Tx,Rx) = |~rTx − ~rRx| · c

−1 ≈ 12.4 ns, the
channel impulse response is zero; for τ ≥ ∆τ(Tx,Rx) the “occurrence rate” of the signal contribution
increases with the delay. As a result the impulse response consists of a specular short-delay part
(including the line-of-sight path) and a diffuse tail part for large delay with a transitional mix of
specular and diffuse components in the intermediate delay range. This transition effect is observed
from measurements in [5]. The behaviour is expected since for a longer delay the signal is spread
through the propagation graph and an increasing number of components exist.

5. Conclusions

A propagation model based on a stochastic propagation graph was proposed. A propagation graph is
defined by a set of vertices (scatterers) and a set of edges (visibility between scatterers). These
parameters can be drawn randomly according to some probability density function. Based on
measurement results conventional models implement an exponentially decaying power-delay-profile
by various assumptions. These approaches, however, do not reflect the underlying physical
mechanisms that lead to this decaying behaviour. It was shown by simulation that assuming an
inverse squared distance power decay, the proposed model yields the often observed exponentially
decaying power-delay-profile. This effect stems from the structure of the propagation graph and is
not obtained by introducing any artificial assumptions. The channel realisations obtained from the
model also exhibit a transition from specular contributions for low delays to a diffuse part at long
delays as observed in measurements. The model can be easily extended to include dispersion in
directions of departure and arrival.
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