Cardiac repolarization and depolarization in people with Type 1 diabetes with normal ejection fraction and without known heart disease
a case-control study
Isaksen, Jonas Lynggaard; Graff, Claus; Ellervik, C.; Jensen, J. S.; Rossing, P.; Kanters, J. K.; Jensen, M. T.
Published in:
Diabetic Medicine
DOI (link to publication from Publisher):
10.1111/dme.13689
Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/dme.13689
This article is protected by copyright. All rights reserved.
What’s new?

- This is the largest matched analysis of electrocardiographic changes in people with Type 1 diabetes without known heart disease and with normal ejection fraction.
- Depolarization duration is increased in people with Type 1 diabetes; repolarization duration is only increased in young people with Type 1 diabetes.
- Increased repolarization duration in young people suggests that they may be more prone to ventricular arrhythmias, potentially explaining the dead in bed syndrome and the increased risk of sudden cardiac death.
- Increased resting heart rate is present in people with Type 1 diabetes even without clinical heart disease.
Abstract

Aims To investigate depolarization and repolarization durations in people with Type 1 diabetes, including the relationship to age.

Methods 855 persons with Type 1 diabetes without known heart disease were included and matched with 1710 participants from a general population study. Clinical examinations, questionnaires and biochemistry were assessed. A 10-second 12-lead ECG was performed and analysed digitally.

Results QTc was longer in people with Type 1 diabetes compared to controls (414±16 vs. 411±19 ms, \(P<0.001\)), and particularly so in young people with Type 1 diabetes. The fully adjusted increase was 13.8 ms (95% confidence interval (CI): 8.6–19.0 ms, \(P<0.001\)) at age 20 years and 3.4 ms (CI: 1.5–5.3 ms, \(P<0.001\)) at age 40 years. The rate-corrected QRSc was increased in people with Type 1 diabetes (97±11 vs. 95±11 ms, \(P<0.001\)) and was age-independent (\(P=0.5\)). JTc was increased in the young people with Type 1 diabetes (10.7 ms (CI: 5.4–16.0 ms, \(P<0.001\)) at age 20 years), but not in older people with Type 1 diabetes (interaction age-diabetes, \(P<0.01\)).

Conclusions For people with Type 1 diabetes, cardiac depolarization is increased at all ages, whereas repolarization is increased only relatively in young people with Type 1 diabetes. Hence, young people with Type 1 diabetes may be more prone to ventricular arrhythmias. The findings contribute to the understanding of sudden cardiac death in young people with Type 1 diabetes.
Introduction

Cardiovascular disease is the leading co-morbidity in diabetes [1], which may lead to sudden cardiac death [2]. The dead in bed syndrome describes the sudden and unexpected nocturnal death of young people (<40 years of age, often men) with Type 1 diabetes and normal autopsies [3].

One leading theory explaining the cause of the dead in bed syndrome is the presence of prolonged repolarization leading to fatal ventricular arrhythmias [3], although the mechanism is largely unexplored. It has been speculated that the JT interval might be more specific as a marker of repolarization than the QT interval, which is a composite measure of depolarization and repolarization [4,5]. Recent studies have investigated the JT interval against the QT interval in the general population [6,7] and found that they predict mortality equally well in people with normal QRS duration (<120 ms), but that the JT interval is more suitable to use for people with bundle branch block (QRS duration >120 ms) [7].

Although cardiovascular disease is the most common cause of death for people with Type 1 diabetes, cardiovascular screening in the diabetes clinic is mainly limited to blood pressure and the electrocardiogram (ECG). The ECG therefore plays a major role in cardiovascular risk assessment in the out-patient clinic.

It has previously been reported that people with Type 1 diabetes have an altered ECG [8-10], but it is difficult to determine what can be attributed to complications resulting from Type 1 diabetes, or that are actually a direct cause of the disease. Consequently, little is known about the ECG characteristics for people with Type 1 diabetes without known heart disease.

This article is protected by copyright. All rights reserved.
The current study aimed to investigate differences in depolarization and repolarization in people with Type 1 diabetes without known heart disease. We hypothesized that repolarization duration might be increased, particularly in young people with Type 1 diabetes.

