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Abstract

The tendency within engineering is to build increasingly large structures while
minimizing material use. Needless to say, this leads to less conservative designs
and, as such, an increased demand on regular inspection of the structures to
ensure that they maintain adequate reliability through their life cycle. The
inspections are conventionally conducted by sending out trained personnel to
visually assess the integrity of the structures. This procedure can, however,
be associated with high costs due to operational downtime and, for structures
located in terrain not easily accessible, transportation.

A general consensus is that vibration-based structural health monitoring
(SHM), which involves implementing a damage identi�cation strategy to mon-
itor structural integrity using vibration measurements, can play a role in re-
ducing the inspection costs. Numerous SHM techniques have been suggested,
and while the task of detecting whether damage is present or not has been
resolved with reasonable success, a reliable solution has not yet been presented
for the next logical step; namely, to locate the detected damage. There are
many reasons as to why vibration-based damage localization has not yet found
the level of industrial applicability that one would anticipate after decades of
research. One of these reasons is undoubtedly that the vibration features used
in the process, such as modal parameters, lack sensitivity to damage compared
to the sensitivity to noise and other variabilities.

In the present thesis, three new vibration-based damage localization schemes
are proposed that, in one way or another, address the noted sensitivity issue.
The �rst exploration is the CWT-GDTKEO scheme, whose methodological
premise is to seek for damage-induced changes in signal-processed mode shapes
of the structure in question. More speci�cally, the scheme incorporates contin-
uous wavelet transformation (CWT) and a generalized discrete Teager-Kaiser
energy operator (GDTKEO) to capture these changes, and the damage location
is attained using a simple metric comparing processed signals from the states
prior and posterior to damage. In this way, the scheme relies on su�ciently
accurate estimation of the required mode shapes, which, in many application
scenarios, can be di�cult to achieve due to noise and/or poor excitation.

The obvious drawbacks of the CWT-GDTKEO scheme have led to explo-
ration of what are considered the two main contributions of this thesis. The
�rst one is the Subspace Exclusion Zone (SEZ) scheme, which, under certain in-
put conditions, circumvents system identi�cation. The scheme locates damage
by reconstructing shifts in measured �eld quantities using subspaces indexed
by postulated boundaries, the so-called exclusion zones (EZs). The method-
ological concept rests on the fact that shifts in any �eld quantity outside the



boundary of an EZ encompassing the damage can be generated from stress
�elds acting on the aforementioned boundary. The EZs, which are formed in a
theoretical model of the structure prior to damage, are of user-de�ned size, thus
information on size and type of damage is precluded to provide a net robustness
gain. Application examples are presented that clearly demonstrate the robust-
ness of the SEZ scheme in instances allowing for a system identi�cation-free
con�guration.

The second main contribution of the thesis is the Shaped Damage Locating
Input Distribution (SDLID) scheme, which operates unconditionally free of
system identi�cation. The methodological premise is to deploy controllable
inputs that are tailored to actively interrogate one structural subdomain at
a time. When the subdomain containing damage is rendered dormant, the
e�ect of damage and, as such, its induced shift in steady-state vibrations are
canceled. In this way, the SDLID scheme facilitates damage localization using
only few output sensors; in fact, one well-placed may su�ce. This low demand
on output sensors is an attractive feature, which is conventionally only achieved
when employing an approach based on guided waves. However, unlike this
approach with high-frequency waves, which is merely suitable for local integrity
inspection because of small wavelengths and high damping, the SDLID scheme
can operate in a broad band of frequencies.



Resumé

Tendensen inden for ingeniørvidenskab er at konstruere strukturer af tiltagende
størrelse med minimalt materialeforbrug. Dette fører naturligvis til mindre kon-
servative konstruktionsudformninger og, som konsekvens heraf, et forøget be-
hov for regelmæssige inspektioner af strukturerne for at sikre, at de bibeholder
den fornødne pålidelighed gennem deres livscyklus. Inspektionerne udføres
konventionelt ved at sende uddannet personel ud for visuelt at vurdere in-
tegriteten af strukturerne. Denne procedure kan dog være forbundet med høje
omkostninger grundet driftsstop og, såfremt strukturerne er placeret i svært
tilgængeligt terræn, transport.

Der er generel enighed om, at vibrationsbaseret strukturovervågning (SHM),
der involverer implementering af en skadesidenti�kationsstrategi for at overvåge
den strukturelle integritet ud fra vibrationsmålinger, kan spille en rolle i redu-
cering af inspektionsomkostningerne. Adskillige SHM-teknikker er blevet fore-
slået, og mens opgaven med at opdage, om der er en skade eller ej, er blevet
løst med rimelig succes, mangles der stadig en pålidelig løsning til det næste
naturlige skridt; nemlig at lokalisere den opdagede skade. Der er adskillige
grunde til, at vibrationsbaseret skadeslokalisering endnu ikke har opnået det
industrielle applikationsniveau, som ville være ventet efter årtiers forskning. En
af disse grunde er uomtvisteligt, at de vibrationskarakteristika, der anvendes i
processen, såsom modale parametre, udviser manglende sensitivitet mod skade
i forhold til sensitivitet mod støj og andre variationer.

I indeværende afhandling foreslås tre nye vibrationsbaserede skadeslokali-
seringsmetoder, der på forskellig vis adresserer det anførte sensitivitetsproblem.
Den første udforskning er CWT-GDTKEO-metoden, hvis præmis er at søge
efter skadesfremkaldte ændringer i signalbehandlede egensvingningsformer for
den pågældende struktur. Mere speci�kt inkorporerer metoden kontinuerlig
wavelettransformation (CWT) og en generaliseret diskret Teager-Kaiser ener-
gioperator (GDTKEO) for at opfange disse ændringer, og skadens placering
opnås ved sammenligning af processerede signaler fra stadierne før og efter,
skaden er opstået. På denne måde afhænger metoden af en tilstrækkeligt nøj-
agtig estimering af de krævede egensvingningsformer, hvilket i mange applika-
tionsscenarier kan være svært at opnå grundet støj og/eller svag stimulering.

De åbenlyse ulemper ved CWT-GDTKEO-metoden har foranlediget ud-
forskningen af, hvad der betragtes som denne afhandlings to hovedbidrag. Det
første bidrag er Underrumseksklusionszone-metoden (SEZ), der undgår sy-
stemidenti�kation under visse belastningsforhold. I metoden lokaliseres en
skade gennem rekonstruktion af ændringer i målte feltstørrelser ved brug af
underrum, der er inddelt af postulerede grænser, de såkaldte eksklusionszoner



(EZer). Det metodiske koncept hviler på det faktum, at ændringer i en hvilken
som helst feltstørrelse uden for randen af en EZ, der omkredser skaden, kan
genereres ud fra spændingsfelter, som virker på den førnævnte rand. Disse
EZer, som etableres i en teoretisk model af strukturen i sin ubeskadiget tilstand,
er af bruger-de�neret størrelse, hvormed information omkring skadesstørrelse
og �type undlades for at skabe en robusthedsforøgelse. Præsenterede applika-
tionseksempler demonstrerer robustheden af SEZ-metoden i tilfælde, hvor sy-
stemidenti�kation kan undgås.

Det andet hovedbidrag i afhandlingen er den Formede Skadeslokaliserende
Belastningsfordelings-metode (SDLID), der opererer ubetinget uafhængigt af
systemidenti�kation. Den metodiske præmis er at implementere kontrollerbare
belastninger, der formes til aktivt at undersøge ét strukturelt underdomæne af
gangen. Når det underdomæne, der indeholder skaden, er sat i hvile, annulleres
e�ekten af skaden i de stationære vibrationer. På denne måde muliggør SDLID-
metoden skadeslokalisering ved brug af få sensorer; en enkelt velplaceret kan
faktisk være tilstrækkelig. Dette lave behov for sensorer er et attraktivt sær-
præg, der normalt kun ses ved procedurer baseret på guidede bølger. Modsat
denne fremgangsmåde med højfrekvente bølger, der udelukkende er egnet til
lokal integritetsinspektion grundet små bølgelængder og høj dæmpning, kan
SDLID-metoden operere inden for et bredt bånd af frekvenser.
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CHAPTER 1

Introduction

There is general consensus that vibration-based structural health monitoring
(SHM) can play a role in minimizing the costs needed to ensure that struc-
tures maintain adequate reliability through their life cycle. This SHM approach,
which uses vibration signals as the observables from where inferences are made,
has not, however, found the level of industrial applicability that one would an-
ticipate after decades of research. There are many reasons why this is the case,
and while a full discussion is beyond the scope of this thesis, it is safe to say
that the ratio between sensitivity to damage and sensitivity to noise and other
variabilities has been part of the roadblock. In the present chapter, the basic
principles of vibration-based SHM, the theme around which the thesis revolves,
are presented along with current state-of-the-art approaches and the existing
challenges associated with these. The chapter is completed by outlining the
focus, scope, and layout of the remainder of the thesis.

1.1 Vibration-based SHM

Vibration-based techniques for structural integrity inspection have been used
for several years in di�erent industries to enable online detection of damage in
machinery (Rehorn et al., 2005; Jardine et al., 2006; Farrar and Worden, 2013).
However, for structures and structural systems, such as bridges and wind tur-
bines, the use of vibrations for remote integrity monitoring is still primarily a
topic of academic research, albeit industrial platforms and companies focusing
on SHM are starting to emerge. This highlights the di�erence between two
closely related branches of vibration-based integrity inspection, namely, condi-
tion monitoring (CM) and structural health monitoring (SHM), between which
the sole di�erence is the application area. An automated integrity inspection
is referred to as CM if the application is within rotating machinery and SHM
if structures and structural systems are treated (Balageas et al., 2006).

With the clear discrimination between CM and SHM, it is realized that
vibration-based CM is a mature �eld, in the sense that is has made the tran-
sition from being a pure research topic to being applied extensively in the
engineering industry with speci�c certi�cation requirements (DNV GL, 2016).
Contrary, vibration-based SHM is still primarily thought of as a research topic
that is under the transition to become applicable in the industry as a robust and
reliable alternative to regular visual inspection, which constitutes the most com-
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monly adopted approach for structural integrity assessment in practice (Farrar
and Worden, 2013; Burgos et al., 2015).

1.1.1 Motivation for implementing SHM systems

Nowadays, the general tendency within engineering is to build increasingly
large structures while minimizing material use. Obviously, this tendency leads
to less conservative designs with reduced safety margins and, accordingly, an
increased demand on regular inspections to identify any critical damage. Here,
damage is�as it will be throughout the entire thesis�used as a term that covers
any changes to the structural properties, hence including cracks, delamination,
added mass, and changes in kinematic boundary conditions.

With the increased demand on inspection due to less conservative struc-
tures, there are some obvious human, economic, and technical bene�ts of im-
plementing an SHM system to replace (some of) the manual, visual inspections.
One can, for instance, think in terms of safety, where it is noted that the pro-
cess of inspecting especially large structures is associated with some portion
of risk. This can easily be appreciated from Fig. 1.1, which depicts inspection
crews in the process of looking for damage in, respectively, a wind turbine blade
(Fig. 1.1a) and an o�shore platform (Fig. 1.1b). Besides the safety issue, the
visual inspections can also be associated with great costs due to operational
downtime and, in case of structures located in terrain not easily accessible (such
as o�shore), transportation. Again, wind turbines and o�shore platforms serve
as good examples, since an inspection crew must be transported to the site
and the structure to be inspected must be shut down. When the inspection
crew is searching for damage, a technical issue arises, as some damages are
hidden from view. In the context of the wind turbine example, some of the
areas most likely to experience structural deterioration are located within the
blade surfaces, hence making them di�cult, and sometimes even impossible, to

(a) (b)

Fig. 1.1: Manual, visual inspection of (a) a wind turbine blade by rope access (Schroeder,
2013) and (b) an o�shore platform by rope access (by courtesy of MEnD Consulting).
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reach for human inspection (Ciang et al., 2008).

1.1.2 Damage identi�cation

As de�ned in Subsection 1.1.1, damage is taken as changes to the physical
properties of a structure, so the basic principle of vibration-based SHM is to
capture these changes from dynamic response signals measured using installed
sensors. Although a vast amount of di�erent de�nitions of the term structural
health monitoring are available in the literature, there seems to be the con-
sensus that SHM, at the very minimum, involves the process of implementing
a damage identi�cation strategy to monitor structural integrity (Farrar et al.,
2001; Balageas et al., 2006; Kopsaftopoulos and Fassois, 2010). In this con-
text, damage identi�cation refers to the following accumulative classi�cation
provided by Rytter (1993):

1. Detection: is damage present?

2. Localization: where is the damage located?

3. Assessment: how big is the damage?

4. Consequence: what is the safety of the damaged structure?

Damage prognosis and its application readiness

Evaluation of damage consequence, which is also referred to as damage prog-
nosis, is related to the engineering �elds of fracture mechanics and fatigue-life
analysis and is, as such, typically treated separately from the �rst three steps
in the identi�cation tetrad. As can be seen in the review by Si et al. (2011),
numerous studies have addressed prognostic remaining useful life (RUL) es-
timation for structural systems. Conventional approaches include the use of
Bayesian networks (Straub, 2009) and Markov models (Banjevic and Jardine,
2006), and, at present, direct schemes with the aid of virtual sensing (as adopted
from modern control theory) are also gaining attention and showing promising
potential. Especially the results presented by Maes et al. (2016) and Iliopoulos
et al. (2017) suggest that damage prognosis has reached a methodological ma-
turity level that, given damage can be detected, located, and quanti�ed, allows
for application in practice.

Damage characterization and its application readiness

The triad composed of damage detection, localization, and assessment is de-
noted as damage characterization or damage diagnosis in the literature (Bernal,
2002; Kopsaftopoulos and Fassois, 2010). The situation one typically considers
in damage characterization is that of assuming linearity in both the (typically
healthy) reference state and the damaged one. Following this path, the task
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of damage characterization can be viewed as a linear model updating prob-
lem (Friswell and Mottershead, 1995). However, an intrinsic de�ciency in the
model updating approach is that the inverse problem to be solved is often ill-
conditioned, because the parameter space of the model tends to be much larger
than the number of parameters identi�ed from measurements (Udwadia, 1994;
Friswell, 2007). As a consequence, a well-established strategy that has emerged
in order to address these conditioning di�culties is to treat the components of
the characterization triad in a cascade fashion.

Global detection of whether or not damage is present in a structure con-
ventionally boils down to comparing some vibration features, such as vibration
patterns or modal parameters, from the reference state and the current, poten-
tially damaged state. At present, this is typically solved by use of unsupervised
learning algorithms adapted from the �elds of pattern classi�cation and ma-
chine learning (Duda et al., 2001; Bishof, 2006). As such, the basic principle is
to train a statistical baseline model based on the features extracted from the
reference state and then compare the features from the current state to this
model, hence exploiting that a structural damage will prompt changes in the
sti�ness, mass, and/or damping of the system. Of all unsupervised learning ap-
proaches, the by far most employed one for damage detection is classic outlier
analysis, where the discordance between the current features and the baseline
model is quanti�ed via some metric (Worden et al., 2000); with a popular choice
being the Mahalanobis distance (Mahalanobis, 1936). Another popular tech-
nique is the subspace-based scheme proposed by Basseville et al. (2000) and
further developed by Döhler et al. (2014). Here, an identi�ed model from the
reference state is compared to vibration data from the possibly damaged state
using a subspace-based residual function and hypothesis testing. The potential
of these mentioned techniques has been demonstrated in the context of damage
detection by Mevel et al. (1999) for di�erent industrial structures, by Ulriksen
et al. (2015) and Tcherniak and Mølgaard (2017) for an operating wind turbine
blade, by Gres et al. (2017) for a decommissioned bridge, and so forth. It is
thus contended that the detection component, although still a topic of active
research, has reached a technical maturity level that enables implementation
in industrial applications.

Damage localization has, just like the detection component, gained exten-
sive research attention during the last decades (Salawu, 1997; Fan and Qiao,
2011). Localization is typically resolved in a setup where di�erences in fea-
tures, such as transfer functions or modal parameters, from the reference and
damaged states are mapped to the structural domain; either directly, referred
to as data-driven, or by use of a theoretical model of the structure in question,
referred to as model-based. Here, the theoretical model can be established ana-
lytically (when the structure is su�ciently �simple�) or, more generally, based
on a �nite element (FE) formulation. While numerous studies, such as those
more recent by Cao et al. (2014), Marin et al. (2015), and Markvart et al.
(2017), document successful localization of di�erent damages under laboratory
conditions, there has, to the author's knowledge, not yet been presented a ro-
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bust, scalable solution reliable for in-service applications. Obviously, this lack
of success is most likely due to a combination of several aspects, but one general
issue is the robustness to noise when, as done in many investigated schemes,
compressing the vibration signals into a modal model through system identi�-
cation (that is, inferring a mathematical model of the system/structure from
measured data).

Once damage has been located, its quanti�cation is known to be amenable to
a solution in a model updating framework (Hà and Golinval, 2010; Bernal, 2014;
Simoen et al., 2015). In this context, the general procedure is to parametrize
the damage in a physically meaningful fashion (Friswell and Penny, 2002),
formulate a cost function that measures the discordance between the model and
the measurements, and then, �nally, select the values of the parameters that
minimize the cost function. Only few examples of in-situ studies on damage
quanti�cation, as that by Teughels and De Roeck (2004), have been presented,
but it is the author's conviction that this is due to the lack of robust solutions
to the localization component. Consequently, the focus of the present thesis
will be dedicated to this central piece of the damage characterization triad.

1.2 Approaches to damage localization

A common approach in the early vibration-based damage localization schemes
is to map direct changes in the modal parameters, namely, eigenfrequencies,
damping ratios, and mode shapes, to the structural domain. However, since
noise and varying environmental and operational conditions can account for at
least 5 % shifts in modal parameters (Creed, 1987; Farrar et al., 1997; Devriendt
et al., 2014), this general approach has limited robustness in practice. In fact, it
can be shown theoretically that damage-induced shifts of more than 5 % in the
lower modes typically excited by ambient sources will, for most structures and
structural systems, require a deterioration extent above what can be accepted in
practice. This argumentation is supported by numerous experimental �ndings;
such as that by Larsen et al. (2014), who �nd the changes in the �rst seven
eigenfrequencies of a 34 m long wind turbine blade introduced to a 1.2 m long
edge debonding to be statistically insigni�cant.

