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Abstract 

Background: Many variants of the spatial QRS-T angle (QRS-Ta) are in use. We 

aimed to identify the best QRS-Ta for all-cause mortality prediction among 

different variants. 

Methods: 6667 individuals from the Inter99 General Population Study were 

followed for a median of 12.7 years. Vectorcardiograms were calculated using the 

Kors and Inverse Dower matrices. The QRS-Ta was calculated using both mean 

and peak vectors of the QRS- and T-loops. Hazard ratios (HR) for abnormal 

QRS-Tas were calculated using a Cox’s Proportional Hazard Model. 

Results: The highest HR and largest AUC for all-cause mortality was obtained 

with the Kors matrix and the mean vector (HR=2.2, 95% confidence interval: 

[1.38;3.43] p<0.001, in men). There was interaction with the orientation of the 

QRS-T plane. 

Conclusion: For optimal prediction of all-cause mortality, the mean vectors in the 

QRS- and T-loops of the Kors-derived vectorcardiogram should be used. QRS-T 

plane orientation affects mortality prediction. 

 

Keywords: QRS-T angle, all-cause mortality, vectorcardiogram, transformation 

matrix, dominant vector 
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I. INTRODUCTION 

The spatial QRS-T angle (QRS-Ta) quantifies the difference in direction between the 

ventricular depolarization and repolarization. Multiple studies have shown that the QRS-Ta is a 

predictor for all-cause and cardiac mortality, but many of these studies were performed in elderly 

populations [1, 2]. Furthermore, the QRS-Ta has been used to improve risk stratification in 

patients with acute myocardial infarction [3], to aid in identifying new onset heart failure [4], to 

predict incident coronary heart disease [5], and to predict ventricular arrhythmias in patients with 

coronary heart disease [6]. 

Based on vectorcardiography, the QRS-Ta is readily obtainable from an electronic recording 

of the 12-lead ECG and risk prediction based on biomarkers such as the QRS-Ta may easily be 

implemented in the clinic [7]. 

However, much ambiguity exists in the calculation of the QRS-Ta. The vectorcardiogram 

(VCG) may be obtained directly by the use of Frank leads, or by conversion of the 12-lead digital 

ECG via transformation matrices [8]. Additionally, either the mean or the peak QRS and T 

vectors may be used in calculation of the QRS-Ta. Furthermore, projections of the QRS-Ta into 

the frontal and horizontal planes are common in the literature, adding another layer of variation to 

the calculation of the QRS-Ta. 

The frontal QRS and T axes on the ECG are both reported using the full 360 degrees. By 

definition, the smallest angle between the two vectors is used. The angle could be calculated as 

either T minus QRS or QRS minus T, but in practice the positive number is always used (i.e. the 

sign is ignored). It is not known whether or not the orientation of the QRS-T plane matters in 

mortality prediction. 
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Thus, the aim of the present study was to identify the best QRS-Ta measurement for prediction 

of all-cause mortality in a middle-aged population, and to establish if the orientation of the 

QRS-T plane contains independent prognostic information. 

  

II. METHODS 

Population: 

A total of 6667 middle aged adults (49% men) with a mean age ± standard deviation (SD) of 

46.3 ± 8.0 years were included from the Danish suburban population study Inter99 [9]. All 

participants were linked to the Danish Civil Registry to obtain data on mortality status. 

Participants in Inter99 were selected as an age-stratified (30, 35, 40, 45, 50, 55, and 60 years old) 

random sample from the Danish Civil Registry. The health examinations including ECG took 

place in years 1999-2001. All participants provided informed consent, and the Inter99 study was 

approved by the local ethics committee (KA 98 155). 

Due to gender differences in repolarization men and women were analyzed separately. For a 

given measurement an abnormal group was defined as a value larger than the 95th percentile [10]. 

