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Abstract. Cross-domain analytical techniques have made the prediction of
outcomes in building design more accurate. Yet, many decisions are based on
rules of thumb and previous experiences, and not on documented evidence.
That results in inaccurate predictions and a difference between predicted and
actual building performance. This article aims to reduce the occurrence of such
errors using a combination of data mining and semantic modelling techniques,
by deploying these technologies in a use case, for which sensor data is
collected. The results present a semantic building data graph enriched with
discovered motifs and association rules in observed properties. We conclude
that the combination of semantic modelling and data mining techniques can
contribute to creating a repository of building data for design decision support.

Keywords: BIM, Semantics, Data Mining, Pattern Recognition, Knowledge Discovery

1 Introduction

Cross-domain analytical techniques such as Big Data analytics, machine learning,
semantic query techniques and inference machines have made the prediction of
outcomes in building design possible and much more accurate. Research has shown
promising advances within the use of machine learning and data mining techniques
for model predictive control, metamodelling for design space exploration, grey box
modelling and advanced control strategies related to building energy systems, etc.
These approaches carry a powerful potential and can directly influence the
decision-making process in the Architecture, Engineering and Construction (AEC)
industry by infusing it with an evidence-based character. The latter is of direct
relevance for high-performance building design, which employs strict performance
criteria. Responding to these criteria ideally requires evidence-based multidisciplinary
input. Nevertheless, many decisions are still based on rules of thumb and previous
experiences, and not on documented evidence. This leads to inaccurate predictions
and assumptions regarding input parameters (e.g. occupancy rate), rare revisiting of
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analytical and building models during operation, no modification of design
assumptions based on actual performance and thus a difference between predicted and
measured performance.

If knowledge discovered in building operation would be accessible, a design
professional should be able to match the ongoing design with meaningful performance
patterns. This article aims to investigate how data from buildings in operation can
enable knowledge discovery and provide patterns that can be useful to inform future
design processes. In particular, we consider available operational building data related
to indoor space use, thermal performance and indoor climate collected from a culture
and sports center. This use case is particularly interesting, as the building hosts
different spaces such as conference and exhibition halls, ice hockey arenas, training
facilities, swimming and wellness facilities, etc. The case provides operational
building data captured through a sensor network and existing CAD drawings. From
the collected datasets, we distil patterns and represent these so that they can be
reusable by deploying the latest technological advances within Knowledge Discovery
in Databases (KDD) [1] and semantic data modelling. The considered techniques are
not often easily combined, especially not to inform future design decisions, which is
the fundamental purpose of this study.

In this article, we first look into the diverse existing computational approaches for
data analytics and knowledge discovery (Section 2), and semantic representation of
building data (Section 3). In Section 4, we indicate how these data can be combined
for knowledge discovery. We thereby suggest a system architecture aimed specifically
at that purpose. Section 5 presents the use case we relied on for knowledge discovery,
including the results obtained from that use case.

2 Data Analytics and Knowledge Discovery in the AEC
Industry

The AEC industry nowadays generates large volumes of data associated with all
stages of the building life-cycle. However, the traditional analytics can generate
informative reports, but fail when it comes to content analysis [2]. As a result, data
mining, pattern recognition and KDD have received major attention, as they can
provide reliable results and effectively assist in analysis of data and extraction of
knowledge. One definition of data mining is “the analysis of large observational
datasets to find unsuspected relationships and to summarize the data in novel ways so
that data owners can fully understand and make use of the data.” [3] Furthermore,
Bishop defines pattern recognition as “the automatic discovery of regularities in data
through the use of computer algorithms and with the use of these regularities to take
actions such as classifying the data into different categories” [4]. Finally, KDD
represents the overall process of knowledge extraction, with knowledge being the end
product of the data-driven discovery and data mining being the step in the process
which employs specific algorithms to discover patterns in the given data [5]. Fayyad
et al. [1] state that the fundamental objective is to discover high-level knowledge in
low-level data and define the transformation steps of raw data into actionable



knowledge, i.e. data selection, preprocessing, transformation, mining and
interpretation/evaluation of the discovered knowledge.

Widely accepted data mining categories include classification, clustering,
association rule mining, regression, summarization and anomaly detection, targeting
either predictive (supervised, directed) or descriptive (unsupervised, undirected)
analytics [1, 6]. Supervised approaches describe the qualitative or quantitative
relationships between the input and output variables and rely on domain expertise and
significant amounts of training data. As a result, discovery of novel knowledge is
unlikely, due to the predefined inputs and outputs. Unsupervised approaches (e.g.
clustering, association rule mining, etc.), however, excel in discovering the intrinsic
structure, correlations and associations in data and do not rely on training data, as
inputs and outputs are not predefined. While predictive techniques are backward
oriented due to their predefined target, descriptive ones are forward oriented (no
explicitly defined target) and make it possible to discover interesting patterns and
relationships in the data [7].