Di�erent measures have been taken to cope with the lack of sensitivity to
damage of the modal parameters of the lower modes. Before going into details
with these, it appears convenient to separate the localization approaches based
on the prevailing operating condition as;

• output-only cases, where only spatial and statistical characteristics of the
load are known, or can be reasonably assumed, and

• input-output cases, where one has control over the loading or, at least,
can measure it.

Needless to say, it requires more from a practical point of view to implement
input-output schemes, as some measurable and, potentially, controllable input
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must be available. The gain is, on the other hand, that more information
is available, which, when exploited properly, can increase the localization ro-
bustness. Additionally, some input sources can be tailored to excite a high
frequency range where the modes, as a rule of thumb, are more sensitive to dam-
age. In Subsections 1.2.1 and 1.2.2, we will discuss the two classes separately,
and despite what one may �nd logical, we start by discussing the output-only
techniques. This is chosen for three reasons; namely, because output-only tech-
niques can also operate in input-output scenarios, because most methods can
actually operate under output-only conditions, and because there are applica-
tion scenarios in which implementation of external input sources is infeasible.

Another classi�cation that is often employed, at least when referring to
machine learning terminology (Bishof, 2006), is the distinction between super-
vised and unsupervised learning approaches. Supervised learning approaches
have been employed successfully for damage localization in the context of nu-
merical analyses and laboratory experiments by, for example, Kopsaftopoulos
and Fassois (2010) and Sakaris et al. (2016). However, from a general appli-
cation point of view, the requirement of having access to data from di�erent
damaged states prior to the actual damage identi�cation seems troublesome,
and therefore only unsupervised techniques will be treated further in this thesis.

1.2.1 Output-only techniques

The format of the output-only approach is attractive from an industrial ap-
plication point of view, since many engineering structures are excited strictly
by ambient and operational sources. The output-only techniques are conven-
tionally implemented with the assumption that the (ambient) excitation is
distributed randomly both temporally and spatially (Heylen et al., 1998). In
this way, operational modal analysis (OMA) can be applied to infer a modal
model from the measurements.

As documented in the reviews by Salawu (1997) and Fan and Qiao (2011),
many of the early methods dealing with damage localization are model-based
schemes in which shifts in eigenfrequencies are mapped to the structural domain
using an analytical model (Adams et al., 1978; Cawley and Adams, 1979; Ju and
Mimovich, 1988). Most of these methods, however, include damage severity in
the formulation, as they require some estimate of the damage-induced reduc-
tion in local sti�ness. Later on, model-based methods have been proposed that
focus strictly on localization; with an example being the Best Achievable Eigen-
vector technique (Lim and Kashangaki, 1994), which interrogates one element
at a time in the model and announces damage when the span of a subspace
that depends on the element being considered contains the identi�ed eigenvec-
tors. A shortcoming of this method, and many other of the early model-based
localization schemes, is that the experimental feature needs to be available at
all the coordinates of the theoretical model. In practice, this requirement will
never be satis�ed, thus the missing experimental entries must be estimated
through coordinate expansion (Heylen et al., 1998), which will often degrade
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the localization results considerably.
A series of output-only model-based damage localization methods not re-

quiring a coordinate match is the Stochastic Damage Locating Vector (SDLV)
family, which is proposed by Bernal (2006, 2010) as an extension to the deter-
ministic DLV schemes (Bernal, 2002, 2007). In the SDLV schemes, damage is
localized from stress �elds computed in a model subjected to load vectors ex-
tracted from the null space of changes in identi�ed surrogates of the �exibility
or transfer matrix. An extension of the SDLV methods has been proposed by
Marin et al. (2015), who take into account the statistical uncertainties associ-
ated with the embedded output-only realizations and propagate these to the
stress estimates. Subsequently, these stress estimates are aggregated to a single
damage indicator for each element in the model, which is then analyzed in a
hypothesis test for �nal, element-wise discrimination. Based on a laboratory
experiment with a cantilevered beam, Marin et al. (2015) demonstrate the ro-
bustness enhancement obtained by adding the statistical evaluation to reduce
the e�ects of noise. Another model-based method that rests on statistical eval-
uation has been proposed by Basseville et al. (2004) as an extension of the
subspace-based detection technique by Basseville et al. (2000). This method
seeks to locate damage using sensitivities of a residual that is computed from
changes in the observability block with respect to the parameters of a model;
the residual being the one used for detection. A drawback of this method is
that it depends on clustering to reduce the number of unknowns (Balmès et al.,
2008), and the applicability of the method has, to this author's knowledge, only
been tested numerically.

As an alternative to model-based schemes, data-driven schemes have been
employed since the early studies by Savage and Hewlett (1978), Yuen (1985),
and Pandey et al. (1991). One straightforward, data-driven technique is to cir-
cumvent system identi�cation by inspecting the feature shifts extracted during
damage detection and, from these, directly announce damage near the sensor(s)
registering the biggest shifts. This strategy has been adopted by, for example,
García et al. (2015), who attempt to locate damage based on the shifts in prin-
cipal components used for detection in the scheme by García and Trenda�lova
(2014). While the localization proves successful in some cases, it is clear that
the technique lacks robustness.

In more recent studies adhering to the data-driven principle, a popular pro-
cedure is to seek for damage-induced changes in signal-processed mode shapes,
or their spatial derivatives, by use of, for example, Laplacian operators (Rat-
cli�e, 1997; Cao and Qiao, 2009) or wavelet transformation (Douka et al., 2003;
Loutridis et al., 2005; Rucka and Wilde, 2006). In particular, wavelet trans-
formation has been employed extensively to �lter noise and enhance damage-
induced irregularities, and this approach has demonstrated potential in tests
on, respectively, simple beam- and plate-like structures (Douka et al., 2003;
Loutridis et al., 2005; Rucka and Wilde, 2006) and more advanced structures,
such as small-scale wind turbine blades (Doli«ski and Krawczuk, 2009). Ex-
tensions of this wavelet transformation-based approach have been proposed by,
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for example, Cao et al. (2014) for increasing noise robustness, but a general, in-
trinsic drawback of all data-driven methods (when recalling that we only treat
unsupervised techniques) is that the spatial damage localization resolution is
determined exclusively by the deployed grid of output sensors. Thus, a �ne
grid must be available if a high spatial localization resolution is required.

Most of the mentioned localization schemes, both model-based and data-
driven, rely on a parametric model identi�ed from the measurements to provide
transfer matrices, modal parameters, and so forth. Since accurate system iden-
ti�cation can be di�cult to achieve from experimental data due to noise and/or
poor excitation, this parametrization poses an issue in the context of localiza-
tion robustness. To circumvent this, Bernal and Kunwar (2016) have proposed
the Steady State Shift Damage Localization (S3DL) scheme, which, under cer-
tain input conditions, can operate in a system identi�cation-free procedure
where model-based postulated damage patterns are compared to the experi-
mental data in a forward manner. The requirements for the input (which is
not used explicitly in the scheme) are that it is spatially invariant and, as a min-
imum, proportional in the reference and damaged states. These two constraints
make the scheme inapplicable, at least in a system identi�cation-free reference,
for structures subjected solely to ambient excitation. Another methodological
issue is that a decision as to whether the damage is sti�ness- or mass-related
must be made, so if one wishes to interrogate a structure for both types, it has
to be done separately.

1.2.2 Input-output techniques

The use of frequency response functions (FRFs) to localize damage has been
explored extensively in the literature (Doebling et al., 1998; Fan and Qiao,
2011). One of the attractive features of this approach is that the FRFs can be
directly computed when both the input and the output are known (the scenario
prevailing in Fig. 1.2a), thus system identi�cation is avoided. An example of
a model-based FRF technique is given by the deterministic Dynamic Damage
Location Vector (DDLV) scheme by Bernal (2007), which, like its stochastic
counterpart discussed in Subsection 1.2.1, operates on the premise of localizing
damage from �ctitious stress �elds, with damage revealing itself at locations of
zero stress. The stress �elds are computed by use of a theoretical model, which
is subjected to load vectors extracted from the null space of the di�erence in
the frequency response matrix prior and posterior to damage.

Another popular approach is to employ FRFs as parameters in a model
updating context, which has been done, for example, by Wang et al. (1997)
to localize damage in a laboratory frame structure. Data-driven FRF-based
techniques include that by Hà and Golinval (2010), who extract sensitivities of
FRF principal components and conduct sensor-level localization by announcing
damage where the biggest shifts in these sensitivities occur. By doing so, Hà
and Golinval (2010) succeed in locating damage in experimental campaigns
with di�erent structures, including an exploration of a decommissioned bridge.
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Fig. 1.2: Block diagram, as sketched by Ray and Tian (1999), of a linear dynamic system
in (a) open loop and (b) closed loop with sensitivity-enhancing control (SEC).

Thus far, the discussed techniques within both input-output and output-
only approaches are all based on�or, at least, applicable for�systems where
the excitation signals only carry frequencies within the modal range. Another
popular class of techniques is the one based on guided waves, where one or mul-
tiple input sources, such as piezoelectric or electro-mechanical transducers, are
installed on the structure in question to excite high-frequency content. Damage
is then located from observed changes in the re�ections of the (guided) Lamb or
ultrasonic waves that propagate within the structure (Hellier, 2001). The high
frequency content typically ensures relatively high sensitivity to damage, and
as documented in the reviews by Su et al. (2006) and Guan et al. (2017), guided
waves have been employed successfully to locate rather small damages in, for
instance, composite structures and steel pipelines. However, due to the high
frequencies and, as such, small wavelengths and high damping, guided waves
are merely suitable for local integrity inspection under controlled conditions
(Raghavan and Cesnik, 2007).

It is evident that there is a trade-o� between sensitivity to damage and the
size of the area that can be examined. Given that the external input is not
only measurable but also controllable, closed-loop system control schemes, as
illustrated very simplistically in Fig. 1.2b, can be adopted to design conditions
in which the modal model identi�ed from data has increased sensitivity to
damage (when compared to that of the open-loop system). The initial idea to
employ such a sensitivity-enhancing control (SEC) approach dates back to Ray
and Tian (1999), who, from a single-degree-of-freedom (SDOF) consideration
about the sensitivity of the eigenvalue, suggested to select the controller gain to
shift the poles towards lower frequencies. Later on, studies have been presented
that address placement of both eigenvalues and eigenvectors for increasing the
eigenfrequency sensitivity to damage (Jiang et al., 2007), and some of the
few available experimental investigations, as those by Ray et al. (2000) and
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Solbeck and Ray (2005), demonstrate the e�ectiveness of SEC-based damage
localization in beam and frame structures. Obviously, the major drawback
of the SEC-based approach is the amount of hardware required, which can be
impossible to implement in some applications due to technical and/or economic
reasons. Furthermore, one could, from a practical standpoint, argue that the
use of active control poses a restriction, as many civil and mechanical engineers
are still not familiarized with this topic.

1.3 Thesis focus and contributions

All vibration-based localization schemes can, independently of whether they
are based on the output-only or the input-output approach, be classi�ed ac-
cording to the block diagram in Fig. 1.3, where some state-of-the-art schemes
are included to exemplify the premises. One gathers that the predominant issue
in the context of vibration-based damage localization, where the guided waves-
based approach is excluded due to its limited use for in-service applications, is
the ratio between sensitivity to damage and sensitivity to noise and other vari-
abilities. As it has been outlined in the review in the previous section, there are
two obvious paths that one can follow in the attempt to improve this ratio. The
�rst is to reduce the impact of noise and other variabilities, which can be done
by taking into account the uncertainties linked to the system identi�cation or,
if the speci�c situation allows for it, by reducing or even eliminating the need
for extracting a modal model. The other path is, of course, to increase the
sensitivity to damage by designing a closed-loop system with an, in the strict

Vibration data prior and posterior to damage
All schemes

García et al. (2015) and
Bernal and Kunwar (2016)

System identi�cation
Cao et al. (2014) and Marin et al. (2015)

Feature mapping
All schemes

Cao et al. (2014) and
García et al. (2015)

Theoretical model
Marin et al. (2015) and Bernal and Kunwar (2016)

Damage localization
All schemes

Fig. 1.3: Block diagram of (unsupervised) output-only and input-output approaches to
vibration-based damage localization, with examples of schemes adhering to particular paths.
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sense of damage sensitivity, optimized eigenstructure and then proceed with a
modal-based localization scheme.

Another aspect that should be considered in the attempt to improve the
sensitivity ratio is the deployment of output and, potentially, input transducers.
Generally, one has to accept that for most applications only a limited number
of transducers can be used during in-situ explorations, thus the deployment
challenge boils down to distributing these in an optimal way. In this context,
numerous studies have focused on distributing sensors to maximize the prob-
ability of detection (Worden and Burrows, 2001; Parker, 2011; Döhler et al.,
2013), but when it comes to optimal sensor placement for locating damages,
only a few investigations, such as those by Shi et al. (2000) and Ulriksen and
Bernal (2017), have been conducted. Although these clearly demonstrate how
the likelihood of successful localization strongly depends on the sensor distribu-
tion, it is, with the exception of a particular application example in Chapter 5,
not a path pursued in the present thesis.

With focus on fundamental research concerning vibration-based damage lo-
calization, the objective of the present thesis is to develop methods that, in
one way or another, confront the governing sensitivity issue. It is realized that
to optimize the e�ectiveness of a damage localization procedure, it must be
customized to the particular application in question and, accordingly, the gov-
erning operational and environmental conditions. This implies that no single
localization approach is optimal in all cases, and therefore di�erent paths in
the block diagram in Fig. 1.3 are explored. To be speci�c, the contributions of
the present thesis are the following:

1. The parametric, data-driven CWT-GDTKEO scheme, which

• enhances damage-induced mode shape changes by continuous wavelet
transformation (CWT) and application of a generalized discrete Tea-
ger-Kaiser energy operator (GDTKEO);

• localizes damage by comparison of the signal-processed mode shape
signals prior and posterior to damage;

• operates independently of whether the damage is a sti�ness or a
mass perturbation;

• can, in principle, be used in both an output-only and an input-
output context.

2. The conditionally non-parametric, model-based Subspace Exclusion Zone
(SEZ) scheme, which

• localizes damage from orthogonality between model-based subspaces
and an experimental feature;

• operates in a forward procedure where system identi�cation is cir-
cumvented if certain input conditions are met;
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• allows for a user-de�ned spatial localization resolution with postu-
lated model-based boundaries;

• interrogates the structural domain independently of whether the
damage is a sti�ness or a mass perturbation;

• can, in principle, be used in both an output-only and an input-
output context.

3. The non-parametric, model-based Shaped Damage Locating Input Dis-
tribution (SDLID) scheme, which

• localizes damage by shaping inputs to render structural subdomains
dormant and, from this, isolate damage;

• operates in a forward procedure where system identi�cation is un-
conditionally circumvented;

• allows for a user-de�ned spatial localization resolution with postu-
lated damage areas;

• facilitates, in principle, the use of a single output sensor;

• requires controllable inputs.

4. In-situ and in-service application examples with a wind turbine intro-
duced to damage in one of its blades.

The CWT-GDTKEO scheme can be regarded as a further development of
the parametric, data-driven method proposed by Cao et al. (2014). In the
new scheme, a generalization of the discrete Teager-Kaiser energy operator
(DTKEO), as de�ned by Kaiser (1990), is formulated and applied to increase
the robustness to noise and other variabilities. Additionally, a simple damage
metric is proposed for �nal discrimination between damage-induced disconti-
nuities and other signal irregularities in the processed mode shapes.

The SEZ scheme bares strong resemblance to the S3DL scheme by Bernal
and Kunwar (2016). The major di�erence is that the former rests on a the-
oretical premise allowing for structural interrogation without prior distinction
between sti�ness- and mass-related damage. System identi�cation can be cir-
cumvented if the input is spatially invariant and, as a minimum, proportional
prior and posterior to damage. If these input requirements are not complied
with, system identi�cation is necessary. Yet, in this context, it is worth noting
that the experimental feature is less demanding in accuracy compared to that
of the conventional parametric, model-based techniques (Bernal, 2010; Marin
et al., 2015), as the SEZ scheme employs the di�erence between two vectors
and not the kernel of the di�erence between two matrices.

The SDLID scheme constitutes a conceptual alternative to conventional
input-output-based localization approaches, as controllable inputs are shaped
by use of a theoretical model to �deactivate� the damage for determining its
location. The methodological premise of the SDLID scheme is, as such, to
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compare the responses obtained prior and posterior to damage when applying
the shaped inputs; a procedure that, in principle, allows for the use of a single
output sensor. Compared to the SEC-based format, the major di�erence is that
the SDLID scheme operates in open loop, thus active control is circumvented.

1.4 Thesis outline

The remainder of the thesis consists of �ve chapters, including a conclusion,
and six appendices that contain the papers constituting the body of the thesis.
A brief outline of the content in Chapters 2 to 6 and Appendices A to F is
given below.

Chapter 2 presents the background theory on the vibration analysis, system
identi�cation, and basic principles of damage localization needed to, respec-
tively, formulate the three schemes and apply them in relevant contexts.

Chapter 3 introduces the CWT-GDTKEO scheme as an incremental re�ne-
ment of an existing damage localization method. The new scheme is examined
experimentally based on laboratory tests with a full-scale wind turbine blade.

Chapter 4 presents the SEZ scheme, which operates non-parametrically under
certain input conditions. The scheme is tested through simulations, in labora-
tory experiments, and in the context of a real-life operating wind turbine blade.

Chapter 5 explores the SDLID scheme, which rests on the requirement that
controllable inputs are available to shape the vibration response for damage
isolation. The scheme is tested in the context of di�erent numerical examples.

Chapter 6 concludes the main body of the thesis with a summary and dis-
cussion of the material presented. The main results achieved in the project are
outlined and suggestions for future work are provided.