Electrocardiograms: 

Resting 12-lead ECG of 10-second duration were recorded at 500 Hz using the Cardiosoft 

system (GE Healthcare, Milwaukee, WI). The Marquette 12SL algorithm (version 21, GE 

Healthcare, Milwaukee, Wisconsin) was used to obtain median beats as well as markers for QRS 

complex onset and offset (QRSon, QRSoff), and T-wave offset (Toff). No human overreading took 

place. The RR interval, QRS duration, and QT interval were obtained. The QT interval was 

corrected for heart rate using the method of Friderica (QTcF). The ECGs were converted to 
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VCGs by two different transformation matrices: the Kors and the Inverse Dower matrices [7, 11]. 

Additionally, a QRS-Ta estimate was obtained without VCG transformation by the method of 

Rautaharju [12]. 

The ECG to VCG conversion matrix by Kors et al. is based on multiple regression, thus 

minimizing the error between the true Frank VCG and the reconstructed VCG in the training set. 

[7] The Dower matrix was based on a torso model and the Inverse Dower matrix was obtained as 

the pseudo-inverse of the matrix [11]. The Rautaharju method uses single ECG lead amplitudes 

(V6, V5, aVF, and V2) to estimate the X-, Y-, and Z-components of the VCG and to directly 

calculate the QRS-Ta using the inverse cosine. 

A Cartesian coordinate system was used with the positive X-axis pointed towards the left, the 

positive Y-axis pointed caudally, and the positive Z-axis pointed posteriorly [13]. 

Vector calculations: 

The QRS loop was defined as all vectors from QRSon to QRSoff, and the T loop was defined as 

all vectors from QRSoff to Toff. The dominant vector of a loop was determined in two ways: The 

mean vector of a loop was defined as the mean of all the vectors in the loop: 

𝑄𝑅𝑆𝑚𝑒𝑎𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

𝑄𝑅𝑆𝑜𝑓𝑓 − 𝑄𝑅𝑆𝑜𝑛
∑ 𝑣(𝑖)⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑄𝑅𝑆𝑜𝑓𝑓

𝑖=𝑄𝑅𝑆𝑜𝑛

 

The peak vector of a loop is the vector with the largest magnitude, whereby the magnitude of a 

vector, v, was defined as: 

|𝑣 | = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 
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The spatial QRS-T angle was defined as the angle between the dominant vectors of the QRS 

and T loops: 

𝑄𝑅𝑆𝑇𝑎 = acos
𝑄𝑅𝑆𝑥 ∗ 𝑇𝑥 + 𝑄𝑅𝑆𝑦 ∗ 𝑇𝑦 + 𝑄𝑅𝑆𝑧 ∗ 𝑇𝑧

|𝑄𝑅𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | ∗ |�⃗� |
 

QRS-T plane orientation: 

Figure 1 illustrates how two heart beats with equal spatial QRS-Ta can have opposite directions 

of the corresponding orientation vectors. In the frontal projection, the left panel shows a clockwise 

direction from the QRS vector to the T vector and therefore a posterior orientation vector. The right 

panel shows a counterclockwise direction from the QRS vector to the T vector in the frontal plane 

and therefore an anterior orientation. On figure 2, two real VCGs are shown with similar size 

QRS-Ta but opposite QRS-T plane orientations. 

Anterior or posterior orientation can be defined mathematically using the orientation vector (n) 

defined as the cross product of the dominant mean QRS and T vectors: 

�⃗� = 𝑄𝑅𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  × �⃗� . 

The Z-component of the orientation vector may be directed either anteriorly or posteriorly (Figs. 

1 and 2), and this categorization was applied to stratify the population into two groups. 

Dichotomizing into anterior and posterior groups can also be made from the frontal plane directly 

(see legend of Fig 1), since the orientation is considered a binary property in this work. The frontal 

plane approach and the Z-component approach are equivalent. 

