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introduction: Multiple sclerosis (MS) is a devastating autoimmune disease, afflicting 
people in the prime of their lives. Presently, after initial clinical presentation, there are no 
reliable markers for whether a patient will develop MS, or whether their prognosis will 
be aggressive or relapsing–remitting. Furthermore, many MS patients do not respond to 
treatment. Thus, markers for diagnosis, prognosis, and treatment-responsiveness are 
lacking for a disease, where a precision medicine approach would be valuable. The 
glycocalyx (GLX) is the carbohydrate-rich outer surface of the blood vessel wall and is 
the first interaction between the blood and the vessel. We hypothesized that cleavage 
of the GLX may be an early stage predictor of immune attack, blood–brain barrier (BBB) 
breakdown, and disease severity in MS.

Methods: Two experimental models of MS, experimental autoimmune encephalitis 
(EAE), were included in this study. EAE was induced in C57BL/6J mice and Lewis rats, 
which were monitored for weight loss and clinical presentation in comparison to healthy 
controls. Plasma samples were obtained longitudinally from mice until peak disease 
severity and at peak disease severity in rats. Soluble GLX-associated glycosaminogly-
cans (GAG) and proteoglycans (PG) were detected in plasma samples.

results: All animals receiving EAE emulsion developed fulminant EAE (100% pene-
trance). Increased plasma levels of chondroitin sulfate were detected before the onset of 
clinical symptoms and remained elevated at peak disease severity. Hyaluronic acid was 
increased at the height of the disease, whereas heparan sulfate was transiently increased 
during early stages only. By contrast, syndecans 1, 3, and 4 were detected in EAE sam-
ples as well as healthy controls, with no significant differences between the two groups.

Discussion: In this study, we present data supporting the shedding of the GLX as a 
new class of biomarker for MS. In particular, soluble, sugar-based GLX components 
are associated with disease severity in two models of MS, molecules that would not 
be detected in  proteomics-based screens of MS patient samples. Patient studies are 
presently underway.

Keywords: glycocalyx, multiple sclerosis, precision medicine, biomarkers, glycosaminoglycans, proteoglycans, 
EAE, BBB
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INTRODUCTION

Multiple sclerosis (MS) is a devastating autoimmune disease, 
often afflicting those in the prime of their lives. In the US alone, 
200 new cases are diagnosed each week; however, current MS 
treatments are non-curative, side-effect prone, and expensive, 
highlighting the need for expanded treatment options (1, 2). 
Despite the advent of proteomics for assessing plasma biomarkers, 
treatment strategies are challenged by the lack of pathognomonic 
biomarkers predicting disease severity, early signs of new disease 
flares, and response-to-treatment (3, 4). For those diagnosed with 
clinically isolated syndrome, who have a 50% risk of progressing 
to MS, improved tools would evaluate their need for side-effect 
prone medical treatment. In this study, we utilize two variations 
of a well-described rodent model of MS, experimental autoim-
mune encephalitis (EAE) to identify a new and easily detectable 
class of potential biomarkers associated with disease debut and 
progression.

The glycocalyx (GLX) is a wide-spectrum term encompassing 
the diverse, carbohydrate-rich outer surface of the majority of 
cells in the body, including the luminal endothelium (5). Since 
this layer is the first interaction between the blood and the vessel 
wall, both throughout the body and specifically at the blood–
brain barrier (BBB), we hypothesized that shedding of the GLX 
may be an early stage predictor of immune attack, BBB break-
down, disease severity, and treatment efficacy. Indeed, plasma 
detection of GLX shedding has been shown to be relevant for 
vascular permeability and overall disease progression for other 
inflammatory disease, such as sepsis, cerebral malaria, stroke, 
and trauma (6–11).

