
Aalborg Universitet

A Conceptual Model of Agile Software Development in a Safety-Critical Context

A Systematic Literature Review

Tordrup Heeager, Lise; Nielsen, Peter Axel

Published in:
Information and Software Technology

DOI (link to publication from Publisher):
10.1016/j.infsof.2018.06.004

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Tordrup Heeager, L., & Nielsen, P. A. (2018). A Conceptual Model of Agile Software Development in a Safety-
Critical Context: A Systematic Literature Review. Information and Software Technology, 103(November), 22-39.
https://doi.org/10.1016/j.infsof.2018.06.004

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 15, 2025

https://doi.org/10.1016/j.infsof.2018.06.004
https://vbn.aau.dk/en/publications/9ca9784b-ea93-457a-8867-3d6985a4c672
https://doi.org/10.1016/j.infsof.2018.06.004

A Conceptual Model of Agile Software Development

in a Safety-Critical Context: A Systematic Literature

Review

Lise Tordrup Heeager

Department of Management
Aarhus University, Denmark
lith@mgmt.au.dk

Peter Axel Nielsen

Department of Computer Science
Aalborg University, Denmark
pan@cs.aau.dk

Abstract

Context: Safety-critical software systems are increasingly being used in new application areas, such as personal
medical devices, traffic control, and detection of pathogens. A current research debate is regarding whether safety-
critical systems are better developed with traditional waterfall processes or agile processes that are purportedly faster
and promise to lead to better products.

Objective: To identify the issues and disputes in agile development of safety-critical software and the key qualities as
found in the extant research literature.

Method: We conducted a systematic literature review as an interpretive study following a research design to search,
assess, extract, group, and understand the results of the found studies.

Results: There are key issues and propositions that we elicit from the literature and combine into a conceptual model
for understanding the foundational challenges of agile software development of safety-critical systems. The
conceptual model consists of four problematic practice areas and five relationships, which we find to be even more
important than the problematic areas. From this review, we suggest that there are important research gaps that need
to be investigated.

Conclusions: We suggest that future research should have a primary focus on the relationships in the resulting
conceptual model and specifically on the dynamics of the field as a whole, on incremental versus iterative
development, and on how to create value with minimal but sufficient effort.

Keywords: Agile software development, agile processes, software development, safety-critical software systems,
systematic literature review, interpretive literature review.

Highlights

• The four problem areas are: documentation, requirements, lifecycle, testing

• The main challenges are five relationships tying the problem areas together

• Incremental development seems better suited than iterative development

• Quality assurance can create value, and it can be sufficient and minimal

Pre-print:

To appear in Information and Software Technology, 2018.

1 Introduction

We use safety-critical information technology (IT) systems in abundance and safety-critical embedded
software systems are rising in number and complexity. For example, when diabetes patients use a digital
insulin pump to control and fine-tune the level of blood glucose, it is a safety-critical system (Heinemann et
al., 2015). The need for diabetes treatment with insulin is rising dramatically, and many more patients will
be treated with digitised insulin injections and use digitised blood glucose measurements. The benefits of
these new devices are high, but the safety risks cannot be taken lightly. This is just one type of safety-
critical IT system, and there are many other key applications that are highly critical for safety. These are,
for example, found in the aerospace and medical sectors and in the transportation, energy, and process
industries. Examples are flight control, radiation therapy, self-driving cars, airbags, railway control, and
development of fuels (S1; S39; S refers to the reviewed literature at the end of the paper).

The severity of potential safety fails has led to the institutionalisation of approval procedures and
certification. In the USA, the US Food and Drug Administration (FDA) has to approve medical devices,
such as the digital insulin pump (U. S. Department of Health, 2010). Other countries have similar agencies
to approve and certify safety-critical products. There are several ISO standards (Hoyle, 2006), process
models, and process maturity models (e.g., Chrissis et al., 2003; Humphrey, 1990) that are part of
stipulating how safety-critical systems must be developed. For example, EN 50128 is a European
standard for the development of railway applications (S22). Due to the concern regarding risks and the
well-being and lives of the users, the products and their development processes are subject to legislation,
public interest, and the concerns of patients, consumers, and citizens, which become the responsibilities
of the producers. The development of these safety-critical products is highly regulated; thus, the system
developers are mandated by law to comply with an appropriate standard (S43).

To achieve approval, the software must be verified and validated. While verification ensures that the
software is built in the right way so that it is safe, validation ensures that the right system is built (S7). The
FDA, for example, requires several practices and documentation for verification and validation of the
software (S32). They have high demands for the development process; thus, most of the FDA
requirements are directly related to the process activities (e.g., requirement analysis, design,
implementation, etc.). In addition, the FDA expects a sufficient level of auditability within the software
process itself, meaning that parts of the development lifecycle must be tracked for external auditors to
assess whether the system can be approved (S31).

The traditional answer to the challenges of developing safety-critical software has been to establish a
formal development process moulded over experience from project management and from quality
management (Boehm and Ross, 1989; Sommerville, 2015; Zultner, 1993). The general process model is
the waterfall model where the underlying idea is rational (i.e., first we think and then we do). For software
development, this means that, first, we develop the requirements, and when these are fixed, we move on
to design the software. When the software design is completed, we program the software, after which the
quality of the software is assessed through elaborate and systematic testing. The primary reason for this
process model is that it allows for thinking carefully about the system features and how they will be used
in advance. In addition, we can reason about the properties of the system and the risks caused by the
system and how these must be mitigated.

A fundamental problem exists with traditional waterfall development processes. The waterfall processes
work well in circumstances in which requirements (and risks) are stable and well understood in advance
and where little learning of additional or changed requirements is expected during the development
process. Alternatively, if requirements are expected to change because users, marketing, managers, and
developers are learning during the stages of development, then the waterfall processes are inappropriate
(Boehm and Turner, 2005; Cockburn, 2006; Davis, 1982). Agile development processes (Beck et al.,
2001; Cockburn, 2006; Conboy, 2009) have been designed to alleviate this problem. The key features of
agile development processes are that they support the management of change and embrace change and
that change in requirements should be taken as a positive development. It further means that there should
be clear methods of reacting to and learning from changes.

Research on agile software development of safety-critical software products has been published since
2001, and there are numerous research publications on the topic. However, there is no clear accumulation
of knowledge on the topic; therefore, we suggest that a literature review is needed. The research question

defining the focus of the literature review is: How can the use of agile software development be increased

in a safety-critical context?

The purpose of the literature review is to improve the knowledge of how agile software development can
be improved, increased and advanced when developing safety-critical software products and uncovering
areas of interest and further research. This follows calls for more literature reviews in general (Kitchenham

et al., 2010a; vom Brocke et al., 2015) to close a gap in our understanding of the field. The purpose of this
literature review is developmental (Templier and Paré, 2015), as we aim to build a new conceptualisation
towards a coherent theory of what characterises agile development of safety-critical software.

The remaining paper is organised as follows. Section 2 presents the research method of the literature
review. Section 3 describes the analysis results, which are discussed in Section 4. Finally, conclusions on
the literature review are drawn in Section 5.

2 Research Method

The research on the topic of agile development of safety-critical software is not entirely in its infancy, as
the first research was published in 2001. While the research literature is vast, there is little overview of the
body of knowledge. There are very sparse literature reviews related to our research area. Cawley et al.
(2010) concerns lean and agile software development in regulated environments, whereas (McHugh et al.,
2012c) and (Hajou et al., 2014) focus on agile software development of the medical devices and in the
pharmaceutical industry. While Hajou et al. (2014) conclude that the two are incompatible, Cawley et al.
(2010) conclude that adoption of agile development in these areas is difficult and McHugh et al. (2012c)
argue that tailoring of the agile methods are needed and propose a mixed method. These conclusions do
not reveal the challenges and possibilities of using agile software development of safety-critical products.
Thus, a review of the literature is needed to understand the state of knowledge and the future direction of
this stream of research.

With an empirically motivated research question, the primary goal is to investigate agile software
development of safety-critical software products by gathering and synthesising analyses, evidence and
results in the literature (Petersen et al., 2015) on this matter. To this end, we take initial inspiration in what
in software engineering research has become known as a systematic mapping with the purpose of
structuring the research area (Petersen et al., 2015). To this we add the understanding of how to conduct
interpretive literature reviews (e.g., Schryen, 2015; Templier and Paré, 2015; vom Brocke et al., 2015). It
is not uncommon that there is overlap between the two types of reviews and that the methods are used in
combination (Kitchenham et al., 2010b).

Templier and Paré (2015) suggested that there are four types of literature reviews: narrative,
developmental, cumulative, and aggregative. Narrative reviews assemble and summarise extant literature
on a specific topic, providing a comprehensive understanding of the current state of knowledge in the
area. The aim of developmental reviews is to provide new conceptualisations, based on previous
research. The developmental review involves a systematic search of the literature to be reviewed, while
the narrative review addresses an illustrative sample. Cumulative reviews synthesise extant literature (as
narrative reviews) but further aim to compile empirical evidence to map bodies of literature and to draw
overall conclusions regarding particular topics. Aggregative reviews test research hypotheses or
propositions. By collating and pooling prior empirical data, they provide validations of pre-specified
theoretical models and propositions. The immaturity of the existing literature on agile development of
safety-critical software leads us to suggest that our literature review can be a narrative review or a
development review, while it is much too early for a cumulative or aggregative review. The review is
systematic, as we establish a detailed search procedure (vom Brocke et al., 2015) without assuming that
the research is accumulative (Kitchenham et al., 2010a). In our review process, we follow the four phases
suggested in (Bandara et al., 2015):

Phase 1: Systematically identifying and extracting a sample of papers,

Phase 2: Organising and preparing the analysis,

Phase 3: Coding and analysing the content,

Phase 4: Writing and reporting the findings.

These four phases are consistent with other recent review procedures (e.g., Schryen, 2015; Templier and
Paré, 2015; vom Brocke et al., 2015).

2.1 Phase 1: Systematically identifying and extracting a sample of papers

To guide the literature search, the scope of the review is defined as the possibilities and challenges of
agile software development of safety-critical software products. Our intention is to cover the relevant
literature and use the review to provide a conceptual model in answer to the research question. With this
literature review we seek to provide an overview and to relate and possibly unite existing results.

Through preliminary searches we discovered that the research on agile software development in a safety-
critical context has primarily been published in conferences (this was later confirmed, see Figure 3). It was
thus necessary to search in several digital libraries and search engines. These included the ACM Digital
Library, IEEE Xplore Digital Library, AIS Electronic Library, Google Scholar, Scopus, and Web of Science.
The search has been extensive, as we initially used search terms interactively and always starting with the
following expression: (agile OR agility OR Scrum OR XP) AND (safety software OR safety-critical software
OR regulated software). The concept of agile development is not new. Since the agile manifesto was
developed in 2001 (Beck et al., 2001), the agile methods and practices that we discuss today started to
spread; thus, we limited the search to papers after 2001.

When the search expression was applied to Google Scholar, the result lists more than 100K results,
however increasingly irrelevant as we move down the search results. The search resulted in many
potentially relevant papers (500+). For our review we included in the initial list all references that were
possibly relevant and we were explicitly inclusive. When searching and making initial sense of the
literature, it was important to search widely. The initial search was restricted to titles and abstracts, but
subsequently, a full-text search was included. After using search terms, we followed the backward
snowball method to the references in the identified papers. With a forward snowball method, we followed
the digital library lists of papers quoting the identified papers (Webster and Watson, 2002).

The most important criteria were relevance to the topic. The papers must focus on both the development
of software for safety-critical systems and agile processes (irrespective of the terms used in the papers).
The papers should address all three elements: agile development, safety-critical development, and
software. We also included papers in which the case study was safety criticality also when the paper was
not based on the safety literature. We included not only research but also theoretical analyses as these
can reveal compatibilities between agile methods and standards for safety-critical systems and
development processes. Practitioner experience reports were also included as these can reflect practical
issues directly.