Appendix A contains Paper A by Ulriksen and Damkilde (2016); that is,
�Structural damage localization by outlier analysis of signal-processed mode
shapes � Analytical and experimental validation.�

Appendix B contains Paper B by Ulriksen et al. (2016); that is, �Operational
modal analysis and wavelet transformation for damage identi�cation in wind
turbine blades.�

Appendix C contains Paper C by Bernal and Ulriksen (2017); that is, �Sub-
space exclusion zones for damage localization.�
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Appendix D contains Paper D by Ulriksen et al. (2017); that is, �In-situ dam-
age localization for a wind turbine blade through outlier analysis of SDDLV-
induced stress resultants.�

Appendix E contains Paper E by Ulriksen et al. (2017a); that is, �Input shap-
ing for steady-state damage localization.�

Appendix F contains Paper F by Ulriksen et al. (2017b); that is, �Damage
localization in o�shore structures using shaped inputs.�



CHAPTER 2

Background theory

This chapter provides an overview of the fundamental theory common for the
explored damage localization schemes. In Section 2.1, linear vibration analy-
sis is addressed, and concepts such as modal parametrization and state-space
modeling are introduced. Next, the concept of system identi�cation, one of the
governing challenges within vibration-based damage localization, is outlined in
Section 2.2, and �nally the basic principles of vibration-based damage localiza-
tion are presented in Section 2.3. It is important to note that this chapter by no
means attempts to provide an exhaustive explanation of the included theory, so
references will appear to background material. Furthermore, details concerning
each of the three localization schemes appear in the relevant chapters.

2.1 Linear vibration analysis

Consider a linear and time-invariant (LTI) structural domain, A, that is dis-
cretized with n DOF and subjected to p independent inputs that are gathered
in u(t) ∈ Rp and distributed to A by B2 ∈ Rn×p. With x(t), ẋ(t), ẍ(t) ∈ Rn
being the nodal displacement, velocity, and acceleration vectors, the governing
temporal equation of viscously damped motion is

Mẍ(t) + Cẋ(t) +Kx(t) = B2u(t), x(0) = x0, ẋ(0) = ẋ0, (2.1)

where K, C, M ∈ Rn×n are the sti�ness, damping, and mass matrices for
which it, in general, holds that K � 0, C � 0, and M � 0 (with � denoting
positive de�niteness). When A is supported such that rigid body motion is
prevented, one gets K � 0 and C � 0.

Laplace transformation of Eq. (2.1) yields

M
(
−ẋ0 − sx0 + s2X(s)

)
+ C

(
−x0 + sX(s)

)
+KX(s) = B2U(s), (2.2)

as X(s) = L(x(t))(s) and U(s) = L(u(t))(s) are the Laplace transforms of the
output and the input. In Fig. 2.1a, the coupling between the Laplace variable,
s, and the eigenvalues of the system in Eq. (2.2) is illustrated. The eigenvalue
of the ith mode can, from the homogeneous part of Eq. (2.1), be derived to

λi, λ
∗
i = −ζiωi ± ωij

√
1− ζ2

i , (2.3)
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eλiTs

eλ
∗
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(b)

Fig. 2.1: The ith pole of A in (a) s-domain and (b) Z-domain with inter-sample time Ts.

where j =
√
−1 is the imaginary unit while ωi = |λi| and ζi = −<(λi)/|λi|

are, respectively, the undamped eigenfrequency and the damping ratio. The
latter is here restricted to satisfy ζi ∈ [0, 1), thus the damping is either omitted
or assumed undercritical. The eigenvalues are gathered in the spectral matrix
Λ = diag [λ1, λ2, . . . , λn] ∈ Cn×n and inserted to form

Λc =

[
Λ 0
0 Λ∗

]
. (2.4)

When solving Eq. (2.2) for X(s) and assuming x0 = ẋ0 = 0 and/or steady-
state conditions, one gets

X(s) =
(
Ms2 + Cs+K

)−1
B2U(s) = G(s)B2U(s) (2.5)

with G(s) ∈ Cn×n being the receptance matrix coupling the force input to the
displacement output. It is noticed that evaluation of G(s) along the imaginary
axis yields the frequency response matrix composed of the FRFs, while G(t) =
L−1(G(s))(t) is the impulse response matrix.

2.1.1 Modal parametrization

De�ne Λ0 = diag
[
ω2

1 , ω
2
2 , . . . , ω

2
n

]
∈ Rn×n and Φ = [φ1 φ2 . . . φn] ∈ Rn×n,

where φi is the mass-normalized mode shape of the ith undamped eigenmode.
Since rank (Φ) = n, it holds that ΦTMΦ = M̄ = I and ΦTKΦ = K̄ =
Λ0. Additionally, if the damping distribution is classical, which, as proved by
Caughey and O'Kelly (1965), is the case when M−1C and M−1K commute,
then ΦTCΦ = C̄ = diag [2ζ1ω1, 2ζ2ω2, . . . , 2ζnωn]. From this, the transfer
matrix can be expressed in terms of the modal matrices as
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G(s) =
((

ΦT
)−1

M̄Φ−1s2 +
(
ΦT
)−1

C̄Φ−1s+
(
ΦT
)−1

K̄Φ−1
)−1

=
((

ΦT
)−1 (

M̄s2 + C̄s+ K̄
)

Φ−1
)−1

= Φ
(
M̄s2 + C̄s+ K̄

)−1
ΦT

=

n∑
i=1

φiφ
T
i

m̄iis2 + c̄iis+ k̄ii
=

n∑
i=1

φiφ
T
i

s2 + 2ζiωis+ ω2
i

, (2.6)

and�since Laplace transformation is a linear operation such L−1 (g1 + g2) =
L−1 (g1) + L−1 (g2)�the impulse response matrix becomes

G(t) =

n∑
i=1

φiφ
T
i

ωi
√

1− ζ2
i

e−ζiωit sin

(
ωi

√
1− ζ2

i t

)
. (2.7)

As deduced from Eqs. (2.6) and (2.7), LTI conditions and a classical damp-
ing distribution imply that the vibration characteristics of the ith eigenmode
are governed solely by the modal triplet {ωi, ζi, φi}. Introducing the modal
transformation f : x 7→ x̄, where f(x) = Φ−1x, provides

x(t) = Φx̄(t) =

n∑
i=1

φix̄i(t), (2.8)

which evidences that an n-DOF LTI system with classical damping can be
treated as a sum of n SDOF systems in modal coordinates, x̄i(t). This su-
perposition principle is illustrated in Fig. 2.2. For additional theory on basic
modal analysis, the reader is referred to the book by Heylen et al. (1998).

u(t)

=

+
.

.

.

+

k̄11

c̄11

m̄11

x̄1(t)

φT1 B2u(t)

k̄nn

c̄nn

m̄nn

x̄n(t)

φTnB2u(t)

Fig. 2.2: Modal decoupling of a classically damped LTI n-DOF system with input u(t).
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2.1.2 State-space representation

Continuous-time

We de�ne the state vector z(t)T = [x(t)T ẋ(t)T ] and rewrite Eq. (2.1) into the
state-space form

ż(t) = Acz(t) +Bcu(t) (2.9a)

y(t) = Ccz(t) +Dcu(t), (2.9b)

where the output vector y(t) is some linear combination of displacements, ve-
locities, and/or accelerations, while Ac ∈ R2n×2n, Bc ∈ R2n×p, Cc ∈ Rn×2n,
and Dc ∈ Rn×p are the state transition, input, output, and input-output trans-
mission matrices. The solutions to Eqs. (2.9a) and (2.9a) are

z(t) = eActz(0) +

∫ t

0

eAc(t−τ)Bcu(τ) dτ (2.10a)

y(t) = Cce
Actz(0) + Cc

∫ t

0

eAc(t−τ)Bcu(τ) dτ +Dcu(t), (2.10b)

in which the �rst term of the right-hand-side (in both equations) is the response
due to initial conditions, while the remaining are governed by the input. It
follows that the impulse response matrix can be extracted as

G(t) = Cce
ActBc +Dcδ(t) (2.11)

when δ(t) is the delta function. Obviously, G(t) equals G(t) de�ned in Eq. (2.7)
for displacement measurements and the �rst and second derivatives of G(t) for,
respectively, velocities and accelerations.

Laplace transformation of G(t) yields the transfer matrix

G(s) = Cc (sI −Ac)−1
Bc +Dc, (2.12)

which for displacement measurements coincides with the receptance matrix
derived from Eq. (2.5) and restated in Eq. (2.6). Again, if velocities or accel-
erations are measured, G(s) corresponds to the mobility matrix, sG(s), or the
accelerance matrix, s2G(s). Now, situations may occur where, for example,
accelerations are measured but the receptance matrix is required. In order to
handle this, Bernal (2007) derives the general expression

G(s) = CcA
−b
c (sI −Ac)−1

Bc (2.13)

for computing the receptance matrix; with b = 0, 1, 2, depending on whether
displacements, velocities, or accelerations are measured.

The term (sI −Ac)−1
, which appears in G(s), can be rewritten by use of

Cramer's rule, such

(sI −Ac)−1
=

adj (sI −Ac)
det (sI −Ac)

(2.14)
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with adj(◦) and det(◦) denoting matrix adjoint and determinant. The denom-
inator in Eq. (2.14) is recognized as the characteristic polynomial of Ac, thus
the poles of the state-space system, corresponding to the complex conjugated
eigenvalue pairs de�ned for the second order system in Eq. (2.3) and gathered
in Λc, are collected as the eigenvalues of Ac. Similarly, the eigenvectors of Ac
are collected in

Ψc =

[
Ψ Ψ∗

ΨΛ Ψ∗Λ∗

]
, (2.15)

where, in general, Ψ ∈ Cn×n contains the eigenvectors/mode shapes of the
second order system in Eq. (2.1). However, if classical damping is assumed,
which will be the case throughout this thesis, Ψ = Φ ∈ Rn×n.

Discrete-time

In real applications, vibration responses from a structure are captured with
some sampling frequency, hence yielding discrete signals. If the dynamic system
in question is sampled with an inter-sample time of Ts, the solution to Eq. (2.9a)
at time instant t = (k + 1)Ts, where k ∈ N0 = N ∪ {0}, is

zk+1 = eAcTszk +

∫ (k+1)Ts

kTs

eAc

(
(k+1)Ts−τ

)
Bcu(τ) dτ. (2.16)

Thus, if the zero-order-hold (ZOH) rule is employed, such ∀t ∈ [kTs, (k + 1)Ts) :
u(t) = uk, one gets the discrete state-space representation

zk+1 = Adzk +Bduk (2.17a)

yk = Cdzk +Dduk (2.17b)

with Ad = eAcTs , Bd =
∫ (k+1)Ts

kTs
eAc

(
(k+1)Ts−τ

)
dτBc = A−1

c (Ad − I)Bc, Cd =
Cc, and Dd = Dc.

The poles of the discrete-time system are placed in the Z-domain (with
Z = esTs) and found as the eigenvalues of Ad. If the ZOH rule is applied, one
obtains the discrete-time eigencharacteristics

Λd = eΛcTs (2.18a)

Ψd = Ψc, CdΨd = Φ (2.18b)

for a classical damping distribution. In Fig. 2.1b, the locations in the Z-domain
of the ith pole of Ad and its complex conjugate are shown.

2.2 System identi�cation

One could argue that since only one of the three explored damage localization
schemes is unconditionally parametric, system identi�cation falls under the
category of speci�c details and should, as such, be described in Chapter 3.
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However, as the remaining two schemes are developed, partially, to circumvent
this system parametrization, it seems appropriate to introduce the topic in a
general context

In Subsection 2.1.2, the forward procedure for determining the modal pa-
rameters of an LTI state-space system is outlined. In practice, one does, of
course, not typically know the actual system parameters, K, M , and C, so
system identi�cation is used to infer a model and, as such, the modal param-
eters of the system through measured data. In the present thesis, it has been
chosen to employ a subspace-based approach due to, among other reasons, its
limited extent of parametrization; in principle, only the order of the system
must be selected (Overschee and De Moor, 1996). For a thorough survey of
subspace-based techniques, the reader is referred to the work by Overschee and
De Moor (1996) and Prevosto et al. (1991), while a more general description
of system identi�cation has been provided by Ljung (1987) and, in the context
of structural dynamics, by Peeters and De Roeck (2001).

2.2.1 Basic concepts of subspace identi�cation

If one should derive the quadruplet {Ad, Bd, Cd, Dd} in practice, the dimensions
would, of course, be governed by the number of output sensors and a pre-de�ned
parametric model order (referred to as system order) and not the number of
DOF in the theoretical model. By letting ns and ms < n denote, respectively,
the selected system order and the number of output sensors/measurement DOF,
such zk ∈ Rns and yk ∈ Rms , the quadruplet follows as Ad ∈ Rns×ns , Bd ∈
Rns×p, Cd ∈ Rms×ns , and Dd ∈ Rms×p. Obviously, the state and output
vectors along with the system quadruplet are now truncated editions of those
listed in Eqs. (2.17a) and (2.17b), but they are denoted identically to ease the
notation.

The state-space models established thus far are deterministic, since the
input is assumed known and no measurement noise is present. In a more
general context, we de�ne the combined deterministic-stochastic model

zk+1 = Adzk +Bduk + wk (2.19a)

yk = Cdzk +Dduk + vk (2.19b)

by adding process noise, wk ∈ Rns , and measurement noise, vk ∈ Rms , for
which it is assumed that wk ∼ N (0,Σw) and vk ∼ N (0,Σv). Fairly simpli�ed,
the concept of subspace system identi�cation is to estimate the state using
the output and the input�with the latter being either known deterministi-
cally or characterized statistically�and, from this, compute the quadruplet
{Ad, Bd, Cd, Dd} or a subset hereof (Ad and Cd).

In the review of existing vibration-based damage localization techniques, see
Section 1.2, a clear distinction was made between input-output and output-only
approaches. This is also the case in system identi�cation, where experimen-
tal modal analysis (EMA) and operational modal analysis (OMA) are system
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identi�cation branches treating structural modal analysis in, respectively, a
deterministic (input-output) and a stochastic (output-only) reference. It is
contended that if the input is known, the best approach in terms of damage
localization will be to compute a feature, for example, based on the frequency
response function(s), directly from the input-output relation. Therefore, sys-
tem identi�cation will only be used in the present thesis in stochastic scenarios.

2.2.2 Covariance-driven subspace-based OMA

OMA is conducted from the outset of unmeasured input that complies with the
previously noted assumptions for wk and vk. Thus, Eqs. (2.19a) and (2.19b)
reduce to

z
(st.)
k+1 = Adz

(st.)
k + wk (2.20a)

yk = Cdz
(st.)
k + vk (2.20b)

in which superscript (st.) denotes stochastic. Let P = E(z
(st.)
k yTk ) denote the

cross-correlation between the state and the output and Ri = E(yky
T
k−i) =

CdA
i
dP the output correlations, then

Hq1+1,q2 =


R0 R1 . . . Rq2−1

R1 R2 . . . Rq2
...

...
. . .

...
Rq1 Rq1+1 . . . Rq1+q2−1

 (2.21)

is the block Hankel matrix; with q1 and q2 being time lags (here, q2 = q1 + 1).
The block Hankel matrix possesses the factorization property

Hq1+1,q2 = Oq1+1Cq2 , (2.22)

where

Oq1+1 =


Cd
CdAd
...

CdA
q1
d

 and Cq2 =
[
P AdP . . . Aq2−1

d P
]

(2.23)

are the observability and controllability matrices. Evidently, Cd can be ex-
tracted directly as the �rst block-row of Oq1+1 ∈ R(q1+1)ms×ns , while Ad is
found from the least squares solution of

O↑q1+1Ad = O↓q1+1 (2.24)

with

O↑q1+1 =


Cd
CdAd
...

CdA
q1−1
d

 and O↓q1+1 =


CdAd
CdA

2
d

...
CdA

q1
d

 . (2.25)
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When Ad and Cd have been identi�ed, the eigencharacteristics of the dis-
crete system, {Λd,Ψd}, can, as described in Subsection 2.1.2, be derived from
Ad. Subsequently, the modal parameters can be collected by use of Eqs. (2.18a)
and (2.18b), where it is recalled that the last condition in Eq. (2.18b) holds
only for classically damped systems.

Practical implementation

In the covariance-driven subspace identi�cation, an estimate of Hq1+1,q2 , de-

noted Ĥq1+1,q2 , is obtained by plugging in the empirical output correlations,
that is,

R̂i =
1

N − i

N∑
k=i+1

yky
(ref)T
k−i (2.26)

with yrefk denoting the m0 < ms reference sensors/projection channels, which
are typically selected to reduce the size of the matrices in the identi�cation.
Subsequently, an estimate of the observability matrix is computed as

Ôq1+1 = Û1∆̂
1/2
1 , (2.27)

where Û1 and ∆̂
1/2
1 are the major left singular vectors and the associated

singular values of Ĥq1+1,q2 . Finally, {Âd, Ĉd} and, as such, {Λ̂d, Ψ̂d} can be
determined using the outlined procedure.

There are numerous reasons as to why {Âd, Ĉd} 6= {Ad, Cd}. As listed by
Reynders et al. (2008), some of these are introduction of spurious poles, im-
proper selection of ns, that wk and vk are not truly white noise sequences,
and that the structure may experience substantial non-linearity and/or non-
stationarity. While some of the bias errors can be removed by use of stabiliza-
tion diagrams, the variance errors can, at best, be estimated but not removed.
Procedures for this estimation have been proposed by Pintelon et al. (2007)
and Reynders et al. (2008) and employed in the context of damage localization
by, for example, Marin et al. (2015). This path is, however, not pursued in the
present thesis.

2.3 Basic principles of damage localization

In the preceding sections within this chapter, we have described a structural
domain, A, in the reference state sketched, without elements for illustrative
purposes, in Fig. 2.3a. Consider now the scenario depicted in Fig. 2.3b, where
A is introduced to some local damage in AD and let ˜(◦) denote a quantity in
this state. Then,

M̃ ¨̃x(t) + C̃ ˙̃x(t) + K̃x̃(t) = B̃2ũ(t), (2.28)
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u(t)

A

yi(t)

yj(t)

yk(t)

(a)

ũ(t)

AD

AH
ỹi(t)

ỹj(t)

ỹk(t)

(b)

Fig. 2.3: Structural domain, A, with output sensors (•) measuring in (a) reference state with
loading B2u(t) and (b) damaged state with perturbation in AD and with loading B̃2ũ(t).

and, since damage will be emulated as either a mass or a sti�ness perturbation
in the numerical analyses, we also de�ne

(M −∆M)¨̃x(t) + C ˙̃x(t) +Kx̃(t) = B̃2ũ(t) (2.29a)

M ¨̃x(t) + C ˙̃x(t) + (K −∆K)x̃(t) = B̃2ũ(t). (2.29b)

In Laplace domain, the generalized formulation

X̃(s) = G̃(s)B̃2Ũ(s) (2.30)

is used for a damaged state with some perturbation of the system properties
in the subdomain AD.

