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Abstract. Available systems for heartbeat signal estimations from facial video only 

provide an average of Heartbeat Rate (HR) over a period of time. However, 

physicians require Heartbeat Peak Locations (HPL) to assess a patient’s heart 

condition by detecting cardiac events and measuring different physiological 

parameters including HR and its variability. This paper proposes a new method of 

HPL estimation from facial video using Empirical Mode Decomposition (EMD), 

which provides clearly visible heartbeat peaks in a decomposed signal. The method 

also provides the notion of both color- and motion-based HR estimation by using 

HPLs. Moreover, it introduces a decision level fusion of color and motion 

information for better accuracy of multi-modal HR estimation. We have reported 

our results on the publicly available challenging database MAHNOB-HCI to 

demonstrate the success of our system in estimating HPL and HR from facial 

videos, even when there are voluntary internal and external head motions in the 

videos. The employed signal processing technique has resulted in a system that 

could significantly advance, among others, health-monitoring technologies.    

Keywords: heartbeat rate, facial video, head motion, facial skin color, empirical 

mode decomposition, multimodal fusion.   

1 Introduction 

Heartbeat signals represent Heartbeat Peak Locations (HPLs) in a temporal domain and 

help physicians assess the condition of a human cardiovascular system by detecting 

cardiac events and measuring different important physiological parameters such as 

Heartbeat Rate (HR) and its variability [1]. When the human heart pumps blood, subtle 

chromatic changes in the facial skin and slight head motion occur periodically. These 

changes and motion are associated with the periodic heartbeat signal and can be detected 

in a facial video [2].  

 

Takano et al. first utilized the trace of skin color changes in facial video to extract 

heartbeat signal and estimate HR [3]. They recorded the variations in the average 

brightness of the Region of Interest (ROI) – a rectangular area on the subject’s cheek – 

to estimate HR. About two years later, Poh et al. proposed a method that used ROI mean 

color values as color traces from facial video acquired by a simple webcam, and 

employed Independent Component Analysis (ICA) to separate the periodic signal 

sources and a frequency domain analysis of an ICA component to measure HR [4]. 

Kwon et al. improved Poh’s method in [4] by using merely green color channel instead 

of all three Red-Green-Blue (RGB) color channels [5]. Wei et al. employed a Laplacian 

Eigenmap (LE) and Cheng et al. employed an Empirical Mode Decomposition (EMD), 

rather than ICA, to obtain the uncontaminated heartbeat signal and demonstrated better 
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performance than the ICA-based method [6], [7]. Other articles contributed a peripheral 

improvement of the color-based HR measurement by using a better estimation of ROI 

[8], adding a supervised machine learning component to the system  [9], analyzing the 

distance between the camera and the face during data capture [10], and selecting best 

facial patches using majority voting [11].  

 

Color-based methods suffer from tracking sensitivity to color noise and illumination 

variation. Thus, Balakrishnan et al. proposed a method for HR estimation which was 

based on invisible motion in the head due to pulsation of the heart muscles, which can be 

obtained by a Ballistocardiogram [12]. In this approach, some feature points were 

automatically selected on the ROI of the subject’s facial video frames. These feature 

points were tracked by the Kanade–Lucas–Tomasi (KLT) feature tracker [13] to 

generate some trajectories, and then a Principle Component Analysis (PCA) was applied 

to decompose trajectories into a set of orthogonal signals based on Eigen values. 

Selection of the heartbeat rate was accomplished by using the percentage of the total 

spectral power of the signal, which accounted for the frequency with the maximum 

power and its first harmonic. A semi-supervised method in [14] was proposed to 

improve the results of Balakrishnan’s method by using the Discrete Cosine Transform 

(DCT) along with a moving average filter rather than the Fast Fourier Transform (FFT) 

employed in Balakrishnan’s work. The method in [15] also utilized motion information; 

however, unlike [12] it used ICA (previously used in color-based methods) to 

decompose the signal. 

 

Though estimation of heartbeat signal from facial video was investigated a lot with 

different applications in the literature [2], [16]–[18], in view of the previous methods 

described above we summarized the following demands/challenges to investigate in this 

paper:  

i. Previous methods provide an average HR over a certain time period, e.g. 30-60 

seconds. Average HR alone is not sufficient to reveal some conditions of the 

cardiovascular system [12]. Health monitoring personnel often ask for a more 

detailed view of heartbeat signals with visible peaks that indicate the beats. 

