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Propagation Graph Based Model for Polarized
Multiantenna Wireless Channels

Ramoni Adeogun and Troels Pedersen
Wireless Communication Networks (WCN) Section,Department of Electronic Systems, Aalborg University, Denmark

Email: {ra, troels}@es.aau.dk

Abstract—Simple and accurate channel models are required
to evaluate the performance of multi-antenna systems with
polarized antenna arrays. This paper presents a graph based
model for polarized multi-antenna wireless channels by incorpo-
rating polarization diversity into the classical propagation graph
based model. In addition to classical propagation effects such
as attenuation, delay and phase shifts in non-polarized channel
models, the proposed model incorporated antenna and scatterer
based depolarization effects including polarization coupling and
polarimetric responses. An illustration of the procedure for
generating the transfer function and impulse response from the
model is given for dual polarized channels. Simulation results
show that the power delay profile exhibit exponential decay with
almost equal decay rate across the co- and cross-polar channels.
Our results also show that antenna orientation, relative antenna
height and depolarization affect the power-delay properties of
the channel.

Index Terms—Directed graph, polarization, MIMO system,
stochastic channel model, dual polarized system

I. INTRODUCTION

As with other wireless systems, exploiting the full benefits

of polarized systems requires adequate understanding of the

polarized wireless propagation channels. This is due to the fact

that the underlying properties of a radio channel significantly

affect the overall system performance. A common practice in

design and performance evaluation of wireless communication

systems is therefore, to use mathematical models for char-

acterizing the propagation channel. In addition to temporal,

frequency and directional effects in classical MIMO models,

models for polarized channels must incorporate polarization

and depolarization effects arising from reflections, diffractions

and scattering in the propagation medium. Channel modelling

for polarized MIMO systems has been the focus of active

research within the last few years and a number of models

have been developed based on the classical spatial channel

modelling approaches for unpolarized systems (see e.g., [1],

[2] and the references therein). Polarized channel models have

also been defined within wireless communication projects such

as 3GPP, WINNER, and COST. The work on polarization

channel modelling has so far focused on a special case of the

multi-polarized MIMO channel, i.e., MIMO systems utilizing

two orthogonally polarized antennas commonly referred to as

the dual polarized MIMO channel [3]. Developing generalized

models for multi-polarized MIMO channel is therefore, an

open problem.

Motivated by the need to study the effects of recursive

and non-recursive scattering on wireless channel characteri-

zation, an alternative modelling framework based on directed

propagation graph have been presented in [4]–[6]. The graph

based model describes the propagation channel as a directed

graph with the transmitters, receivers and scatterers as vertices

and interactions between vertices defined as a time-invariant

transfer function. Based on the graph description, closed-form

expressions for the channel transfer function is given in [6].

The graph may be generated deterministically or following a

stochastic procedure as done in the example model in [6].

Several other studies have recently presented applications

and/or modifications of the graph based models to various

propagation environments such as indoor [7], [8], indoor-

to-outdoor [9], high speed railway [10]–[13] and millimeter

wave systems [14]. Hybrid models combining the propagation

graph based model with ray tracing approaches have also been

studied in [15], [16]. To the best of our knowledge, there has

been no study on propagation graph modelling for polarized

channels.

In this contribution, we extend the propagation graph de-

scription to multiuser MIMO systems with polarized antenna

and derive expressions for the transfer functions. Polarization

dependent propagation characteristics including depolariza-

tion, polarization power coupling and antenna polarimetric

response are incorporated into the model.

II. POLARIZED GRAPH BASED MIMO CHANNEL MODEL

In this section, we introduce the propagation graph based

modelling framework in [6] and develop a generalized ex-

tension of the model to both single- and multi-user MIMO

channels with multi-polarized antenna at both ends of the link.