Now, as mentioned in Subsection 1.1.2, vibration-based damage localization
is typically resolved in a setup where di�erences in features from the reference
and damaged states are mapped�either directly or using a model�to the
structural domain, A, in order to pinpoint AD. The features are computed
based on the output captured in ms sensors that, according to Eq. (2.9b),
is denoted y(t) and contains displacements, velocities, accelerations, or some
combination hereof.

2.3.1 Sensitivity to damage

To locate, or even detect, a structural damage, it obviously has to introduce
a shift in (some of) the system properties. Section 2.1 outlines how an LTI
system can be described fully by means of the modal parameters, and therefore
it makes sense to discuss the sensitivity to damage of a structural system in the
context of these parameters. As de�ned by, for example, Heylen et al. (1998),
the sensitivities of the undamped eigenfrequencies and mass-normalized mode
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shapes with respect to some parametrization of damage, D , are given as

∂ωi
∂D

=
1

2
φTi

(
−ωi

∂M

∂D
+

1

ωi

∂K

∂D

)
φi (2.31a)

∂φi
∂D

= −1

2
φTi

∂M

∂D
φiφi +

∑
r∈[1,n]\{i}

1

ω2
i − ω2

r

φTr

(
−ω2

i

∂M

∂D
+
∂K

∂D

)
φiφr. (2.31b)

As noted previously, one of the roadblocks for modal parameter-based damage
localization is the limited magnitudes of these sensitivities compared to the
magnitudes of the sensitivities to noise and other variabilities of the modal
parameter estimates. In this regard, the statement made in Section 1.3, say-
ing that the sensor deployment is paramount in the attempt to maximize the
ability to locate damage, stands obvious, as the mode shapes enter in both the
sensitivity formulations in Eq. (2.31).

2.3.2 Selecting interrogation conditions

For damage localization approaches employing modal parameters, one gathers
from Eq. (2.31) that the selection of eigenmodes with which the interroga-
tion is conducted is of great importance. Furthermore, numerous model-based
schemes not incorporating modal parameters operate by projection of sub-
spaces, which are formed from realizations along =(s). As such, the selection
of frequencies at which to interrogate for the location of damage is also pivotal
for these schemes.

The particular application might pose some constraints on the selection
of interrogation frequencies. If, for instance, a structure is subjected to a
harmonic input driving at a �xed frequency, the choice is evident. However,
in cases where a band of frequencies are excited, it is advantageous to select
multiple interrogation frequencies, as this will �lter noise and, accordingly,
increase robustness. These frequencies should, ideally, be selected such that
sensitivity to any type of damage one attempts to locate is ensured.

When evaluating along =(s), one should select locations with a certain
minimum distance to the nearest pole to avoid unduly discrepancy between the
actual structure and its model representation. In this context, Bernal (2010)
asserts that one should generally exclude frequencies that belong to the interior
of circles centered at the identi�ed poles and having radii of 0.125=(λi), where
it is recalled that λi is the ith pole of the reference state described by Eq. (2.1).
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Locating damage through signal-processed mode shapes

Modal parameters are utilized extensively in the context of vibration-based dam-
age localization. Especially the mode shapes appear auspicious, as these inher-
ently provide structural information on a local level. In this chapter, we intro-
duce yet another mode shape-based damage localization scheme, which stands
as an incremental re�nement of an existing method. The new scheme, which
is titled CWT-GDTKEO, uses continuous wavelet transformation (CWT) and
a generalized discrete Teager-Kaiser energy operator (GDTKEO) to seek for
damage-induced shifts in mode shapes. Following a dissemination in Section 3.1,
the motivation for developing the CWT-GDTKEO scheme is summarized in
Section 3.2. Details of CWT and the GDTKEO are outlined in Section 3.3,
and subsequently, in Section 3.4, their deployment in the context of damage
localization is described. A summary of the scheme is provided in Section 3.5,
and in Section 3.6 an application example with a full-scale wind turbine blade
is presented. Lastly, some concluding remarks are drawn in Section 3.7.

3.1 Dissemination

Parts of this chapter have been published in the following:

• Paper A by Ulriksen and Damkilde (2016).

• Paper B by Ulriksen et al. (2016).

3.2 Motivation for the CWT-GDTKEO scheme

The premise of mode shape-based damage localization is to exploit that a dam-
age, in theory, will induce discontinuities in these signals, which, ideally, can be
captured by use of some processing technique(s). Continuous wavelet transfor-
mation (CWT) has, in particular, been utilized extensively in this context, but
by being based on distinguishing damage-induced discontinuities from other
signal irregularities, a de�ciency of this approach is the rather low robustness
to measurement noise.

In order to treat the noted robustness issue, Cao et al. (2014) have proposed
a scheme in which wavelet-transformed mode shapes are processed by use of the
discrete Teager-Kaiser energy operator (DTKEO) to �lter noise in the wavelet



26 Chapter 3. Locating damage through signal-processed mode shapes

transforms. Continuing along this path, the scheme introduced in this chapter,
titled the CWT-GDTKEO scheme, stands as an incremental re�nement of the
approach by Cao et al. (2014). The re�nement consists of a generalization of
the DTKEO (to the GDTKEO) to further enhance robustness to noise and the
implementation of a simple damage metric to ease the damage localization.

Some of the notable merits of the CWT-GDTKEO scheme are that it,
in principle, can work in both deterministic (input-output) and stochastic
(output-only) con�gurations, that it can be adopted for single- and multi-
damage scenarios, and that it is data-driven and, as such, does not rely on a
theoretical model of the structure in question. When it comes to shortcomings,
the obvious ones include, as will be demonstrated in the application example in
Section 3.6, that system identi�cation is required (to extract the mode shapes)
and that the spatial localization resolution is on sensor level. The latter implies
that indications of damage are restricted to locations at which output sensors
are placed.

3.3 Processing spatial mode shape signals

Let Z (X ) ∈ L2(R) be a signal-processed version of the mode shape φi ∈ Rms .
Here, the signal processing typically consists of oversampling through cubic
spline interpolation to remove discontinuities arisen due to a sparse number of
measurement points, extension to remove boundary distortions, and so forth.
This will be described further in the application example in Section 3.6. In
Subsections 3.3.1 and 3.3.2, we outline how Z (X ) is further processed by use
of CWT and the GDTKEO for subsequent damage localization purposes.

3.3.1 Continuous wavelet transformation

Since the CWT-GDTKEO scheme is based on standard theory on wavelet
transformation and, as such, does not contain any advancements for this, only
those CWT aspects deemed most relevant for the particular purpose are pre-
sented here. For a thorough introduction to CWT, the reader is referred to
any textbook on the topic; of which those by Antoine et al. (2004) and Mallat
(2009) are good examples.

In analogy to the well-known Fourier transformation, the one-dimensional
CWT uses inner products to measure the similarity between a spatial or tempo-
ral signal and an analyzing function. In Fourier transformation, the analyzing
function is a complex exponential, whereas CWT employs a so-called wavelet
function, γ(X ) ∈ L2(R). A wavelet has zero mean, that is,∫ ∞

−∞
γ(X ) dX = 0, (3.1)

and is a wave-like oscillation over some interval of space (or time). In Fig. 3.1a,
a particular wavelet function, namely, the fourth-order Gaussian, is depicted
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(a) (b)

Fig. 3.1: Illustration of (a) fourth-order Gaussian wavelet and (b) some dilations and trans-
lations of it.

according to its de�nition as the fourth derivative of the Gaussian function
(Antoine et al., 2004).

Generally, the CWT provides a transform that localizes a function in space
(or time) and scaling. Let γa,b(X ) ∈ L2(R) be a family of wavelets,

γa,b(X ) = |a|− 1
2 γ

(
X − b
a

)
, (3.2)

with scales a 6= 0 and positions b ∈ R dilating and translating the wavelet as
illustrated in Fig. 3.1b. Then, the CWT of the processed mode shape signal,
Z (X ), is given by

T (a, b) =

∫ ∞
−∞

Z (X )γ∗a,b(X ) dX , (3.3)

thus T (a, b) is the inner product of Z and γa,b, which implies that T (a, b) is
non-negligible only if γa,b matches Z (X ).

An important property of wavelets is their number of vanishing moments,
denoted mv. Assume r ∈ N, then

∀r < mv :

∫ ∞
−∞

γ(X )X r dX = 0, (3.4)

which states that a wavelet with mv vanishing moments is orthogonal (or, more
loosely, blind) to polynomials up to degree mv − 1.

Example 3.1. To further clarify the principle and implications of vanishing
moments, the piecewise function, f(X ), illustrated in Fig. 3.2a is analyzed
with the Gaussian wavelet of di�erent orders. f is zero for X ∈ [0, 0.25) and
X ∈ (0.75, 1], linear for X ∈ [0.25, 0.5), and quadratic for X ∈ [0.5, 0.75].
Figs. 3.2b to 3.2d show the results obtained by analyzing f with, respectively,
a �rst-, a second-, and a third-order Gaussian wavelet.
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(a) (b)

(c) (d)

Fig. 3.2: Illustration of the concept of vanishing moments. (a) A function f . CWT of f
with Gaussian wavelet of order (b) 1, (c) 2, and (d) 3.

As seen in Fig. 3.2, the �rst-order Gaussian wavelet, which has a single van-
ishing moment, is blind to the constant part of f , whereas the second-order
wavelet is orthogonal to the constant and linear parts. Finally, due to its three
vanishing moments, the third-order wavelet only sees the three singularities at
X ∈ {0.25, 0.5, 0.75}.

Example 3.1, and, more particularly, Fig. 3.2d, illustrates how the CWT
can be used as a signal discontinuity scanner. This has been exploited, success-
fully, in the context of damage localization by, for example, Douka et al. (2003),
Rucka and Wilde (2006), Ulriksen et al. (2014), and Janeliukstis et al. (2017).
However, as noise is added to the signal, the performance is severely reduced
since the discrimination between noise and damage becomes troublesome; es-
pecially at the lower wavelet scales. For the higher scales, at which noise is
better �ltered, the low spatial frequency reduces the potential for capturing
damage-induced signal discontinuities.

3.3.2 Teager-Kaiser operator

Since the DTKEO was proposed, originally as a discrete signal energy esti-
mator by Kaiser (1990), it has been utilized extensively in speech processing
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(Maragos et al., 1991), image processing (Maragos and Bovik, 1995), and pat-
tern recognition (Cexus and Boudraa, 2007). In recent years, the DTKEO has
been adopted to the �eld of damage localization by, among others, Cao et al.
(2014) and Xu et al. (2015), who have applied the operator to post-damage
wavelet-transformed mode shapes for damage localization in beam and plate
structures.

Replacing X by the sequence {Xj}Ns
j=1, where Ns is the number of sample

points taken in Z , the DTKEO of T at scale a can be found as

Ea,j = T 2
a,j −Ta,j−1Ta,j+1 (3.5)

for j ∈ (1, Ns). To appreciate the physical concept of this energy operator, we
present Example 3.2 in which we, for the sake of simplicity, move from process-
ing wavelet transforms to processing a free-vibration response of a mechanical
SDOF system.

Example 3.2. This example, more or less, summarizes the operations made
by Kaiser (1990) to derive the concept of Eq. (3.5). Consider the undamped
eigenresponse of an SDOF system (depicted in Fig. 3.3) with eigenfrequency ω
and subjected to some non-zero initial conditions. It can easily be shown that
the response becomes

x(t) = A cos(ωt−B), (3.6)

where A and B are the displacement amplitude and phase angle, respectively.

k

m

x(t)

Fig. 3.3: SDOF system subjected to non-zero initial conditions.

Now, if samples xj = A cos(Ωj −B) are available, replacing Ta,j in Eq. (3.5)
by xj yields

Ej = x2
j − xj−1xj+1 = A 2 sin2(Ω), (3.7)

and, if one assumes Ω is small, Ej ≈ A 2Ω2. Recalling that the mechanical
energy in the SDOF system in Fig. 3.3 is given by

Emek =
1

2
mA 2ω2 ∝ A 2ω2, (3.8)

the justi�cation of the energy operator term in DTKEO is clear.

As previously noted, the DTKEO has been applied to wavelet-transformed
mode shapes for damage localization purposes by Cao et al. (2014) and Xu
et al. (2015); with the aim of magnifying the damage-induced singularities. In



30 Chapter 3. Locating damage through signal-processed mode shapes

Xj Xj+i

a

b

|b−Xj | < aO |b−Xj+i| < aO

Fig. 3.4: Cone of in�uences for CWTs evaluated at Xj and Xj+i.

the CWT-GDTKEO scheme, we generalize Eq. (3.5) to the GDTKEO

Ea,j,% = T 2
a,j −Ta,j−%Ta,j+%, j ∈ (%,Ns − %], (3.9)

by introduction of the lag parameter % ∈ N. This parameter serves to further
alleviate the adverse noise e�ects and should, in general, be chosen on the basis
of signal characteristics such as number of sample points and noise conditions.
A simple approach for selecting % is to use the well-known modal assurance
criterion (MAC) proposed by Allemang and Brown (1982). More speci�cally,
Ea,% is calculated for a = max(a) and di�erent %-values. Then, the MAC-value
between the signals with % and %+ 1 is calculated in accordance with

MAC% =

(
ETmax(a),%Emax(a),%+1

)2

ETmax(a),%Emax(a),%E
T
max(a),%+1Emax(a),%+1

∈ [0, 1], (3.10)

and % is chosen as the value at which MAC% exceeds some threshold, Θ, that
has been de�ned a priori. An upper bound for % is given from the cone of
in�uence, which, as illustrated in Fig. 3.4, is the set of all X included in the
e�ective support1, [b−aO, b+aO], of the wavelet at particular values of a and
b. In other words, for a given b, the cone of in�uence encompasses the CWT
coe�cients a�ected by the signal value at that point. Thus, if one applies the
GDTKEO with the aim of gaining insight into the transform at Xj and Xj+i,
% is bounded above to prevent disturbances between the cone of in�uences.

3.4 Locating damage in processed mode shapes

For the purpose of damage localization, CWT is applied to scan the spatial
mode shape signal(s) for discontinuities, and, subsequently, the GDTKEO
serves to facilitate clear distinction between damage- and noise-induced dis-

1The support of γ is the set of points in X for which γ(X ) 6= 0
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continuities. When choosing what wavelet to use, the concept of vanishing
moments comes into play, as the ability to capture any abrupt shift in the
signal depends on the regularity of the analyzing wavelet. Here, regularity is
related to the number of continuous derivatives a function has and, accord-
ingly, the number of vanishing moments. As the number of vanishing moments
increases, so does the ability to capture discontinuities; including those not as-
sociated with damage (such as noise and/or border distortions). Thus, there
is a certain maximum for the operable amount of vanishing moments, which
can be determined based on the signal-processed mode shapes in the reference
state. A thorough discussion on the topic of selecting wavelets for damage
localization has been provided by Rucka (2011).

When the mode shape signals have been processed using CWT and the
GDTKEO, a decision must be made as to the damage location. If multiple
measurements are conducted in the reference state, or if the uncertainties as-
sociated with estimating the mode shapes are stored, the localization should,
as demonstrated in Paper A by Ulriksen and Damkilde (2016), be done in a
statistical framework. If only one realization of modal parameters is available
for each structural state (reference and damaged), we simply compute the dis-
cordance between transformed pre- and post-damage mode shapes through the
`2-norm of the residuals,

Jl =

√√√√ N∑
i=1

(
Ẽl,%(ωi)− El,%(ωi)

)2

, (3.11)

where N modes (each associated with an eigenfrequency, ωi) are evaluated
in ms sensor DOF. Damage is, as such, attained at/near sensor DOF k if
∀l 6= k : Jk > Jl. Additionally, it is worth noting that other sensor DOF
locations at which Jl is high (relative to the general tendency) can be regarded
as damaged. However, for a robust and explicit selection of damaged areas in
such scenarios, a statistical approach should be implemented.

3.5 Summary of the CWT-GDTKEO scheme

1. Extract the spatial mode shape signal, φi.

2. Smooth φi to avoid/reduce sampling-related singularities. The smoothing
can be done using cubic splines.

3. Extend the smoothed mode shape signal to avoid/reduce border distor-
tions by use of, for example, the isomorphism approach (Messina, 2008).

4. Select a wavelet function (following the discussion in Section 3.4) and
calculate the wavelet transform from Eq. (3.3).

5. Apply the GDTKEO in accordance to Eq. (3.9), with a lag parameter,
%, chosen as described in Subsection 3.3.2.
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6. If possible, repeat steps 1 to 5 for other modes to increase the robustness.

7. Compute J = [J1 J2 . . . Jms
] using Eq. (3.11) with the results for

N ≥ 1 mode(s).

8. Declare damage at/near sensor DOF k if ∀l 6= k : Jk > Jl. If multiple
damages are sought for, a statistical procedure is required.

3.6 Application example

In Paper A by Ulriksen and Damkilde (2016), the applicability of the CWT-
GDTKEO scheme has been tested, successfully, in the context of a numerical
study of a beam and experiments with a residential-sized wind turbine blade.
These examples demonstrate the basic principles of the scheme, including the
robustness gained by using the GDTKEO instead of the DTKEO, so in the
present section, we will address a more advanced example; namely, the SSP
34-m wind turbine blade seen mounted on an indoor test rig in Fig. 3.5.

(a)

(b)

Fig. 3.5: SSP 34-m blade on test rig in (a) root-to-tip view and (b) tip-to-root view.



3.6. Application example 33
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17.6 m

20.2 m
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24.7 m
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28.9 m

Fig. 3.6: Inputs sources (•), output sensors (•), and damage (�) along the SSP 34-m blade.

The SSP 34-m blade, which is made from epoxy �berglass and has a length
and mass of, respectively, 34 m and 4,600 kg, is analyzed in the reference state
and a damaged one with a 1.2 m trailing edge debonding, whose location is
illustrated in Fig. 3.6. In both states, the blade is excited by several people hit-
ting it, around the positions highlighted in Fig. 3.6, with heavy wooden sticks
wrapped in foam. This excitation type is chosen in order to resemble the con-
ditions required when conducting OMA, namely, as stated in Subsection 1.2.1,
that the input is distributed randomly both temporally and spatially.