Statistics 

Statistical analyses were computed using the R statistical software package (version 3.4.3). A 

Cox’s Proportional Hazard model with left truncation at entry and right censoring at end of 
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follow-up/death was used for survival analysis. Hazard Ratios (HR) for abnormal groups were 

obtained relative to the normal groups. Predictors were also evaluated as continuous variables for 

which Receiver Operator Characteristics (ROC) curves were computed using the ‘timeROC’ 

package version 0.3 [14]. The Area Under the Curve (AUC) was calculated and used to compare 

the methods. Crude comparisons between groups were made using a Kaplan-Meier plot. 

Sensitivity analyses were performed with adjustment for QRS duration, left bundle branch block, 

right bundle branch block, and average R-to-R interval separately. Values were expressed as 

mean ± SD. A p-value <0.05 was considered significant. 

 

III. RESULTS 

Baseline demographics and ECG parameters are given in Table I. The cohort is a middle-aged 

Danish population of both men and women. The average person was slightly overweight and 

normotensive. In women, the heart rate was increased, the QTcF was longer, and the ECG-based 

frontal plane T-axis was increased. The mortality was (median follow-up time 12.8 years, [inter-

quartile range: 12.1;13.3]) 5.5% in men and 3.8% in women. 

 

Mean values and SD of the spatial QRS-Ta as well as 95th percentiles are given in Table II for 

all combinations of transformation matrices and vector types. On average, men had a larger 

QRS-Ta than women, and the angles computed with the Kors matrix were smaller compared to 

those calculated using the Inverse Dower matrix. Angles between the mean QRS and T vectors 

were systematically wider than those between the peak QRS and T vectors. 

The top part of Table III shows the hazard ratios for all-cause mortality separated by gender 

and disregarding the orientation of the QRS-T plane. No increased risk of all-cause mortality was 
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found with the use of the Inverse Dower matrix for QRS-Ta calculation. On the contrary, when 

the Kors matrix was applied, men with an abnormally wide QRS-Ta (> 95th percentile cut-off) 

had a more than two-fold risk of dying compared to those with a normal QRS-Ta.  

Mortality prediction with the ECG-based QRS-Ta estimate by Rautaharju yielded a lower 

estimated of the HR compared to the QRS-Ta based on the Kors-derived VCG, and mortality 

could not be predicted in women with the Rautaharju method. 

Table IV shows AUC of ROC for each method. AUC was largest with the Kors matrix using 

the mean vectors in men. On figure 3, the ROC curves for all men show superiority of the Kors 

matrix and the mean vector. 

In the sensitivity analyses, adjustments were performed for R-to-R interval, QRS duration, left 

bundle branch block, and right bundle branch block, respectively, with similar findings (not 

shown).  

 

Posterior vs. anterior 

To test if the QRS-T plane orientation played a role, risk prediction was performed separately 

in the posterior and anterior groups (Tables III and IV, lower part). The QRS-Ta was only a good 

predictor in the posterior group, but not in the anterior group (figure 4). The AUC analyses 

revealed that QRS-T angle was best calculated using the Kors matrix and the mean vectors also 

in the subgroup analyses. 

In the posterior group of men, only the QRS-Ta’s obtained using the Kors matrix for ECG to 

VCG transformation were significant predictors for all-cause mortality. For women, a QRS-Ta 

calculated using the mean QRS and T vectors was a significant predictor whereas a QRS-Ta 
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calculated with the use of the peak QRS and T vectors did not predict mortality. In women, risk 

prediction was only successful in the posterior group with similar performances by the Kors and 

Inverse Dower matrices. QRS and T vector orientations in the posterior vs. anterior groups are 

presented in the supplementary material. 

 

IV. DISCUSSION 

This study shows that QRS-Ta-based prediction of all-cause mortality in a middle-aged 

population is best achieved using the QRS-Ta between the mean QRS and T vectors computed in 

a vectorcardiogram obtained with the Kors matrix. A novel finding is that the orientation of the 

QRS-T plane carries predictive information since only posterior QRS-Tas predicted mortality. 