Due in part to an underestimation on its size, the biological 
and pathophysiological importance of GLX has been largely 
overlooked. Moreover, in the search for plasma biomarkers, 
sugar-based, GLX components would not be detected in large-
scale protein-based assays, such as mass spectrometry. Indeed, 
proteomics studies have identified a plethora of plasma biomark-
ers associated with EAE and MS yet, to our knowledge, there 
have been no studies focused on the shedding of the GLX, in 
particular, glycosaminoglycans (GAGs) and proteoglycans 
(PGs). Chondroitin sulfate (CS), heparan sulfate (HS), and hya-
luronic acid (HA) are GAGs shed from the GLX earlier than their 
membrane-anchored PG ectodomains, and thus may represent an 
early stage biomarker for attack or severity (12). In this study, we 
assess a timeline of GLX shedding of specific GAGs and syndecan 
(Syn) PGs over the course of EAE progression. We present the 
first evidence of early shedding of GAGs at different time points 
before and after disease debut. This data suggest that GAG detec-
tion should be investigated further as a potential biomarker for 
attack and severity in MS and response-to-treatment and could 
be valuable for increased minimally invasive disease monitoring.

MATERIALS AND METHODS

EAE Induction
Myelin Oligodendrocyte Glycoprotein  
(MOG)-Induced EAE in C57BL6 Mice
Female C57Bl/6 mice {Taconic, Denmark (DK) aged 17 weeks 
[22.8  ±  0.4  g; early adulthood (13)]} were housed under 
standard conditions. EAE was induced in C57Bl/6 mice by 
active immunization with myelin oligodendrocyte glycoprotein 
(MOG) 35–55 using the kit EK-2110 from Hooke labs (MA, 
USA), following the manufacturer’s protocol. Briefly, mice were 
injected subcutaneously (s.c.) at two flanks with 200 µg of MOG 
35–55 emulsified in Complete Freund’s adjuvant (CFA; N = 9), 
or 100 µl of PBS in case of the control mice (N = 6). At 2 and 
24 h post-immunization the mice were injected i.p. with 100 µl 
of 4 µg/ml pertussis toxin (PTX) or 100 µl PBS for the control 
mice. Mice were monitored daily for clinical signs of disease and 
assigned a disease score according to the EAE clinical scoring 
system devised by the Danish Animal Experiments Inspectorate 
(see below).

Myelin Basic Protein (MBP)-Induced EAE  
in Lewis Rats
Female Lewis rats (Charles River, Germany) aged 14  weeks 
(219 ± 1 g) were administered an emulsion consisting of: 100 µl 
complete Freund’s adjuvant (CFA; BD 263810, DK), 200  µg 
Mycobacterium tuberculosis H37Ra (BD, 231141, DK), 100  µg 
guinea pig myelin basic protein (MBP; Sigma-Aldrich, DK, 
M2295), and 100 µl 0.9% saline (14).

Directly after preparation, a total of 200  μl emulsion was 
administered intradermally to animals for EAE under isoflu-
rane anesthesia at three sites at the base of the tail, totaling 
200 µl in volume (N = 10). MBP-EAE and control rats (N = 8) 
were treated with a small volume of saline twice-daily (100 μl), 
in accordance with the design of another study in order to 
limit the use of experimental animals. Since this set of animals 
was used as controls for a separate therapeutic intervention 
study, we could not sample blood longitudinally. Therefore, 
we obtained only terminal plasma samples at peak disease 
severity.

Studies were conducted to minimize suffering and were 
approved by the Danish Animal Inspectorate (2015-15-0201-
00647 and 2012-DY-2934-00001). Weight was monitored daily 
throughout the experiment.

Clinical Scoring
Clinical scoring was performed twice daily using the following 
scale relating to progressive degrees of paralysis: 0, no clinical 
signs of EAE; 1, abolished tail tone; 2, mild paresis of one or 
both hind legs; 3, moderate paresis of one or both hind legs;  
4, severe paresis of one or both hind legs; 5, paresis of one or 
both hind legs and incipient paresis of one or both forelegs 
are deemed moribund. Animals were deemed terminally 
ill according to predefined humane endpoints designed in 
consultation with the Danish Animal Inspectorate: animals 
registering a clinical score of ≥4, or a ≥20% loss of initial body 
weight.