The measurement system consists of 20 triaxial accelerometers (B&K type
4524-B) mounted on the leading and the trailing edge at ten stations along
the blade, see Fig. 3.6. Data from the accelerometers are recorded during ap-
proximately seven minutes (corresponding to at least 500 oscillations at the
lowest frequency of interest) through �ve 12-channel B&K LAN-XI data acqui-
sition modules of type 3053-B-120. In each of the two structural states, four
measurement sequences are conducted.

3.6.1 System identi�cation

The modal parameters of the blade in both structural states are estimated
using the stochastic subspace identi�cation algorithm described in Section 2.2.

Table 3.1: 95 % con�dence intervals for estimated eigenfrequencies, ωi, and damping ratios,
ζi, of the SSP 34-m blade. Here, FW=�apwise, EW=edgewise, and TO=torsion.

Reference state Damaged state

Mode ωi

2π (Hz) ζi (%) ω̃i

2π (Hz) ζ̃i (%)

1st FW 1.36± 0.01 0.99± 0.42 1.35± 0.01 0.64± 0.69

1st EW 1.86± 0.01 0.76± 0.14 1.86± 0.01 0.62± 0.27

2nd FW 4.21± 0.00 0.19± 0.08 4.21± 0.01 0.26± 0.10

2nd EW 7.12± 0.00 0.30± 0.08 7.12± 0.01 0.32± 0.06

3rd FW 9.19± 0.06 1.32± 0.21 9.17± 0.01 1.07± 0.20

1st TO 12.40± 0.02 0.53± 0.06 12.37± 0.01 0.55± 0.14

3rd EW/4th FW 14.16± 0.10 1.18± 0.50 14.19± 0.06 1.11± 0.06

4th FW/3rd EW 14.99± 0.01 0.55± 0.07 14.98± 0.01 0.61± 0.06
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In all the eight measurement sequences (four per structural state), the eight
lowest eigenmodes have been identi�ed, and in Tb. 3.1 the eigenfrequencies
and damping ratios are listed with their 95 % con�dence intervals. Here, it is
noted that, with reference to Fig. 3.6, edgewise is in-plane and �apwise is out-
of-plane, and the seventh and eighth modes are, as such, combinations of edge-
and �apwise bending modes. As can be deduced from Tb. 3.1, the introduction
of the 1.2 m long trailing edge debonding does not cause a consistent, signi�cant
shift in any of the identi�ed eigenfrequencies or damping ratios.

Fig. 3.7: Flapwise (◦) and edgewise (�) components of the �rst eight mode shapes of the SSP
34-m blade in reference (�) and damaged (· · · ) state. Damage is located at X ∈ [18.8, 20].
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The identi�ed mode shapes are sketched in Fig. 3.7, with each modal dis-
placement value taken as a combination of the extracted values at the same
radial coordinate of the blade, see Fig. 3.6. In this way, the sketched bending
modes represent the mean of these pairs, while the torsion mode, as described
further by Larsen et al. (2014), is found solely from the �apwise components. By
close inspection, it becomes clear that direct comparisons of the mode shapes�
for example, through the coordinate modal assurance criterion (COMAC) pro-
posed by Lieven and Ewins (1988)�do not provide consistent information on
the actual location of the damage.

3.6.2 Localization results

The CWT-GDTKEO scheme is applied to the �apwise components2 of the
mode shapes presented in Fig. 3.7 in the attempt to locate the trailing edge
debonding at X ∈ [18.8, 20]. Each mode shape is smoothed using cubic spline
interpolation with a spatial sample increment of 0.1 m, and, subsequently, the
isomorphism approach by Messina (2008) is implemented to extend the mode
shape signals to shift the boundary distortions outside the physical domain, X .

Based on the processed mode shapes signals in the reference state, it has
been chosen to conduct the CWT using the Gaussian fourth-order wavelet
depicted in Fig. 3.1, as it is the highest order of wavelet functions not yielding
severe boundary distortion within X . Subsequently, the procedure outlined in
Subsection 3.3.2 is employed to select the lag parameter, %, in the GDTKEO.
Here, the threshold is set, rather heuristically, to Θ = 0.99, which yields % = 3.

With the selected settings, and if all N = 8 modes are used in Eq. (3.11), the
CWT-GDTKEO scheme provides the results shown in Fig. 3.8a. The results
are for one measurement sequence from the reference state and one from the
damaged, and we see that the damage is correctly localized. In this context,

(a) (b)

Fig. 3.8: Localization of damage at X ∈ [18.8, 20] in SSP-34m blade using the CWT-
GDTKEO scheme with % = 3 and (a) N = 8 and (b) N = 6 (�rst six modes).

2Preliminary studies have shown that the damage cannot be localized using the edgewise
mode shape components.
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it is worth stating that similar results are obtained for all combinations of
reference- and damaged-state sequences. If we, instead of using all eight modes,
only process the �rst N = 6, the results depicted in Fig. 3.8b are obtained.
Under these conditions, the CWT-GDTKEO scheme evidently fails to locate
the damage, which is a direct consequence of the insu�cient information on
the damage contained in the mode shape estimates for the �rst six modes.

3.7 Concluding remarks

This chapter has been dedicated to the parametric CWT-GDTKEO scheme,
whose methodological premise is to seek for damage-induced changes in signal-
processed mode shapes of the structure in question. More particularly, the
scheme incorporates CWT and a GDTKEO to capture these changes, and the
discrimination between undamaged and damaged locations is obtained using a
simple metric comparing signals from the states prior and posterior to damage.
As such, the CWT-GDTKEO scheme is an incremental re�nement�cast to
increase robustness to noise�of an existing method.

The applicability of the proposed scheme has been examined in the context
of experimental work with a 34 m long wind turbine blade introduced to a
1.2 m trailing edge debonding. It is found that the damage can be located using
the CWT-GDTKEO scheme if all the identi�ed blade modes is treated, which
clearly points out the issue related to using system identi�cation in the context
of damage localization. Namely, even in the controlled laboratory conditions
explored in the example, the damage-induced shifts in the modal parameters
of the lower modes are generally camou�aged by the uncertainties associated
with the parameter estimation. Only by inspecting higher modes, in this setting
the seventh and eighth, we are able to capture the damage-induced shift in the
mode shapes. Since excitation of such high modes typically requires an external
input source, the previous claim of the scheme being generally operable in
output-only scenarios is questionable. It seems reasonable to conclude that the
CWT-GDTKEO scheme, in general practice, merely applies to deterministic
scenarios, in which the input can be tailored to excite higher modes. As such,
the argument made in Subsection 2.2.1 is recalled; namely, that if the input is
known, the best approach in terms of damage localization will be to circumvent
system identi�cation.



CHAPTER 4

Model-based subspace projections for damage localization

The observations made in the previous chapter call for exploration of non-
parametric approaches for damage localization. This chapter presents the model-
based Subspace Exclusion Zone (SEZ) damage localization scheme, which op-
erates in a forward and, under certain input conditions, non-parametric proce-
dure. The methodological premise is to form subspaces indexed by model-based
postulated boundaries, so-called exclusion zones (EZs), and then declare dam-
age within the particular EZ with which a reconstruction of the damage-induced
response shifts is possible. After a dissemination in Section 4.1, the chapter
proceeds by providing the reasoning behind introducing the SEZ scheme. This
is done in Section 4.2, and then the physical principle of EZs is described
in Section 4.3. Subsequently, the implementation of EZs for damage locali-
zation is outlined in Section 4.4, followed by a brief summary of the scheme
in Section 4.5. The chapter ends with numerical and experimental application
examples in Section 4.6 and conclusions in Section 4.7.

4.1 Dissemination

Parts of this chapter have been published in the following:

• Paper C by Bernal and Ulriksen (2017).

• Paper D by Ulriksen et al. (2017).

4.2 Motivation for the SEZ scheme

The application example in Section 3.6 emphasizes the issue of compressing
vibration data into a modal model while preserving su�cient information on
the damage. Motivated by this, Bernal and Kunwar (2016) have developed
the S3DL scheme, which operates in a non-parametric con�guration if certain
input conditions are complied with. With reference to Eqs. (2.29a) and (2.29b),
these conditions are B̃2 = B2 and ũ ∝ u; with the latter being guaranteed in
Laplace domain for single-source excitation.

As described in Subsection 1.2.1, the premise of the S3DL scheme is to com-
pare an experimental feature to model-based analytical subspaces and declare
damage based on orthogonality (or parallelism) between the subspaces and the
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feature. Since each analytical subspace is derived by postulating a speci�c
damage pattern in a model of the reference structure, the structural interro-
gation rests on an assumption of the nature of the damage. More speci�cally,
a decision has to be made a priori as to whether a sti�ness- or mass-related
damage is to be located. This is exempli�ed in Example 4.1.

Example 4.1. Fig. 4.1a depicts a cantilever beam, which has a length of L
and is assigned a material model corresponding to typical structural steel. A
damaged state is formed by smearing extra mass across the fourth element in
the FE model, and in both structural states the single-source excitation, F (s),
acts. Since the example is treated analytically, the further nature of the input
is without relevance.

F (s)

L

(a) (b)

Fig. 4.1: Locating mass added to element 4 of a cantilever beam model. (a) Beam model
with boundary conditions. (b) Localization results obtained by postulating element-wise
mass (∆M) and sti�ness (∆K) damages in the S3DL scheme.

Now, if the S3DL scheme is implemented with damage patterns corresponding
to mass perturbations across entire elements, it is seen in Fig. 4.1b how the
scheme works as intended, as κS3DLl = 0 indicates damage. However, if damage
is postulated as being sti�ness-related, the scheme evidently fails to provide
localization.

In practice, one can obviously choose to carry out interrogations separately
for the two damage types using the S3DL scheme, but since it operates in
a forward procedure, this can quickly become too time-consuming for large
structures and structural systems. We therefore introduce the SEZ scheme
as an alternative that, compared to the S3DL scheme, distinguishes itself by
operating without the requirement of explicit discrimination between sti�ness-
and mass-related damages. Besides this clear distinction, the two schemes
are almost identical in the way they operate. In the SEZ platform, so-called
exclusion zones (EZs) of user-de�ned sizes are used as �damage patterns� to
interrogate for damage. In this way, information on size and type of the damage
is precluded, hereby providing a net robustness gain. Also worth noting are
the facts that no inverse problem is solved (hence ensuring scalability) and that
arbitrary non-linear behavior in the damaged region �ts within the theory.
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4.3 Exclusion zones

Generally, an EZ is any closed region (not necessarily simply connected) within
a domain. As such, an arbitrary �eld quantity outside the boundary of an EZ
can be reconstructed by removing the interior of the EZ and adding stress �elds
on the noted boundary. The principle is demonstrated in Example 4.2.

Example 4.2. To appreciate the principle of EZs and, more particularly, the
reconstruction of a �eld quantity outside an EZ, consider the �xed-�xed linear
Euler-Bernoulli beam system illustrated in Fig. 4.2a. The beam is partitioned
into three subdomains, namely, A1, A2, and A3, of which the second is now
taken as an EZ. This yields the con�gurations sketched in Fig. 4.2b, where the
resulting forces and moments have been applied to ensure static equilibrium.

f

A1 A2 A3

(a)

f
2

f
2

fL
8

(b)

L
4

L
4

L
2

(c)

Fig. 4.2: Static beam system. (a) Full system with three subdomains, Ai. (b) A2 taken
as an EZ (with the bending moment being zero at the free end of A1 according to the full
system). (c) Displacement �elds for the full (�) and reconstructed (•) systems.

Using a standard way of determining the displacement �elds for the systems
in Figs. 4.2a and 4.2b, the results in Fig. 4.2c are obtained. Clearly, the dis-
placement �eld outside the EZ has been reconstructed by removing the EZ
interior and adding �stresses� to the boundary. For more information on how
to compute displacement �elds, the reader is referred to any textbook on beam
mechanics; of which that by Krenk and Høgsberg (2013) is an example.
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EZ

(a)

EZ

(b)

Fig. 4.3: EZ composed of (a) decoupling rotational DOF in adjacent beam elements and
(b) void with translational DOF on its boundary.

While the system treated in Example 4.2 is extremely simple, it is obvious
that the EZ principle is general for linear (and, in a dynamic context, time-
invariant) systems. Other examples can be seen in Fig. 4.3, where an EZ is
taken as, respectively, the decoupling of rotational DOF in an FE frame model
(Fig. 4.3a) and a void within a two-dimensional FE model formulated using
�rst-order quadrilateral elements (Fig. 4.3b).

4.4 Locating damage using exclusion zones

Thus far, the EZ discussion has been focusing on reconstructing an absolute
�eld quantity. In the present section, we show how this principle adapts to re-
constructing shifts in �eld quantities using the SEZ damage localization scheme.

Now, if the structural domain A is introduced to a damage that yields some
system perturbation, it follows directly from Eq. (2.30) that

X̃(s) = G̃(s)B2U(s), (4.1)

as it, temporarily, is assumed that the loading is the same in the damaged state
and the reference one. This perturbed con�guration is depicted in Fig. 4.4a,
where the domain is partitioned such A = AH ∪ AD. AH and AD are, re-
spectively, the healthy subdomain and the subdomain containing the damage,
hence implying that AD is unperturbed in the reference state seen in Fig. 4.4b.

Theorem 4.1. Let the domain A = AH ∪AD be excited by B2U(s) in both the
reference state and a damaged one with some change in AD. Let the boundary
between AH and AD be denoted by Γ, which is discretized to nΓ DOF. Then, a
change in any �eld quantity observed at ms locations in AH can be generated
from nΓ linearly independent stress �elds acting on Γ if ms > nΓ.
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U(s)

AD

AH
Γ

µ̃(s)

=

(a)

U(s)

µ(s)

+

(b)

∆µ(s)

(c)

Fig. 4.4: Domain A subjected to loading B2U(s), with (a) showing the perturbed state,
(b) the reference state, and (c) the di�erence between the two states.

Proof. With µ(s) and µ̃(s) denoting the linearly independent stress �elds acting
on Γ in, respectively, the reference state and the damaged one, then µ̃(s) =
µ(s) + (µ̃(s)− µ(s)) = µ(s) + ∆µ(s). De�ne ∆Y (s) = Ỹ (s)−Y (s), where Y (s)
is the Laplace transform of the temporal output as de�ned in Eq. (2.10b), and
assume linearity in AH from which ms realizations of ∆Y (s) = Ỹ (s) − Y (s)
are captured for B̃2Ũ(s) = B2U(s). Given ms > nΓ, it follows directly from
Fig. 4.4 that ∃f : ∆µ(s) 7→ ∆Y (s).

Remark 4.1. A condition for Theorem 4.1 to hold is that AH is linear in both
states. AD can, however, contain any non-linearity in the damaged state.

Remark 4.2. Note that Γ does not need to be the boundary of AD. As long
as Γ encompasses a region in which AD is fully contained, Theorem 4.1 holds.
For the sake of simplicity, the acting stress �eld is still denoted ∆µ(s).

Remark 4.2 points to a central feature of the SEZ scheme, namely, that it
operates with user-de�ned EZs in the interrogation. The premise is to locate
damage by reconstructing the observed �eld quantity shifts using a model of
the structure, in which the EZs are cast one at a time. The approach, therefore,
does not point directly to the location of damage, but rather allows one to test
whether it is in the interior of any cast EZ. From Fig. 4.4, it is evident that the
reconstruction is possible when the implemented EZ encompasses the damage.

4.4.1 Reconstructing �eld quantity shifts

The actual stress �eld acting on Γ is generally unknown and will therefore not
be used explicitly for reconstruction purposes. Instead, we de�ne

W(s)∆µ(s) = ∆Y (s), (4.2)
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where W(s) ∈ Cms×nΓ , with ms > nΓ, is a basis for all the possible di�erences
in the observed �eld derived from nΓ linearly independent stress �elds on Γ.

The premise of the SEZ scheme is to compute the matrix W(s) for one
EZ at a time in an analytical model of the structure in its reference state and
then compare this to the observed shifts, ∆Y (s). Assume that the lth EZ is
implemented and let βl(s) denote the stress pattern on the boundary of this
EZ. Since rank

(
Wl(s)

)
= nΓl

, there exists a pseudo-inverse

W†l (s) =
(
WT
l (s)Wl(s)

)−1WT
l (s) (4.3)

such that the least squares solution to Eq. (4.2) for EZ l is

β̂l(s) = argmin
βl(s)

‖Wl(s)βl(s)−∆Y (s)‖2 =W†l (s)∆Y (s), (4.4)

which will yield a residual

εl(s) =
(
I −Wl(s)W

†
l (s)

)
∆Y (s) (4.5)

that, for ∆Y (s) 6= 0 and under ideal conditions, will be a zero vector if and
only if the correct EZ is postulated. Here, correct adheres to Remark 4.2 and
implies that the interior of the speci�c EZ contains the structural damage. So,
if k is assumed to be the correct one, we get

∆Y (s) ∈ R
(
Wk(s)

)
, (4.6)

where R denotes range, which, accordingly, implies rank de�ciency of the ma-
trix

[
Wk(s) ∆Y (s)

]
.

4.4.2 The analytical subspace

With reference to Eqs. (4.4) and (4.5), the experimental feature is, of course,
�xed throughout the structural interrogation, so the operation with this is
merely restricted to estimating it and subsequently treating it as a constant.
The analytical subspace for each implemented EZ must be populated by the-
oretical quantities computed using a linear (and, in a dynamic context, time-
invariant) model of the structure in its reference state. Since the content of the
analytical subspace depends on whether the context is static or dynamic, we
treat these scenarios separately in the following. For notational convenience,
we skip the explicit reference to the lth EZ.

Static context

If the interrogation is conducted in a static context, that is, s = 0, and there are
no probing loads in the interior of AD, the constraint ofms > nΓ can be relaxed
to ms + mc > nΓ, where mc is the number of static equilibrium conditions.
De�ne W T =

[
WT ΞT

]
∈ RnΓ×(ms+mc) and θT =

[
∆Y T 0

]
∈ R1×(ms+mc),
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where Ξ ∈ Rmc×nΓ and 0 ∈ R1×mc express the static constraints for the EZ.
Then, the residual in Eq. (4.5) is expanded to

ε =
(
I −W W †) θ, (4.7)

whereW is determined from static analyses with nΓ linearly independent stress
�elds acting on the boundary of the EZ in an n0-DOF model with a sti�ness
matrix, K ∈ Rn0×n0 , incorporating the EZ.