From the initial set of papers (500+) many were excluded immediately based on the title, see Figure 1.
Many papers that showed up in the search could easily be excluded due to the lack of relevance to the
topic or papers using other than the English language. Several of the papers only addressed either the
safety-critical domain or agile software development, not both, or did not address software development.
From this process, we identified 86 papers within the defined scope. From the 86 papers, we eliminated
21 papers after carefully reading the abstracts, as the foci of the papers were outside the scope of our
literature review. Another 14 were eliminated after reading the full papers. This gave a final list of 51
papers, which is just above the recommended limit of 50 papers (Bandara et al., 2015). The final list
confirms the initial assumption that most of the papers were published in conference proceedings and
supports the reasons for the wide initial search process. The conferences are primarily under the three
professional organisations for IT-related research: Association for Computing Machinery (ACM), Institute
of Electrical and Electronics Engineers (IEEE), and Association of Information Systems (AIS). All the
included papers had been subjected to peer review.

Figure 1. Selection process of the papers.

2.2 Phase 2: Organising and preparing the analysis

Bandara et al. (2015) provided guidance on the use of tools to support the review process. We follow their
advice and treat the literature review as a qualitative study in which the dataset consists of the identified
literature. The tool we used to support the review is NVivo, which is a well-established qualitative data
analysis tool with many embedded features to support qualitative data analysis. It has been used
extensively in Phases 2 and 3 to support systematic capturing, coding, and analysing the literature. The
51 selected papers in the final set were treated as a qualitative dataset and loaded into NVivo. To prepare
the detailed analysis, an initial coding was performed based on the research interest and research
question. The list of the 51 included studies (S1-S51) can be found at the end of the paper.

Descriptive analysis Content analysis

Research method Definitions and characteristics of agile development
Publication type Definitions and characteristics of safety-critical software

Agile method Challenges
Specific domain Possibilities

Embedded software
Outcome

Table 1. Initial coding scheme in the preparatory analysis.

The initial coding scheme in Table 1 was used as a preparation for the more detailed and systematic
analysis to follow in the next phase with the purpose of initial categorisation of the papers. For all reviewed
papers, it was important to understand the field through an initial mapping of which research methods are
applied which type of publications are dominating, which agile methods are used, and which specific
safety domains are studied. In addition, it is critical to understand how many papers concern embedded
software and, finally, the outcome of each study. These aspects of the papers are summarised in a table
in Appendix A and are described in Section 3.1. To understand how the included studies define agile
development and safety criticality, these characteristics were defined. In Section 3.2, we discuss the
definitions of agile and safety-critical development based on the included studies and secondary studies.
The codes concerning challenges and possibilities of increasing agile development of safety-critical
software are key to the research question and the analysis. This is described in Section 3.3 (problem
areas) and Section 3.4 (relationships between the problem areas).

2.3 Phase 3: Coding and analysing the content

The detailed analysis was inductive, as the reading and coding focused on extracting the literature to date.
From this coding, themes were derived as the analysis evolved. The approach to coding followed the
principles of grounded theory for literature studies (Wolfswinkel et al., 2013). The coding process consists
of three steps: 1) open coding, 2) axial coding, and 3) selective coding (exemplified in Figure 2). The open
coding was performed to identify and build a set of concepts and insight based on the paper excerpts.
Examples of open codes are ‘incremental documentation’ and ‘quality of requirements’. The second step
in the analysis is the axial coding that was performed to identify categories and sub-categories. The
analysis showed that most of the codes focused on four categories: requirements, lifecycle,
documentation, or testing. In the third step, selective coding were used for integration and refinement of
the categories that were identified. In this step, the problem areas and the relations were extracted. If a
quote only had one code, it was assigned to that problem area (see Quote 1 in Figure 2). If a quote had
been assigned more than one code, an evaluation was made. If the quote contained two separate
problem areas, it was assigned to both problem areas (see Quote 4 in Figure 2). If the quote dealt with the
relation of the two problem areas, it was assigned to a relation between the problem areas (see Quotes 2
and 3 in Figure 2).

Figure 2. The coding process exemplified (adapted from (Carugati et al., 2018))

3 Agile Development of Safety-Critical Software

The findings from this analysis of the literature initially cover the publication frequencies, then the key
concepts of agile development and safety criticality are elicited, and the major part of the findings are
found in the challenges in Sections 3.3 and 3.4. The categorisation of the research results is based on an
emerging conceptual model clustering the challenges into four problem areas and five relationships
between these areas.

3.1 Categorisation of the Publications

In this section, the 51 papers are categorised and described based on the following characteristics:
distribution over time, the applied research method, the type of publication, the applied agile method, the

specific safety domain, whether the software is embedded, and the outcome of the paper. An overview of
the papers and the categorisation can be found in Appendix A. The papers are distributed in time as
depicted in Figure 3. This provides a first overview of a research area, which is still active, but it is also
likely that an intermediary peak was reached during 2012–2013.

Figure 3. Publication type divided pr. year.

Analysing the focus of the papers shows how the papers from 2001 to 2011 had two primary purposes: i)
providing a practical example of a case company using parts of the agile processes for developing safety-
critical software or ii) conducting a theoretical analysis of compatibility between agile processes and a
variety of safety-critical regulatory standards. While the main purposes of the first type of paper was to
show the possibilities and motivate further research within the topic, the latter focused more on the
challenges and incompatibilities. From 2012, we see a shift in the focus of the papers, which focus more
on case studies used to evaluate both the advantages and challenges of agile development of safety-
critical software. The analysis also shows an increase in the number of papers that suggest an adapted
agile method for safety-critical development. In total, 12 of the 51 papers deal with this issue and eight of
these are published after 2013.

We base the categorisation of the research method on the types of methods provided in the paper by
Kjeldskov and Graham (2003) who based their categorisation of research methods on the novel paper by
Wynekoop and Conger (1992). This list of research methods has recently been used for categorisation by
de Sousa Santos et al. (2017). We found it necessary to add three types of studies: experience reports,
theoretical studies, and design studies. Figure 4 shows a bar chart of the research methods. Most of the
papers are based on empirical data from a natural setting. The research method used most is the case
study (10 papers), describing a specific practice using agile software development in a safety-critical
context. The case study method is not applied to the field until 2008, peaking in 2012 and 2013. The
review also included experience reports (5 papers), which give examples of a specific practice from an
insider practitioner perspective, and field experiments (3 papers), which are to modify a natural setting and
evaluate the changes (e.g., experiments with introduction of agile practices). Five papers are based on
surveys gathering a larger number of practitioner opinions and experiences of the topic. The review also
includes a larger number of papers with the purpose of designing and evaluating an agile method for a
safety-critical environment. These were categorised as design studies or laboratory experiments. While
the design studies (9 of 11 papers) evaluated the proposed method or model in a natural setting, the
laboratory experiments (2 papers) evaluated the proposed method or model in a simulated environment
(student projects). The number of design studies peaked in 2013 (4 papers). The remaining papers were
theoretical (8 papers) offering a comparison of two theories/models (e.g., a comparison between
requirements of a safety standard and practices of an agile method), and normative writing (9 papers)
offering suggestions of challenges based on experiences without referring to a specific case. The papers
offering a theoretical analysis were all published before 2013. The normative writings were published

while the field was young (2003–2006) and again in 2015–2016. This indicates that the introduction of
agile software development in terms of the agile manifesto was grounds for many considerations and
discussions regarding whether this methodology could be applied in a safety-critical context. After some
years, the changes in agile software development on the safety-critical environment were discussed.

Figure 4. Research methods

The categorisation of publication type based on outlets shows a slight increase in the number of journal
papers published on the topic since 2012, showing that the research area has grown more mature. The
papers are mainly published at the Agile Conference (AGILE), the International Conference on Software
Process Improvement and Capability Determination (SPICE), and in the Journal of Information

Technology Case and Application Research (JITCAR), Journal of Software Engineering and Applications
(JSEA), and Journal of Software: Evolution and Process (JSEP).

The majority (30 papers) do not focus on a specific agile method but refer to agile development in general.
Ten papers focus on XP, eight on Scrum, and three use a combination of XP and Scrum. Understanding
and categorising the papers according to the specific domain addressed shows that 23 of the papers
focus on the medical domain, six on avionics, three on robotics, and five on other miscellaneous domains,
whereas 14 of the papers do not specify a specific domain but deal with safety-critical development in
general. See the distribution of agile methods and specific domains in figure 5.

Figure 5. The agile methods in the papers (left diagram) and the specific domain in the papers (right diagram)

The initial analysis also showed that 10 of the 51 papers are concerned with embedded software
development. Most of these papers only report on a case of embedded software in a safety-critical device
and do not discuss the implications this brings (S7; S11; S17; S20; S21; S39; S47). The three remaining
papers deal explicitly with the issue of embedded safety-critical software development (S6; S8; S49).

3.2 Key Concepts of Agile Software Development and Safety Criticality

We define ‘agile software development’ as: ”the continual readiness of an ISD method to rapidly or

inherently create change, proactively or reactively embrace change, and learn from change while

contributing to perceived customer value (economy, quality, and simplicity) through its collective

components and relationships with its environment” (Conboy, 2009, p. 340). The reviewed literature is
genuinely in accordance with this understanding of agile software development. The understanding of
agile development in the reviewed research is predominantly explained by referring to the agile manifesto
(Beck et al., 2001), which is contained in the theoretical foundation by (Conboy, 2009). Others refer to
agile development processes as explained in one or more agile methods, such as XP (Beck and Andres,
2004) or Scrum (Schwaber and Beedle, 2001).

A safety-critical software system can be defined as a system in which failure may ‘result in injury to
people, damage to the environment or extensive economic losses’ (Sommerville, 2015, p. 287). These
types of systems are most often found within the domains of the aerospace and medical sectors (S1). In a
textbook on software engineering (Sommerville, 2015), the key issue is that safe systems are developed
through an explicit safety engineering process that includes specification of properties, verification and
validation processes, and is based on evidence of defined and dependable processes. Cockburn (2006)
was among the first to acknowledge that agile methods for critical software would require more elaborate
processes, which (Cockburn, 2006) called ceremony. In the Crystal family of methods, “criticality is an
important dimension, and safety criticality is understood as degrees of criticality starting in the low end
with loss of comfort, then discretionary money, essential money, and life at the high end of the scale”
(Cockburn, 2006, p. 152). Most of the reviewed research does not distinguish degrees of criticality. If a
reviewed paper has a definition of safety criticality, it is close to Sommerville’s definition, but most papers
do not define it.

The analysis shows that several papers concluded that safety-critical systems can be developed using an
agile method (S1), that agile practices do not contradict regulatory requirements (S30), and that it is
worthwhile to attempt adopting agile methods in safety-critical software development due to substantial
compatibility (S37). Surveys of the industry show that agile methods or at least agile practices have been
introduced in safety-critical software development for several years (S24; S34). The literature has reported
on several case studies of organisations using a variety of agile practices when developing safety-critical
software, documenting that it is possible to increase the role played by agile software development of
safety-critical products. Some of the analysed papers even propose that agile methods are better suited
for safety-critical software development than the traditional, plan-driven methods and that using agile
methods is advantageous (e.g., S39). However, most of the papers also conclude that to fulfil the
regulatory requirements using agile methods, the agile methods need to be tailored (e.g., S12) and that
there are several challenges in tailoring agile methods to safety-critical development (e.g., S34). Due to
these challenges, Górski and Łukasiewicz (S15) argued that agile methods should be regarded as
complementary to plan-driven practices instead of as a replacement.