Abbreviations: BBB, blood–brain barrier; CFA, complete freund’s adjuvant; CS, 
chondroitin sulfate; DK, Denmark; EAE, experimental autoimmune encephalitis; 
ELISA, enzyme-linked immunosorbent assay; GAG, glycosaminoglycans; GLX, 
glycocalyx; HA, hyaluronic acid; HS, heparan sulfate; MBP, myelin basic protein; 
MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; PG, proteogly-
cans; PTX, pertussis toxin; Syn, syndecan; TBS-T, Tris-buffered saline.
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Timeline Sampling (MOG-EAE)
Before induction and from day 3 post-induction of EAE-MOG, 
a small volume of blood was collected from the facial vein into 
EDTA-powdered tubes for longitudinal samples. Blood was spun 
at 4°C and plasma isolated, flash frozen in liquid nitrogen, and 
stored at −80°C for analyses.

At the termination of the experiment (defined as “peak EAE 
scoring”), whole blood was isolated under 2% isoflurane anes-
thesia from the orbital plexus (C57Bl/6; anticoagulant, EDTA) 
or transcardially (Lewis Rat; anticoagulant: citrate), spun at 4°C, 
and plasma isolated, flash frozen in liquid nitrogen, and stored  
at −80°C for analyses.

Enzyme-Linked Immunosorbent Assay 
(ELISA)
Hyaluronic acid in plasma was quantified with a commercially 
available ELISA kit (Echelon Biosciences, K-1200, Roskilde, 
Denmark).

Plasma Dot Blotting
Due to the small volumes of plasma available with serial sampling, 
dot blots were used to assess GLX markers longitudinally, similar 
to our previous work (10). Two microliters of plasma were dotted 
in duplicate on a cationic nitrocellulose membrane (Hybond N+, 
Amersham, GE Healthcare, Brondby, Denmark) and allowed to 
dry. The membrane was incubated for 60 min at room tempera-
ture in blocking buffer: 5% skim milk powder (Sigma-Aldrich) in 
tris-buffered saline (Tris-buffered saline) + 0.05% Tween20 [Tris-
buffered saline (TBS-T); Sigma-Aldrich]. The membrane was 
incubated thereafter with primary antibodies at their respective 
dilutions overnight, at 4°C. Membranes were thereafter washed 
in TBS-T and incubated with secondary antibodies conjugated 
to horseradish peroxidase, diluted at respective dilutions in 
blocking buffer, and raised against the source of the primary for 
60  min. Membranes were washed thoroughly with TBS-T and 
finally in TBS. Membranes were visualized with Supersignal West 
femto luminescent substrate and Chemidoc XRS CCD camera 
(Bio-Rad Laboratories). Chemiluminescence was quantified with 
densitometry after normalizing to background with ImageJ soft-
ware. Membranes were thereafter stripped with Restore Stripping 
Buffer (ThermoScientific, 21509) for 10 min at room tempera-
ture, washed in TBS and stripping was confirmed with identical 
development protocol (Femto, CCD camera). Membranes were 
blocked again with blocking buffer and probed for different 
antigens of interest (Second probe).

Primary and Secondary Antibodies
First Probing: HS (1:1,000, 10E4, cat no H1890, US Biological, 
MA, USA), Syn-1 (1:750, 281-1, cat no 553712, BD Pharmingen, 
Brøndby, Denmark), Syn-4 (1:750, KY8/2, cat no 550350, BD 
Pharmingen), CD44 (1:200, DAKO, Glostrup, Denmark). Second 
probing: CS (1:1,000, CS-56, cat no C8035, Sigma-Aldrich, 
Brøndby, Denmark), syndecan-3 (1:1,000, cat no AF3539, R&D 
Systems, UK). HRP-conjugated secondary antibodies: anti-rabbit 
(1:2,000), anti-rat (1:4,000), and anti-mouse (1:3,000) (DAKO, 
Glostrup, Denmark). All syndecan antibodies detect the syndecan 
protein structure and not carbohydrates.