Dynamic context

The dynamic extension of the static context follows by operating at s 6= 0 and,
of course, without static constraints, thus ms > nΓ must be imposed. If the
damping is assumed classically distributed, which is not required but allows for
e�ciency in the approach, the receptance matrix for the model implementing
a particular EZ can be expressed as

G (s) =
(
M s2 + C s+ K

)−1
=

n0∑
i=1

φ̄iφ̄
T
i

s2 + 2ζ̄iω̄is+ ω̄2
i

, (4.8)

where ω̄i, ζ̄i, and φ̄i are the eigenfrequency, damping ratio, and mass-normalized
eigenvector of the ith mode in the n0-DOF system with mass, damping, and
sti�ness matrices, M , C , K ∈ Rn0×n0 , that all incorporate the EZ.

De�ne, for all h ∈ [1, nΓ], a load vector, F (h)(s) ∈ Cn0 , that holds only
one non-zero entry, located at DOF Th, and de�ne the resulting steady-state
displacement response as X (h)(s) ∈ Cms . If Y contains the indexes of the ms

measurement DOF, one �nds

X (h)(s) = GY•(s)F
(h)(s) =

n0∑
i=1

φ̄Yiφ̄Thi
s2 + 2ζ̄iω̄is+ ω̄2

i

F
(h)
Th (s) (4.9)

from which steady-state velocities, accelerations, and strains can, if required,
be computed; with the last one as a linear map of the displacements. In this
way, the hth column in the interrogation matrix,W(s), is composed of X (h)(s)
or some spatial or temporal derivative hereof.

4.4.3 Structural interrogation

Assume that the system change is due to structural damage and let, as pre-
viously, the kth EZ be the correct one; in the sense that it fully contains the
damage. Hereby, we �nd, under ideal conditions and with reference to Eq. (4.5),
that εk ≡ 0, which implies that the singular value

σk =
√
εTk (s)εk(s) (4.10)

will be zero. Obviously, this will not be the case in real applications where
di�erent discrepancies will arise. The e�ects of these in the context of operating
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with the SEZ scheme will be treated in the following.

Handling load discrepancy between the experimental states

In real applications, there may be a pronounced discrepancy between the in-
puts during the experimental campaign in the di�erent structural states, hence
precluding the use of ∆Y (s) in a non-parametric context. In those cases where
there is proportionality between the loading in the di�erent states, which, for
instance, is always the case in the Laplace domain when the excitation is a single
source kept spatially �xed, the SEZ scheme can still operate non-parametrically
if the experimental feature is taken as

[
Ỹ (s) Y (s)

]
.

Proposition 4.1. Let B2 ∈ Rn×p be the input distribution matrix for U(s),
Ũ(s) ∈ Cp, which are the Laplace domain input histories in, respectively, the
reference state and the damaged one. If p = 1 and Ũ(s) 6= U(s), replacing
∆Y (s) by

[
Ỹ (s) Y (s)

]
will, with reference to Eq. (4.5), yield a residual εk(s) ∈

Cms×2, whose smallest singular value is zero if EZ k encompasses the damage.

Proof. The proof follows, in full analogy to the approach adopted by Bernal
and Kunwar (2016), by letting Y (s) and Ỹ (s) be the displacements in the two
structural states obtained by applying, respectively, U(s) and Ũ(s) with B2.
Then, it can be shown that

Y (s) = G(s)B2U(s) (4.11a)

Ỹ (s) = G(s)B2Ũ(s) +Wk(s)βk(s), (4.11b)

where Eq. (4.11a) follows directly while Eq. (4.11b) is derived through simple
manipulation of previous equations. Subtracting Eq. (4.11a) from Eq. (4.11b)
and de�ning ∆U(s) = Ũ(s)− U(s) yield

− Ỹ (s) + Y (s) +G(s)B2∆U(s) +Wk(s)βk(s) = 0, (4.12)

which, when letting

G(s)B2∆U(s) = Y (s)
∆U(s)

U(s)
= Y (s)η(s), (4.13)

can be written as [
Ỹ (s) Y (s) Wk(s)

]  −1
1 + η(s)
βk(s)

 = 0. (4.14)

This leads to the assertion since [Ỹ (s) Y (s) Wk(s)] will be rank de�cient when
EZ k fully contains the damage; independently of what experimental feature is
employed.

When operating with
[
Ỹ (s) Y (s)

]
, the smallest singular value of the resid-

ual εl(s) ∈ Cms×2 computed from Eq. (4.5) will, as in the case with εl(s) ∈ Cms ,
be denoted σl. As such, σk = 0 in cases where B̃2 = B2 ∈ Rn and Ũ(s) 6= U(s).
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On discrepancies between the subspaces

In order to establish each analytical subspace, a model is used and loads are
applied to the corresponding EZ boundary. Needless to say, the actual loads
acting on the boundary are not known, so a discrepancy between the model
formulation and the experimental conditions will generally be introduced. To
parametrize this discrepancy, the scalar α ∈ R is introduced such we, in the
cases where B̃2 = B2 and Ũ(s) = U(s), can write

αWl(s)βl(s) = ∆Y (s) =⇒ ∆Y (s)− αWl(s)
1

α
W†l (s)∆Y (s) = εl(s), (4.15)

as expected since, by de�nition of subspaces, R
(
αWl(s)

)
= R

(
Wl(s)

)
. Thus,

if the loads di�er by a scaling between the model formulation and the experi-
mental interrogation, the SEZ scheme still operates as intended.

Besides discrepancies between the actual loading and the one applied to the
model, factors such as measurement noise, signal truncation, environmental
and operational variability, and model errors will inevitably be present. Let
δY (s) and δWl

(s) denote such perturbations/variabilities in, respectively, the
experimental feature and the model implementing EZ l, and de�ne

Hl(s, α) =
[
∆Y (s) + δY (s) α

(
Wl(s) + δWl

(s)
)]
, (4.16)

which, in order to be rank de�cient when l = k and hereby provide σk = 0, must
comply with R

(
∆Y (s)+δY (s)

)
⊆ R

(
Wk(s)+δWk

(s)
)
and, as a consequence of

Eq. (4.6), δY (s) ∈ R
(
δWk

(s)
)
. The latter seems as an unrealistic assumption,

because δY (s) stems from sources related to the measurements whereas δWk
(s)

is governed by modeling errors. Consequently, the SEZ scheme will operate
with σk > 0 under realistic, experimental conditions.

Insu�cient set of sensors

The constraintms > nΓl
(relaxed toms+mcl > nΓl

in static cases) is necessary
for the SEZ scheme to work according to the theory. However, in practice, one
expects the e�ective range of Wl to have a small dimension. Thus, for cases
where the constraints are violated, the SEZ scheme should, theoretically, be
usable (albeit with reduced performance) if a truncated basis of the model
matrix, Wl (or Wl in the static case), is employed. For Wl, this basis is here
taken as

Ẃl = UWl
ŚWl

V ∗Wl
(4.17)

where (́·) denotes a truncated quantity, while UWl
, SWl

, and V ∗Wl
are, respec-

tively, the left singular vectors, the singular values, and the conjugate transpose
of the right singular vectors of Wl. Through this singular value decomposition
and subsequent truncation of SWl

,Wl can be reconstructed into a matrix, Ẃl,
with a rank that obeys the existing constraint.
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Damage metric

Interrogations should, when possible, be made for multiple s-values to provide
an aggregation that, in general, improves robustness as stochastic errors are
�ltered. If, for example, N s-realizations are available, any statistical evaluation
can be used to aggregate the results. Here, we choose to take the mean of σl,

κl =
1

N

N∑
i=1

σl (si) , (4.18)

as the SEZ damage metric, and we close this by noting how a low value of κl
will indicate that l = k (with EZ k, of course, containing the damage).

With the preceding outline of the SEZ scheme, it is evident that if one was to
apply it to the system treated in Example 4.1 with element-wise interrogation,
the scheme would, qualitatively, yield the same results as those obtained using
mass-related damage patterns in the S3DL approach (see Fig. 4.1b).

4.4.4 Extracting the experimental feature

Given B̃2 = B2 with Ũ(s) ∝ U(s), the SEZ scheme operates non-parametrically.
In a static context, this allows for direct extraction of the experimental feature,
while, for dynamic tests, the experimental feature can be taken as the Fourier
transforms of the steady-state temporal signals for some s-value(s) placed along
the imaginary axis of the s-plane. For the cases where the inputs do not comply
with the aforementioned constraints, the experimental feature must be derived
through system identi�cation, as outlined in Section 2.2.

4.5 Summary of the SEZ scheme

1. Select an s-value (see the notes provided in Subsection 2.3.2).

(a) Extract a kinematic �eld quantity from the reference and damage
states, Y (s) and Ỹ (s).

(b) Form the experimental feature, ∆Y (s) or [Ỹ (s) Y (s)] (depending
on the input conditions).

(c) Establish a model incorporating EZ l to compute the analytical sub-
space, Wl(s) or Wl(s).

(d) Formulate εl(s) from Eq. (4.5) using either ∆Y (s) or [Ỹ (s) Y (s)].

(e) Calculate the (lowest) singular value, σl, of εl(s).

2. If possible, repeat step 1 for other s-values to increase the robustness.

3. Compute κl using Eq. (4.18) with the results for N ≥ 1 s-values.

4. Repeat steps 1 to 3 for each of the remaining EZs and declare damage in
EZ k if ∀l 6= k : κk < κl.
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4.6 Application examples

To examine the applicability of the SEZ scheme and exemplify some of the ob-
servations previously made, three examples are presented. In Subsection 4.6.1,
a numerical study with a chain system introduced to a non-linearity is con-
ducted, and in Subsection 4.6.2 a small-scale wind turbine blade is treated
experimentally in a laboratory setup. Finally, in Subsection 4.6.3, the SEZ
scheme is applied to a full-scale wind turbine blade under in-service conditions.

4.6.1 Non-linear chain system

We consider the 11-DOF chain system in Fig. 4.5, with the purpose of demon-
strating that the SEZ scheme can work with non-linearities in the EZ contain-
ing the damage. In any consistent set of units, mi = 1, ci = 20, and (now for
i ∈ [1, 12]) ki = 1000, and damage is introduced by a 10 % reduction in k5

and addition of a cubic spring, k13 = 1000, in parallel with k5 (so k13 = 0 in
the reference state). It does not make physical sense to have a damage adding
sti�ness, but theoretically it is without importance in this particular context.

The experimental feature is computed from temporal signals measured in
DOF 3, 6, and 9 that contain forced vibrations and subsequent free decay. The
forced vibrations are introduced using a harmonic excitation in DOF 3 with
the driving frequency Ω = 1.2ω1, where ω1 is the fundamental eigenfrequency
in the reference state. Since the purpose of this example is to demonstrate the

m1 m2 m3 m4 m5 m11

k1 k2 k3 k4 k5

k13

k11 k12

c1 c2 c3 c4 c5 c11 c12

Fig. 4.5: 11-DOF chain system with damage emulated as a 10 % reduction in k5 and
addition of a cubic spring, k13.

1 2 3 4
10-6

10-4

10-2

100

Fig. 4.6: Damage localization in 11-DOF chain system (no model errors or noise).
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performance of the SEZ scheme with non-linearities in the damaged zone, no
noise or model errors are included. The interrogation is conducted using EZs
containing multiple springs; with the �rst EZ containing springs 1 to 3, the
second 4 to 6 and 13, the third 7 to 9, and the fourth 10 to 12. In this way, the
results shown in Fig. 4.6 are obtained. Since the second EZ contains springs 5
and 13, the damage is located unambiguously.

4.6.2 Small-scale wind turbine blade

In the present example, the applicability of the SEZ scheme is tested in the
context of experiments with the small-scale wind turbine blade depicted in
Fig. 4.7a. The blade, which is introduced to a mass perturbation to emu-
late damage, has previously been utilized to test di�erent damage localization
schemes by, among others, Johansen et al. (2015), Hansen et al. (2015), García
et al. (2015), Markvart et al. (2017), Bull et al. (2017), and Sekjær et al. (2017).

The blade itself is approximately 800 mm long and weighs 720 g (including
accelerometers and bolts), and it consists of two carbon �ber-reinforced poly-
mer parts that are bolted together along the leading and trailing edges. As seen
in Fig. 4.7a, the blade is �xed at the root and excited at the tip with a shaker
providing a harmonic load; driving with a frequency of Ω = 150π rad/s. This

(a)

(b)

Fig. 4.7: Small-scale wind turbine blade. (a) Indication of (1) the shaker, (2) the con-
nection between the shaker and the blade, (3) an accelerometer, and (4) the �xed support.
(b) Location of the mass perturbation (on opposite surface) and the 14 accelerometers.



4.6. Application examples 49

frequency has been chosen due to the results obtained in a preliminary damage
detection study. Accelerations are captured by use of 14 uniaxial accelerometers
(B&K type 4507-B-004 and B&K type 4508-B-002), which, as seen Fig. 4.7b,
are mounted close to the edges underneath the blade and measure perpendicu-
lar to the surface. For data acquisition, three B&K type 3050 6-channel input
systems are used. The mass perturbation is introduced by attaching a �point�
mass of 30 g at the location indicated in Fig. 4.7b. Here, it should be noticed
that the mass is actually placed on the opposite surface.

FE model representation

The model representation of the blade, which is �xed at the blade root to
emulate the clamping mechanism, is established in the commercial software
platform ANSYS R© WorkbenchTM using a formulation with 3450 �rst-order
shell elements. The model is assigned an orthotropic material model, whose
properties are calibrated to the modal parameter estimates obtained in an
OMA study by Johansen et al. (2015). In this OMA study, the �rst and sec-
ond �apwise bending modes are found to have eigenfrequencies of, respectively,
15.9 Hz and 87.9 Hz, while the �rst edgewise bending mode has an eigenfre-
quency somewhere in between (the mode was not identi�ed during the OMA).
For more information about this and the FE modeling, the reader is referred
to the studies by Johansen et al. (2015) and Markvart et al. (2017).

Damage localization results

Experiments are conducted with a �xed duration of 10 s steady-state vibra-
tion. To transform the temporal signals to frequency domain, the least-squares
technique proposed by Bernal and Kunwar (2016) is employed. Subsequently,
the experimental feature is formed as [Ỹ (jΩ) Y (jΩ)] (with j =

√
−1), which

is chosen, instead of ∆Y (jΩ), to cope with non-damage associated changes in
the vibration response.
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Fig. 4.8: Localization of extra mass added to small-scale blade. The colormap is according
to κl/max(κ), and the red circle encompasses the true mass location.
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The damage interrogation is conducted by taking each single element as
an EZ, which yields the results depicted in Fig. 4.8. Evidently, an unambigu-
ous localization is achieved for the mass perturbation, albeit the SEZ scheme
points to damage slightly shifted from the actual location. Additionally, it is
seen that the scheme provides a clear resolution in terms of undamaged and
damaged elements. It is worth noting that several similar experiments have
been conducted, and they all provide almost identical results.

4.6.3 Operating wind turbine

In this example, the Vestas V27 wind turbine depicted in Fig. 4.9a is analyzed.
The wind turbine has a rotor diameter of 27 m, and it supports two operating
regimes, namely, one at 32 rotations per minute (RPM) and one at 43 RPM.
The V27 turbine has previously been examined, with success, in the context of
damage detection by Ulriksen et al. (2015) and Tcherniak and Mølgaard (2017).
In both of these studies, a mechanical actuator is implemented to excite a broad
band of frequencies, and the damage detection schemes are implemented using
vibrations governed by this input source.

Here, we seek to locate the 0.45 m trailing edge debonding seen in Fig. 4.9b,
with the location pinpointed in Fig. 4.9c. This has previously been done in

(a) (b)

(c)

Fig. 4.9: Vestas V27 wind turbine. (a) Overall view. (b) 0.45 m blade edge debonding.
(c) Blade sketch with accelerometer (•) and damage (�) positions (all dimensions are in m).
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Paper D by Ulriksen et al. (2017), who apply the SDDLV scheme to locate
the damage using vibrations induced by the mechanical actuator; with the
turbine in idle condition. As can be seen in that study, the debonding can
only be located if multiple realizations are gathered in a statistical evaluation
to alleviate noise and other variabilities. Now, in the present example, the
SEZ scheme is employed to, in a deterministic con�guration with just one
realization from each of the two structural states, locate the debonding during
turbine operation at 32 RPM and without using the actuator.

FE model representation

Following the argumentation in Paper D by Ulriksen et al. (2017), it is su�cient
to only model the blade of interest and not the entire turbine. The model is
established in the commercial software platform ANSYS R© WorkbenchTM using
a formulation with approximately 26,000 �rst-order shell elements. The model
is assigned an orthotropic material model, whose properties, as outlined in
Paper D by Ulriksen et al. (2017), are calibrated to the eigenfrequencies and
blade-level mode shapes identi�ed in an OMA of the rotor.

Damage localization results

Each measurement sequence consists of 30 s sampling, where the �rst (ap-
proximately) 10 s are turbine operation without any input from the attached
actuator. We choose to use these 10 s in the damage localization analysis and,
as such, form the experimental feature as [Ỹ (jΩ) Y (jΩ)], where Ω ≈ 3.35 rad/s
is the frequency at which the rotor operates.

The damage interrogation is conducted by taking each single element as
an EZ, which yields the results depicted in Fig. 4.10. As can been seen, the
debonding is localized rather clear when inspecting the side of the blade on
which the sensors are placed (topmost blade plot in Fig. 4.10). When inspecting
the other blade side, some disturbances are, however, present in the vicinity
of the actual damage location. These disturbances arise consistently for all
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Fig. 4.10: Localization of trailing edge debonding in V27 blade. The colormap is according
to κl/max(κ), and (�) indicates the true debonding location.
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combinations of measurement sequences, thus it is contended that they are
related to some local errors in the FE model of the blade.

If we compare the results in Fig. 4.10 with those obtained using the SDDLV
scheme for the turbine in idle condition, see Paper D by Ulriksen et al. (2017), it
is clear that the SEZ scheme provides better results. This despite the fact that
the SEZ scheme is implemented for the turbine under operational conditions
with 32 RPM. It seems reasonable to assume that the improvement is a direct
result of conducting the structural interrogation in a non-parametric mode.