Participants and methods

Type 1 diabetes population

The Thousand & 1 Study is a cohort study of people with type 1 diabetes without known heart disease, conducted between 2010–2012 at the Steno Diabetes Center, Copenhagen. The population has been described in detail previously [11-13]. The study was approved by the Regional Ethics Committee (H-3-2009-139) and the Danish Data Protection Agency (00934-Geh-2010-003). Briefly, 1093 people without any known heart failure, coronary heart disease including stable angina, previous acute myocardial infarction, previous percutaneous coronary intervention, or coronary artery bypass, congenital heart disease, electrical conduction abnormalities including atrial fibrillation, atrial flutter, or left bundle branch block, pacemaker, or implantable cardioverter defibrillator (ICD), were included. All the participants were examined with ECG and echocardiography. In the current study, participants with an electronic ECG on file and ejection fraction >50% were included, 855 people in total.
Control population

To function as the control group without diabetes mellitus, participants were included from the Danish General Suburban Population Study (GESUS), which included participants between 2010–2013 aged 20 years or older [14,15]; 8823 participants had a digital ECG on file. Cases and controls were matched by age and gender, and two controls were matched for each case. The exclusion criteria for sampling to the control group were known diabetes mellitus and other clinical characteristics (similar to the Type 1 diabetes group): self-reported previous myocardial infarction, stable angina, ischemic heart disease, and pacemaker. In addition, participants with left bundle branch block, atrial fibrillation, and atrial flutter on the ECG, were also excluded, leaving 7644 participants (87%) available for enrolment. The MatchIt in R package [16] was used to ensure that participants were matched exactly by gender and optimally by age.

Measurements

Blood pressure for both groups was taken after five minutes of rest. The eGFR was calculated for both groups using the CKD-EPI formula [17]. For the control group, blood samples were taken on the day of the visit; for the other group, blood results were obtained from electronic patient records from previous visits closest to their enrolment in the study, which was set at a limit of 4 months. Creatinine was measured by an enzymatic method on a Hitachi 912 (Roche Diagnostics, Mannheim, Germany) and total cholesterol on a Vitros 5600 (Ortho Clinical Diagnostics, Illkirch-Graffenstaden, France) in the Type 1 diabetes group, and both biomarkers were measured using an enzymatic colorimetric method on a Cobas-6000 (Roche, Basel, Switzerland) in the control group. HbA1c levels were measured on the Variant (Bio-Rad Laboratories, CA, USA) for the Type 1 diabetes group and on a G8 HPLC analyzer.
BMI was calculated as body weight per height squared (kg/m2).

Participants were categorised by smoking status (never, previous, current) and alcohol consumption (low, moderate and high) based on completed questionnaires. Low alcohol consumption was defined as less than 7 Danish units/week (84 g); moderate consumption was defined as 7–21 units/week (84–252 g), and high consumption was defined at >21 units per week (252 g).

In the Type 1 diabetes group only, albuminuria was measured in morning spot urine samples using immunoassay. People with an albumin/creatinine ratio <3.4 mg/mmol creatinine were categorized as having normoalbuminuria. People with elevated levels (>3.4 mg/mmol) were subjected to 24-hour sterile urine collections, and they were categorised as part of the microalbuminuria group if two of three consecutive measurements were between 30–300 mg/day, or part of the macroalbuminuria group if the result was >300 mg/day.

Electrocardiogram (ECG)

Resting 12-lead digital 10-second ECGs were recorded in both groups in the supine position after at least five minutes of rest. Automatic measurements of heart rate, QRS duration, JT interval, and QT interval were obtained using Marquette 12SL software (v. 2.41, GE Healthcare, Milwaukee, WI, USA).

Heart rate corrected intervals were obtained using a linear correction [18, 19]. The linear regression model for heart rate-dependence was:

\[l = b + a \times RR + \epsilon, \]

where \(l \) is an interval measurement in milliseconds, \(b \) is the intercept, \(a \) is the scaling constant (i.e. the heart rate-dependence), RR is the average R-to-R interval in milliseconds.
and ε is the residual error. The heart rate corrected intervals, I_c, were obtained for an expected heart rate of 60 bpm by using:

$$I_c = I - a^*(RR-1000).$$

With this method, heart rate-corrected QT intervals (QT_c), QRS durations (QRS_c) and JT intervals (JT_c) were obtained, independent of heart rate (measured by the average R-to-R interval).

<H2>Statistics

Statistics were performed with R version 3.4.3. Continuous variables were reported as mean ± SD and categorical variables as %(n). For categorical values, the χ^2 test was used to calculate differences in proportions. For continuous variables, Student’s t-test was used to calculate mean differences.