Data Analysis
Data sets were tested for normality (Shapiro–Wilk) and equal 
variance before statistical analyses were performed. Weight and 
dot blot data (MOG-EAE) were assessed with two-way ANOVA 
or Student’s t-test (MBP-EAE), ELISA data were assessed with 
Student’s t-test, and clinical scoring (MOG-EAE) was tested 
with Wilcoxon signed-rank test to determine when the median 
clinical score was statistically above 0. A p-value of <0.05 was 
reported as statistically significantly different. Data are presented 
as mean  ±  SEM for normal data and median  ±  interquartile 
range for non-normal data. Longitudinal data from MOG-EAE 
are presented as normalized to day −1, the day before the EAE 
emulsion was administered.

RESULTS

EAE Induction
All animals receiving EAE emulsions developed clinical 
symptoms of paresis and experienced weight loss throughout 
the experiment representing a penetrance of 100% (Figure 1). 
As expected, an EAE-induced weight loss occurred 1–2  days 
prior to the additional signs of disease in both MOG-EAE 
(Figures  1A,B) and in MBP-EAE (Figures  1C,D). In MOG-
EAE, clinical scoring was significantly above 0 from day 14 until 
termination (day 20) with a peak, median clinical score of 2.5 
(day 19), and weight loss was significantly different from healthy 
controls from day 13.

Detection of GLX Shedding in Plasma: 
GAGs Vary at Early- and Late-Stage  
of Disease
Due to constitutive turnover of GLX components, as expected, 
all soluble GLX markers tested were present in control plasma 
(15–17).

In MOG-injected mice, HS levels were significantly above 
healthy controls from an early time point, day 5, and remained 
significantly above until day 11 (Figure 2A). Thereafter HS was 
no longer significantly above controls. Relating to Figure 1, HS 
peaked and returned to baseline before significant weight loss and 
clinical scoring occurred.

In contrast, CS levels were detected at similar levels to controls 
until day 11 where CS increased significantly (Figure 2B). This 
difference progressed steadily until the termination of the experi-
ment, where CS levels in MOG-EAE mice were ~2-fold above 
controls. Control CS levels were relatively stable throughout 
the experiment. Relating to Figure 1, CS increased significantly 
~2  days prior to weight loss and clinical scoring and steadily 
increased until peak disease activity.

Due to the volume required for ELISA, HA was only detected 
at termination of the experiment. As shown in Figure 2C, MOG-
EAE resulted in significantly increased concentrations in plasma 
relative to controls (~2.5-fold from 86.8 ± 9.8 to 236.6 ± 25.7 ng/
ml). Due the potential for binding of HA to the endothelial 
hyaluronate receptor CD44 (18), CD44 levels in plasma were 
also tested to assess whether potential CD44-HA complexes 
contribute to the observed difference. As shown in Figure 2D, 
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Figure 1 | Full penetrance of experimental autoimmune encephalitis (EAE) induction in two models of multiple sclerosis. EAE was induced in C57Bl/6 mice with 
myelin oligodendrocyte glycoprotein (MOG-EAE) and in Lewis rats with myelin basic protein (MBP-EAE). (A) Clinical symptoms of increasing caudal–rostral CNS 
paralysis were significantly above zero from day 14 until peak disease. The experiment was terminated (day 20), coinciding with concomitant weight loss  
(B) in all mice that received MOG-EAE emulsion. MBP-EAE also induced clinical symptoms (C) and weight loss (D) in all rats receiving MBP-EAE emulsion.  
Data are presented as: (A) median with interquartile range; (B) average weight normalized to weight-before-emulsion (day −1); (C) dot blot of MBP-EAE rats 
included; (D) dot plot of weight normalized to weight-before-emulsion (day −1). Statistical differences were reported as *** or **** representing a p-value <0.001  
and 0.0001, respectively, after testing for normality (Shaprio–Wilk) and equal variance and running the following statistical analysis: (A) Wilcoxon signed-rank test 
against the hypothetical value of 0; (B) two-way ANOVA; and (D) Student’s t-test. (A,B) N = control (6), MOG-EAE (9); (C,D) N = control (8) and MBP-EAE (10).
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CD44 did not vary in plasma from control and MOG-EAE mice 
(p = 0.95).