Two concepts are central to the discussion of increasing the use of agile software development in safety-
critical contexts: iterative development and incremental development. The reviewed literature does not
define these concepts but uses them indiscriminately. To define these concepts, we draw on classical
software literature. Iterative development refers to an approach consisting of several cycles (Boehm and
Turner, 2004) and a strategy that focuses on the rework of pieces of the system (Cockburn, 2006). Agile
methods rely highly on rapid iterations to identify needed changes and handle them in the next iteration.
Each iteration consists of the highest priority set of requirements, which is determined through
negotiations between the developers and the customer (Boehm and Turner, 2004). Incremental
development refers to an approach in which the entire system is not delivered at once (Boehm and
Turner, 2004). It is defined as an approach in which the system is developed as ‘a series of versions
(increments), with each version adding functionality to the previous version’ (Sommerville, 2015, p. 30).
The system increment is integrated as it is developed (Cockburn, 2006). The system can be developed
incrementally and presented to customers for comment without the increment being delivered

(Sommerville, 2015). The idea is to evolve the system based on customer feedback through a series of
versions until an adequate system has been developed. Incremental development can be used both in the
plan-driven process and in the agile domain. In a plan-driven process, the increments are identified up
front, while the later increments depend on progress and customer feedback in an agile approach
(Sommerville, 2015). An incremental model combines elements of a linear sequential model with an
iterative model, and each increment is developed in accordance with the overall development model
(Pressman, 2010). Incremental development is the simpler of the two methods to learn because cutting
the project into subprojects is not as tricky as deciding when to stop improving the product (Cockburn,
2006).

3.3 Problem Areas of Agile Software Development and Safety Criticality

The analysis of the challenges of agile software development in a safety-critical context showed that the
literature focuses on four problematic practice areas understood as issues to deal with the following:

1) Light documentation (35 papers)
2) Flexible requirements written in user stories (33 papers)
3) Iterative and incremental lifecycles (37 papers)
4) Test-first process (32 papers).

Five relationships between these four problem areas are analysed in Section 3.4. Figure 6 presents a
conceptual model that depicts the four problem areas and the five relationships. Based on the coding of
the literature, the figure shows the number of papers that identify or address the challenge presented in a
problem area and/or a relationship. Appendix B shows a table summarising the problem areas and/or
relationships that each of the reviewed papers address.

Figure 6. Challenges of agile software development in a safety-critical context.

3.3.1 Problem area: Light documentation

A main challenge for increasing the use of agile software development for safety-critical products is the
focus on documentation. How documentation can become key in agile development and not an outcast
has been discussed in several papers, and these papers point directly to documentation as a main
obstacle (e.g., S25; S34; S41; S45). It is argued that agile processes focus on ‘working software over
comprehensive documentation’ (Beck et al., 2001). This does not mean that agile methods cast aside all
documentation (Baker, 2005), and some agile methods acknowledge that documents can be very useful.
Maintaining documentation is not essential in agile software development; instead, documentation must
be guided by the principles of ‘just enough’ or ‘barely sufficient’ (Cockburn, 2006). Moreover, XP
advocates that created artefacts or documents must all produce value (Beck and Andres, 2004), while
Scrum advocates that documents and models should not be optional but be used by developers to
structure their thinking (Schwaber and Beedle, 2001).

From the standpoint of safety-critical software development, documentation is essential, as the
documentation serves as proof that all processes have been adhered to and that the software is safe
(S40; S51). The regulatory process standards and requirements regard documentation as a cornerstone
to achieving high quality (S21). Compliance with regulations and the fear of regulatory inspections foster
heavy documentation of the development (S18). Regulatory agencies responsible for inspection of the
software will not agree to less documentation of software requirements and designs (S48), as the limited
and sometimes absent focus on documentation in agile methods is insufficient to determine the quality of
safety-critical systems (S50). Thus, the heavy focus on documentation in plan-driven development
processes decreases the use of agile software development by increasing costs and lowering flexibility
(S22).

Some researchers have argued that, due to the flexibility of agile processes, the amount of documentation
is not a problem (e.g., S13). Furthermore, agile processes strive to deliver what is requested by the
customer, which includes documentation to prove the safety in the case of safety-critical software (S25).
To keep the documentation at a minimum, it is important to consider the purpose of the documentation
(S17) and determine which knowledge needs to be codified and which knowledge may remain tacit (S33).
It has also been found that using tools can support the process of handling a large amount of
documentation (S38). Using a documentation sub-team can help separate the documentation from the
development and ensure that the developers can focus on the development of the software (S38).

Other characteristics of safety-critical software development point to a need for a larger focus on
documentation. The development of safety-critical systems often takes several years, and it is very likely
that the project will suffer from multiple personnel replacements. The safety-critical products have a very
long lifespan (up to 30 years), and during this time, a third party needs to continuously maintain, upgrade,
and improve the software (S11; S42). Hence, safety-critical projects need a focus on documentation, as
sufficient documentation needs to be developed to provide verification of the software safety.
Documentation must not provide unreasonable overhead and should be handled in a light manner.

3.3.2 Problem area: Flexible requirements written in user stories

The agile and traditional processes used for safety-critical software development differ in two ways in
relation to requirement management. First, while agile processes encourage constant change of the
requirements (S34; Beck and Andres, 2004), safety-critical development processes discourage
requirement changes due to the increasing costs of the redesign of the software, testing, and
documentation of the requirements (S35). Second, agile processes break with the traditional ideas of
requirements and, instead, rely primarily on loosely structured requirements, such as user stories written
by the customer in a plain business-like language (Cohn, 2004).

Flexible Requirements

Securing safety is a requirement management problem, and good requirements that are documented in a
complete requirement specification are therefore crucial (S34). When changes happen in a safety-critical
project, the changes can have severe consequences on the software architecture (S11) and may weaken
the essential proof needed for validation and verification of the safety of the software (S14). However,
dealing with changing requirements is a necessity in software development (Lee and Xia, 2010). Even if
the original analysis is thorough and even if the requirement specifications are very detailed and several
approval signatures are obtained, after some time, changes will happen (S2). These issues are also highly
probable in the development of security software (S3). The development of a complex medical device

takes several years. During this time, it is very likely that requirements will change, or additional
requirements will emerge (S39). Some studies show that changes may be less common compared to the
development of less critical software (S14). Requirements can be divided into two categories: safety
requirements and functional requirements. While the safety requirements are quite stable, the functional
requirements change considerably over time (S45). Extending the original Scrum process by adding a
safety-product backlog that holds and handles the safety requirements is thus proposed. This is used as
an addition to the typical functional product backlog and serves to separate the frequently changed
functional requirements from the more stable safety requirements (S1; S45).

Requirements Written as User Stories

Both XP and Scrum utilise user stories as requirement containers. User stories invite changes to a greater
extent than traditional requirements, which too often are taken to symbolise something mandatory (Beck
and Andres, 2004). In Scrum, for example, the user stories are collected in the product backlog and
prioritised by the product owner (Schwaber and Beedle, 2001). In XP, early estimation of each user story
is central, as it assists the interaction between the on-site customer and the developers (S8), and user
stories assist in identifying the most valuable and potential stories (Beck and Andres, 2004). To provide an
overview of progress and the scope of the project, the stories are to be displayed on large boards placed
in the work area, called information radiators (Cockburn, 2006).

Agile user stories are also recommended in safety-critical software development, as they provoke a
discussion between the developers and the customer (S8). User stories are also included in one of the
tailored agile methods proposed for safety-critical software development, called method æ. The method is
a substitute for the V-model and is a hybrid consisting of both planned and iterative phases, focusing on
risk-oriented decision making. The method suggests the use of stories (referred to as an æ story –
pronounced ‘a nice story’). The stories are a combination of the agile user stories and a traditional
requirement specification, including more elements (such as risk assessment) than an agile user story but
are limited to a minimum in size (S19). However, as the regulatory standards for safety-critical software
development require well-structured requirement engineering (S22; S48), user stories written in plain
business-like language cannot be used for validation (S3). Instead, these informal requirements in the
user stories must be translated into a formal specification (Black et al., 2009). The use of simple paper
cards as suggested by the initial versions of XP is also unlikely to be accepted, while paper cards can be
used to create formal visibility documents, and tools must be used to hold the requirements as well (S22).
Rottier and Rodrigues (S40) provided an example of how they have operated with use cases collected in
a use case document, which was supplemented by the software requirement specification detailing all the
non-functional requirements. To separate the functional and safety-critical requirements, it is also
suggested to introduce two additional types of user stories: abuser stories (threat scenarios) and security-
related user stories (security functionalities) (S5).

3.3.3 Problem area: Iterative and incremental lifecycle

The agile and the traditional methods also differ substantially in their recommendations for the project
lifecycle. Agile methods advocate the use of iterations that include all phases of the development process
to create flexibility and possibilities of adapting to changes (Cohn and Ford, 2003). Each iteration should
result in a running, tested version of the system (an increment) that is in direct use by the customers
(Cockburn, 2006). For example, XP introduces the concepts of weekly cycles to plan work a week at a
time and uses quarterly cycles to reflect on the work every quarter (Beck and Andres, 2004), whereas
Scrum implements sprints in which the developers work without interruption (Schwaber and Beedle,
2001).

Safety-critical projects are often developed according to the V-model (S19) and are thus not carried out
iteratively and incrementally (S14). The V-model is a variation of the waterfall model with a particular focus
on quality management, as it matches the diverse types of testing to each stage, planning the testing in
parallel with a corresponding development phase (S24). The model is therefore suited for developing
safety-critical software, as it produces the necessary deliverables required when seeking regulatory
approval (S30). The regulatory process requirements do not prescribe a certain development lifecycle
(S23; S25; S29; S40).

As the highly iterative and incremental approach is a central feature of agile processes, this must be
maintained when using agile software development in safety-critical contexts. The plan-driven lifecycle
models must therefore be adapted to become iterative (S7). Some researchers have found this to be a

challenge and therefore a barrier for increasing the use of agile software development (S4; S25; S38).
The key challenge is to develop an incremental safety assurance process (S15).

Some studies show that iterative safety-critical development can be performed (S1; S34) and even that it
can be advantageous to do so, as developers are forced to break down tasks and obtain a deeper
understanding before attempting to solve issues (S20). Using incremental development in safety-critical
projects is similar to incremental development in non-critical development, though more difficult (S3).
Rasmussen et al. (S39) reported on a team using iterations of 4 to 10 weeks after which they delivered an
increment of executable software that was put into use. Thus, as shown by this study, longer iterations
than recommended in non-critical software development may be needed. This is supported by Heeager
(S20) and Heeager and Nielsen (S21), who reported on developers who were frustrated when having to
implement a full increment for 4 weeks. Another study reported how a software development team
implemented iterative software development embedded in an overall documentation-driven systems
engineering project and that the iterations in software development were influenced by the plan-driven
project milestones and sequential process, forcing a specific focus (for example on documentation) onto
the iterations (S20).

3.3.4 Problem area: Test-first process

Test-driven development is widely used in the agile community (Nerur et al., 2005). In XP, for example,
testing is a core practice in which the test cases are written before the software. All parts of an increment
are tested, and completion is determined by the increment passing all tests (Beck and Andres, 2004). Due
to the heavy reliance on testing, agile methods focus on automating the tests (Beck and Andres, 2004), as
it is acknowledged that automated tests are necessary to complete short iterations (Jakobsen and
Johnson, 2008).

In safety-critical software development, extensive testing is vital (S15). Following the V-model, the testing
is done in the final phases of the development (S24). Reconciling these two different testing processes
has proven to be difficult, as the developers are not used to focusing on the tests in the initial stages
(S20). Other empirical studies report examples of safety-critical software development in which test-first
processes have been implemented successfully (S11; S17; S43; S47). A comparative analysis has shown
that the test-driven development is compatible with various regulatory standards (S38).

Other research has pointed out that an agile test-first process can be used but must be further developed
to fit safety process requirements (S16). In test-driven development, developers write the tests
themselves, and this proves problematic, as some standards (such as EN 50128) require that the tester
must be responsible for specifying the test and that the developer and tester must be separate persons
(S22). Furthermore, to comply with the strict regulatory process requirements, additional testing must be
performed (S15). Incorporating verification techniques is challenging, and these activities are work
intensive and reduce the use of agile software development (S38).