Moreover, an important vital sign, heartbeat rate variability, cannot be obtained 

without locating heartbeat peaks in the signal. However, employing frequency 

domain decompositions along with some filters on the extracted color or motion 

traces from the facial video, as used in state-of-the-art methods of [4], [5], [8], [12], 

[14], [18], [19], does not provide visible HPLs for further analysis. 

ii. The accuracy of HR estimation from facial video has yet to reach the level of ECG-

based HR estimation. This compels investigations of a more effective signal 

processing method than the methods used in the literature to estimate HR.   

iii. When a facial video is available, the beating of a heart typically shows in the face 

through changing skin color and head movement. Thus, merely estimating HR from 

color or motion information may be surpassed in accuracy by a fusion of these two 

modalities extracted from the same video. 

iv. Most of the facial video-based fully automatic HR estimation methods, including 

color-based [3]–[5], [19] and motion-based [12], assume that the head is static (or 

close to) during data capture. This means that there is neither internal facial motion 

nor external movement or rotation of the head during the data acquisition phase. 
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We ascribe internal motion to facial expression and external motion to head pose. 

However, in real life scenarios there are, of course, both internal and external head 

motion. Current methods, therefore, provide less accuracy in realistic scenarios.  

 

In this paper we address the aforementioned demands/challenges by proposing a novel 

Empirical Mode Decomposition (EMD)-based approach to estimate HPL and then HR. 

Unlike previous methods, the proposed EMD-based decomposition of raw heartbeat 

traces provides a novel way to look into the heartbeat signal from facial video and 

generates clearly visible heartbeat peaks that can be used in, among others, further 

clinical analysis. We estimate the HR from both the number of peaks detected in a time 

interval and inter-beat distance in a heartbeat signal from HPLs obtained by employing 

the EMD. We then introduce a multimodal HR estimation from facial video by fusion of 

color and motion information and demonstrate the effectiveness of such a fusion in 

estimating HR. We report our results through a publicly available challenging database 

MAHNOB-HCI [20] in order to demonstrate the success of our system in estimating HR, 

even when there are voluntary internal and external head motions in the videos.  

 

The rest of the paper is organized as follows. Section 2 describes the proposed system. 

Section 3 describes HR estimation from HPLs, and an approach to fusing color and 

motion. Section 4 presents the experimental results. Section 5 contains the conclusions. 

2 The Proposed System 

This section describes the steps of the proposed EMD-based HPL estimation method 

from color or motion traces as shown in Fig. 1.  

 

 
Fig. 1. Steps of the proposed HPL estimation method using skin color or head motion 

information from facial video. 

2.1 Video Acquisition and Face Detection  

The first step of the proposed HPL estimation system is face detection from facial video 

acquired by a simple RGB camera. By following [21], [22], we employ Haar-like 

feature-based Viola and Jones object detection framework [23] for face detection.  
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2.2 Facial Color and Motion Traces Extraction  

As mentioned earlier, periodic circulation of the blood from the heart through the body 

causes facial skin to change color, and the head to move or shake in a cyclic motion. The 

proposed system for HPL estimation can utilize either of the modalities (skin color 

variations and head motions) as shown in Fig. 1. Recoding RGB values of pixels in 

facial regions to generate the color trace and tracking some facial feature points to 

generate the motion trace help to record such skin color variation and head motion from 

facial video, respectively. In order to obtain the traces of either of the two modalities, we 

first select a ROI in the detected face. For the color-based approach, the ROI contains 

60% of the facial area width (following [2]) detected by the automatic face detection 

method. We take the average of the RGB values of all pixels in the ROI in each frame 

instead of only either of the red, green or blue channels to defend the effect of the 

external lighting condition, as single color channel may prone to increased noise to 

specific lighting conditions.   