In late-stage MBP-EAE in Lewis rats, similar results were 
obtained for each GAG: HS levels were not different from 
controls (Figure 2E), whereas CS and HA levels were ~1.5-fold 
significantly above control levels (Figures 2F,G). CD44 was not 
different in plasma (p = 0.9, Figure 2H).

Detection of GLX Shedding in Plasma: 
Proteoglycans
Syndecan-1, 3, and 4 were detected in plasma of MOG-EAE 
and control mice throughout the experiment (Figure  3) and 
all three markers were relatively stable throughout the MOG-
EAE disease course, albeit inclusive of day-to-day fluctuation 
(Figure 3A). Syn-1 was significantly above controls at day 13; 
however, it was not significantly different at the termination of 
the experiment.

In late-stage MBP-EAE, a similar pattern was observed: 
no differences were detected between MBP-EAE and con-
trols (Figures  3B,C), albeit a trend was detected in favor of 

higher shedding of Syn-4 in late-stage MBP-EAE (Figure 3C, 
p = 0.07).

DISCUSSION

With this study, we propose that the shedding of the polysaccha-
ride-rich GLX may be a useful marker for disease activity in MS. 
This is based on the first evidence that distinct, soluble GAGs of 
the GLX are responsive to experimental myelin-based autoim-
munity in the plasma of rodents. Rodent EAE models have many 
pathophysiological similarities to human MS and have contrib-
uted to the understanding of MS pathology and the development 
of therapeutic interventions (19).

In the search of pathognomonic biomarkers of MS, a plethora 
of candidate molecules have been proposed, generated through 
both targeted studies and large-scale proteomic- and transcrip-
tomic studies. Potential markers include chemokines, cytokines, 
cholesterols, growth factors, microRNAs, brain-derived proteins, 
proteases, autoantibodies, and anti-viral antibodies (3, 4, 20, 21).  
The present golden standard for MS diagnosis remains an 
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Figure 2 | Sugar-based glycocalyx (GLX) markers significantly increased in plasma with disease course in myelin oligodendrocyte glycoprotein (MOG)-experimental 
autoimmune encephalitis (EAE) and are increased in late-stage myelin basic protein (MBP)-EAE. Sugar-based glycosaminoglycans heparan sulfate (HS), chondroitin 
sulfate (CS), and hyaluronic acid (HA) follow disease course in MOG- and MBP-EAE. (A) HS increases in the plasma at an early time point and returns to baseline 
are present manifest (Figure 1A). (B) Conversely, CS increases significantly in the plasma approximately ~2 days before clinical symptoms present in MOG-EAE. 
Detection of CS in the plasma proceeds to increase ~2-fold above controls at peak disease severity (day 20). (C) HA is ~2.5-fold higher in peak severity MOG-EAE 
when compared to controls. (D) CD44, an endothelial hyaluronate receptor did not vary between groups. Similar to MOG-EAE at peak disease severity, plasma from 
MBP-EAE at peak disease severity shows unchanged HS levels between diseased and control rats (E), and significantly higher CS and HA levels when compared to 
controls (F,G). CD44 (H) did not vary between groups. Data are presented as line graphs (A,B) normalized to pre-EAE levels (day 1) and (C–H) dot plots of control 
vs. EAE. Statistical significance is reported when p-value is <0.05 where *, ***, and **** refer to p < 0.05, 0.001, and 0.0001, respectively, after testing for normality 
(Shaprio–Wilk) and equal variance and running the following statistical analysis: (A,B) two-way ANOVA, (C–E) Student’s t-test.
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assessment of expanded disability status scale, brain volume/
lesion size MRI, and, in some facilities, cerebrospinal oligoclonal/
immunoglobulin index (2, 4). Interestingly, the distinct glycan 
molecules in this study would not be detected in proteomic 
screens of plasma, and thus represents a new class of candidate 
biomarkers readily available through simple antibody-based test-
ing of small volumes of plasma or serum.