3.4 Challenging Relationships

A more detailed analysis revealed how challenges arise not only due to the four problem areas but also in
the five relationships between these problematic practice areas. The challenges of the relationships are as
follows:

• To ensure traceability of the requirements when the documentation is light (17 papers).
• To secure safety when requirements are flexible (22 papers).
• To adopt an iterative and incremental test-first process (14 papers).
• To keep light documentation when testing is iterative and incremental (8 papers).
• To verify and validate the safety of software increments when developed in iterations (23 papers).

None of the reviewed literature provides a detailed and explicit analysis of how these relationships are
challenging for agile processes when developing safety-critical software. From the review of the literature,
it is possible to combine the findings and present an overview of the existing research on the
relationships.

3.4.1 Relationship: Traceability of requirements with light documentation

Research has shown how difficult it is to adopt the practices of writing and updating the documentation of
requirements in an iterative and incremental manner. Standards such as the US FDA process standards
require that software requirements are explicitly documented prior to implementation and testing (S29)
and that documents are only changed through controlled procedures (S21). Documents will have to be
(partly) rewritten when one or more requirements change (S46). A related aspect is assuring traceability
between requirements and all stages of development (S25; S29) as mandated by the safety standards
(S34 and S40). The IEEE defines traceability as:

“The degree to which a relationship can be established between two or more products of the
development process, especially products having a predecessor-successor or master-subordinate
relationship to one another; for example, the degree to which the requirements and design of a
given software component match.” (IEEE, 1990, p. 82)

In several case studies (S8) and surveys of industry practices, traceability issues have been identified as
a barrier for using agile software development in safety-critical contexts (S25). Using agile practices,
requirements are not fixed before development begins. During development, changes to requirements are
welcomed (S25), which makes the process of traceability difficult (S28). The agile principle of prioritising
working software over documentation inhibits traceability, as documentation is the primary evidence of
traceability (S12).

The reviewed literature points to the idea that traceability can be assured using agile processes by fully
documenting all software requirements and changes (S25). This can be simplified by only working with a
few features at a time and by updating the documents concurrently (S22). Moreover, Stålhane et al. (S45)
suggest introducing the maintenance of documentation and tracing of information as a separate activity in
each iteration and working with backlogs for functional requirements and non-functional safety
requirements. Tools for creating traceability of agile requirements can also support this practice (S25).

3.4.2 Relationship: Securing safety with flexible requirements

The ability to adapt to changing requirements using iterations is considered an advantage of the agile
processes (S23). Using agile processes, the requirement management strategy is to deliver the system
functionalities with the highest business value and to create value faster (S6). Agile processes are also
popular, as they help capture requirement-related problems earlier, for example, unfulfilling, wrong,
unrealistic, missing, or unwanted requirements (S36). The linear models, such as the waterfall model and
the V-model, are considered risky because rework is costly when requirements change during the
development phase (S8).

Organisations developing safety-critical software experience difficulties handling changes in requirements
(S27; S30). Requirement management and multiple releases are seen by practitioners as a main difficulty
of safety-critical software development (S25). However, many practitioners also see potential benefits of
agile, iterative development (S9) because it can be used to avoid major and expensive rewriting of the
requirement specifications in the late stages of development (S20).

The reviewed literature suggests that treating requirements in an iterative manner makes it difficult to build
and present evidence of safety. Thus, using the agile method of iteratively adding and modifying
functionality, the systems will be composed of smaller parts that are added, removed, changed, and
integrated with each other over time. This poses a conflict with the verification and validation of system
level properties (e.g., safety) (S35). Górski and Łukasiewicz (S16) stated that an iterative approach to
requirement management can narrow the scope and undermine the rigour and discipline needed from a
safety viewpoint.

Achieving balance between upfront design and just-in-time design in the development of safety-critical
software is especially difficult (S24). Several process standards require that requirements are specified
prior to their design and implementation (S21), as the upfront design needs to be sufficiently detailed to
serve as input to the hazard analysis (S14; S21). For example, the US FDA requires that medical device
manufacturers submit high-level requirements prior to beginning development. Therefore, this can only be
done once (S30). This challenges the view that safety requirements and hazard analysis can primarily be
performed outside of the sprints and iterative cycles (S10). A safety impact analysis conducted before the
design and coding phases must verify that the requirements are complete and comprehensive. It is also a
requirement of some standards to establish the reliability of the system. However, for a safety impact

analysis to be conducted, all requirements must be known up front (S42). Upfront planning conflicts with
the agile processes welcoming requirement changes. User stories collected prior to the project have, in
one case, served as a form of upfront planning and give the necessary stability to allow a project to start
(S25). To solve this, it is suggested to distinguish between critical requirements that are formally specified
and less critical requirements that can change (S50). Other studies have found that safety requirements
also change and must be revisited and revised during software development (S10).

3.4.3 Relationship: Iterative and incremental testing

When developing safety-critical software, each increment must be fully working, fully tested, and validated
before release (S26; S30). Thus, implementing an iterative, incremental lifecycle entails adopting an
iterative and early testing process. The most significant verification-related practice in agile software
development is test-driven development (S7). In contrast, in a typical waterfall project, the verification is
an end-loaded process (S39).

Some studies in the literature review report on successful adoption and integration of an iterative
approach using test-driven development (S47). In addition, McHugh et al. (S25) found that the necessary
testing can be done once several iterations have been completed. However, adopting iterative and
incremental testing in safety-critical software development poses some difficulties:

• The validation of the software: The reviewed literature suggests that, due to the high level of
required validation and the quality of documentation, fully testing increments and longer iterations
in safety-critical software development are necessary (S40). Moreover, Rasmussen et al. (S39)
provides an example in which, given the inherent documentation requirements of medical device
development, iterations shorter than 6 weeks did not generate sufficient velocity. Iterations much
longer than 8 weeks provide opportunities for loss of organisational focus. Weekly goals were
established for each week of a given iteration.

• Hardware-software integration: A high volume of safety-critical software is embedded in a device
that cannot be built incrementally like the software. This poses challenges related to the
implementation of iterations and incremental development. Because of the dependencies on
dedicated hardware, it is very challenging to conduct incremental testing on embedded safety-
critical software (S37; S49).

• Changes in work routines of the developers: Changing the work routines of the developers has
also proven difficult, as developers that are used to following the V-model are not used to
focusing on testing during the development, for instance. In a project developing software for a
medical device, the software team was struggling to fully test each increment within the time-
boxed iterations. This was, in part, because of interruptions from the other project groups and, in
part, because the developers were used to postponing the testing (S21).

3.4.4 Relationship: Light documentation of testing

Only eight of the reviewed papers concern the issue of how to do agile documentation of tests, but these
papers indicated that producing light documentation of testing is difficult due to the strict requirements
from the safety standards. The tests define when a safety solution is of sufficiently high functional quality
and is sufficiently safe (S3). The extensive testing needs to document this safety, which results in a large
amount of test documentation (S18; S39). In general, detailed documents must be drawn up, and
traceability must be maintained, ensuring quality (S23). The US FDA, for example, requires that unit tests,
integration tests, system tests, and user site tests are performed, and that test traceability is ensured (i.e.,
unit tests must be mapped to detailed design, integration tests must be mapped to high-level design, and
system tests must be mapped to software requirements). The whole testing process must be supported by
documentation of test plans, test procedures, test cases, test reports, and test logs. These process
requirements go far beyond what is advocated in agile processes. Being a test-driven approach with
several practices and roles dedicated to testing, XP only partly supports the US FDA requirements. In
addition, XP documents test plans, test procedures, test logs (kept for debugging purposes), and test
cases, but no practice in XP ensures traceability by relating the different artefacts (S31; S32). The
automated unit tests suggested by XP can serve as part of the documentation. Moreover, XP does not
prohibit documentation; it just warns that it comes at a cost (S17).

3.4.5 Relationship: Iterative and incremental verification and validation of safety

Documentation serves as proof that the defined processes have been maintained. To provide such a
proof, several types of documentation need to be conducted, kept up to date, and be traceable. Due to the
agile iterative and incremental lifecycle, these documents need to be generated within each iteration along
with other essential work (S39). The agile methods advocate that the documents are incrementally fill with
detailed requirements, test cases, and designs relevant to the current increment (S22). The process of
producing such evidence can be conducted concurrently with the software development process. To
produce safe software incrementally, the process of creating evidence must also be conducted
incrementally (S1) to always have an acceptably safe software system with each release (S14). To
achieve this, the evidence of safety must be built incrementally, and the evidence for safety of previous
releases can be reused in producing the evidence for the current release. This is difficult because the
evidence in general is monolithic and is constructed for complete software systems (S14). It is difficult to
foresee the full effect of a change (S44). At this point, several standards require that the evidence is
addressed up front with all the requirements and risks (S15).

Case studies have shown how handling documentation and validation of an increment in an iterative
manner is challenging, as the documentation continuously needs to be created and updated when needed
(S22). A major concern with iterative development processes is change management. When developing
systems incrementally, changes are introduced in most iterations, which may invalidate previous work on
assuring safety (S22). The regulatory requirements for safety-critical software development are not in
direct conflict with the practice of frequently delivering and demonstrating functionality. However, the
extensive requirements on documentation, verification, validation, and assessments make it costly to
release systems to users (S22). Changing the documents may also become costly, as it is required that
documents are changed through controlled procedures (S21). Preparing the software for verification
creates overhead, which impedes small incremental changes (S35).

Several studies seek solutions to the issue of incremental validation of the safety. Ge et al. (S14)
proposed an approach for developing both the software and evidence iteratively. They suggested that not
only must the software be constructed iteratively and incrementally but the argument that the software is
acceptably safe must also be constructed in this way to have an acceptably safe software system with
each release. This should be done using languages and tools for creating safety arguments. The method
is insufficiently described. Thus far, there is little knowledge of possible implementations (S15). Some
studies suggest treating documents like source code and applying continuous integration to ensure that
they are kept up to date (S49). Tool support is suggested to handle a larger amount of iterative
documentation (S13). Another solution found is that not every iteration releases a new increment of the
software (as this is not required by agile methods). This allows a development team to implement short
iterations of development and longer iterations and increments of validation (S25), thus addressing the
issue of incremental validation and verification by introducing minor and major iterations (S38).

4 Discussion

The analysis of the research literature on agile development of safety-critical software has primarily
resulted in the conceptual model in Figure 6 This conceptual model features the structure of the research
literature on agile development of safety-critical software. The conceptual model summarises all the
literature, and it is reasonable to state that there are four problem areas for agile processes, agile
practices, and challenges met when seeking to adopt and adapt these processes and practices to the
special application domain of safety-critical software systems. In addition to the four problem areas, five
relationships are challenged.

The conceptual model is a contribution at an overall level to (i) provide an overview of the literature that
we did not previously have as part of the existing body of knowledge. (ii) It is important to point out that
these are the four most important problem areas and the five most important relationships. In addition, (iii)
other issues exist (e.g., culture clashes and human aspects), but the literature points to these as less
important. In understanding the ramifications of the conceptual model, there are also contributions at a
more detailed level, for example, the suggestions of solutions provided in the literature. We will select the
most significant of the problem areas and relationships for a detailed discussion about challenges and
solutions.

First, the following observations of the existing research literature concern two of the four problem areas:

• Light documentation is a challenge that several practitioners seem to be struggling with, and it
seems very necessary to deal with (37 of the reviewed papers explicitly mention documentation
as a main barrier). We suggest that it has too much focus because heavy documentation is
explicitly mentioned in the agile manifesto as something to leave behind. The research focusing
particularly on safety-critical software development acknowledges the need for documentation
and advocates a more balanced view, considering the special needs of quality assurance (cf.
Section 3.3.1).