 

For the motion-based approach the ROI (following [14]) contains two areas of 

forehead and cheek. We divide the ROI into a grid of rectangular regions of pixels and 

detect some feature points in each region by employing a method called Good Features 

to Track (GFT) [24], [25]. The GFT works by finding corner points from the minimal 

Eigen values of the windows of pixels in the ROI. When the head moves due to heart 

pulse, the feature points also move in the pixel coordinates. We employ a KLT tracker to 

track the feature points in consecutive video frames and obtain a single trajectory of each 

feature points in the video by measuring Euclidian distance of the point-locations in 

consecutive frames. We then fuse all trajectories into a single motion trace. 

 

The next steps follow the same procedure for both color and motion and hereafter we 

refer to the raw heartbeat signal as 𝑆̅. 

2.3 Vibrating Signal Extraction  

The raw heartbeat signal (𝑆̅) contains other extraneous high and low frequency cyclic 

components than heart beat due to ambient color and motion noise induced from the data 

capturing environment. It also exhibits non-cyclical trendy noise due to voluntary head 

motion, facial expression, and/or vestibular activity. Thus, to remove/reduce the 

extraneous frequency components and trends from the signal we decompose it using 

Hodrick-Prescott (HP) filter [26]. The filter breaks down the signal into the following 

components with respect to a smoothing penalty parameter, 𝜏: 

𝑆𝜏
𝑙𝑜𝑔(𝑡) = 𝑇𝜏(𝑡) + 𝐶𝜏(𝑡)    (1) 

where 𝑆𝜏
𝑙𝑜𝑔

 is the logarithm of 𝑆̅, 𝑇𝜏 is the trend component, and 𝐶𝜏 denotes the cyclical 

component of the signal with 𝑡 as the time index (video frame index). We empirically 

follow two times the decomposition of the trajectory by using two smoothing parameter 

values 𝜏 = ∞ and 𝜏 = 400 to obtain all of the cyclic components (𝐶∞) and high 

frequency cyclic components (𝐶400), respectively. A detailed description of the HP filter 

can be obtained from [26]. We completely overlook the trend components (𝑇𝜏) because 

these are not characterized by cyclic pattern of heartbeat. We then obtain the difference 

between the cyclical components to get the vibrating signal as follows:  
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𝑉(𝑡) = 𝐶∞(𝑡) − 𝐶400(𝑡)    (2) 

2.4 EMD-based Signal Decomposition for the Proposed HPL Estimation  

The vibrating signal (𝑉) cannot clearly depict the heartbeat peaks (which will be shown 

in the experimental evaluation section). This is because of the contamination of heartbeat 

information by the other lighting and motion sources, which the HP filter alone cannot 

restore for visibility. Previous methods in [4], [5], [8], [12], [14], [19] moved to the 

frequency domain and filtered the signal by different bandpass filters and/or calculating 

the power spectrum of the signal to determine the HR in the frequency domain. 

However, this cannot provide a heartbeat signal with visible peaks, i.e. no possible HPL 

estimation, and thus cannot be useful for clinical applications where inter-beat intervals 

are necessary or signal variation needs to be observed over time. Thus, we employ a 

derivative of EMD to address the issue. EMD usually decomposes a nonlinear and non-

stationary time-series into functions that form a complete and nearly orthogonal basis for 

the original signal [27]. The functions into which a signal is decomposed are all in the 

time domain and of the same length as the original signal. However, the functions allow 

for varying frequency in time to be preserved. When a signal is generated as a composite 

of multiple source signals and each of the source signals may have individual frequency 

band, calculating IMFs (Intrinsic Mode Functions) using EMD can provide illustratable 

source signals.  

 

In the case of processing the heart signal obtained from facial video, the obtained 

vibrating signal (𝑉) is a nonlinear and nonstationary time-series that comes as a 

composite of multiple source signals from lighting change, and/or internal and external 

head motions along with heartbeat. The basic EMD, as defined by Huang [28], breaks 

down a signal into IMFs satisfying the following two conditions:  

i. In the whole signal, the number of extrema and the number of zero-crossings 

cannot differ by more than 1. 

ii. At any point, both means of the envelopes defined by the local maxima and local 

minima are zero.    