4.7 Concluding remarks

In the present chapter, we have introduced the SEZ scheme, which locates
damage from a forward procedure where shifts in measured �eld quantities are
reconstructed by use of subspaces indexed by model-based postulated bound-
aries. As such, the SEZ scheme, in principle, allows for a user-de�ned spatial
localization resolution while still operating non-parametrically if the input dis-
tribution is spatially invariant and the input histories are proportional in the
reference and damaged states. If the noted input conditions are not complied
with, system identi�cation must be used to compute the experimental feature.

In the two �rst application examples, which are included to demonstrate
the basic principles of the SEZ platform and verify its applicability in a non-
parametric context, we treat a numerical chain-like system introduced to a
non-linearity in the damaged state and a small-scale wind turbine blade treated
experimentally with damage emulated by an added �point� mass. In both
examples, it is evidenced how the SEZ scheme facilitates unambiguous damage
localization, even in the experimental case where an insu�cient number of
sensors (compared to the theoretical constraint) is available.

In the third application example, the SEZ scheme is used to locate a damage
in an operating wind turbine blade. The �ndings imply that the scheme has
merit in real-life applications where the previously established input conditions
are, at least to some extent, complied with.



CHAPTER 5

Input control for damage localization

In the present chapter, we introduce the Shaped Damage Locating Input Dis-
tribution (SDLID) scheme, which operates unconditionally non-parametric by
deploying controllable inputs that are shaped to actively interrogate one struc-
tural subdomain at a time for damage. When the subdomain containing dam-
age is rendered dormant, the e�ect of damage and, as such, its induced shift in
steady-state vibration response are canceled. In Section 5.2, the reasoning be-
hind developing the SDLID scheme is given. In Section 5.3, the basic principles
of shaping inputs are outlined, and subsequently, in Section 5.4, the theorem
constituting the basis of the scheme and how to implement it for damage lo-
calization are provided. Following a brief summary of the SDLID scheme in
Section 5.5, numerical examples are presented in Section 5.6 to demonstrate
the applicability of the scheme. The chapter is completed with some concluding
remarks in Section 5.7.

5.1 Dissemination

Parts of this chapter have been published in the following:

• Paper E by Ulriksen et al. (2017a), see Appendix E.

• Paper F by Ulriksen et al. (2017b), see Appendix F.

5.2 Motivation for the SDLID scheme

The SEZ scheme presented in Chapter 4 possesses the feature of being non-
parametric if certain input conditions are ful�lled. In such cases, the scheme is
implemented in an output-only con�guration�requiring more output sensors
than DOF on the boundary of the postulated damage�and does not pro�t
further from the fact that certain characteristics of the input are known. The
SDLID scheme introduced in this chapter also operates in a forward procedure
with postulated damage patterns to circumvent system identi�cation, but un-
like the SEZ scheme, the SDLID approach makes active use of the inputs to
search for damage. By applying a number of controllable inputs larger than the
rank of the postulated damage, the SDLID scheme facilitates non-parametric
damage localization using only few output sensors; in fact, one well-placed may
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su�ce. This low demand on output sensors is an attractive feature, which is
conventionally only achieved when using local guided waves-based approaches
(Surgeon and Wevers, 1999; Yeum et al., 2014).

Needless to say, the obvious shortcoming of the SDLID scheme is the re-
quirement of deploying multiple controllable inputs. It is noted that for a
continuum, the required number of inputs to apply is, in theory, in�nite, albeit
one expects that some number that is enough to work in a reasonable accurate
FE model will su�ce. This number can, however, still be large, so, in gen-
eral, the feasibility of deploying multiple input sources might not seem evident.
However, with the latest advances in piezoelectric and electro-mechanical actu-
ators, as utilized in the context of damage localization by, for example, Bernal
and Kunwar (2016) and Ulriksen et al. (2017), it should not be substantially
more impairing than that of deploying multiple output sensors.

5.3 Basics of input shaping

We return to the LTI system described in time domain by Eq. (2.1) and, under
the assumption of zero initial and/or steady-state conditions, in Laplace domain
by Eq. (2.5). The fundamental principle of input shaping is to apply a set of
controllable inputs, u(t), to a structure and tailor these, preferably by use of
a model representation, to induce a certain vibration output response (Singer
and Seering, 1988; Murphy and Watanabe, 1992; Singh and Heppler, 1993).

For the purpose of damage localization, the inputs will, as visually exempli-
�ed in Fig. 5.1, be shaped such that particular kinematic quantities resulting
from these inputs are rendered dormant in a subdomain of the structure in
question. It must be noted that as ambient excitation is present in real appli-
cations, the shaped inputs need not yield complete suppression in the selected
subdomain. Still, in the coming formalization, we assume, for simplicity and
without loss of generality, that only the controllable inputs a�ect the structure.

Fig. 5.1: Vibration snapshots at di�erent time instances for frame structure subjected to
inputs shaped to suppress translational DOF in the indicated node.
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Now, there are numerous ways of shaping inputs to suppress certain vi-
bration quantities; each approach with merits and shortcomings, in terms of
computational extent and numerical accuracy, depending on the nature of the
input distribution. In Subsections 5.3.1 and 5.3.2, two approaches are outlined.
The �rst one operates in Laplace domain and is, as such, particularly useful
when shaping harmonic input sources, while the second one is a time-domain
approach in which a deconvolution scheme is employed.

5.3.1 Laplace domain approach

If the structural system adheres to the assumptions made to formulate Eq. (2.5)
and p controllable inputs act solely in the DOF indexed by T , then

X(s) = G•T (s)U(s) (5.1)

with G•T being the transfer matrix columns corresponding to the input DOF.

Proposition 5.1. Let Υ(s) be a subset of DOF or a linear combination hereof
obtained from a linear map, T : X(s) ∈ Cn 7→ Υ(s) ∈ Cq such T (X(s)) =
LX(s). Then, the p inputs applied to suppress Υ(s) and υ(t) = L−1 (Υ(s)) (t)
can be extracted from Null (LG•T (s)), provided that p > q.

Proof. Υ denotes a subset of DOF or a linear combination hereof, thus

Υ(s) = LX(s), (5.2)

which, when plugged into Eq. (5.1) and set to zero, yields

Υ(s) = LG•T (s)U(s) = 0, (5.3)

where LG•T (s) ∈ Cq×p. Provided that p > q, one obtains Null (LG•T (s)) ∈
Cp×(p−q) from where relative values of U(s) that, in steady state, yield Υ ≡
υ ≡ 0 can be selected.

Example 5.1. To get an appreciation of the transformation matrix, L , con-
sider the one-dimensional bar element system shown in Fig. 5.2.

x1 x2 x3

Fig. 5.2: Bar element system with indication of the existing DOF in time domain.

If two inputs are applied (in a spatial context, completely arbitrarily) and
shaped to yield X1 ≡ x1 ≡ 0 in steady state, one �nds

Υ(s) = LX(s) =
[
1 0 0

] X1

X2

X3

 . (5.4)
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If, instead, the aim is to suppress the strain across element two, we use the
strain-interpolation condition, which isB = [−1/L 1/L] for the one-dimensional
bar element of length L. As such,

Υ(s) =
[
0 −1 1

] X1

X2

X3

 (5.5)

from where the obvious L = [0 − 1 1] is deduced.

It is gathered from Proposition 5.1 that when p ≥ q + 1, then any type of
characteristic load function can, in theory, be utilized for the p inputs. For
harmonic inputs, the desirable steady-state features can be exploited, in the
sense that the input amplitudes and phase angles are directly computed as the
moduli and arguments of the chosen vector within the span of Null (LG•T (s)).
More generally, however, the outlined approach requires an inverse Laplace
transformation along a discretized Bromwich contour. This procedure can, as
discussed by Davies and Martin (1979), be both computationally expensive and
associated with inaccuracy. Consequently, a time domain approach is presented
next that is independent of the nature of the input sources.

5.3.2 Time domain approach

From the discrete state-space formulation provided in Eqs. (2.17a) and (2.17b),
one can show that the following input-output relation holds:

y0

y1

...
yN−1

yN

−


Cd
CdAd
...

CdA
N−1
d

CdA
N
d

 z0 =


Y0 0 · · · 0
Y1 Y0 · · · 0
...

...
. . .

...
YN−1 YN−2 · · · 0
YN YN−1 · · · Y0




u0

u1

...
uN−1

uN

 (5.6)

or, in analogy to the compact form used by Bernal and Ussia (2015),

y[0,N ] −ObNz0 = Hu[0,N ] (5.7)

such that
u[0,N ] = H†y[0,N ] −H†ObNz0 + Null (H)ψ, (5.8)

in which ψ ∈ Rnullity is an arbitrary vector while Yj are Markov parameters
gathered in the lower triangular Toeplitz matrix H. More speci�cally, Y0 = Dd

and ∀j ∈ [1, N ] : Yj = CdA
j−1
d Bd.

Let xU contain the DOF for which a linear combination must be suppressed,
then HU• holds the rows of H associated with these DOF. If p > q, HU• will
be wide and, as such, provide an in�nite number of solutions to Eq. (5.8).
Thus, with one of the p inputs being de�ned both spatially and temporally, the
remaining p− 1 inputs can be deconvolved to produce the negative response of
that obtained by application of the �xed input.
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5.4 Locating damage using shaped inputs

Imagine the scenario where a point mass is added to the suppressed DOF in
the frame depicted in Fig. 5.1. Obviously, the perturbation, in the form of the
added mass, will be inactive, which implies that the steady-state response will
be the same in the perturbed state as in the reference one (without the added
mass). This simple example captures the principle of using shaped inputs to
locate structural damage. The concept is formalized for both mass and sti�ness
perturbations, viewed upon as damages, in Theorem 5.1.

Theorem 5.1. A = AH ∪ AD is an LTI system, which is discretized with
the DOF indexed by Q = {1, 2, . . . , n} and described in the reference state by
Eq. (2.1) and in the damaged state by Eq. (2.29a) for a mass perturbation and
Eq. (2.29b) for a sti�ness perturbation. Let ∆x(t) = x̃(t) − x(t) be a steady-
state displacement shift due to either a mass or sti�ness perturbation acting at
the DOF indexed by V ⊂ Q and assume the input condition B̃2ũ(t) = B2u(t).
Then, ∆x ≡ ∆ẋ ≡ ∆ẍ ≡ 0 if u(t) is shaped to yield L xV ≡ 0 in the reference
state; with L being the transformation matrix introduced in Proposition 5.1.

Proof. (1) With damage manifested as a perturbation in the mass, the equilib-
rium equation describing the damaged steady state, with the same excitation as
in the reference state, is given by replacing B̃2ũ(t) with B2u(t) in Eq. (2.29a).
Subtracting Eq. (2.1) from Eq. (2.29a) yields

M∆ẍ(t) + C∆ẋ(t) +K∆x(t) = ∆M ¨̃x(t), (5.9)

so with ¨̃xV ≡ 0, which must hold if ∆x ≡ 0, one gets ∆M ¨̃x ≡ 0 and, as such,
x̃ ≡ x since ∃t : u(t) 6= 0.

(2) For sti�ness-related damages, we express the strain energy in the refer-
ence steady state as

UA(t) =
1

2

∫
A
ε(t)TEε(t) dV (5.10)

and in the damaged steady state�with a sti�ness perturbation�as

ŨA(t) =
1

2

∫
AH

ε̃(t)TEε̃(t) dV +
1

2

∫
AD

ε̃(t)T Ẽε̃(t) dV, (5.11)

where ε(t) ∈ Rn contains the strains and E is the constitutive matrix that maps
strains to stresses. In order for the vibration signatures in the two structural
states to be identical, one must impose ŨA ≡ UA and ε̃ ≡ ε, hence∫

AH
ε(t)TEε(t) dV +

∫
AD

ε(t)T Ẽε(t) dV =

∫
AH

ε(t)TEε(t) dV

+

∫
AD

ε(t)TEε(t) dV,

(5.12)

which leads to
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∫
AD

ε(t)T Ẽε(t) dV =

∫
AD

ε(t)TEε(t) dV, (5.13)

and since E � 0, Eq. (5.13) can, for Ẽ 6= E, only hold if ε ≡ 0. We �nish the
proof by recalling that the strains in a subdomain are a linear transform of the
displacements in this subdomain.

Remark 5.1. From Eq. (5.3), it is evident that the number of inputs to apply
is governed by the rank of the introduced damage, as q = rank (∆M ∨∆K)
such p > rank (∆M ∨∆K).

5.4.1 Damage metric

The procedure for conducting damage localization by use of shaped inputs
is to postulate a damage pattern, shape the inputs to suppress this pattern
by use of a model representation of the reference state, and then apply these
inputs to the damaged structural state and compare the response to a stored
signature from the reference state. As such, the lth damage pattern, which is
composed of some combination of the DOF indexed by Ul, contains the damage
if, under ideal conditions, no shift is present between the steady-state vibration
responses from the two structural states.

When ambient excitation is present, u(t) must be shaped such that υl(t)
and, accordingly, Υl(s) only contain ambient contributions, that is,

Υl(s) = WUl(s), (5.14)

where WUl(s) denotes some linear combination of ambient vibrations. Now, it
follows from Theorem 5.1 that if Ul ⊇ V, one gets

Υ̃l(s) = W̃Ul(s), (5.15)

while
∀Ul 6⊇ V : Υ̃l(s) 6= W̃Ul(s) (5.16)

since u(t) will induce a steady-state response.
Needless to say, one �nds ∆Υl 6≡ 0 in practice due to ambient excitation,

measurement noise, and so forth. Therefore, some metric must be utilized
to quantify the deviation between Ỹ (s) and Y (s), where Y (s) is the Laplace
transform of the captured output, y(t) ∈ Rms , de�ned in Eq. (2.10b). This
can obviously be done in numerous, more or less sophisticated, ways. Here, we
choose the `2-norm of the residuals, so

Ml =

√√√√ N∑
i=1

(
|Ỹl (si) | − |Yl (si) |

)2

(5.17)

because we evaluate at N s-values in ms output sensor DOF. In practice, one
will, of course, choose to evaluate s along =(s) to avoid system identi�cation.
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A condition for the SDLID scheme to operate as intended is, in general,
that the response due to the shaped inputs must be the dominant component
in the vibration response. If, however, the inputs are harmonic, this is not a
necessary condition since the steady-state harmonics can be extracted using
signal �ltering techniques. Another aspect worth noting is that the damage
localization contrast improves when the response of the damaged area is large
for a given suppression pattern not containing the damage.

5.4.2 Resemblance to the (S)DDLV scheme

The SDLID scheme bears resemblance to the (S)DDLV scheme by Bernal (2007,
2010), as both schemes operate on the premise of applying loads that isolate
the damage by rendering the damaged subdomain dormant in terms of a par-
ticular vibration quantity. The key di�erences between the two schemes lie
in the extraction of the particular load distribution utilized in the localiza-
tion procedure�using system identi�cation or not�and the implementation
of this distribution in a particular localization context. As outlined in Subsec-
tion 1.2.1, the (S)DDLV scheme extracts the load distribution from the null
space of an experimentally identi�ed transfer matrix change (or a surrogate
hereof in the stochastic case) and then applies it to a model in the attempt
to point directly to the damage; in this way circumventing interrogation with
postulated damage patterns.

When it comes to robustness of the two schemes, there is, from a theoretical
point of view, no reason to expect any noticeable di�erence in terms of robust-
ness to model errors. On the other hand, the SDLID scheme stands as more
robust to noise since system identi�cation is avoided. Therefore, selecting one
of the two schemes to apply boils down to either; using p > rank(∆M ∨∆K)
controllable input sources and few output sensors (in principle, one may suf-
�ce) to increase noise robustness, or avoiding deployment of controllable inputs
and, as such, sacri�cing some noise robustness while operating with a minimum
number of output sensors complying with ms > max{rank(∆M ∨∆K), ns/2},
where ns is the order of the identi�ed system. In some cases, particularly
those involving severe noise contamination and/or poor excitation during the
experimental procedure, the SDLID scheme will be preferable.

5.5 Summary of the SDLID scheme

1. Choose the general type of input; of which harmonic and broadband are
examples.

2. If harmonic inputs are chosen, select an s-value along =(s) (see the notes
in Subsection 2.3.2). Otherwise, move on to the next step.

3. Shape the inputs to suppress the lth damage pattern in a model, using
either the Laplace domain approach outlined in Subsection 5.3.1 or the
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time domain approach outlined in Subsection 5.3.2.

4. Apply the shaped inputs to the actual structure in its healthy state and
its damaged state.

5. For non-harmonic inputs, select an s-value along =(s) (see the notes in
Subsection 2.3.2). For harmonic inputs, move on to the next step.

6. Extract the responses from both states, Y (s) and Ỹ (s).

7. If possible, repeat steps 2 (or 5, depending on the input type) to 6 for
other s-values to increase the localization robustness.

8. Calculate the `2-norm of ∆Y (s), denotedMl in Eq. (5.17).

9. For the same s-value(s), do steps 3, 4, 6, 7, and 8 for each of the remaining
damage patterns and declare damage in number k if ∀l 6= k :Mk <Ml.

5.6 Application examples

Two numerical examples are treated to test the performance of the SDLID
method. Each example is cast in a Monte Carlo setting with 100 simulations
in both structural states (reference and damaged) for all the selected DOF
suppression scenarios. To challenge the robustness of the method, model errors
are introduced (in each simulation) to the system matrices of each local element
by assigning a random perturbation, which is drawn from a uniform distribution
with lower and upper limits of αL and αH . Additionally, the output is corrupted
with 5 % white Gaussian noise, where the percentage is with regard to the
standard deviations of the noise-free output signals.

To provide an insight into the robustness of the SDLID scheme when applied
to the two examples, we de�ne a probability of localization (POL) as

Pl =
#B0

l

# {B0
l ∪ B1

l }
, (5.18)

where
B0
l =

{
M(i)

l :M(i)
l = min

(
M(i)

)}
(5.19)

and
B1
l =

{
M(i)

l :M(i)
l 6= min

(
M(i)

)}
, (5.20)

withM(i) containing the damage metrics for all postulated patterns in an ith
interrogation sequence. In the examples, the results are presented as the POL
and the mean, M̄l, and standard deviation, SMl

, of the discordances for each
damage pattern,Ml, as obtained from Eq. (5.17).
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5.6.1 Chain-like system

We consider localization of a mass perturbation in the 6-DOF system depicted
in Fig. 5.3. The springs and masses in the system are, in any consistent set
of units, ki ∈ {500, 500, 500, 500, 500, 500, 100, 100} and mi ∈ {1, 2, 3, 1, 3, 1},
hereby yielding ω1 = 4.33 rad/s and ω6 = 35.91 rad/s, where ωi is the ith
undamped eigenfrequency of the reference structure. Classical damping is
assumed such each mode has a damping ratio of ζi = 5 %, and the mass
perturbation, which is assigned to the third mass in the system, is given by
me = 0.2m3. To comply with p ≥ rank (∆M) + 1, two inputs are applied,
in a spatial context, completely arbitrarily, to masses 2 and 6. The output is
taken as noise-corrupted steady-state displacements measured in DOF 2 (that
is, only one sensor is employed) with a sampling frequency of 100 Hz.