 

Conversion methods  

The difference in mortality prediction for QRS-Tas calculated using the Kors or Inverse 

Dower matrices may owe to their differences in origin [7, 11]. Cortez and Schlegel [15] 

concluded that QRS-Ta calculated using the Kors matrix more closely resembled the true Frank 

QRS-Ta than those calculated using the Inverse Dower matrix. Schreurs et al. further added that 

short-cuts to avoid VCG synthetization cannot be recommended [16]. Brown and Schlegel [17] 

concluded that the Kors matrix was superior in disease detection compared to the Inverse Dower 

matrix, and Man et al. found the Kors matrix superior for arrhythmia detection [18]. 

We add, that the Kors matrix is superior to the Inverse Dower matrix for prediction of all-

cause mortality in the middle-aged, general population. Among all participants, using the Inverse 

Dower matrix, we were only able to predict mortality in one subgroup with a barely significant 
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result (p=0.03). With the Kors matrix, however, a stronger and more stable signal was obtained. 

When the population was split into posterior and anterior groups, the HRs calculated using the 

Kors matrix were increased in the posterior group, but nothing changed for the Inverse Dower 

matrix results (p=0.03 for posterior subgroup). The AUC analyses similarly revealed that the 

Inverse Dower-based QRS-Tas predicted mortality worse than the QRS-Ta based on the Kors 

matrix using the mean vectors. 

 

Mean vs. peak vector 

In the literature, two types of QRS-Tas have been used [2, 10, 15, 17, 19]. One method is 

based on the peak vectors of the QRS and T loops, the other is based on the mean vectors of each 

loop. If the loop is broad or very non-planar, the vectors can have very different orientations and 

the mean vector may better represent the loop since it is based on all loop vectors, whereas the 

peak vector is only a single measurement. 

While these two variants of the QRS-Ta may appear similar, the peaks-based QRS-Ta is 

systematically smaller than the mean-based QRS-Ta (Table II), and the two QRS-Tas should thus 

not be used interchangeably [15, 19]. In 2016, Lingman et al. [19] used both the mean- and the 

peak-based QRS-Ta (with Frank leads) for prediction of sudden cardiac death in patients with 

acute coronary syndrome. They found a tendency for the mean vector to better predict mortality 

although the confidence intervals overlapped between the mean and the peak vector derived 

QRS-Ta. 

We also found a tendency for the mean vector-based QRS-Ta overall to better predict 

mortality than the peak vector-based QRS-Ta, possibly because the former angle is more stable. 

Splitting the population based on QRS-T plane orientation, we found that the QRS-Ta better 
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predicted mortality in the posterior group. In women, mortality was only successfully predicted 

using the mean vector-based QRS-Ta, in men the signal appeared stronger using the mean vector 

for the QRS-Ta. 

 

Increased risk of all-cause mortality 

Using the Kors matrix and the mean vectors, we found a HR of about 2. Kardys et al. found a 

similar HR in another European population [20]. The population that Kardys et al. examined was 

markedly older, and we now found that the QRS-Ta can also be used for middle aged individuals. 

The study by Kardys et al. also found that the QRS-Ta is a stronger predictor for cardiac death 

than total mortality. 

The ARIC study found a more than 50% increased mortality risk for an abnormal QRS-Ta 

with correction for clinical data [10]. When they added ECG corrections, the spatial QRS-Ta only 

predicted all-cause mortality in women. The study population was very like that of ours in terms 

of age, gender, and follow-up time, but the Inverse Dower matrix was used, which may be a 

limitation to the study.  

The NHANES III study [21] estimated the QRS-Ta from 12-lead peak-to-peak amplitudes 

without computing the VCG [12] and found remarkably similar results in a different population. 