Glycans in the Peripheral Blood: Promising 
New Class of Biomarker in MS?
Longitudinally, MOG-EAE showed differing shedding curves 
with respect to the distinct glycans studied (Figure 2A–C). HS 
shed significantly higher than controls at an early phase, before 
presentation of clinical symptoms, and returned to baseline by 
day 11 as the clinical symptoms began to present. Contrasting, CS 
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Figure 3 | Protein-based glycocalyx (GLX) markers are largely unchanged in myelin oligodendrocyte glycoprotein (MOG)- and myelin basic protein (MBP)-
experimental autoimmune encephalitis (EAE) in the initial stage of disease from induction until peak disease severity. GLX-based proteoglycans of the syndecan 
family were detected in the plasma of MOG- and MBP-EAE-induced rodents. In the MOG-EAE model (A), levels of Syn-1 (black), Syn-2 (red), and Syn-4 (blue) 
were determined in controls (full line) and longitudinally until and at peak severity in disease (dotted line). In MBP-EAE, levels of Syn-1 (B) and Syn-4 (C) in 
controls and at disease peak severity were determined. (A) Inclusive of some day-to-day fluctuation, all three markers were relatively stable throughout the 
MOG-EAE disease course (A). Nevertheless, Syn-1 was significantly increased in MOG-EAE at day 13. Syn-1 and -4 were not different in MBP-EAE at peak 
disease severity (B,C). Syn-4 (C) tended to be higher than the control group but not significantly (p = 0.07), wherein the control group had a high internal 
variability. Data are presented as line graphs (A) normalized to pre-EAE levels (day −1) and (B,C) dot plots of control vs. EAE. Statistical significance is reported 
when p-value is <0.05, where * refers to p < 0.05 after testing for normality (Shapiro–Wilk) and equal variance and running the following statistical analysis:  
(A) two-way ANOVA, (B,C) Student’s t-test.
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shedding closely followed the development of clinical symptoms 
and peaked at study termination. HA was significantly higher in 
MOG-EAE than controls at the peak of disease. This difference 
was not related to CD44 levels in the plasma and can, therefore, 
be attributed to unbound plasma HA (18). Furthermore, this 
indicates that HS and CS/HA shedding reflect different parts 
of the disease pathology. As the EAE model system is known to 
induce a T-cell response to a myelin protein, it is interesting to 
further investigate if animals exposed solely to the adjunctive 
elements, i.e., the CFA/PTX, would indeed mimic the early HS 
response. Nevertheless, CS and HA are indeed the most EAE-
specific elements of the GAGs.

Glycans in the Peripheral Blood: Increased 
Sheddase Activity?
Specific cleavage of HS is mediated by different types of endog-
enous heparanases: one located in the endothelium and others 

located in circulating immune cells and platelets (22, 23). We 
suggest that heparanase activity is increased as response to 
CFA, since PTX was previously shown to inhibit G-protein 
coupled receptor-mediated shedding (12). Thus, with CFA 
being immunostimulatory it is likely that the injection leads to 
heparanase secretion from leukocytes. CFA/PTX does not seem 
to stimulate other sheddases, since the other markers assessed 
were unaffected by this injection. Nevertheless, it could be 
expected that plasma HS would increase during a later phase 
of EAE where glial expression of heparanase is increased (24). 
Since we followed the disease course only until peak disease, 
this effect may emerge in the peripheral blood after a longer 
time interval.

Heparan sulfate is the most abundantly present GAG in 
the endothelial GLX followed by HA and CS (5). In contrast, 
CS levels in tissues are generally higher than HS. Intriguingly, 
increased plasma levels of CS coincided with clinical symptoms. 
Moreover, HA levels in plasma were substantially increased. The 
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enzyme hyaluronidase is found in platelets and leukocytes, has 
specificity for both of these GAGs, and thus, may be involved 
in the shedding we observe (25, 26). Furthermore, increased 
plasma levels of HA could also be a result of the inflammatory 
conditions present in EAE which stimulates HA synthesis (27), 
however, endothelial coverage decreases overall, suggesting that 
HA turnover under some inflammatory conditions is not fully 
compensated by synthesis. Both CS and HA were previously 
shown to be involved in CNS injury (28). In addition to endothe-
lial origin, the source of these markers in the blood could also 
be the CNS proper, due to an increased BBB permeability. PTX 
injection has been shown to induce a transient BBB opening, 
whereas an EAE-induced opening coincides with leukocyte 
entering the nervous tissue and initiation of the clinical phase 
thereafter (29). This is reflected in the CS response, where 
increased levels in the MOG-EAE animals were seen 2–3 days 
before clinical disease debut.