The least detectable mean differences were estimated for heart rate, QRS_c duration, JT_c interval and QT interval, with a power of 0.8 at the 0.05 significance level for sample sizes; SD was estimated at 17 ms for the JT_c interval [19], 16 ms for the QT_c interval [19], 14 ms for QRS_c duration [7], and 12 bpm for heart rate [7]. The least detectable mean differences were 1.4 bpm for heart rate, 1.6 ms for QRS_c duration, 2.0 ms for the JT_c interval, and 1.9 ms for the QT_c interval.

Linear-regression models were used to examine the relationship of ECG variables to explanatory variables. Regression lines were deemed different in slope if the interaction term was significant, which was preferable to examining groups separately [20]. Predicted differences in intervals as a function of age were determined using regression models adjusted for sex, BMI, eGFR, systolic blood pressure, total cholesterol, alcohol consumption,
and smoking status. The second order age term was included in the prediction if it was statistically significant and Akaike’s An Information Criterion (AIC) also decreased. Missing observations were not imputed. \(P < 0.05 \) was considered significant.

Results

Demographics and clinical descriptions

In Table 1, the clinical characteristics of people with Type 1 diabetes are compared to those of their age- and gender-matched controls. People with Type 1 diabetes had a lower BMI, lower blood pressure, and lower total cholesterol. Renal impairment was more common in people with Type 1 DM and HbA\(_1c\) levels were higher compared to controls. Smoking status was not different between the groups, but people with Type 1 diabetes consumed more alcohol compared to controls.

Heart rate

Electrocardiographic measurements were significantly different in people with Type 1 DM compared to controls (Table 2). Type 1 diabetes was associated with an increased resting heart rate (RHR) of \(~10\) bpm. RHR for men in the control group was 62±11 bpm vs. 71±13 bpm for men with Type 1 DM. RHR for women in the control group was 65±11 bpm vs. 74±12 bpm for women with Type 1 diabetes. There was no interaction between sex and diabetes for RHR (\(p = 0.6 \)). In people with and without Type 1 diabetes, heart rate increased
with increasing levels of HbA1c. The analysis is presented in the supporting information for this article (Figure S4).

Interval measurements

The QTc increased on average by 3 ms in people with Type 1 DM compared to controls (Table 2). Women had a longer QTc irrespective of diabetes status (men with Type 1 diabetes: 411±16 ms, men in the control men group: 408±19 ms, women with Type 1 diabetes: 416±16 ms, women in the control group: 414±19 ms, \(P=0.4 \) for interaction).

No difference was found in the JTc interval between the two groups (317±17 vs. 316±21, \(P=0.2 \)) and there was no interaction between sex and diabetes (\(P=0.10 \)).

People with Type 1 diabetes had an increased QRSc compared to controls. The QRSc was 100.2±11.0 ms for men in the control group and 101.4±10.8 ms for men with Type 1 diabetes. For women, the QRSc was 90.2±9.4 ms in the control group compared to 92.6±8.2 ms for women with Type 1 diabetes. There was no interaction between sex and diabetes (\(P=0.2 \)).

ECG findings were consistent overall when adjusted for age, sex, BMI, systolic blood pressure, eGFR, total cholesterol, smoking, and alcohol consumption in a multivariate model (Table 3). QRSc, JTc, and QTc did not depend on the HbA1c level in people with Type 1 diabetes.
Age dependencies of ECG intervals

The relationship between QT_c and age is shown in Figures 1 and S1. There was a significant interaction between age and diabetes for QT_c (P<0.004). The relative difference between the groups was assessed with adjustment for sex, BMI, eGFR, systolic blood pressure, total cholesterol, smoking status, and alcohol consumption in the regression model (Figure 1). Compared to controls, QT_c increased relatively in younger people with Type 1 diabetes, and QT_c increased with age in both Type 1 diabetes and controls. The maximal predicted QT_c difference was 13.8 ms (95% CI: 8.6–19.0 ms, P<0.001) at 20 years of age; at 30 years of age the difference was 7.7 ms (95% CI: 5.1–10.3 ms, P<0.001); and 40 years of age the difference was 3.4 ms (95% CI: 1.5–5.3, P<0.001).

Overall, the QRS_c increased in people with Type 1 diabetes, but it did not change with age for either group (Figure S2; age: P=0.5, interaction age-diabetes: P=0.8). The adjusted prediction (Figure 2) yielded the same result (age: P=0.7, interaction age-diabetes: P=0.7).