A. Propagation Graph

The signal from a transmit antenna in a typical communica-

tion environment propagates through the channel before arriv-

ing at the receive antenna. Depending on the environment, the

transmitted signal undergoes multiple interactions (reflection,

diffraction and/or scattering) with objects in the propagation

medium. These propagation mechanisms can be represented

as a directed graph with vertices Vt = {T1, · · · , TNt
}, Vs =

{S1, · · · , SNs} and Vr = {R1, · · · , RNr} corresponding to the

transmit antennas, scatters and receive antennas, respectively.

The edges of the propagation graph denote the propagation

condition between the originating and terminating vertices.

A propagation graph for a MU-MIMO wireless is a directed

graph with Nt transmit vertices, Ns scattering vertices and



Nr receive vertices. In a single user MIMO channel, Nr

corresponds to the number of antenna elements on the single

receiver. In a MU-MIMO case, Nr is the total number of

antenna elements on all receivers. To be consistent with

existing works, we denote the vertex set V as a union of three

disjoint sets: V = Vt∪Vs∪Vr and the edge set E as a union of

four disjunct sets: E = Ed∪Et∪Es∪Er, where Ed denotes the

set of direct edges between transmit and receive antennas, Et
denotes transmit to scatterer edges set, Es denote inter-scatterer

edges and Er denotes scatterers to receive antennas edge set.

Note that transmit and receive vertices in the directed graph are

treated as sources (with only outgoing edges) and sinks (with

only incoming edges), respectively. If two vertices vn, vm ∈ V
are visible (i.e., a propagation walk or pathexists), we denote

the edge between vn and vm as e = (vn, vm), where n and

m are the indices of the originating and terminating vertex,

respectively. The originating vertex may be a transmit antenna

or a scatterer and the terminating vertex is either a scatterer

or receive antenna. In a polarized channel, the signal at the

terminating vertex is a depolarized, attenuated, delayed and

phase shifted version of the signal at the originating vertex.

B. Polarized Propagation Mechanism

In the graph representation of a polarized wireless channel,

signal propagation from the transmitter to the receiver is as

follows. Each transmit antenna emits a signal with multiple

orthogonal components (corresponding to the different polar-

ization components). The emitted signal components propa-

gate through the outgoing edges of the transmit antenna. The

orthogonal components arrive at the receive antenna elements

via its incoming edges. The output signal at a receive antenna

is therefore the sum of signals from all its incoming edges

weighted by the polarimetric antenna response. A scattering

vertex emits via its outgoing edges the sum of depolarized

version of all signals arriving via its incoming edges. The

interaction of polarized signals with a scatterer may result in

changes in the polarization state of some or all of the orthog-

onal components. The depolarized signals are then summed

up at the scatterer and distributed to its outgoing edges. The

propagation of a polarized signal via the edges in a graph and

its interaction with scaterrers therefore results in attenuation,

delay, phase shift and depolarization. As in [9], we assume that

these propagation mechanisms are linear and time-invariant

and can be represented either as a convolution with the impulse

response in the time domain or a multiplication with a transfer

function in the frequency domain.

C. Coordinate System and Polarization State Representation

Characterization of a wireless channel using propagation

graphs may be achieved either by defining the graph structure

through the vertex and edge properties or generating the

adjacency matrix in a pure stochastic manner. The former

involve defining the location of vertices and edge directions

in a deterministic manner using knowledge of the propagation

environment or following a statistical approach as presented

in Section III. In this work, we utilize an earth-related,
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Fig. 1: a. Illustration of propagation mechanisms in a polarized

graph with five scatterers.

global Cartesian coordinate system where the vertical (z-axis)

corresponds to the zenith and the horizontal axes (x- and

y-axis) are parallel to the ground. The location of a vertex,

vn, is represented by the position vector, rn = [xn, yn, zn]
T .

We define for edge, e = (vn, vm), the propagation direction

represented by the unit vector, Ωe = (rm − rn)/||rm − rn||
which has elevation angle θe and azimuth angle, φe.