Beyond their compositional differences, GAGs are produced 
in different ways: HS and CS are produced in the Golgi compart-
ment, polymerized and transported to the cell surface anchored 
to its respective proteoglycan; whereas HA is synthesized at 
the cell surface and not covalently attached to any cell surface 
proteins (5, 28). This has importance for interpretation of the 
shedding. Detecting HA in the plasma suggest hyaluronidase 
activity, while detection of CS could be the result of both hyalu-
ronidase activity and protease activity. Therefore, as we do not 
observe an increase in the endothelial-specific PGs, we interpret 
this to be a result of increased hyaluronidase activity in the cer-
ebrovascular compartment and/or in the cerebral parenchyma 
proper (25, 28, 29).

Glycans in the Peripheral Blood:  
MOG-EAE vs. MBP-EAE
Glycosaminoglycans levels at the peak-stage of EAE were similar 
in result and magnitude in both rodent models: MOG-EAE 
increased CS and HA by 2- to 2.5-fold, respectively with no 
change in HS, and MBP-EAE increased CS and HA by 1.5-fold 
with no change in HS, compared to respective controls. However, 
MBP-EAE rats show higher disease severity than MOG-EAE 
mice [~4.5 vs. 2.5, respectively (Figure 1)].

Proteoglycans in the Peripheral Blood
In the disease phase of this study, shedding of the GLX ectodo-
mains of Syn-1, 3, and 4 seemed to be unaffected by inflamma-
tion, endothelial activation, and nervous tissue damage. Our data 
suggest that loss of PG itself is not extensive at these time points. 
Since this study involves only the induction phase and first clini-
cal peak of EAE we cannot rule out that PG ectodomains may 
begin to shed above control levels at a more advanced time after 
EAE induction.

GAGs and Pathogenesis of EAE
Glycosaminoglycans play multiple important roles in EAE 
pathogenesis. Initial leukocyte rolling and infiltration into 
the CNS can be reduced by removing GAGs from the vascu-
lature (30, 31). This is further substantiated by i.v. injections 
of soluble GAGs that serve as an extra reservoir of binding 

partners for leukocytes, resulting in decreased neuroimmun-
ity (32–34). Moreover, GAGs play a key role in controlling 
neuroinflammation, where HA accumulation has been shown 
to increase in demyelinated lesions and impair remyelination 
(35) and pharmacological removal of HA reduces spinal cord 
demyelination (30). Also, CS accumulation has been shown to 
impair remyelination (36). Furthermore, GAGs can activate 
and recruit immune cells and are thought to be endogenous 
signals for damage (37, 38). Therefore, the use as biomarkers 
for CNS inflammation, and possibly MS, is highly promising, 
further underlined by this study. Interestingly, others have 
shown that Syn-1 knockout animals have a worse prognosis in 
MOG-EAE and that Syn-1 is increased in the cerebrospinal fluid 
of mice at peak EAE (39). Moreover, it has been reported from 
polymorphism studies that the gene for another PG, glypican-5, 
is associated with MS development (40) and with responders 
to interferon-beta treatment (41) albeit, the pathogenic signifi-
cance of this finding is unclear.

CONCLUSION

We present evidence of glycan shedding in experimental MS 
and a longitudinal course of shedding that appears relevant 
as a potential new class of biomarker for autoimmune inflam-
mation. Ideally, a biomarker would be absent in healthy indi-
viduals and present in diseased patients. Indeed, the power 
of glycan shedding to detect difference in disease vs. non-
diseased animals from two models of MS is a strong indicator 
that further, detailed studies of these molecules in patients 
are warranted. We are presently assessing the translational 
relevance of this finding in MS patients with the ultimate 
goal of improving disease monitoring and predictability, and 
providing a reliable complementary diagnostic tool for treat-
ment response.
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