 

The decomposition can be formulated as follows:  

𝑉(𝑡) = ∑ 𝑀𝑖 + 𝑟𝑚
𝑖=1     (3) 

where 𝑀𝑖 presents the mode functions satisfying the aforementioned conditions, 𝑚 is the 

number of modes, and 𝑟 is the residue of the signal after extracting all the IMFs. The 

procedure of extracting such IMFs (𝑀𝑖) is called shifting. The shifting process starts by 

calculating the first mean (µ𝑖,0) from the upper and lower envelopes of the original signal 

(𝑉 in our case) by connecting local maxima. Then a component is calculated as the first 

component (𝐼𝑖,0) for iteration as follows: 

𝐼𝑖,0 = 𝑉(𝑡) − µ𝑖,0    (4) 

The component 𝐼𝑖,0 is then considered the data signal for an iterative process, which is 

defined as follows:  

𝐼𝑖,𝑗 = 𝐼𝑖,𝑗−1 − µ𝑖,𝑗    (5) 
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The iteration stops when a predefined value exceeds the following parameter (δ) 

calculated in each step: 

δ𝑖,𝑗 = ∑
(𝐼𝑖,𝑗−1(𝑘)−𝐼𝑖,𝑗(𝑘))2

𝐼𝑖,𝑗−1
2 (𝑘)

𝑙
𝑘=1     (6) 

where 𝑙 is the number of samples in 𝐼 (in our case, the number of video frames used). 

 

The basic model of EMD described above, however, exhibits some problems such as 

the presence of oscillations of very disparate amplitudes in a mode and/or the presence 

of very similar oscillations in different modes. In order to solve these problems an 

enhanced model of EMD was proposed by Torres et al. [29], which is called Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). 

CEEMDAN adds a particular noise at each stage of the decomposition and then 

computes residue to generate each IMF. The results reported by Torres showed the 

efficiency of CEEMDAN over EMD. Therefore, we decompose our vibrating signal (𝑉) 

into IMFs (𝑀𝑖) by using the CEEMDAN. The total number of IMFs depends on the 

vibrating signal’s nature. As a normal adult’s resting HR falls within the frequencies 

[0.75 − 2.0] Hz (i.e. [45 − 120] bpm) [12] and merely 6-th IMF falls within this range, 

we selected the 6-th IMF as the final uncontaminated (or less contaminated) form of the 

heartbeat signal of all experimental cases.  

 

We employ a local maxima-based peak detection algorithm on the selected heartbeat 

signal (the 6-th IMF) to estimate the HPL. The peak detection process was restricted by 

a minimum peak distance parameter to avoid redundant peaks in nearby positions. The 

obtained peak locations are the HPLs estimated by the proposed system. 

3 HR Calculation Using the Proposed Multi-Modal Fusion 

The HPLs we obtained in the previous section can be utilized to measure the total 

number of peaks and peak distances in a heartbeat signal. These can be obtained for 

either case of the color and motion information from facial video. We calculate the HR 

in bpm for both approaches in two different ways – from the total number of peaks and 

average peak distance – as follows:  

𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘 = (
𝑁×𝐹𝑟𝑎𝑡𝑒

𝐹𝑡𝑜𝑡𝑎𝑙
) × 60    (7) 

𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘 = (
𝐹𝑟𝑎𝑡𝑒

1
(𝑁−1)

∑ 𝑑𝑘
(𝑁−1)
𝑘=1

) × 60   (8) 

where 𝑁 is the total number of peaks detected, 𝐹𝑟𝑎𝑡𝑒 is the video frame rate per second, 

𝐹𝑡𝑜𝑡𝑎𝑙 is the total number of video frames used to generate the heartbeat signal, and 𝑑𝑘 is 

the distance between two consecutive peaks. 

 

As we stated in the first section of this article, facial video contains both color and 

motion information that denote heartbeat. Along with the proposed EMD-based method, 

the applications of color information for HR estimation were shown in [4], [5], [8], [9], 

[19], and the applications of motion information were shown in [12], [14]. None of these 
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methods exploited both color and motion information. We assume that, since color and 

motion information have different notions of heartbeat representation, a fusion of these 

two modalities in estimating HR can include more deterministic characteristics of heart 

pulses in the heartbeat signal.  