• Flexible requirements are challenging in the development of safety-critical software to a much
larger degree than in less critical agile development (cf. Section 3.3.2). Some requirements
(perhaps mostly functional requirements) are easy to change and should remain easy to change
and then develop. Other requirements (most safety requirements) need to be changed in a more
controlled way. It is not always as easy without overhead or without a defined process. Where the
efficient process in non-critical agile development consists of (1) just change the requirement, (2)
just implement, and (3) refactoring the code, if needed (Beck and Andres, 2004; Conboy, 2009),
the process for safety-critical software needs to include more elaborate parts answering
questions such as the following: (1) Is this easy to change or difficult to change? (2) What is the
value to safety? (3) How will it affect other parts? (4) Is it an incremental addition or an iterative
rework? (S1; S14; S45)

Second, while the problem areas are important, the relationships are perhaps even more important. The
relationships are crucially interesting and should be understood in the following way. The problem areas
are connected, and they are connected in complex ways in which (i) they are mutually dependent and (ii)
are also specific to the topic. The problem areas are mutually dependent in the sense that one cannot
expect to change one problem area without influencing another problem area through the relationships. If,
for example, the approach to requirements is changed, it will then influence both the ‘light documentation’
and ‘incremental and iterative lifecycle’. It can also have a reverse effect; that is, trying to change one
problem area and ignoring the problem areas that depend on it will slow the change down and possibly
even obstruct the change. For example, trying to change the way safety-critical requirements are handled
may quickly meet resistance in how light documentation is developed. In this way, the four problem areas
are tied closely with through the five relationships. The relationships are also specific, and we can go to
the research literature to see the particulars of the relationships. For example, it matters considerably to
be informed that the relationship between ‘requirements’ and ‘light documentation’ is a question of
traceability. With that in mind, there is a way forward if we want to plan and conduct change. Regarding
how we deal with safety requirements knowing that light documentation must track the requirements
incrementally, we must maintain traceability between requirements and other parts of the documentation
no matter how light that documentation is.

The following observations on the relationships are the most interesting:

• Traceability of requirements with light documentation is interesting because no matter how much
the requirements become changeable (both iteratively reworking and incrementally adding
requirements), there must be traceability (cf. Section 3.4.1). That has ramifications for how the
documentation can be built and conditions a significant part of the contents of the light
documentation. In effect, it conditions how light the documentation can be (S8; S25).

• The iterative and incremental validation and verification of safety is interesting for another reason.
This relationship is concerned with keeping light documentation of the quality assurance aspects
of the development process (cf. Section 3.4.5). The implication is significant; if the documentation
of the process is too light, does not have the required contents, or is not produced in a sequence,
or is produced with dependencies that are not in accordance with regulations, then the iteration
with its rework is the only way out. It is suggested in the literature that process documentation
should be produced incrementally (S1; S14).

• Securing safety with iterative requirements is key because it links changeable requirements with a
process that must include an understanding of how the requirements may change both in terms
of adding more requirements incrementally and changing existing requirements through a
managed process (cf. Section 3.4.2). This requires striking balances between upfront design and
flexible requirements and between validation and verification before or after implementation of
the software and between integrating all requirements and separating safety requirements from
other requirements.

We also notice that the research literature on safety-critical software development is rich in challenges for
agile processes and that there are few proven solutions to these challenges. This may be caused by the
recent inception of agile development for safety-critical software where the interest has started, but it has
not reached a final level yet. Much of the early research that we have found is in the form of experience
reports that are less mature in their research and in addressing relevant matters and solutions. The more
substantial findings are still sporadic, despite the impression that problems and challenges are
widespread in the industry of safety-critical software. It could potentially influence the state of the art if
software companies are afraid of regulatory agencies and simply do not want to risk a discussion where
the regulatory agencies are in complete control. To the extent that we have found solutions to the
observed problems and challenges, we have yet to see a vast body of systematic case studies, a trial of
novel solutions, and robust empirical evidence.

It is clear from the literature review that we need more research on this topic. We may ask: What is the
advice to software companies if they are developing safety-critical software? How should they document
for regulatory agencies that the quality assurance of safety is under control? We may also ask whether
regulatory agencies are setting up the right and the best requirements for assuring safety and quality in a
broader sense. It is the whole industry that depends on these regulatory agencies, and it matters what
they are requesting and that their requirements are leading to safe software products.

We suggest that future research should have a primary focus on the relationships. We suggest, at a more
detailed level, that the following propositions be investigated in future research:

1) The relationships tie the problem areas to each other, and one problem area cannot be

changed without influencing the other. As we have suggested above, this is a generalisation
built directly on the existing literature, and in that sense, it includes most of the literature. It also
points to research to be done because, with the conceptual model, we can now ask more detailed
questions. For example, how strong are the ties and how can we change and improve the
problem areas through pushing the ties in a direction?

This is by far the most significant and far-reaching proposition, as it contains the dynamics of the whole
field of agile development of safety-critical software. The following depicts relationships that are interesting
and worth researching further:

2) Incremental development seems better suited than iterative development for safety-critical

software. The existing research literature is not always conceptually clear on the difference
between incremental and iterative development. Much agile literature does not even make the
distinction but uses the terms in a conglomerate concept as ‘incremental and iterative
development’ (e.g. Larman, 2004) as conceptualised in Section 3.1. We suggest, based on the
above analysis, that the distinction is important for safety-critical software development because
incremental development seems to be better suited than iterative development. There is an
indication of this when we look at the incremental safety assurance process (S1; S14) (cf. Section
3.4.5) and incremental documentation of safety concerns (e.g., S22) (cf. Section 3.4.1). Iteration
on the other hand is to change previous requirements and engage in rework (S8; Cockburn,
2006). There is an indication that what is difficult is iteration (S15; S35). Hence, it will be
interesting to investigate how that may lead to a better development practice based on a more
precise distinction between incremental and iterative development, which is more open to safety
assurance work.

3) Quality assurance can create value, and it can be sufficient and minimal, but not without

extra effort. Agile processes are strong on producing value and on not spending time on anything
that is not contributing value to the software product. The agile manifesto, XP, and Scrum have no
concern for documentation per se for that reason. The claim is that documentation adds no value
to the software. From the viewpoint of safety-critical software development, there must be
documentation to a level, with content that can be defended (S21), yet the agile movement and its
manifesto should perhaps be considered a strong reaction to too much documentation and to
unreasonable documentation (S13; Baker, 2005; Cockburn, 2006) (cf. Section 3.3.1). Hence, it is
necessary to develop a better understanding of which documentation will prove invaluable in a
development project. We suggest that we need to measure the value of the quality assurance and
what is sufficient and determine how to measure sufficiency, thus producing minimal
documentation to be used in the quality assurance and documenting the quality assurance to third
parties. In continuation of Proposition 2, we further suggest that we need to measure value to
develop documentation incrementally rather than iteratively. There is no reason to believe that this

burden of documentation will occur as a side effect of the agile development. It cannot be
produced without extra effort, and in the understanding of minimal documentation, it will be
relevant to measure the amount of documentation work to compare with development work and to
compare the velocity of both documentation and development.

With these propositions, we offer a basis for further research into this topic of agile software development
safety-critical contexts.

5 Conclusion

The objective of this study was to understand how agile processes can be used in safety-critical software
development. Research has been published on this topic since 2001, and our analysis showed how this
research field is starting to mature. We found that a literature review accumulating the knowledge on the
topic was needed to provide guidance for future research.

The analysis of the research literature on agile development of safety-critical software has primarily
resulted in the conceptual model (Figure 6), depicting the structure of the research literature. It shows that
the literature focuses on four problematic practice areas. Light documentation is a great challenge that
receives much attention in the literature. This is problematic, but we suggest that this topic has gained too
much attention. A second observation on the problematic areas is that flexible requirements are
challenging in the development of safety-critical software to a much larger degree than in less critical agile
development, and this is worth studying. In addition to the four problem areas, there are five relationships
that are challenged, which our analysis suggests are even more important than the problematic areas. In
relation to the relationships, we made three interesting observations:

• Traceability of changeable requirements is challenging and has ramifications for documentation,
• The iterative and incremental validation and verification of safety is perhaps the most challenging

relation.
• Securing safety with iterative requirements requires balances between upfront design and flexible

requirements, between validation and verification before or after implementation of the software,
and between integrating all requirements and separating safety requirements from other
requirements.

As previous research that has focused on the problematic areas, relationships, and dynamics of the whole
conceptual model seems to be of the most importance, we suggest that future research should have a
primary focus on the relationships. Research should focus on the dynamics of the whole field of agile
development of safety-critical software, as our study showed that the relationships tie the problem areas
to each other and that one problem area cannot be changed without influencing the other. The analysis
also indicates that incremental development is better suited than iterative development for safety-critical
software. We suggest that future research based on a more precise distinction between incremental and
iterative development should investigate how that may lead to better development, which is more open to
safety assurance work. The third contribution is that quality assurance can create value and can be
sufficient and minimal, but not without extra effort. To advance knowledge on how to keep the effort
minimal but sufficient, we suggest that the value of the quality assurance needs to be measured. Hence,
we need to investigate what is sufficient and how to measure sufficiency.

References

Abdelaziz, A., El-Tahir, Y. and Osman, R. (2015), "Adaptive Software Development for developing safety
critical software", proceedings of the International Conference on Computing, Control, Networking,

Electronics and Embedded Systems Engineering (ICCNEEE) in Khartoum, Sudan, IEEE, pp. 41-46.

Baker, S.W. (2005), "Formalizing agility: An agile organization's journey toward CMMI accreditation",
proceedings of the the Agile Development Conference in Denver, USA, IEEE Computer Society,
pp. 185-192.

Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S. and Beekhuyzen, J. (2015), "Achieving Rigour
in Literature Reviews: Insights from Qualitative Data Analysis and Tool-support", Communications

of the Association for Information Systems, Vol. 37 No. 1, pp. 154-204.

Beck, K. and Andres, C. (2004), Extreme programming explained: Embrace change, Addison-Wesley,
Boston, USA.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K.,
Sutherland, J. and Thomas, D. (2001), "Manifesto for Agile Software Development", available at:
http://agilemanifesto.org/ (accessed 26 January 2018).

Bedoll, R. (2003), "A Tail of Two Projects: How ‘Agile’ Methods Succeeded after ‘Traditional’ Methods Had
Failed in a Critical System-Development Project", proceedings of the Conference on Extreme

Programming and Agile Methods in, Springer, pp. 25-34.

Beznosov, K. (2003), "Extreme Security Engineering: On Employing XP Practices to Achieve 'Good
Enough Security' without Defining It X", proceedings of the The First ACM Workshop on Business

Driven Security Engineering, BizSec in Fairfax, VA, USA, Citeseer, pp. 1-7.

Beznosov, K. and Kruchten, P. 2004. Towards agile security assurance. Proceedings of the 2004

Workshop on New Security Paradigms. Nova Scotia. Canada: ACM.

Black, S., Boca, P., Bowen, J., Gorman, J. and Hinchey, M. (2009), "Formal versus agile: Survival of the
fittest", Computer, Vol. 42 No. 9, pp. 37-45.

Boehm, B. and Turner, R. (2004), Balancing Agility and Discipline: A Guide for the Perplexed, Addison-
Wesley Professional, Boston.

Boehm, B. and Turner, R. (2005), "Balancing Agility and Discipline: A Guide for the Perplexed", Journal of

Product Innovation Management, Vol. 22 No. 2, pp. 216-218.

Boehm, B.W. and Ross, R. (1989), "Theory-W software project management principles and examples",
IEEE Transactions on Software Engineering, Vol. 15 No. 7, pp. 902-916.

Booth, A., Sutton, A. and Papaioannou, D. (2012), Systematic approaches to a successful literature

review, Sage, London, UK.

Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K. and Kruchten, P. (2006), "Extending XP practices to
support security requirements engineering", proceedings of the Proceedings of the 2006

international workshop on Software engineering for secure systems in Shanghai, China, ACM, pp.
11-17.

Carugati, A., Fernández, W., Mola, L. and Rossignoli, C. (2018), "My choice, your problem? Mandating IT
use in large organisational networks", Information Systems Journal, Vol. 28 No. 1, pp. 6-47.