Schreurs et al. [16] found that the QRS-Ta is most accurately calculated using the Kors matrix, 

but the NHANES III study surprisingly found that bypassing the VCG step (i.e. using the method 

of Rautaharju) might work in all-cause mortality prediction. In this work, the QRS-T angle 

estimation by ECG peaks for mortality prediction performed worse than the Kors matrix-derived 

QRS-Ta. Particularly, with the short-cut, mortality could not be predicted in women. Although 
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the estimated QRS-Ta with the method of Rautaharju has some predictive power, it appears 

inferior to the QRS-Ta based on the mean vector and the Kors transformation. 

In the present study, all-cause mortality in the middle-aged general population was better 

predicted in men than in women. Most studies have not reported individual Hazard Ratios for 

men and women. Two large studies report conflicting findings in men and women [10, 21], and 

in the Women’s Health Initiative, the QRS-Ta was found a predictor of mortality in women [22]. 

The latter study, however, only included post-menopausal women. In the present study, the 

mortality was lower (i.e. by a factor of 3-7) than in similar studies [10, 20, 21], especially in 

women where only 3.8% died. Compared to women, the mortality in men was 45% higher which 

may partly explain why the QRS-Ta was a better predictor in men than in women in this study. 

 

Orientation of the QRS-T plane 

The QRS-T plane spanned by the dominant QRS and T vectors practically never lies in the 

frontal plane, however in the literature, the projection of the spatial QRS-Ta into the frontal plane 

is common [17].  

As previously mentioned, we hypothesized that the two opposite beats in Figs. 1 and 2 

represent different physiological settings, and that they should be treated as such. To try to reject 

this hypothesis, we split the population into posterior and anterior groups and carried out the 

analyses independently. 

We found that the QRS-Ta was only predictive of mortality in the posterior group and not in 

the anterior group. In men, for instance, using the mean vector and the Kors matrix, the AUC was 

62.7% in the posterior group but only 55.2% in the anterior group. This finding strongly suggests 

that the orientation of the QRS and T vectors matter beyond simply the angle in the QRS-T plane. 
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The discussed findings suggest that the absolute value of the QRS-Ta is not the only prognostic 

marker within the QRS-Ta domain. Categorization into posterior and anterior group can also be 

performed based on the frontal plane QRS and T axis. If T axis > QRS axis (i.e. clockwise 

direction QRS to T), the VCG is categorized as posterior (Fig. 1). 

The difference between the QRS-Ta methods were larger in the posterior group (Table IV). 

This finding is well explained by the fact that little to no prediction was possible in the anterior 

group, and thus the method matters not. Conversely, the methodology was important in the 

posterior group, since mortality prediction was possible. 

The orientations of the QRS and T vectors in the posterior and anterior groups (supplementary 

figure S1) suggest small axis differences between the groups for both QRS and T axis, and 

deviations to the T axis have previously been associated with mortality. [23] It seems that certain 

combinations of QRS and T vector orientations predicts mortality better than the QRS-Ta alone, 

but posterior QRS-Ta remained a significant predictor even when QRS or T axis was included in 

the survival model (data not shown). The mechanism remains unknown, but may be due to 

identification of small disturbances of de/repolarization fronts. 

 

Automated and manual calculations 

Whereas the QRS-Ta can be calculated quickly by a computer programs in the research 

setting, in many cardiology clinics that is not an option. Matrix conversion from ECG to VCG by 

multiplication is only feasible for electronic ECGs, but the peak vectors can be estimated visually 

[24]. In the present study, the peak vectors were significantly poorer predictors than the mean 

vectors, and as such the visual method must be considered an option only when a digital approach 
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cannot be taken. In that setting, the Rautaharju method might also be considered given the fact 

that it may be faster to compute the QRS-Ta using the Rautaharju method.  

 

V. CONCLUSION 

For prediction of all-cause mortality in the general, middle-aged population, the QRS-T angle 

should be computed using the Kors matrix and the mean QRS and T vectors. A novel finding is 

that the relative orientation of the QRS and T vectors matters where mortality was better 

predicted in the posterior than in the anterior group. 
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Table I: Demographics and ECG basics. Baseline characteristics for the population by gender. 