We define, without loss of generality, polarization states

of a signal, s, propagating through the graph by a three-

dimensional vector. For example, the signal on edge, e, is

denoted as

se =
[
sxe sye sze

]T
, (1)

where sxe , sye and sze denote the components of the signal in

the three orthogonal polarization states. A three-dimensional

basis has been proposed in [17] for the far field polarimetric

antenna pattern representation. Other bases such as the two-

dimensional Jones vector representation can also be used to

describe the polarization states.

D. Graph Description of Polarized Propagation

Consider a polarized multi-user MIMO systems with a Nt

transmit antennas and a total of Nr receive antennas. Let the

vertices in the graph be indexed according to

vn ∈

⎧⎪⎨
⎪⎩
Vt; n = 1, . . . , Nt

Vr; n = Nt + 1, . . . , Nt +Nr

Vs; n = Nt +Nt + 1, . . . , Nt +Nr +Ns

.

(2)

The polarization state representation in (1) implies that the

signal observed at every scattering vertices in the graph is a

three-dimensional vector. Using the vertex indexing in (2), the

propagation graph for the polarized channel can be represented

by a (Nt +Nr +3Ns)× (Nt +Nr +3Ns) adjacency matrix,

A(f) =

⎡
⎣ 0 0 0
D(f) 0 R(f)
T(f) 0 B(f)

⎤
⎦ , (3)

where the sub-matrices contain transfer functions:

• D(f) ∈ C
Nr×Nt contains the transfer function of the

direct edges between all transmit and receive antenna

pairs including the antenna response.



• T(f) ∈ C
3Ns×Nt contains the 3 × 1 transfer function

vectors for all the NtNs transmit antenna to scatterer

edges.

• R(f) ∈ C
Nr×3Ns contains the 3 × 1 transfer function

vectors for all the NrNs scatterer to receive antenna

edges.

• B(f) ∈ C
3Ns×3Ns contains the 3 × 3 transfer function

sub-matrices for all the NsNs scatterer to scatterer edges.

• 0 is an all-zero matrix with the appropriate dimension.

As observed in [6], the structure of A(f) is a consequence

of the structure of the propagation graph. The first Nt rows

are zeros because the transmit antennas are considered pure

sources. Similarly, the Nt + 1 to Nt + Nr-th columns are

zeros because receive antennas are treated as pure sinks. It

should be noted that although the (3) has the same structure

as given in [6] for the uni-polarized channel, the dimension

and structure of the polarized submatrices differs from those

in [6]. We would also like to note that extension of the model

to polarized channels as presented in the following section is

non-trivial.

E. Models for Gains and Polarimetric Scattering Matrix

Based on the physical propagation mechanisms in a po-

larized channel, the transfer function of the edge, e can be

expressed as

Ae(f) = Ge(f)� exp[j(2πτef1+Ψe)], (4)

where � and exp[.] denote entry-wise multiplication and entry-

wise exponential, respectively. The edge propagation delay can

be calculated for edge, e = (vn, vm) from the vertex position

vectors as τe = |(rm − rn)|/c, where c is the speed of light

in free space. The random phase rotations for each of the

polarization components are contained in Ψe, which is a 3×1
vector or 3 × 3 matrix. The edge gain, ge can be calculated

from

Ge(f) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fe√
(4πfτe)2

; e ∈ Ed
Fe√

4πτ2
e fμ(Et)S(Et)

; e ∈ Et
gFe

odi(e) ; e ∈ Es
Fe√

4πτ2
e fμ(Er)S(Er)

; e ∈ Er

, (5)

where |.| denotes the cardinality of the associated set. Here,

odi(e) denotes the number of outgoing edges from the nth

scatterer,

μ(Ea) = 1

|Ea|
∑
e⊂Ea

τe, S(Ea) =
∑
e⊂Ea

τ−2
e , Ea ⊂ E , (6)

and the entity Fe is a matrix that captures the polarization

dependent power coupling. The dimension and models for Fe

depend on the type of edge.
1) Direct Edges: Signals propagating on a direct edge expe-

riences two polarization dependent effects viz: array response

processing at both the transmitter and receiver. Thus, Fe can

be expressed as

Fe = X T
t (Ωe)Xr(Ωe), e ∈ Ed, (7)

where Xt(Ωe) and Xr(Ωe) are the 3× 1 transmit and receive

polarimetric array response vectors, respectively. Here, Fe is

a scalar.