Cawley, O., Wang, X. and Richardson, I. (2010), "Lean/agile software development methodologies in
regulated environments–state of the art", Lean Enterprise Software and Systems, Vol. 65 No. 1, pp.
31-36.

Chrissis, M., Konrad, M. and Shrum, S. (2003), CMMI guidelines for process integration and product

improvement, Addison-Wesley Longman Publishing Co., Boston, MA, USA.

Cockburn, A. (2006), Agile software development: The Cooperative game, Addison-Wesley Professional,
Boston, USA.

Cohn, M. (2004), User stories applied: For agile software development, Addison-Wesley Professional,
Boston, USA.

Cohn, M. and Ford, D. (2003), "Introducing an agile process to an organization", Computer, Vol. 36 No. 6,
pp. 74-78.

Conboy, K. (2009), "Agility from first principles: reconstructing the concept of agility in information systems
development", Information Systems Research, Vol. 20 No. 3, pp. 329-354.

Cordeiro, L., Barreto, R., Barcelos, R., Oliveira, M., Lucena, V. and Maciel, P. (2007), "TXM: an agile
HW/SW development methodology for building medical devices", ACM SIGSOFT Software

Engineering Notes, Vol. 32 No. 6, pp. 4.

Davis, G. (1982), "Strategies for information requirements determination", IBM systems journal, Vol. 21
No. 1, pp. 4-30.

de Sousa Santos, I., de Castro Andrade, R.M., Rocha, L.S., Matalonga, S., de Oliveira, K.M. and
Travassos, G.H. (2017), "Test Case Design for Context-Aware Applications: Are We There Yet?",
Information and Software Technology, Vol. 88 No. August, pp. 1-16.

Del Bianco, V., Stosic, D. and Kiniry, J.R. (2010), "Agile Formality: A Mole of Software Engineering
Practices", proceedings of the FM+ AM in, pp. 29-48.

Demissie, S., Keenan, F. and McCaffery, F. (2016), "Investigating the Suitability of Using Agile for Medical
Embedded Software Development", proceedings of the International Conference on Software

Process Improvement and Capability Determination (SPICE) in Dublin, Ireland, Springer, pp. 409-
416.

Doss, O. and Kelly, T. (2016a), "The 4+ 1 Principles of Software Safety Assurance and Their Implications
for Scrum", proceedings of the International Conference on Agile Software Development in,
Springer, pp. 286-290.

Doss, O. and Kelly, T. (2016b), "Challenges and Opportunities in Agile Development in Safety Critical
Systems: A Survey", ACM SIGSOFT Software Engineering Notes, Vol. 41 No. 2, pp. 30-31.

Drobka, J., Noftz, D. and Raghu, R. (2004), "Piloting XP on four mission-critical projects", IEEE software,
Vol. 21 No. 6, pp. 70-75.

Fitzgerald, B., Stol, K.-J., O'Sullivan, R. and O'Brien, D. (2013), "Scaling agile methods to regulated
environments: An industry case study", proceedings of the Proceedings of the 2013 International

Conference on Software Engineering in San Francisco, USA, IEEE Press, pp. 863-872.

Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., Kokoori, S., Muffih, B. and
Heidenreich, J. (2011), "Agile methods for open source safety-critical software", Software: Practice

and Experience, Vol. 41 No. 9, pp. 945-962.

Ge, X., Paige, R.F. and McDermid, J.A. (2010), "An iterative approach for development of safety-critical
software and safety arguments", proceedings of the Agile Conference (AGILE) in Orlando, Florida,
IEEE, pp. 35-43.

Górski, J. and Łukasiewicz, K. (2012), "Assessment of risks introduced to safety critical software by agile
practices-a software engineer's perspective", Computer Science, Vol. 13 No. 4, pp. 165-182.

Górski, J. and Łukasiewicz, K. (2013), "Towards Agile Development of Critical Software", proceedings of

the International Workshop on Software Engineering for Resilient Systems in, Springer, pp. 48-55.

Grenning, J. (2001), "Launching extreme programming at a process-intensive company", IEEE Software,
Vol. 18 No. 6, pp. 27.

Hajou, A., Batenburg, R. and Jansen, S. (2014), "How the pharmaceutical industry and agile software
development methods conflict", proceedings of the Proc. 14th International Conference on

Computational Science and Its Applications in, pp. 40-48.

Hajou, A., Batenburg, R. and Jansen, S. (2015a), "An Insight into the Difficulties of Software Development
Projects in the Pharmaceutical Industry", Lecture Notes on Software Engineering, Vol. 3 No. 4, pp.
267.

Hajou, A., Batenburg, R. and Jansen, S. (2015b), "Method æ, the Agile Software Development Method
Tailored for the Pharmaceutical Industry", Lecture Notes on Software Engineering, Vol. 3 No. 4, pp.
251.

Heeager, L. (2012), "Introducing Agile Practices in a Documentation-Driven Software Development
Practice: A Case Study", Journal of Information Technology Case and Application Research, Vol.
14 No. 1, pp. 3-24.

Heeager, L. and Nielsen, P. (2009), "Agile Software Development and its Compatibility with a Document-
Driven Approach? A Case Study", proceedings of the Australasian Conference on Information

Systems in Melbourne, Australien, pp. 205.

Heinemann, L., Fleming, G.A., Petrie, J.R., Holl, R.W., Bergenstal, R.M. and Peters, A.L. (2015), "Insulin
Pump Risks and Benefits: A Clinical Appraisal of Pump Safety Standards, Adverse Event
Reporting, and Research Needs A Joint Statement of the European Association for the Study of

Diabetes and the American Diabetes Association Diabetes Technology Working Group", Diabetes

Care, Vol. 38 No. 4, pp. 716-722.

Hoyle, D. (2006), ISO 9000 quality systems handbook, Butterworth-Heinemann, Oxford, UK.

Humphrey, W.S. (1990), Managing the software process, Addison-Wesley Longman Publishing Co.

IEEE 1990. IEEE Standard Glossary of Software Engineering Terminology. 610-12-1990.

Jakobsen, C. and Johnson, K. (2008), "Mature agile with a twist of CMMI", proceedings of the The Agile

Conference in Toronto, Canada, IEEE Computer Society, pp. 212-217.

Jonsson, H., Larsson, S. and Punnekkat, S. (2012), "Agile practices in regulated railway software
development", proceedings of the The 23rd International Symposium onSoftware Reliability

Engineering Workshops (ISSREW) in, IEEE, pp. 355-360.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M. and Linkman, S. (2010a),
"Systematic literature reviews in software engineering–a tertiary study", Information and Software

Technology, Vol. 52 No. 8, pp. 792-805.

Kitchenham, B.A., Budgen, D. and Brereton, O.P. (2010b), "The value of mapping studies - A participant-
observer case study", proceedings of the International Conference on Evaluation and Assessment

in Software Engineering in Keele, UK, pp. 25-33.

Kjeldskov, J. and Graham, C. (2003), "A review of mobile HCI research methods", In Human-Computer

Interaction with Mobile Devices and Services proceedings of the International Conference on

Mobile Human-Computer Interaction in Udine, Italy, Springer, pp. 317-335.

Larman, C. (2004), Agile and iterative development: a manager's guide, Addison-Wesley Professional,
Boston, USA.

Lee, G. and Xia, W. (2010), "Toward agile: an integrated analysis of quantitative and qualitative field data
on software development agility", MIS Quarterly, Vol. 34 No. 1, pp. 87-114.

Lin, W. and Fan, X. (2009), "Software development practice for FDA-compliant medical devices",
proceedings of the International Joint Conference on Computational Sciences and Optimization

(CSO) in Hainan, Sanya, China, IEEE, pp. 388-390.

McCaffery, F., Trektere, K. and Ozcan-Top, O. (2016), "Agile–Is it Suitable for Medical Device Software
Development?", proceedings of the International Conference on Software Process Improvement

and Capability Determination (SPICE) in Dublin, Ireland, Springer, pp. 417-422.

McHugh, M., Cawley, O., McCaffery, F., Richardson, I. and Wang, X. (2013a), "An agile v-model for
medical device software development to overcome the challenges with plan-driven software
development lifecycles", proceedings of the The 5th International Workshop onSoftware

Engineering in Health Care (SEHC) in San Francisco, USA, IEEE, pp. 12-19.

McHugh, M., McCaffery, F. and Casey, V. (2012a), "Barriers to adopting agile practices when developing
medical device software", proceedings of the International Conference on Software Process

Improvement and Capability Determination in Plam de Mallorca, Spain, Springer, pp. 141-147.

McHugh, M., McCaffery, F. and Casey, V. (2012b), "Barriers to using agile software development
practices within the medical device industry", Vol. No.

McHugh, M., McCaffery, F. and Casey, V. (2014a), "Adopting agile practices when developing software
for use in the medical domain", Journal of Software: Evolution and Process, Vol. 26 No. 5, pp. 504-
512.

McHugh, M., McCaffery, F., Casey, V. and Pikkarainen, M. (2012c), "Integrating Agile Practices with a
Medical Device SDLC", Vol. No.

McHugh, M., McCaffery, F. and Coady, G. (2014b), "An Agile Implementation within a Medical Device
Software Organisation", proceedings of the International Conference on Software Process

Improvement and Capability Determination in Vilnius, Lithuania, Springer, pp. 190-201.

McHugh, M., McCaffery, F., Fitzgerald, B., Stol, K.J., Casey, V. and Coady, G. (2013b), "Balancing agility
and discipline in a medical device software organisation", proceedings of the International

Conference on Software Process Improvement and Capability Determination in, Springer, pp. 199-
210.

Mehrfard, H. and Hamou-Lhadj, A. (2013), "The impact of regulatory compliance on Agile software
processes with a focus on the FDA guidelines for medical device software", Frameworks for

Developing Efficient Information Systems: Models, Theory, and Practice: Models, Theory, and

Practice, Vol. No. 298.

Mehrfard, H., Pirzadeh, H. and Hamou-Lhadj, A. (2010) Investigating the capability of agile processes to
support life-science regulations: the case of XP and FDA regulations with a focus on human factor
requirements. Software Engineering Research, Management and Applications 2010. Springer.

Misra, S., Kumar, V. and Kumar, U. (2010), "Identifying some critical changes required in adopting agile
practices in traditional software development projects", International Journal of Quality & Reliability

Management, Vol. 27 No. 4, pp. 451-474.

Nerur, S., Mahapatra, R. and Mangalaraj, G. (2005), "Challenges of migrating to agile methodologies",
Communications of the ACM, Vol. 48 No. 5, pp. 73-78.

Notander, J.P., Höst, M. and Runeson, P. (2013a), "Challenges in flexible safety-critical software
development–an industrial qualitative survey", proceedings of the International Conference on

Product Focused Software Process Improvement in paphos, Cyprus, Springer, pp. 283-297.

Notander, J.P., Runeson, P. and Höst, M. (2013b), "A model-based framework for flexible safety-critical
software development: a design study", proceedings of the The 28th Annual ACM Symposium on

Applied Computing in Coimbra, Portugal, ACM, pp. 1137-1144.

Notander, J.P., Runeson, P. and Höst, M. (2013c), "SimPal: a design study on a framework for flexible
safety-critical software development", ACM SIGAPP Applied Computing Review, Vol. 13 No. 4, pp.
17-29.

Paige, R.F., Charalambous, R., Ge, X. and Brooke, P.J. (2008), "Towards agile engineering of high-
integrity systems", proceedings of the International Conference on Computer Safety, Reliability, and

Security in Newcastle upon Tyne, UK, Springer, pp. 30-43.

Paige, R.F., Chivers, H., McDermid, J.A. and Stephenson, Z.R. (2005), "High-integrity extreme
programming", proceedings of the The ACM symposium on Applied computing in Santa Fe, New

Mexico, ACM, pp. 1518-1523.

Petersen, K., Vakkalanka, S. and Kuzniarz, L. (2015), "Guidelines for conducting systematic mapping
studies in software engineering: An update", Information and Software Technology, Vol. 64 No. 1-
18.