 

There are three levels that can be considered for the fusion of modalities: raw-data 

level, feature level, and decision level [30]. Although the extracted raw heartbeat signals 

in color and motion-based approaches have the same dimensions, they are mismatched 

due to the nature of the data they present. Thus, instead of raw-data level and feature 

level fusion, we propose a rule-based decision level (HR estimation results) fusion in this 

paper for exploiting the HR estimation results from both modalities. For each of the 

modalities, we obtain two results using the total number of peaks and average peak 

distance. Thus, we have four different estimates of the HR: 𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑐𝑜𝑙𝑜𝑟 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘

𝑐𝑜𝑙𝑜𝑟 , 

𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛 , and 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘

𝑚𝑜𝑡𝑖𝑜𝑛 . We employed four feasible rules, listed in TABLE I, to 

find the optimal fusion. 

 

TABLE I FUSION RULES INVESTIGATED 

Parameter Definition Parameter Definition 

𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝐹𝑢𝑠𝑒  𝑚𝑒𝑎𝑛(𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘

𝑐𝑜𝑙𝑜𝑟 , 𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛 ) 𝐻𝑅𝑎𝑙𝑙

𝐹𝑢𝑠𝑒 𝑚𝑒𝑎𝑛 (
𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘

𝑐𝑜𝑙𝑜𝑟 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝑐𝑜𝑙𝑜𝑟 ,

𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘

𝑚𝑜𝑡𝑖𝑜𝑛 ) 

𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝐹𝑢𝑠𝑒  𝑚𝑒𝑎𝑛(𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘

𝑐𝑜𝑙𝑜𝑟 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛 ) 𝐻𝑅𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑇𝑤𝑜

𝐹𝑢𝑠𝑒  𝑚𝑒𝑎𝑛𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑡𝑤𝑜 (
𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘

𝑐𝑜𝑙𝑜𝑟 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝑐𝑜𝑙𝑜𝑟 ,

𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛 , 𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘

𝑚𝑜𝑡𝑖𝑜𝑛 ) 

4 Experiments and Obtained Results 

4.1 Experimental Environment  

The proposed methods were implemented in Matlab (2013a). Most of the previous 

methods provided their results on local datasets, which makes the methods difficult to 

compare with the other methods. In addition, most of the previous methods did not 

report the results on a challenging database that includes realistic illumination and 

motion changes. In order to overcome such problems and show the competency of our 

methods, we used the publicly available MAHNOB-HCI database [20] for the 

experiment. The database is recorded in realistic Human-Computer Interaction (HCI) 

scenarios which was treated as a realistic and highly challenging dataset in the literature 

[8] because it contains facial videos recorded in realistic scenarios, including challenges 

from illumination variation and internal and external head motions. It contains videos of 

491 sessions with 25 subjects that are longer than 30 seconds, and subjects who consent 

attribute ‘YES’. Both males and females participated; they were between 19 and 40 

years of age. Among the sessions, 20 sessions of subject ‘12’ do not have ECG ground 

truth data and 20 sessions of subject ‘26’ are missing video data. Excluding these 

sessions, we used the remainder as the dataset for our experiment. As the original videos 

are of different lengths, we use 30 seconds (frame 306 to 2135) of each video and the 

corresponding ECG from EXG3 sensor for the ground truth defined in [20]. 

 

We show the experimental results for HPL estimation in a qualitative manner and HR 

estimation through four statistical parameters used in the previous literature [4], [8]. The 
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first one is mean error, defined as follows: 

𝑀𝐸 =
1

𝑁
∑ (𝐻𝑅𝑘

𝑣𝑖𝑑𝑒𝑜 − 𝐻𝑅𝑘
𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

)𝑁
𝑘=1    (9) 

where  𝐻𝑅𝑘
𝑣𝑖𝑑𝑒𝑜  is the calculated HR from the 𝑘-th video of a database, 𝐻𝑅𝑘

𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ
 is 

the corresponding HR from the ECG ground truth signal, and 𝑁 is the total number of 

videos. The second parameter is the standard deviation of 𝑀𝐸, defined as follows: 

𝑆𝐷𝑀𝐸
= √(

1

𝑁
∑ (𝐻𝑅𝑘

𝑣𝑖𝑑𝑒𝑜 − 𝑀𝐸)
2𝑁

𝑘=1 )   (10) 

The third parameter is the root mean squared error, defined as follows: 