A contrasting pattern was observed for the JT_c. Mean JT_c did not increase in people with Type 1 DM compared to controls (Table 2); however, as seen in Figures 3 and S3, at a younger age, JT_c increased in people with Type 1 diabetes. This relative increase was not present at an older age (interaction age-diabetes: P<0.01). In both groups, JT_c was longer at an older age. The adjusted prediction (Figure 3) yielded a difference of 10.7 ms (95% CI: 5.4–16.0 ms, P<0.001) at 20 years of age, 5.8 ms (95% CI: 3.2–8.5, P<0.001) at 30 years of age, and 2.2 ms (95% CI: 0.3–4.1, P=0.03) at 40 years of age.
<H1>Discussion</H1>

In the current study, changes in depolarization and repolarization were studied in 855 people aged 18–86 years with Type 1 diabetes who had normal ejection fraction and no known cardiac disease compared to 1710 age- and sex-matched controls from the general population.

The main findings are that JT_c increased relatively in younger people with Type 1 diabetes compared to controls, that QRS_c increased in people with Type 1 diabetes of all ages, and similarly, that QT_c increased with age for people with and without Type 1 diabetes. Furthermore, it was shown that RHR increased in people with Type 1 diabetes even without known cardiac disease.

<H2>Repolarization</H2>

People with Type 1 DM have an overall increased QT_c interval compared to the general population, which is in agreement with previous findings [8,9,21-23]. The QT interval is a composite measure consisting of both the times for depolarization (QRS) and repolarization (JT). In the literature, the QT interval has often been used a synonym for cardiac repolarization [8,23] since QRS duration is assumed to be constant and small. However, depolarization is affected in people with Type 1 diabetes, and therefore the JT interval is a better measure for repolarization [5].

The unchanged JT_c presented in Table 2 is an average across people of all ages. The current study finds a different JT_c relationship with age for people with and without Type 1 diabetes. It was found that JT_c increased at a young age (Figure 3), which is in agreement with the
2001 finding that young people with Type 1 DM have a 6-fold greater risk of QTc prolongation [8]. In support of this, a British study of twins with Type 1 diabetes aged between 10–44 years without ischemic heart disease found increased QTc in the twin with Type 1 DM [9]. At older ages no difference in JTc was found. For this reason, the mean JTc increase over the age range from young person to elderly adult is not significantly different from zero. The QTc-age relationships in both groups are similar to those of the JTc-age relationships.

The Food and Drug Administration (FDA) has set a regulatory threshold of concern for repolarization duration increase of 5 ms [24], and this has been adopted by the European Medicines Agency [25]. Drugs that increase repolarization duration by more than this threshold are potentially proarrhythmic. In this study, the threshold of concern was exceeded in people with Type 1 diabetes at ages <35 years, but not at ages >35 years (Figure 1), which is in agreement with the theory that dead in bed syndrome is caused by ventricular arrhythmias [3].

It could be speculated that hypertension, smoking, BMI, and kidney disease could affect the ECG and the ECG-age relationship. It is for this reason that predicted differences (Figures 1-3) were based on models adjusted for those factors, although all models gave similar results with or without adjustment. Lower blood pressure and total cholesterol levels in people with Type 1 diabetes might be a consequence of the fact that a team of healthcare professionals monitors them closely, and that care is taken to lower modifiable risk factors such as blood pressure and total cholesterol levels.
The fact that repolarization increased only in young people with Type 1 diabetes is in agreement with the theory that repolarization prolongation is involved in the dead in bed syndrome [3]. In support of this, the QTc interval has previously been linked to increased mortality in people with Type 1 diabetes both as a continuous variable and also for the occurrence of prolonged QTc >440 ms or >450 ms [26,27].

Different methods exist to calculate a heart rate-corrected JT interval [5,19,28]. The current study used a linear model for correction, which was found to be superior to the simple subtraction method of $JT_c = QT_c - QRS$ [19]. For the QT interval, the use of Fridericia’s non-linear correction method (cubic root correction) yielded similar results as produced by linear correction (data not shown).