2) Transmitter to Scatterer Edges: On a transmitter to

scatterer edge, the polarization related effects experienced by

a signal is due to the polarimetric array response processing.

The polarimetric vector can therefore be obtained from

Fe = Xt(Ωe), e ∈ Et. (8)

Thus, in this case, Fe has dimension 3× 1.

3) Scatterer to Scatterer Edges: The polarization depen-

dent effects on a scatterer to scatterer edge include scatterer

based depolarization and polarization rotation due to change

in propagation direction. For simplicity reasons, we assume

that all scatterers are isotropic so that polarization changes

occur at the scattering interface independent of incoming and

outgoing edge direction. With the 3-dimensional representation

in (1), the change in the polarization states of a propagating

signal due to interaction with a scatterer at vertex, vn can

be represented by a 3 × 3 polarization mixing matrix, Pn

containing the co- and cross-polar power coupling between the

polarization states. Assuming that the polarization dependent

effect of a scatterer to scatterer edge, e = (vn, vm), is only due

to the incoming vertex (effect due to the outgoing scattering

vertex is accounted for in the scatterer to receiver edge or a

scatterer to scatterer edge to which the vertex is connected),

Fe is given by

Fe = Pn, e ∈ Es. (9)

4) Scatterer to Receiver Edges: On a scatterer to receiver

edge, the polarization mechanism include polarization mixing

due to the originating vertex and array response processing

due to the receive vertex, the polarization dependent vector

can therefore be written as

Fe = PnXr(Ωe), e ∈ Er. (10)

F. Transfer Function for Polarized Channel

Since all vertices in the propagation graph are fixed, the

MIMO channel can be assumed to be linear and time-invariant.

The signal received at the receive vertices can therefore be

expressed as

Y(f) = H(f)X(f), (11)

where H(f) is the Nr ×Nt complex transfer matrix of the

propagation graph. X(f) and Y(f) are the Nt- and Nr-

dimensional signals at the transmit and receive signal vertices.

Using (9), the signal observed at the output of scatterer v can

be written as

Zv(f) = Pv

∑
v′∈Vs

Zin
(v′,v)(f), (12)

where Zin
(v′,v)(f) ∈ C

3×1 denote the signal on edge, e =
(v′, v). Equation (12) implies that the signal at the output of a

scattering vertex is a depolarized version of the sum of signals

on all incoming edges of the vertex. This is reasonable since

scatterers are assumed to be isotropic such that depolarization



Fig. 2: 3D coordinate system

is independent of propagation directions. The signals observed

at the scatterers can now be collected into the 3Ns× 1 vector,

Z(f) = [ZT
1 (f), . . . ,Z

T
Ns

(f)]T . (13)

Using the vertex indexing in (2), the signals at all vertices can

be collected into the Nt +Nr + 3Ns dimensional vector,

C(f) = [X(f)T ,Y(f)T ,Z(f)T ]T . (14)

Using (14) and following a similar procedure as in [5], [6],

the transfer function for the dual polarized channel is obtained

as

H(f) = D(f) +R(f)[I+B(f)

+B2(f) + · · ·+Bn(f) + . . . ]T(f)

= D(f) +R(f)[I−B(f)]−1T(f). (15)

As discussed in [6], a necessary and sufficient condition for

the closed form channel transfer function expression in (15)

is that the spectral radius of B(f) be less than unity.

III. GENERATION OF POLARIZED GRAPH MODEL:

APPLICATION TO DUAL POLARIZED MIMO SYSTEMS

In this section, we apply the generalized model to a specific

type of polarized system. We consider dual polarized MIMO

configurations in recent wireless standards where the antenna

array at both ends are composed of pairs of collocated or-

thogonally polarized half-wave dipole antennas (see e.g., [3]).