 Total Men Women p 

n 6667 3255 (49%) 3412 (51%)  

Age [years]  46.3 ± 8.0 46.7 ± 8.0 46.0 ± 8.0 <0.001 

Ethnicity    0.6 

 Nothern European, n (%) 6405 (96.1%) 3125 (96%) 3280 (96.1%)  

 Other, n (%) 262 (3.9%) 130 (4.0%) 132 (3.9%)  

BMI [kg/m2]  26.3 ± 4.6 26.8 ± 4.0 25.9 ± 5.1 <0.001 

Systolic BP [mmHg]  130 ± 18 134 ± 17 127 ± 18 <0.001 

Diastolic BP [mmHg]  82 ± 11 85 ± 11 80 ± 11 <0.001 

Heart Rate [bpm]  67 ± 11 65 ± 11 68 ± 11 <0.001 

RR [ms]  922 ± 150 944 ± 158 900 ± 138 <0.001 

QTcF [ms] 417 ± 19 412 ± 18 421 ± 18 <0.001 

QRS duration [ms] 92 ± 11 97 ± 11 87 ± 9 <0.001 

Frontal R axis (ECG) [°] 39 ± 32 35 ± 33 43 ± 30 <0.001 

Frontal T axis (ECG) [°] 41 ± 22 39 ± 23 43 ± 20 <0.001 

BMI: body mass index; BP: blood pressure. Measurements and demographics are reported as mean ± standard 

deviation. 
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Table II: QRS-T angles. Average QRS-T angles by transformation method and dominant vector and cut-off values 

for abnormal groups. 

 Total Men Women p 

n 6667 3255 3412  

Spatial QRS-T angle [°]     

Kors matrix, mean vector  54 ± 26 58 ± 27 50 ± 25 <0.001 

Kors matrix, peak vector 37 ± 26 41 ± 28 33 ± 23 <0.001 

Inverse Dower matrix, mean vector 76 ± 27 81 ± 27 72 ± 26 <0.001 

Inverse Dower matrix, peak vector 41 ± 29 46 ± 32 35 ± 24 <0.001 

Rautaharju method 83 ± 29 87 ± 30 80 ± 27 <0.001 

95th percentile cut-off angle [°]     

Kors matrix, mean vector   108 95  

Kors matrix, peak vector  101 67  

Inverse Dower matrix, mean vector  128 119  

Inverse Dower matrix, peak vector  123 80  

Rautaharju method  134 125  

Measurements are reported as mean ± standard deviation or as a single cut-off. p-value is for difference in males vs. 

females. 
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Table III: The QRS-Ta as a predictor for all-cause mortality. HRs with 95% confidence interval are shown for the 

abnormal groups relative to the normal groups. If plane orientation carries no information, similar results should be 

obtained in the posterior and anterior groups. 

Conversion method Kors matrix Inverse Dower matrix 

Rautaharju 

Dominant vector Mean Peak Mean Peak 

All participants 

Men 

n = 3255  

2.17*** 

[1.38;3.43] 

1.84* 

[1.13;3.01] 

1.66 

[1.00;2.79] 

1.64 

[0.98;2.74] 

1.92* 

[1.16;3.17] 

Women 

n = 3412 

1.68 

[0.93;3.05] 

1.45 

[0.78;2.69] 

1.91* 

[1.07;3.39] 

1.65 

[0.91;3.00] 

1.60 

[0.86;2.96] 

Posterior group 

Men 

n = 1836 

2.82*** 

[1.69;4.70] 

2.23** 

[1.26;3.96] 

1.73 

[0.93;3.22] 

1.50 

[0.76;2.95] 

2.04* 

[1.12;3.70] 

Women 

n = 2039 

2.16* 

[1.08;4.32] 

1.61 

[0.74;3.51] 

2.12* 

[1.06;4.24] 