Depolarization

It was found that QRS$_c$ was increased in people with Type 1 diabetes. Although no information about heart rate-corrected QRS duration was available from other studies of people with Type 1 diabetes, some data are available for the non-corrected QRS duration. One study found a shortening of the QRS complex in people with Type 1 diabetes (n=22) compared to controls (n=22) [10]. The participants were mainly very young adults who had no known cardiovascular complications and took no medication except for insulin. Therefore, QRS shortening may well be a feature of elevated heart rate and not of Type 1 diabetes, since the QRS duration physiologically shortens with increasing heart rate [18]. However, in a study of children and adolescents with Type 1 diabetes (n=40), the QRS duration increased compared to controls (n=20) [29].
<H2>Heart rate</H2>

In the current study, people with Type 1 diabetes had an increased RHR of ~10 bpm. A higher RHR of similar magnitude has been reported in smaller studies of Type 1 diabetes [9,10,21], and this finding has now therefore been confirmed in a larger population. An elevated RHR was found to be related to mortality and cardiovascular outcomes in several studies including the general population [30,31] and people with Type 2 diabetes [27] although, surprisingly, one study did not find RHR predicted mortality for people with Type 1 DM [27].

The higher RHR may be caused by a decrease in parasympathetic tone due to autonomic neuropathy [32]. The relative increase in sympathetic tone has previously been hypothesized as a cause of nocturnal death in young people with Type 1 diabetes (i.e. people who suffer from the dead in bed syndrome) [33]. However, other factors such as ventricular remodelling with a decrease in stroke volume may also play a role [12]. It is notable that an increased RHR of 10 bpm is present in people with Type 1 diabetes even without known heart disease, which suggests that diabetic cardiac autonomic neuropathy precedes cardiovascular complications and is therefore not a consequence of it.

<H2>Limitations</H2>

A wide range of ages was used in this study, but findings should not be extrapolated beyond this range. Most participants were Caucasians, and findings cannot be extrapolated to non-Caucasian populations. It is a limitation to the study that HbA1c measurements were not necessarily obtained on the same day of the study for all participants, and also that Cardiac Autonomic Neuropathy was not assessed.
In conclusion, repolarization is impaired in younger people with Type 1 diabetes relative to controls, whereas depolarization is impaired across all ages in people with Type 1 diabetes. Heart rate is increased by 10 bpm in people with Type 1 diabetes. These changes can be observed before clinical cardiac symptoms occur.

Funding sources

This work was supported by The European Foundation for the Study of Diabetes/Pfizer European Programme 2010 for Research into Cardiovascular Risk Reduction in Patients with Diabetes, Düsseldorf, Germany, and The Danish Heart Foundation, Copenhagen, Denmark (#: 12-04-R90-A3840-22725).

Competing interests

None declared.

References

H1>Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1 Heart rate correction using a linear model. Results from linear regression.

Figure S1 QT interval in Type 1 diabetes vs. control.

Figure S2 QRS interval in Type 1 diabetes vs. control.

Figure S3 JT interval in Type 1 diabetes vs. control.

Figure S4 Heart rate vs. glycated haemoglobin in Type 1 diabetes vs. control.
Table 1 Demographics and clinical characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type 1 DM</th>
<th>Control</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>855</td>
<td>1710</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>48.0 (38.0, 59.0)</td>
<td>48.0 (37.9, 58.7)</td>
<td></td>
</tr>
<tr>
<td>Sex, men (% (n))</td>
<td>51.7 (442)</td>
<td>51.7 (884)</td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes duration, years</td>
<td>23 (15, 34)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.6±4</td>
<td>26.3±4</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic BP, mmHg</td>
<td>133±17</td>
<td>135±19</td>
<td>0.004</td>
</tr>
<tr>
<td>Diastolic BP, mmHg</td>
<td>74±10</td>
<td>84±11</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR<60mLmin⁻¹.73m⁻² (% (n))</td>
<td>7.1 (61)</td>
<td>3.6 (61)</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA₁c, %</td>
<td>8.3±1.3</td>
<td>5.4±0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA₁c, mmol/mol</td>
<td>67±14</td>
<td>36±3</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>4.8±0.9</td>
<td>5.3±1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Never smoked (% (n))</td>
<td>44.9 (384)</td>
<td>48.4 (828)</td>
<td>NS(0.22)</td>
</tr>
<tr>
<td>Previous smoker (% (n))</td>
<td>33.9 (290)</td>
<td>32.4 (554)</td>
<td></td>
</tr>
<tr>
<td>Current smoker (% (n))</td>
<td>21.2 (181)</td>
<td>19.2 (328)</td>
<td></td>
</tr>
<tr>
<td>Low alcohol consumption (% (n))</td>
<td>66.1 (565)</td>
<td>72.8 (1245)</td>
<td><0.001</td>
</tr>
<tr>
<td>Moderate alcohol consumption (% (n))</td>
<td>29.1 (249)</td>
<td>21.8 (373)</td>
<td></td>
</tr>
<tr>
<td>High alcohol consumption (% (n))</td>
<td>4.8 (41)</td>
<td>5.4 (92)</td>
<td></td>
</tr>
<tr>
<td>Microalbuminuria (% (n))</td>
<td>19.9 (170)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Macroalbuminuria (% (n))</td>
<td>7.7 (66)</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean ± SD or median (interquartile range) unless otherwise indicated.