In dual polarized MIMO modelling literature, the propagating

signal is often decomposed into vertically polarized (V) and

horizontally polarized (H) components. An alternative repre-

sentation which is used in this paper is the polar-spherical

polarization basis which decomposes the polarized signal into

θ̂- and φ̂-polarized components corresponding to the vertical

and horizontal polarization.

A. Polarimetric Antenna Pattern

Let the half-wave dipole antenna be oriented in the y-z

plane at a tilt angle, β, to the z-axis as shown in Fig. 2.

We denote unit vectors along the antenna orientation and

propagation direction as p̂ and k̂, respectively. The direction

vector, k̂ = [sin θ cosφ, sin θ sinφ, cos θ] is perpendicular to

both vertical and horizontal polarization directions as shown

in Fig. 2. Using the coordinates defined in Fig. 2, unit vectors,

p̂, θ̂ and φ̂ are obtained as

p̂ =[0 sinβ cosβ]

θ̂ =[cos θ cosφ cos θ sinφ sin θ]

φ̂ =[sinφ cosφ 0]. (16)

The array response in the vertical and horizontal polarization

directions can therefore be expressed as[
X θ̂

X φ̂

]
=

[
θ̂

φ̂

]
p̂T exp(jk̂r̄)

=

[
cosβ sin θ + sinβ cos θ sinφ

sinβ cosφ

]
exp(jk̂r̄), (17)

where k = 2π/λ[sin θ cosφ sin θ sinφ cos θ] is the wave-

vector with wavelength, λ and r denotes the location vector.

Similar expression have been used for 3D antenna response

in [2], [18]. It should be noted that the array response in 2D

(without propagation in elevation plane) is a special case of

(17) with θ = π/2 and θ̂ = [0 0 1]. With an inclination angle

of β = 0o in (17), the antenna response has only vertical

component. However, at other tilt angles, both vertical and

horizontal components are non-zero.

B. Transfer Function Generation

We assume that the position of all vertices lie in a bounded

region, representing a rectangular room. The transmitter and

receiver locations are assumed to be fixed and known and

scatterer positions are drawn randomly from a uniform distri-

bution over the bounded region. An edge e ∈ E is drawn with

probability

Pr[e ∈ E ] =

⎧⎪⎨
⎪⎩
Pdir, e ∈ Ed
Pvis, e ∈ (Et, Es, Er)
0, otherwise

. (18)

The edge directions as well as azimuth and elevation angles are

estimated using the vertex positions. The array response vector

is then computed using (15) for all transmitter to scatterer and

scatterer to receiver edges. The polarimetric phases Ψe : e ∈ E
are drawn from a uniform distribution on [0, 2π) and polari-

metric edge gains are computed using (5). Based on these

parameters of the graph, entries of the graph adjacency matrix

are computed using (4). The polarized channel transfer func-

tion is estimated over the desired frequency range, [fmin, fmax]
from (15). The time domain channel impulse response of the

polarized channel is then obtained via a windowed inverse

Fourier transform of the transfer function.



TABLE I: Parameters for the Dual Polarized MIMO Example

Parameter Symbol Default Value

Antenna 2× 2
Room size [0, 5.0]× [0, 5.0]× [0, 2.5]m3

Transmitter position [1.8, 2.0, 2.0]T m
Receiver position I [1.8, 3.4, 2.0]T m
Receiver position II [1.8, 3.4, 0.5]T m
Number of Scatterers Ns 10
Prob. of direct edge Pdir 1
Prob. of visibility Pvis 0.92
Reflection gain g 0.8
Frequency range [2, 3]GHz
Sampling rate 5MHz
Pol. mixing param. γ 0.2
Window Hann
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Fig. 3: PDP for 0/90o MIMO channel. Receiver at Location

I.