Shaping the inputs

The input in DOF number 2, denoted u1(t), is realized from a white Gaus-
sian noise sequence with a frequency range of 0 − 50 Hz, and then u2(t) is
shaped accordingly by use of the deconvolution technique outlined in Subsec-

m1 m2 m3 m4 m5 m6

k1 k2 k3 k4 k5 k6

k7

k8

Fig. 5.3: Classically damped 6-DOF chain-like system with inputs applied to masses 2 and
6 and an output sensor at mass 2.

(a) (b)

Fig. 5.4: Shaping inputs to suppress DOF 3 in chain-like system (no model errors or noise).
(a) Broadband inputs. (b) Steady-state displacement maxima from the excitation in Fig. 5.4a.
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tion 5.3.2. The conditions obtained in a single realization for suppressing the
displacements in the third DOF by use of broadband excitation are depicted in
Figs. 5.4a and 5.4b. As can be deducted, the displacements (and, consequently,
the velocities and accelerations) are, for all practical purposes, zero in DOF 3.

Signature discrimination

Theorem 5.1 states that suppression of the steady-state accelerations of mass 3,
where the perturbation is located in the damaged state, will yield agreement in
the steady-state vibration responses induced solely by the shaped inputs in the
two structural states. This is veri�ed in Fig. 5.5, which illustrates the results
obtained by interrogating the chain-like system in a noise-free con�guration
without model errors.

To demonstrate the methodology in a more realistic setup, the previously
described Monte Carlo setting is established with 5 % output noise and model
errors that are cast from a uniform distribution with lower and upper limits of
αL = 0.95 and αH = 1.05. These model errors result in observed maximum
eigenfrequency shifts of 2.8 % for modes 1 and 2, 2.9 % for mode 3, 4.1 % for

Fig. 5.5: Damage localization in chain-like system (no model errors or noise).

(a) (b)

Fig. 5.6: Damage localization in chain-like system with (a) Pl and (b) M̄l and SMl
for the

realizations in Fig. 5.6a.
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mode 4, 3.2 % for mode 5, and 3.4 % for mode 6. To allow for aggregation
of results, which can be used to �lter stochastic errors and, thus, improve
robustness, the interrogations are conducted for N = 5 Fourier realizations of
the output, in the range from just below ω1 to ω6. The localization results of
the Monte Carlo simulation are depicted in Fig. 5.6, where it is evident that
the added mass is localized correctly in P3 = 87 % of the interrogations and,
as such, incorrectly in 13 %. As will be demonstrated later in this example,
these false negatives can be reduced by deploying multiple sensors.

E�ect of model errors and single-sensor placement

The results obtained thus far have been for a certain amount of model error and
a somewhat arbitrarily chosen output sensor location. Needless to say, there
will be some model error extent for which the scheme will no longer work; an
extent that will vary from application to application. In the context of this
simple chain-like system, we examine the sensitivity to this and the single-
sensor placement by implementing Monte Carlo settings with di�erent model
error con�gurations and using a single sensor that is shifted between each DOF.
The results are presented in Tb. 5.1, and as it can be seen, the added mass
is localized correctly for all single-sensor distributions with model errors up to
αL = 0.98 and αL = 1.02 (leading to maximum eigenfrequency shifts of 1.6 %).
If αL = 0.95 and αL = 1.05, the observed maximum model error-induced eigen-
frequency shift is, as previously noted, 4.1 %, and false localization positives
are obtained. These could, of course, be reduced by calibrating the theoretical
model with respect to the actual structure, so the most important message is
that the method is not hyper-sensitive to model errors.

E�ect of deploying multiple sensors

The false localization positives that arise, as seen in Fig. 5.6 and deducted
from Tb. 5.1, when operating with a certain extent of model error and a single
output sensor can, in general, also be reduced by deploying multiple sensors.
This is exempli�ed from the outset of the con�guration providing the results
in Fig. 5.6, now extended to the case of an additional output sensor at DOF 5.
Fig. 5.7a shows the obtained POL, while Fig. 5.7b depicts M̄l and SMl

to show

Table 5.1: POL for di�erent single-sensor locations and model error con�gurations, with
∆ω being the model error-induced eigenfrequency shifts.

P3 (%) with output at DOF;

αL αH max(|∆ω|) (%) 1 2 3 4 5 6

0.98 1.02 1.6 100 100 100 100 100 100

0.95 1.05 4.1 96 94 94 89 90 88

0.90 1.10 8.2 62 57 57 48 48 44
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(a) (b)

Fig. 5.7: Damage localization in chain-like system with additional output sensor at DOF 5.
(a) Pl. (b) M̄l and SMl

for the realizations in Fig. 5.7a.

the localization resolution. As evidenced when comparing these results with
those from the similar single-sensor con�guration, see Fig. 5.6, the improvement
gained by adding an extra sensor is signi�cant.

It is noticed that with the given con�guration of model errors, that is,
αL = 0.95 and αH = 1.05, only two possible two-sensor combinations�namely,
DOF 4 and 6 plus 5 and 6�provide a POL below 100 %. For these particular
distributions, we �nd POL = 96 % when using DOF 4 and 6 and POL = 93 %
when using DOF 5 and 6. These reduced POL are due to the fact that almost
no damage-induced shift can be observed in the response in DOF 6.

5.6.2 Truss structure

The FE truss model depicted in Fig. 5.8 is examined for damage manifested as
a sti�ness reduction, smeared across element 9, of magnitude χ ∈ {40 %, 20 %}.
The structure, which is assumed to have a classical damping distribution such
each mode has a damping ratio of ζi = 5 %, consists of 21 bars that are all
assigned a square cross-section and a material model corresponding to typ-
ical structural steel. White noise excitation, r(t), with standard deviation
σr = 1 kN is applied to node 12 as seen in Fig. 5.8, and two harmonic inputs
to be shaped are applied to nodes 8 and 12; with a driving frequency �xed to
Ω = 0.75ω1, where ω1 is the fundamental eigenfrequency of the healthy struc-
ture. The output is taken as noise-corrupted steady-state vertical accelerations
measured in node 5 with a sampling frequency of 1000 Hz.

Structural interrogation

With the introduced sti�ness perturbation, Theorem 5.1 states that the two
inputs must be shaped such that the steady-state strains are suppressed in one
subdomain, that is, one bar element, at a time. For each postulated damage
pattern, we extract the moduli and arguments of the two inputs through the
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Fig. 5.8: Truss structure subjected to white Gaussian noise excitation, r(t), and two inputs
to be shaped, u(t). The output is taken as vertical steady-state accelerations captured in
node 5 and corrupted with 5 % white Gaussian noise.

Laplace domain approach described in Subsection 5.3.1 and choose to scale
the amplitudes such that max(u1) = 100σr, where we recall that σr is the
standard deviation of r. This scaling is chosen to ensure that the harmonics
are not camou�aged by the ambient excitation.

A Monte Carlo simulation is carried out for each of the two damage ex-
tents; with 5 % output noise and model errors corresponding to αL = 0.98 and
αH = 1.02 (yielding up to 1 % observed shifts in eigenfrequencies). The ob-
tained interrogation results are presented in Fig. 5.9. As evidenced in Figs. 5.9a
and 5.9b, the 40 % sti�ness reduction in bar element 9 is consistently localized,
with a mean discordance value, M̄9, approximately eight times smaller than
the second lowest, which is obtained when interrogating element 8. For the
smallest damage, that is, χ = 20 %, interrogation of element 9 yields, as shown
in Figs. 5.9c and 5.9d, the lowest discordance in 64 % of the simulations while
the remaining 36 % point to element 8.

Aggregation for enhanced robustness

The impaired localization resolution for the 20 % sti�ness reduction is governed
by the model errors. Therefore, it is contended that this resolution could be im-
proved by taking the discordance between a realization from the damaged state
and a statistical baseline model accounting for the variance in the realizations
(hence requiring multiple measurements in the undamaged state) and/or by, in
some sense, optimizing the spatial distribution of the inputs and output(s).

The previous results are obtained using a single interrogation frequency,
Ω = 0.75ω1, which has been chosen somewhat arbitrarily. It is recalled that
the SDLID scheme operates on the premise of exciting the measurement DOF
and the damaged area when this is not intended to be suppressed. This refers
to the fact that when all other damage patterns than the correct one are in-
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(a) (b)

(c) (d)

Fig. 5.9: Localization of sti�ness reduction in element 9 in the truss with 5 % output noise,
αL = 0.98, and αH = 1.02. (a) Pl for χ = 40 %. (b) M̄l and SMl

for the realizations in
Fig. 5.9a. (c) Pl for χ = 20 %. (d) M̄l and SMl

for the realizations in Fig. 5.9c.

terrogated, the operating de�ection shapes should, ideally, maximize the e�ect
of the damage one seeks for. In the case of sti�ness perturbations, this corre-
sponds to maximizing the strain. With this in mind, there most likely exist a
set of frequencies that yield worse results than those obtained for Ω = 0.75ω1

and a set with which the scheme would perform better. Needless to say, one
does not know the correct pattern a priori, so aggregation of multiple excitation
setups can be utilized to enhance the localization robustness. In Figs. 5.10a
and 5.10b, the results obtained by interrogating with �ve frequencies, which
are evenly spaced between 0.75ω1 and ω10, are shown. Here, the output sensor,
damage, noise, and model error conditions are the same as those employed in
the analyses providing the results presented in Figs. 5.9c and 5.9d. Thus, it is
clearly seen how implementation of multiple interrogation frequencies improve
the localization results.

Further aggregation can be implemented by utilizing multiple output sen-
sors, which, as shown for the chain-like system in Subsection 5.6.1, can improve
the results. Figs. 5.10c and 5.10d depict the results obtained by adding an out-
put sensor at DOF 21 (capturing the horizontal accelerations in node 11) such
ms = 2. Evidently, all clusters of false negatives are removed. Yet, by inspec-
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(a) (b)

(c) (d)

Fig. 5.10: Aggregation of localization results for �ve driving frequencies (evenly spaced
between 0.75ω1 and ω10), χ = 20 %, and di�erent output sensor con�gurations. (a) ms = 1.
(b) M̄l and SMl

for the realizations in Fig. 5.10a. (c) ms = 2. (d) M̄l and SMl
for the

realizations in Fig. 5.10c.

tion of the �ndings plotted in, for example, Figs. 5.10b and 5.10d, we notice
that the discordances obtained when interrogating element 8, which is adjacent
to the damaged element, are substantially smaller than those obtained when
interrogating the remaining undamaged elements. This implies that the input
shaping approach also has merit in cases where only spatial locations close to,
but not at, the damage are interrogated.

5.7 Concluding remarks

In this chapter, we have introduced the SDLID damage localization scheme,
which is based on interrogating structures and structural systems by use of con-
trollable inputs. Despite bearing resemblance to the well-known (S)DDLV plat-
form, the SDLID scheme stands as a conceptual alternative to the traditional
vibration-based localization methods, which, typically, operate on the premise
of mapping damage-induced vibration signature deviations to the structural
domain. Instead, the SDLID scheme localizes damage by deploying multiple
inputs that are shaped, using a model representation, to cancel the e�ect of
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the damage.
The applicability of the SDLID scheme has been tested in the context of

two numerical examples of engineering interest, namely, a simple chain-like sys-
tem and a truss structure. The examples demonstrate the major merits of the
scheme; including circumvention of system identi�cation, robustness towards
noise, and a low demand on output sensors. Regarding the latter, the SDLID
method can, in principle, operate with a single output sensor, but as evidenced
in the application examples, the localization resolution is improved if multiple
output sensors are utilized. Especially in the presence of model errors, which
are implemented in the examples to emulate the inevitable discrepancies be-
tween a real structure and its model representation, it is suggested to employ
multiple output sensors and/or multiple interrogation frequencies to allow for
aggregation and, as such, an increased robustness.



CHAPTER 6

Conclusions and future perspectives

This thesis revolves around the topic of vibration-based SHM. More particularly,
focus is on damage localization with the aim of exploring new schemes, which, in
one way or another, confront the unfavorable ratio between sensitivity to dam-
age and sensitivity to variabilities of the vibration signatures. The exploration
has resulted in the development of three new schemes, whose methodological
premises have been derived and subsequently tested in the context of examples
of engineering interest. This �nal chapter provides, in Section 6.1, a brief sum-
mary of the explored schemes and concludes the observations made in the course
of both development and testing of these. Based on this, some suggestions for
future work related to the three schemes are outlined in Section 6.2.

6.1 General conclusions

The main conclusions are drawn from those in the preceding chapters and the
observations made in the papers that constitute the basis of these chapters;
namely, papers A to F as presented in the corresponding appendices.

The CWT-GDTKEO scheme locates damage from identi�ed changes in
mode shapes. The location is ascertained from a simple metric comparing pro-
cessed mode shape signals from the states prior and posterior to damage. The
approach can be viewed as o�ering a small re�nement of an existing method,
where the robustness to noise has been increased. Application examples illus-
trate the e�ectiveness of the re�nement, but it is also noticed how the scheme
exhibits the di�culties connected with compressing the vibration data into a
modal model while preserving su�cient information on the damage. For exam-
ple, the scheme is applied to locate a damage in a wind turbine blade mounted
on a test rig in a laboratory setup. Even under these controlled conditions and
with parameter estimation utilizing state-of-art modal analysis techniques, the
damage-induced shifts in the modal parameters of the lower modes are camou-
�aged by the uncertainties associated with the parameter estimation. It thus
follows that the CWT-GDTKEO scheme merely applies to cases where the in-
put provides, or can be tailored to provide, excitation of higher modes.

The SEZ scheme locates damage in a forward manner, where shifts in mea-
sured vibration quantities are reconstructed by use of stresses acting over
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boundaries that are created by the removal of certain portions of the domain.
The approach does not directly point to damage, but rather allows one to test
whether it is in the interior of any postulated zone. Besides facilitating non-
parametric interrogation if the input distribution is spatially invariant and the
input histories are proportional in the structural states, an attractive feature of
the scheme is that the user can select the zones, more or less, at will. This pro-
vides control over the damage localization resolution, which, for example, can
be exploited to use large zones to narrow down the set of potentially damaged
locations and then, if required, interrogate this set using re�ned zones. The
application examples, particularly the one with a real-life operating wind tur-
bine, suggest that the scheme has merit in those industrial applications where
it can work free of system identi�cation and, accordingly, avoid compressing
vibration data into a modal model.

The SDLID scheme locates damage using information extracted from the
vibration response to inputs, which are shaped to render certain parts of the
domain dormant. For mass-related damage, this corresponds to making the
steady-state displacements, velocities, and accelerations in the subdomain con-
taining the damage equal to zero, while for sti�ness-related damage one sup-
presses the steady-state strains. As such, the SDLID scheme, like the SEZ
platform, operates by interrogating user-selected subdomains for damage in-
stead of pointing directly to it. The applicability of the SDLID scheme has
been tested on the basis of numerical examples of engineering interest, and the
merits are clearly emphasized; namely, robustness to noise, a low demand on
output sensors, and, of course, unconditional circumvention of system identi�-
cation. Obviously, the scheme has to be tested in the context of experimental
campaigns before drawing any �nal conclusion as to its industrial applicability,
but, for now, it stands as a favorable approach to damage localization when
deployment of multiple, controllable inputs is feasible.

Generally, the use of any damage localization scheme is governed by the con-
ditions under which it must operate. Since these will vary from one application
to the next, one cannot speak of a particular scheme being optimal, or even
useful, in all instances. Instead, a method selection must be made for each
application, and in this context the SEZ and SDLID schemes exhibit promise
for applications where one has control over the excitation imposed on the do-
main and, in addition, a reasonable accurate model of the structure can be
formulated. Needless to say, these two schemes are at a stage of development
where further re�nements are anticipated before technical maturity is reached.

6.2 Suggestions for future work

Since the scope of this thesis has been to conduct fundamental research on the
topic of vibration-based damage localization, there are numerous aspects that
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have not been disclosed. Some suggestions for future work related particularly
to the three proposed schemes are presented below.

1. The CWT-GDTKEO scheme:

• The single most important aspect for improvement of the CWT-
GDTKEO scheme is to cope with the unfavorable ratio between
sensitivity to damage of the mode shapes and sensitivity to noise
in the parameter estimation. One approach worth exploring is to
extract the uncertainties associated with the mode shape estimates
and propagate these throughout the damage localization scheme.

• Another way of improving the aforementioned ratio could be to de-
velop a procedure for placing the sensors in an optimal sense. Here,
balancing the uncertainties associated with the mode shape esti-
mates and the sensitivity to damage must be explored.

2. The SEZ scheme:

• It is possible to adapt the SEZ scheme to consider entirely arbitrary
loading by estimating the experimental feature through system iden-
ti�cation. The applicability in this regard should be examined.

• A crucial step in the scheme is the selection of s-values in the struc-
tural interrogation. An interesting and highly relevant research topic
could revolve around the development of an automated approach to
select these values.

3. The SDLID scheme:

• At present, the SDLID scheme has only been applied to numerical
models, so a natural next step is to implement the scheme in the
context of experimental setups.

• An item of interest is the feasibility of reducing the required amount
of controllable inputs. It seems plausible that a least-squares so-
lution, based on fewer inputs than required to provide an exact
solution under ideal conditions, may provide useful results.

• It could also be of interest to examine, more carefully, the in�uence
of the nature and location of the inputs. As the scheme requires the
damaged subdomain activated in those instances where it is not to
be suppressed, some optimization procedure could, potentially, be
implemented in selecting the type and location of the input sources.

• Just as for the SEZ scheme, an automated approach for selecting
the s-value(s) should be established.
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