Alcohol consumption: low: < 7 Danish units, moderate: 7-21 Danish units, high: >21 Danish units, per week; BP: blood pressure; NA: not available; NS: not significant.
Table 2 ECG parameters for Type 1 diabetes vs. controls. JT was not increased over the entire age range, but was significantly prolonged in young people with Type 1 diabetes (Figure 3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type 1 DM</th>
<th>Control</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>855</td>
<td>1710</td>
<td></td>
</tr>
<tr>
<td>Heart rate, min⁻¹</td>
<td>72±13</td>
<td>63±11</td>
<td><0.001</td>
</tr>
<tr>
<td>RR interval, ms</td>
<td>854±153</td>
<td>974±166</td>
<td><0.001</td>
</tr>
<tr>
<td>QRS, ms</td>
<td>97.1±10.6</td>
<td>95.4±11.4</td>
<td><0.001</td>
</tr>
<tr>
<td>JT, ms</td>
<td>317±17</td>
<td>316±21</td>
<td>NS(0.18)</td>
</tr>
<tr>
<td>QT, ms</td>
<td>414±16</td>
<td>411±19</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are mean ± SD.

NS: not significant.

Table 3 Multivariate adjusted ECG differences between people with and without Type 1 diabetes.

The age dependencies of these relationships are shown in Figures 1-3.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Mean±SD</th>
<th>Model A Δ (95 % CI)</th>
<th>Model B Δ (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, min⁻¹</td>
<td>63±11</td>
<td>9.8 (8.9–10.8), p<0.001</td>
<td>9.8 (8.8–10.7), p<0.001</td>
</tr>
<tr>
<td>RR interval, ms</td>
<td>974±166</td>
<td>-131 (-144 to -118), p<0.001</td>
<td>-130 (-143 to -117), p<0.001</td>
</tr>
<tr>
<td>QRS, ms</td>
<td>95.4±11.4</td>
<td>1.8 (1.0–2.7), p<0.001</td>
<td>1.8 (0.9–2.6), p<0.001</td>
</tr>
<tr>
<td>JT, ms</td>
<td>316±21</td>
<td>1.1 (-0.4–2.7), p=0.16</td>
<td>1.3 (-0.3–2.8), p=0.10</td>
</tr>
<tr>
<td>QT, ms</td>
<td>411±19</td>
<td>2.9 (1.4–4.4), p<0.001</td>
<td>3.0 (1.5–4.5), p<0.001</td>
</tr>
</tbody>
</table>

Model A: corrected for sex, age, BMI, systolic blood pressure, eGR and total cholesterol. Model B: as model A plus correction for alcohol consumption and smoking status.

This article is protected by copyright. All rights reserved.
FIGURE 1 Adjusted differences in QTc. Increased QTc is found in young people with Type 1 DM. The model has been adjusted for sex, BMI, systolic blood pressure, eGFR, total cholesterol, alcohol consumption, and smoking status. Dashed lines represent 95% CI.

FIGURE 2 Adjusted differences in QRSc. The QRSc duration is increased by ~1.7 ms in people with Type 1 diabetes independently of age. The model has been adjusted for sex, BMI, systolic blood pressure, eGFR, total cholesterol, alcohol consumption, and smoking status. Dashed lines represent 95% CI.

FIGURE 3 Adjusted differences in JTc. Increased JTc is only found in young people with Type 1 DM. The result is similar to that of the non-adjusted model. The model has been adjusted for sex, BMI, systolic blood pressure, eGFR, total cholesterol, alcohol consumption, and smoking status. Dashed lines represent 95% CI.