IV. SIMULATIONS AND RESULTS

In this section, we study the effects of recursive scattering and
scatter based depolarization on the power-delay properties of dual
polarized MIMO channel. We perform 1000 Monte Carlo simulation
runs with the simulation parameters shown in Table I. We consider
four co- and cross-polarization ratios:

XPRθ =
Pθθ

Pφθ
; XPRφ =

Pφφ

Pθφ
; CPR =

Pθθ

Pφφ
; XPRθφ =

Pθφ

Pφθ

where Pab = E[|hab|2] denotes the average power of the channel
between the b- and a- polarization at the transmitter and receiver,
respectively. The terms XPRθ and XPRφ are the cross-polar ratios
(ratio of co-channel power to cross channel power) for the θ- and φ-
polarization components, respectively. CPR represents the co-polar
ratio - ratio of the two co-channel powers. The last metric denoted
XPRθφ provides a measure for comparison between leakages from
one polarization component to the other. We model the coupling
matrix, Pn, as

Pn =

[
1− γn γn
γn 1− γn

]
, (19)

where γn ∈ [0, 1) denotes the ratio of the power that is leaked from
one polarization to the other during interaction with a scatterer.

Fig. 3 shows that the power delay profile (PDP) for all co- and
cross- channels decay exponentially with the vertical to vertical
channel (i.e.,P11) having the strongest power over the entire delay
values. A plausible explanation for this power difference is the
variation in the array responses with different antenna orientation.
The figure also shows that the co- and cross-polar channels exhibit
slightly different decay rates for the early interactions/delays with no
significant difference in decay rate for subsequent interactions. This
can be seen more clearly in the power ratio plots in Fig. 4 where the
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Fig. 5: Co and Cross-Polar Power for ±45o MIMO channel.

Receiver at Location II.

power ratios vary for delays up to 30 ns and remain approximately
constant afterwards. This trend in power ratios represent a transition
from a state where the channels are polarized to a partially polarized
or an un-polarized state. Similar results were obtained for the 0/90o

configuration with the receiver at location II except that all the co- and
cross- channels has direct path contributions (though with different
powers). As seen in Fig. 3, only the channel between transmit
and receive antennas oriented at β = 0o has a direct component.
This is expected since both vertical (θ-pol) and horizontal (φ-pol)
polarization components of a horizontally (i.e., β = 90o) oriented
antenna become nulled out with equal antenna heights.

Fig. 5 shows that PDP for the ±45o configuration with the receiver
at location II also decay exponentially with a direct component only
visible in the −45o to +45o cross channel. In addition, we observe
that the co- and cross-polar channels has nearly equal power for all
non line-of-sight contributions with arrival times greater than or equal
to approximately 20 ns. This is intuitive since the array response for
both +45o and −45o oriented dipole has similar radiation gain in
all directions. Similar effect of the radiation pattern is also observed
with the receiver at location I. The power ratios plot for the ±45o

configuration in Fig. 6 also exhibit transitions from varying ratios for
early interactions (polarized) to constant power ratios for subsequent
interactions (depolarized).

Finally, we illustrate the effects of varying polarization mixing
parameter, γ, on the PDP in Fig. 7. We observed that increasing the
mixing parameter results in a decrease in the power of the co-polar
channels and increase in the power of the cross-polar channels. This
is intuitive since more power is expected to be leaked from the co-
to cross-polar channels with an increase in mixing ratio. The power
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ratio plots in Fig. 8 also decrease with increasing mixing parameter.

V. CONCLUSION

This paper presented a generalized propagation graph based model
for multi-polarized MIMO wireless channels. An illustrative appli-
cation to dual polarized indoor MIMO channels is also given. Our
results indicate that the power delay profile of the co- and cross- polar
channels decay exponentially with approximately equal decay rates.
A transition from polarized to depolarized state is observed in the
power ratios. It is also seen that antenna orientation and height, and
polarization coupling parameter affect the power-delay characteristics
of the channel. Future research will investigate methods for modelling

the per scatterer mixing parameter and calibrating the model using
measurements.
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