1.80 

[0.86;3.74] 

1.76 

[0.81;3.83] 

Anterior group 

Men 

n = 1419 

0.61 

[0.15;2.50] 

0.54 

[0.13;2.21] 

0.62 

[0.15;2.53] 

1.15 

[0.41;3.20] 

0.95 

[0.30;3.05] 

Women 

n = 1373 

0.66 

[0.16;2.72] 

1.65 

[0.65;4.18] 

1.39 

[0.50;3.90] 

0.99 

[0.31;3.21] 

2.33 

[0.98;5.49] 

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. HR: Hazard Ratio. Mean: Based on the mean vector as 

dominant vector. Peak: Based on the peak vector as the dominant vector. The Rautaharju method computes the QRS-

T angle in one step without intermittent QRS and T vectors. 
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Table IV: The QRS-Ta as a predictor for all-cause mortality. Area under the Receiver-Operator 

Characteristics (ROC) curve are presented. Stars indicate difference to the ROC curve obtained using the 

mean vector and the Kors matrix. 

Conversion method Kors matrix Inverse Dower matrix 

Rautaharju 

Dominant vector Mean Peak Mean Peak 

All participants 

Men 

n = 3255  
61.4% 55.5%*** 56.9%*** 56.4%** 53.3%*** 

Women 

n = 3412 
60.3% 59.3% 57.4%** 61.2% 55.1%** 

Posterior group 

Men 

n = 1836 
62.7% 57.4%* 58.3%*** 59.0% 52.9%*** 

Women 

n = 2039 
59.6% 62.1% 57.0%** 62.2% 54.0%** 

Anterior group 

Men 

n = 1419 
55.2% 48.7%* 53.4% 49.3%* 54.0% 

Women 

n = 1373 
61.3% 53.9%* 57.6%* 58.9% 56.4% 

*,**,**; p< 0.05, 0.01, 0.001 vs. mean vector, Kors matrix.  
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Fig. 1: Same spatial QRS-T angle – different orientation. Two equal QRS-Ta measurements may have different 

orientations of the orientation vector (n). Patients were categorized as having either a posterior (left panel) or anterior 

(right panel) orientation vector depending on the direction of the orientation vector (n). From the front, the posterior 

type QRS-T angle appears to have a clockwise direction from QRS to T and the anterior type a counterclockwise 

direction. To determine posterior vs. anterior direction, only the frontal plane projection is needed. If the frontal QRS 

axis is 30° and the frontal T axis 55°, the direction from QRS to T is clockwise and the orientation vector, n, will have 

a posterior rather than an anterior direction (i.e. a Z-component >0 when Z is directed positively towards the back). 
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Fig. 2: QRST angle and plane orientation. The left panel shows a vectorcardiogram with an anterior 

orientation (the Z-component of the orientation vector, n, is negative). The spatial mean-vector QRS-T 

angle is 39°. The right panel shows a vectorcardiogram with a posterior orientation. That QRS-T angle is 

45°. In the bottom half, the black straight line is the projection of the scaled orientation vector, n, and 

arrows indicate the positive direction for the axis. In both examples, the orientation vector is almost 

perpendicular to the frontal plane, but in opposite directions. 
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Fig. 3: Receiver Operator Characteristics curves for all men (n=3255). The largest area under the curve 

was found for the QRS-T angle calculated using the mean vectors and the Kors matrix (61%). Stars 

indicate significant levels compared to Mean, Kors. AUC, Area under curve; **, p<0.01; ***, p<0.001. 
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Fig. 4: Kaplan-Meier survival curves for men stratified into the posterior (n=1836) or anterior (n=1419) 

group. The QRS-T angle predicts mortality in the posterior group, but not in the anterior group. 
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Highlights 

 

•       A better way to calculate QRS-T angle is presented  

•       The orientation of the QRS-T plane is important 

•       QRS-T angle-based mortality prediction was better in males than in females 
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