Pressman, R.S. (2010), Software engineering - A practitioner's approach, McGraw-Hill Publishing
Company, Maidenhead, UK.

Rasmussen, R., Hughes, T., Jenks, J. and Skach, J. (2009), "Adopting agile in an FDA regulated
environment", proceedings of the Agile Conference (AGILE) in Chigaco, USA, IEEE, pp. 151-155.

Rottier, P.A. and Rodrigues, V. (2008), "Agile development in a medical device company", proceedings of

the Agile Conference (AGILE) in Toronto, Ontario Canada, IEEE, pp. 218-223.

Schryen, G. (2015), "Writing qualitative IS literature reviews–Guidelines for synthesis, interpretation and
guidance of research", Communications of the AIS, Vol. 37 No. Art 12, pp. 286-325.

Schwaber, K. and Beedle, M. (2001), Agile software development with Scrum, Prentice Hall, Upper
Saddle River, New Jersey, USA.

Shafiq, S. and Minhas, N.M. (2014), "Integrating Formal Methods in XP—A Conceptual Solution", Journal

of Software Engineering and Applications, Vol. 2014 No.

Sidky, A. and Arthur, J. (2007), "Determining the applicability of agile practices to mission and life-critical
systems", proceedings of the Software Engineering Workshop (SEW) in Columbia, USA, IEEE, pp.
3-12.

Sommerville, I. (2015), Software Engineering, Addison-Wesley, Harlow, UK.

Spence, J. (2005), "There has to be a better way![software development]", proceedings of the Agile

Development Conference (ADC'05) in Denver, USA, IEEE, pp. 272-278.

Stephenson, Z., McDermid, J. and Ward, A. (2006), "Health modelling for agility in safety-critical systems
development", proceedings of the System Safety, 2006. The First Institution of Engineering and

Technology International Conference on in, IET, pp. 6 pp.

Stålhane, T., Katta, V. and Myklebust, T. (2013), "Scrum and IEC 60880", proceedings of the Enlarged

Halden Reactor Project meeting in Storefjell, Norway, pp.

Stålhane, T., Myklebust, T. and Hanssen, G. (2012), "The application of Safe Scrum to IEC 61508
certifiable software", proceedings of the European Safety and Reliability Conference (ESREL) in
Helsinki, Finland, pp. 6052-6061.

Templier, M. and Paré, G. (2015), "A Framework for Guiding and Evaluating Literature Reviews",
Communications of the Association for Information Systems, Vol. 37 No. 1, pp. 6.

U. S. Department of Health, H., Services 2010. FDA U.S. Food and Drug Administration. U.S. Department
of Health and Human Services.

VanderLeest, S.H. and Buter, A. (2009), "Escape the waterfall: Agile for aerospace", proceedings of the

The 28th Digital Avionics Systems Conference in Orlanda, USA, IEEE, pp. 6-16.

Vogel, D. 2006. Agile Methods: Most are not ready for prime time in medical device software design and
development. DesignFax Online.

vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R. and Cleven, A. (2015), "Standing on
the shoulders of giants: Challenges and recommendations of literature search in information
systems research", Communications of the Association for Information Systems, Vol. 37 No. 9, pp.
205-224.

Webster, J. and Watson, R.T. (2002), "Analyzing the past to prepare for the future: Writing a literature
review", MIS Quarterly, Vol. 26 No. 2, pp. 13-23.

Wils, A., Van Baelen, S., Holvoet, T. and De Vlaminck, K. (2006), "Agility in the avionics software world",
proceedings of the International Conference on Extreme Programming and Agile Processes in

Software Engineering in Oulu, Finland, Springer, pp. 123-132.

Wolff, S. (2012), "Scrum goes formal: Agile methods for safety-critical systems", proceedings of the

Proceedings of the First International Workshop on Formal Methods in Software Engineering:

Rigorous and Agile Approaches in, IEEE Press, pp. 23-29.

Wolfswinkel, J.F., Furtmueller, E. and Wilderom, C.P. (2013), "Using grounded theory as a method for
rigorously reviewing literature", European Journal of Information Systems, Vol. 22 No. 1, pp. 45-55.

Wynekoop, J.L. and Conger, S.A. (1992), "A review of computer aided software engineering research
methods", In Information Systems Research: Contemporary Approaches & Emergent Traditions

proceedings of the IFIP TC8 WG 8.2 Working Conference on The Information Systems Research

Arena of The 90’s in Copenhagen, Denmark, pp.

Wäyrynen, J., Bodén, M. and Boström, G. (2004), "Security Engineering and eXtreme Programming: An
Impossible Marriage?", Lecture notes in computer science, Vol. No. 117-128.

Zultner, R.E. (1993), "TQM for technical teams", Communications of the ACM, Vol. 36 No. 10, pp. 79-91.

List of Included Studies
S1. Abdelaziz AA, El-Tahir Y, Osman R (2015) Adaptive Software Development for developing safety

critical software. In: Proceedings of the 1st International Conference on Computing, Control,
Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan,
IEEE, pp 41-46

S2. Bedoll R (2003) A Tail of Two Projects: How ‘Agile’ Methods Succeeded after ‘Traditional’
Methods Had Failed in a Critical System-Development Project In: Proceedings of the 3rd
Conference on Extreme Programming and Agile Methods, New Orleans, LA, USA, Springer, pp
25-34

S3. Beznosov K (2003) Extreme Security Engineering: On Employing XP Practices to Achieve 'Good
Enough Security' without Defining It X. In: Proceedings of the 1st ACM Workshop on Business
Driven Security Engineering (BizSec), Fairfax, USA, Citeseer, pp 1-7

S4. Beznosov K, Kruchten P (2004) Towards agile security assurance. In: Proceedings of the 17th
Workshop on New Security Paradigms, Victoria, Canada, ACM. pp 47-54

S5. Boström G, Wäyrynen J, Bodén M, Beznosov K, Kruchten P (2006) Extending XP practices to
support security requirements engineering. In: Proceedings of the 28th International Workshop on
Software Engineering for Secure Systems (SESS), Shanghai, China, ACM, pp 11-17

S6. Cordeiro L, Barreto R, Barcelos R, Oliveira M, Lucena V, Maciel P (2007) TXM: an agile HW/SW
development methodology for building medical devices. ACM SIGSOFT Software Engineering
Notes 32 (6):4

S7. Del Bianco V, Stosic D, Kiniry JR (2010) Agile Formality: A Mole of Software Engineering
Practices. In: Proceedings of the 2nd International Workshop on Formal Methods and Agile
Methods, Pisa, Italy, pp 29-48

S8. Demissie S, Keenan F, McCaffery F (2016) Investigating the Suitability of Using Agile for Medical
Embedded Software Development. In: Proceedings of the 16th International Conference on
Software Process Improvement and Capability Determination (SPICE), Springer, pp 409-416

S9. Doss O, Kelly T (2016a) The 4+1 Principles of Software Safety Assurance and Their Implications
for Scrum. In: Proceedings of the 14th International Conference on Agile Software Development,
Edinburgh, United Kingdom, Springer, pp 286-290

S10. Doss O, Kelly T (2016b) Challenges and Opportunities in Agile Development in Safety Critical
Systems: A Survey. ACM SIGSOFT Software Engineering Notes 41 (2):30-31

S11. Drobka J, Noftz D, Raghu R (2004) Piloting XP on four mission-critical projects. IEEE software 21
(6):70-75

S12. Fitzgerald B, Stol K-J, O'Sullivan R, O'Brien D (2013) Scaling agile methods to regulated
environments: An industry case study. In: Proceedings of the 35th International Conference on
Software Engineering (ICSE), San Francisco, USA, IEEE Press, pp 863-872

S13. Gary K, Enquobahrie A, Ibanez L, Cheng P, Yaniv Z, Cleary K, Kokoori S, Muffih B, Heidenreich J
(2011) Agile methods for open source safety-critical software. Software: Practice and Experience
41 (9):945-962

S14. Ge X, Paige RF, McDermid JA (2010) An iterative approach for development of safety-critical
software and safety arguments. In: Proceedings fo the Agile Conference (AGILE), Orloando,
Florida, USA, IEEE, pp 35-43

S15. Górski J, Łukasiewicz K (2012) Assessment of risks introduced to safety critical software by agile
practices-a software engineer's perspective. Computer Science 13 (4):165-182

S16. Górski J, Łukasiewicz K (2013) Towards Agile Development of Critical Software. In: Proceedings
of the 3rd International Workshop on Software Engineering for Resilient Systems, Kiev, Ukraine,
Springer, pp 48-55

S17. Grenning J (2001) Launching extreme programming at a process-intensive company. IEEE
Software 18 (6):27

S18. Hajou A, Batenburg R, Jansen S (2015a) An Insight into the Difficulties of Software Development
Projects in the Pharmaceutical Industry. Lecture Notes on Software Engineering 3 (4):267

S19. Hajou A, Batenburg R, Jansen S (2015b) Method æ, the Agile Software Development Method
Tailored for the Pharmaceutical Industry. Lecture Notes on Software Engineering 3 (4):251

S20. Heeager L (2012) Introducing Agile Practices in a Documentation-Driven Software Development
Practice: A Case Study. Journal of Information Technology Case and Application Research 14
(1):3-24

S21. Heeager L, Nielsen P (2009) Agile Software Development and its Compatibility with a Document-
Driven Approach? A Case Study. In: Proceedings of the 20th Australasian Conference on
Information Systems, Melbourne, Australien, p 205-214

S22. Jonsson H, Larsson S, Punnekkat S (2012) Agile practices in regulated railway software
development. In: Proceedings of the 23rd International Symposium on Software Reliability
Engineering Workshops (ISSREW), Dallas, Texas, IEEE, pp 355-360

S23. Lin W, Fan X (2009) Software development practice for FDA-compliant medical devices. In:
Proceedings of the International Joint Conference on Computational Sciences and Optimization
(CSO 2009), Hainan, Sanya, China, IEEE, pp 388-390

S24. McCaffery F, Trektere K, Ozcan-Top O (2016) Agile – Is it Suitable for Medical Device Software
Development? In: Proceedings of the International Conference on Software Process Improvement
and Capability Determination (SPICE), Dublin, Ireland, Springer, pp 417-422

S25. McHugh M, McCaffery F, Casey V (2012a) Barriers to adopting agile practices when developing
medical device software. In: Proceedings of the 12th International Conference on Software
Process Improvement and Capability Determination (SPICE), Palma de Mallorca, Spain, Springer,
pp 141-147

S26. McHugh M, McCaffery F, Casey V (2012b) Barriers to using agile software development practices
within the medical device industry. In: Proceedings of the 19th European Systems and Software
Process Improvement and Innovation Conference, Vienna, Austria, Springer.

S27. McHugh M, Cawley O, McCaffery F, Richardson I, Wang X (2013a) An agile v-model for medical
device software development to overcome the challenges with plan-driven software development
lifecycles. The 5th International Workshop on Software Engineering in Health Care (SEHC), IEEE,
pp 12-19

S28. McHugh M, McCaffery F, Fitzgerald B, Stol KJ, Casey V, Coady G (2013b) Balancing agility and
discipline in a medical device software organisation. In: Proceedings of the International
Conference on Software Process Improvement and Capability Determination, Springer, pp 199-
210

S29. McHugh M, McCaffery F, Casey V (2014a) Adopting agile practices when developing software for
use in the medical domain. Journal of Software: Evolution and Process 26 (5):504-512

S30. McHugh M, McCaffery F, Coady G (2014b) An Agile Implementation within a Medical Device
Software Organisation. In: Proceedings of the International Conference on Software Process
Improvement and Capability Determination, Springer, pp 190-201

S31. Mehrfard H, Hamou-Lhadj A (2013) The impact of regulatory compliance on Agile software
processes with a focus on the FDA guidelines for medical device software. International Journal of
Information System Modeling and Design, 2(2): p. 67-81.