𝑅𝑀𝑆𝐸 = √(
1

𝑁
∑ (𝐻𝑅𝑘

𝑣𝑖𝑑𝑒𝑜 − 𝐻𝑅𝑘
𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

)
2

𝑁
𝑘=1 )  (11) 

The fourth parameter is the mean of error rate in percentage, defined as follows:  

𝑀𝐸𝑅 =
1

𝑁
∑ (

𝐻𝑅𝑘
𝑣𝑖𝑑𝑒𝑜−𝐻𝑅𝑘

𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝐻𝑅𝑘
𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ )𝑁

𝑘=1 × 100   (12) 

4.2 Experimental Evaluation  

The proposed method tracks color change and head motion due to heartbeat in a video. 

Fig. 2 shows the average trajectory (𝑆̅) calculated from the individual trajectories of the 

feature points and corresponding vibrating signal (𝑉 in eq. (2)) obtained after employing 

the HP filter for a video. We observe that the vibrating signal is less noisy than the 

previous signal due to the application of the HP filter. We obtain similar results in the 

color-based approach.  

 

  
Fig. 2. Vibrating signal extraction by HP filtering: average signal from motion 

trajectories (left) and filtered vibrating signal (right).  

 

The CEEMDAN, a derivative of EMD, decomposes the vibrating signal into IMFs 

(𝑀𝑖) to provide an uncontaminated form of heartbeat signal. Fig. 3 shows first eight 

IMFs obtained from the signal by eq. (3)-(6). The IMFs are separated by different 

frequency components as discussed in Section 2.4, and we selected 𝑀6 as the final 

heartbeat signal to employ the peak detection algorithm. The result of peak detection on 

𝑀6 is also shown in Fig. 3. One can observe that the final heartbeat signal has more 

clearly visible beats than the raw heartbeat signal obtained from motion traces. After 

employing peak detection we obtained all HPL that can be used in further medical 

analysis. The qualitative and quantitative comparison of the estimated HPL with the beat 

locations in ground truth ECG is shown in the performance comparison section.   

 

We count the number of peaks and measure average peak distance from HPLs. The 

associated results are shown in TABLE II. We have indicated some of the best cases in 
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bold. From the results we observe that counting the number of peaks provides better 

results than measuring peak distance for both color and motion information. This is 

because, unlike counting peaks, heartbeat rate variability in the signal can contribute 

negatively to the average peak distance. The overall error rates (𝑀𝐸𝑅) are less than 10% 

for HR estimation by counting the number of peaks for both motion and color signals. 

The fusion results show that, similar to the individual use of motion or color information, 

the number of peaks fusion generates the best results out of the four fusion rules. Simple 

arithmetic mean in decision level fusion, as we used, shows a strong correlation with the 

corresponding color and motion-based results. While comparing the results to the 

individual motion and color-based estimations, the fusion shows greater accuracy. 

 

   

   

   
Fig. 3. Obtained IMFs (𝑀1-𝑀8) after employing CEEMDAN on the vibrating signal (𝑉) 

and the detected heartbeat peaks in 𝑀6. 

 

TABLE II HR ESTIMATION RESULTS OF THE PROPOSED EMD-BASED METHODS USING 

COLOR, MOTION AND FUSION  

No. Method 𝑀𝐸 (bpm) 𝑆𝐷𝑀𝐸
 (bpm) 𝑅𝑀𝑆𝐸 (bpm) 𝑀𝐸𝑅 (%) 

1.  𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛  -0.90 8.28 8.32 8.65 

2.  𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝑚𝑜𝑡𝑖𝑜𝑛  -1.33 10.77 10.84 11.51 

3.  𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝑐𝑜𝑙𝑜𝑟  0.21 8.55 8.54 9.26 

4.  𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝑐𝑜𝑙𝑜𝑟  0.95 10.25 10.29 11.59 

5.  𝐻𝑅𝑑𝑖𝑠𝑡𝑃𝑒𝑎𝑘
𝐹𝑢𝑠𝑒  -0.19 10.08 10.07 11.00 

6.  𝐻𝑅𝑎𝑙𝑙
𝐹𝑢𝑠𝑒 -0.27 9.04 9.03 9.79 

7.  𝐻𝑅𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑇𝑤𝑜
𝐹𝑢𝑠𝑒  -0.29 8.47 8.46 8.92 