S32. Mehrfard H, Pirzadeh H, Hamou-Lhadj A (2010) Investigating the capability of agile processes to
support life-science regulations: the case of XP and FDA regulations with a focus on human factor

requirements. In: Proceedings of the 8th Conference of Software Engineering Research,
Management and Applications (SERA), Montreal, Canada, Springer, pp 241-255

S33. Misra S, Kumar V, Kumar U (2010) Identifying some critical changes required in adopting agile
practices in traditional software development projects. International Journal of Quality & Reliability
Management 27 (4):451-474

S34. Notander JP, Höst M, Runeson P (2013a) Challenges in flexible safety-critical software
development–an industrial qualitative survey. In: Proceedings of the 14th International
Conference on Product Focused Software Process Improvement, Paphos, Cyprus, Springer, pp
283-297

S35. Notander JP, Runeson P, Höst M (2013b) A model-based framework for flexible safety-critical
software development: a design study. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, Coimbra, Portugal, ACM, pp 1137-1144

S36. Notander JP, Runeson P, Höst M (2013c) SimPal: a design study on a framework for flexible
safety-critical software development. ACM SIGAPP Applied Computing Review 13 (4):17-29

S37. Paige RF, Chivers H, McDermid JA, Stephenson ZR (2005) High-integrity extreme programming.
In: Proceedings of the 30th ACM symposium on Applied computing, Santa Fe, New Mexico, ACM,
pp 1518-1523

S38. Paige RF, Charalambous R, Ge X, Brooke PJ (2008) Towards agile engineering of high-integrity
systems. In: Proceedings of the 27th International Conference on Computer Safety, Reliability, and
Security (SAFECOMP), Newcastle upon Tyne, UK, Springer, pp 30-43

S39. Rasmussen R, Hughes T, Jenks J, Skach J (2009) Adopting agile in an FDA regulated
environment. In: Proceedings of the 2009 Agile Conference (AGILE), Chicago. USA, IEEE, pp
151-155

S40. Rottier PA, Rodrigues V (2008) Agile development in a medical device company. In: Proccedings
of the 2008 Agile Conference (AGILE), Toronto, Canada, IEEE, pp 218-223

S41. Shafiq S, Minhas NM (2014) Integrating Formal Methods in XP—A Conceptual Solution. Journal of
Software Engineering and Applications, 7(4): p. 299-310.

S42. Sidky A, Arthur J (2007) Determining the applicability of agile practices to mission and life-critical
systems. In: Proccedings of the 31st Software Engineering Workshop (SEW), Columbia, USA,
IEEE, pp 3-12

S43. Spence JW (2005) There has to be a better way!. In: Proccedings of the Agile Development
Conference (ADC'05), Denver, USA, IEEE, pp 272-278

S44. Stephenson Z, McDermid J, Ward A (2006) Health modelling for agility in safety-critical systems
development. In: Proceedings of the 1st International Conference on System Safety, London, UK,
Institution of Engineering and Technology (IET), pp 260-265.

S45. Stålhane T, Myklebust T, Hanssen G (2012)The Application of Safe Scrum to IEC 61508
Certifiable Software”, In: Proceedings of the 12th European Safety and Reliability Conference
(ESREL), Helsinki, Taylor and Francis, pp 6052-6061.

S46. Stålhane T, Katta V, Myklebust T (2013) Scrum and IEC 60880. The 37th Enlarged Halden
Reactor Project meeting, Storefjell, Norway.

S47. VanderLeest SH, Buter A (2009) Escape the waterfall: Agile for aerospace. In: Proceedings of the
28th Conference on Digital Avionics Systems, Orlanda, USA, IEEE, pp 6-16

S48. Vogel D (2006) Agile Methods: Most are not ready for prime time in medical device software
design and development. DesignFax Online, July, pp. 1-6

S49. Wils A, Van Baelen S, Holvoet T, De Vlaminck K (2006) Agility in the avionics software world. In:
Proceedings of the 7th International Conference on Extreme Programming and Agile Processes in
Software Engineering, Oulu, Finland, Springer, pp 123-132

S50. Wolff S (2012) Scrum goes formal: Agile methods for safety-critical systems. In: Proceedings of
the 1st International Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches, Zurich, Schwitzerland, IEEE Press, pp 23-29

S51. Wäyrynen J, Bodén M, Boström G (2004) Security Engineering and eXtreme Programming: An
Impossible Marriage? In: Proceedings of the 4th Conference on Extreme Programming and Agile
Methods, Calgary, Canada, Springer, pp. 117-128

Appendix A: Overview of Papers
Study Year Research

Method
Publication

Type
Agile

Method
Specific
Domain

Embedded
Software

Outcome

S1 2015 Normative writing Conference - Avionics No A model combining agile and safety-critical methods
S2 2003 Experience report Conference - Avionics No Practical advice on becoming agile
S3 2003 Normative writing Workshop XP - No Tailored XP to fit security
S4 2004 Theoretical Workshop - - No Mapping of security methods / techniques and agile methods
S5 2006 Laboratory

experiment
Workshop XP - No Extension of XP to fit security

S7 2007 Design study Notes - Medical Yes An agile methodology for medical devices (TXM)
S8 2010 Design study Workshop - - Yes A blended method (the Mole)
S9 2016 Normative writing Conference - Medical Yes Suitability of agile methods for developing medical devices
S10 2016 Normative writing Conference Scrum - No Security principles for Scrum
S11 2016 Survey Notes - - No Practitioner opinions of challenges
S12 2004 Experience report Magazine XP Radio

communication
Yes Experiences with XP in mission-critical development

S13 2013 Design study Conference Scrum - No Develop and test a combined Scrum method (R-Scrum)
S14 2011 Case study Journal - Medical No Practical experience on agile for safety-critical
S15 2010 Design study Conference - Avionics No Propose and test an iterative approach
S16 2012 Case study Journal XP & Scrum Medical No Risks and solutions for overcoming these
S17 2013 Case study Workshop XP & Scrum Medical No Investigating risks
S18 2001 Experience report Magazine XP - Yes Experiences with XP for development of safety-critical
S20 2015 Case study Journal - Medical No Expert evaluation of agile in pharmaceutical projects
S21 2015 Design study Journal XP & Scrum Medical No A tailored method for medical projects (method æ)
S22 2012 Case study Journal Scrum Medical Yes Understanding possibilities and challenges of agile in medical
S23 2009 Case study Conference Scrum Medical Yes Evaluation of agility of a safety-critical development practice
S24 2012 Theoretical Workshop - Railway No Mapping agile practices with the EN 50128 standard
S25 2009 Field experiment Conference - Medical No A hybrid methodology used in practice
S26 2016 Normative writing Conference - Medical No Challenges of using agile for developing medical devices
S27 2012 Survey Conference - Medical No Barriers to agile adoption for medical
S28 2012 Survey Conference - Medical No Identification of barriers in literature & practice, compare
S30 2013 Design study Workshop - Medical No Developing an SDLC founded in plan-driven but with agile
S31 2013 Case study Conference - Medical No Evaluation and improvement of agility in practice
S32 2014 Survey Journal - Medical No Identification of barriers (internal and external)
S33 2014 Design study Conference - Medical No Development and validation of the AV-model
S34 2013 Theoretical Journal XP Medical No Comparison of XP and FDA
S35 2010 Theoretical Conference XP Medical No Extension of XP to comply with FDA
S36 2010 Survey Conference - - No Identification of issues for regulatory compliance
S37 2013 Case study Conference - Robotics

Transportation
No Identification of industrial needs and challenges

Automation
Aerospace

S38 2013 Design study Conference - Robotics No Evaluation of a model-based, agile framework (SimPal)
S39 2013 Design study Journal - Robotics No Evaluation and improvement of a framework (SimPal)
S40 2005 Normative writing Symposium XP - No Assessment of XP
S41 2008 Case study Conference - Avionics No Identification of challenges of applying agile
S42 2009 Experience report Conference - Medical Yes Description of experiences adopting agile for medical
S43 2008 Field experiment Conference Scrum Medical No Experiences adopting Scrum for medical
S44 2014 Laboratory

experiment
Journal XP Police reporting No Development and test of a formal XP method

S45 2007 Normative writing Workshop - - No Process for identifying agile practices for critical projects
S46 2005 Field experiment Conference - Medical No How agile was implemented
S47 2006 Normative writing Conference - - No Propose a process model (the agile health model)
S48 2012 Theoretical Conference Scrum Real time

operation
No Develop and theoretically evaluate the SafeScrum model

S49 2013 Theoretical Workshop Scrum Nuclear No Theoretical evaluation of the Safe Scrum model
S50 2009 Case study Conference - Avionics Yes Show how agile practices can be used in Airspace
S51 2006 Normative writing Magazine - Medical No Discussing the compliance of agile for medical
S52 2006 Theoretical Conference XP Avionics Yes How to increase speed and handle changing requirements
S53 2012 Experience report Workshop Scrum - No Propose how formality can be embedded in Scrum
S54 2004 Theoretical Conference XP - No Evaluation of XP for safety development

Appendix B: Conceptual Matrix
Table 1. Conceptual Matrix

C1 = documentation, C2 = requirements, C3 = lifecycle, C4 = testing; I1 = relation between documentation &
requirements, I2 = relation between requirements & lifecycle, I3 = relation between lifecycle & testing, I4 = relation

between documentation & testing, I5 = relation between documentation & lifecycle.
Paper C1 C2 C3 C4 I1 I2 I3 I4 I5

1. Abdelaziz et al. (2015) X X x
2. Bedoll (2003) X X X
3. Beznosov (2003) X X X
4. Beznosov and Kruchten (2004) X X X
5. Boström et al. (2006) X X X X X X
6. Cordeiro et al. (2007) X X X X
7. Del Bianco et al. (2010) X X X
8. Demissie et al. (2016) X X X X X
9. Doss and Kelly (2016a) X X
10. Doss and Kelly (2016b) X X X X X
11. Drobka et al. (2004) X X X X X
12. Fitzgerald et al. (2013) X X X X
13. Gary et al. (2011) X X X
14. Ge et al. (2010) X X X X X
15. Górski and Łukasiewicz (2012) X X X
16. Górski and Łukasiewicz (2013) X X X
17. Grenning (2001) X X X X X
18. Hajou et al. (2015a) X X X
19. Hajou et al. (2015b) X X X X X X
20. Heeager (2012) X X X X X
21. Heeager and Nielsen (2009) X X X X X
22. Jonsson et al. (2012) X X X X X X
23. Lin and Fan (2009) X X X
24. McCaffery et al. (2016) X X X X X
25. McHugh et al. (2012a) X X X X X X X
26. McHugh et al. (2012b) X X X X X X
27. McHugh et al. (2013a) X X X X X
28. McHugh et al. (2013b) X
29. McHugh et al. (2014a) X X X X
30. McHugh et al. (2014b) X X X X X
31. Mehrfard and Hamou-Lhadj (2013) X X X X X X
32. Mehrfard et al. (2010) X X X X X
33. Misra et al. (2010) X
34. Notander et al. (2013a) X X X
35. Notander et al. (2013b) X X X X
36. Notander et al. (2013c) X X X X
37. Paige et al. (2005) X X X
38. Paige et al. (2008) X X X X X X
39. Rasmussen et al. (2009) X X X X X
40. Rottier and Rodrigues (2008) X X X X X X X X
41. Shafiq and Minhas (2014) X X X X X
42. Sidky and Arthur (2007) X X X X
43. Spence (2005) X X X
44. Stephenson et al. (2006) X X X X
45. Stålhane et al. (2012) X X X X X X
46. Stålhane et al. (2013) X X X X X X
47. VanderLeest and Buter (2009) X X X X X
48. Vogel (2006) X X X
49. Wils et al. (2006) X X X X X X
50. Wolff (2012) X X X X X
51. Wäyrynen et al. (2004) X X X
Total 35 33 37 32 17 22 14 8 23