8.  𝐻𝑅𝑛𝑢𝑚𝑃𝑒𝑎𝑘
𝐹𝑢𝑠𝑒  -0.35 8.08 8.08 8.63 

4.3 Performance Comparison  

The performance of the proposed method has been compared with the relevant state of 

the art methods in two respects: i) presentation of visible heartbeat peaks in the extracted 

heartbeat signal in time domain and ii) accuracy of HR estimation. Fig. 4 shows the 

extracted heartbeat signals using the proposed EMD-based method from motion 

trajectories of two videos (subject ID-1, session 14 and subject ID-20, session 26) from 

the MAHNOB-HCI database next to the extracted signals using the motion-based 

method of [12]. The second video represents the case of voluntary facial motions (right). 

We have also included ground truth ECG for these videos in overlapping plots. From the 

figures we observe that the final time domain signal extracted by [12] is not plausible to 
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comprehend for visual analysis. This is also true for the other methods because of similar 

filters and ICA/PCA/DCT-based decomposition. On the other hand, the final time 

domain signal generated by the proposed method not only shows heartbeat peaks but 

also preserves a good correspondence to the ECG ground truth.   

 

  

  
Fig. 4. Illustrating heartbeats obtained by different methods for two facial videos from 

two different subjects for normal case (left) and challenging case with voluntary motion 

(right): first row presents the results for our method and the second row presents the 

results for Guha2013 and Ramin2014 [12], [14]. Ground truth ECG is shown in green.  

 

We compare the accuracy of the proposed method with state of the art color and the 

motion-based methods of [4], [5], [12], [19]. The results of the accuracy comparison are 

summarized in TABLE III. From the results, it is clear that the proposed EMD-based 

methods for both color and motion provide a better estimation of HR than the other state 

of the art methods. The proposed methods outperformed the other methods in both 

𝑅𝑀𝑆𝐸 and 𝑀𝐸𝑅 because EMD can decompose the signal in a better way than the filters 

and ICA/PCA-based decomposition used in the previous methods. The results of the 

proposed method demonstrate a high degree of consistency in estimating HR in 

comparison to the other methods. This, in turn, validates our peak location estimation as 

well because the peak locations have been used to estimate HR. 

5 Conclusions 

This paper proposed methods for estimating HPL and HR from color and motion 

information from facial video by a novel use of an HP filter and EMD decomposition. 

The paper also proposed a fusion approach to exploit both color and motion information 

together for multi-modal HR estimation. The contributions of these methods are as 

follows: i) provided the notion of visually analyzing heartbeat signal in time domain 

with clearly visible heartbeat peaks for clinical applications, ii) provided better 

estimations of HR for separate color and motion traces, iii) a decision level fusion 

further improved the result, and iv) provided a highly accurate HPL and HR estimations 

method from facial video in the presence of challenging situations due to illumination 

change and voluntary head motions. The proposed method, however, also imposed some 

limitations when generating the results. We assume that the camera will be placed in 

close proximity to the face (about one meter away). Moreover, we did not employ any 

sophisticated ROI detection and tracking methods, illumination rectification methods, or 
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extraneous motion filtering. Future work should address these points. 

 

TABLE III PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH THE PREVIOUS 

METHODS FOR HR ESTIMATION 

No. Method 𝑀𝐸 (bpm) 𝑆𝐷𝑀𝐸
 (bpm) 𝑅𝑀𝑆𝐸 (bpm) 𝑀𝐸𝑅 (%) 

1.  Poh (ICA) [4] -8.95 24.3 25.90 25.00 

2.  Kwon (ICA) [5] -7.96 23.8 25.10 23.60 

3.  Guha (PCA) [12] -14.4 15.2 21.00 20.70 

4.  Poh (ICA) [19] 2.04 13.5 13.60 13.20 

5.  Proposed_color (CEEMDAN) 0.21 8.55 8.54 9.26 

6.  Proposed_motion (CEEMDAN) -0.90 8.28 8.32 8.65 

7.  Proposed_Fusion -0.35 8.08 8.08 8.63 
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