Within the high-performance and sustainable building design domain, the use of
predictive approaches is usually related to prediction of building energy use and
demand [8-10]; prediction of building occupancy and occupant behaviour [11, 12];
and fault detection diagnostics [13, 14]. Unsupervised tasks usually complement and
target framework development [15-17]; discovery of patterns in occupant behaviour
for improvement of operational performance [18]; and extraction of energy use
patterns [19, 20]. Of course, KDD applications in the AEC industry span over a much
broader area than the main categories defined above. For instance, Jun & Cheng [21]
target high-performance with classification models for sustainability certification
evaluation and Peng et al. [22] propose the use of BIM-based data mining approaches
for improvement of facility management , etc.

These studies all show promising results when it comes to improvement of the
building operation and occupant comfort. However, using knowledge discovery in
data to support future design decision-making is an area that is not explored in detail.
Studies have explored pattern recognition in simulation data and information
extraction from BIM design log files [23], data-driven approaches for energy-efficient
design by BIM data mining [24], as well as use of data mining for extracting and
recommending architectural concepts [25]. Even though these studies demonstrate
promising results within the use of KDD for design decision support, they rely on
patterns only in design data. The data analysis results coming from existing buildings
can rarely be linked to an early stage design, mainly because the data representations
do not match. Thus, this study attempts to explore knowledge discovery in operational
building data as a means to improve the decision-making in the performance oriented
design process.

3 BIM and Semantic Representations of Building Data

The representation of building information nowadays typically happens using a BIM
model, most commonly exchanged using the Industry Foundation Classes (IFC) data



model, which captures building geometry, object properties, as well as semantics. The
IFC schema is represented in the EXPRESS information modelling language. Any file
exported to IFC is then typically an IFC STEP Physical File (IFC-SPF). Alternative
formats for the IFC data model are available in XML, RDF and JSON. In all cases,
however, the data model itself is derived directly from the EXPRESS or IFC-SPF
format, making it the absolute reference.

Recent research and development initiatives have showed promising results using
graph-based data modelling techniques, which are more common in a web
environment (e.g. Neo4J, GraphDB). Such approaches are the preferred solution
especially when a link needs to be made to outside data that is not typically captured
in an EXPRESS-based format (e.g. sensor data, geospatial data). Typically,
graph-based approaches focus entirely on the semantics and less on other specific
data, such as geometry, large amounts of tabular data, etc. In such case, the semantic
graph contains a direct link to the relevant information, which is kept in its original
format. Both practice and research thus suggests the use of a graph-based format to
capture building data, nevertheless keeping numeric data explicitly out of the
semantic graph for computational performance reasons.

Representing semantic building data in a graph format can be done with the
available ontologies by the W3C Linked Building Data (LBD) Community Group'.
This includes a Building Topology Ontology (BOT) [26], a PRODUCT ontology, a
PROPS ontology (properties), and an Ontology for Property Management (OPM).
Using linked data technologies, links can then be maintained with other data [27],
including operational data. For instance, device data can be captured using SAREF?,
and sensor data can be represented using SSN® and/or SOSA*. For the building
performance data, these ontologies do not serve well in case all operational data are
targeted. In such case, a tabular format is still a lot more effective. The mentioned
semantic ontologies can be used to capture static characteristics, such as averages,
min-max values, features of interest, devices, and so forth.

4 Combining Semantics and KDD to Enhance
High-Performance Design: Proposed System Architecture

In this article, we consider the combination of KDD (Section 2) and building
semantics (Section 3) for the purpose of design decision support. Most importantly,
design decision support tools need to re-use the knowledge discovered in the available
data through KDD and semantic data modelling. In this section, we focus entirely on
discovering patterns using KDD and semantic data modelling, so that a repository of
queryable design patterns can be built. Considering that the available data originate

! https://www.w3.org/community/lbd/
2 https://w3id.org/saref

3 https://www.w3.org/TR/vocab-ssn/
4 https://www.w3.org/ns/sosa/
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from multiple heterogeneous sources, a decentralized structure is preferred, which is
most commonly realized using graph database approaches. Using these technologies,
one can construct a web of semantic information in a decentralized manner, thereby
allowing links between datasets, while respecting their original data structures.
Transforming all data to a semantic format is possible and allows direct queries and
applying semantic data mining techniques [28]. However, this approach may disallow
many highly efficient data mining algorithms that can be used for retrieving useful
knowledge. Instead, we propose to store the different kinds of data separately, thereby
distinguishing between semantic data, geometric data and operational data (Fig. 1).
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Fig. 1. Proposed system architecture for the combination of semantics and KDD.

We additionally suggest a semantic data integration layer for linking the semantic data
model of a building with its numeric representations and dynamic performance
parameters. This layer serves as a reference model for the semantics of the different
data sources and makes integration possible by pointing from within the semantic
graph to web server addresses for operational data streams and geometric data files.
As aresult, systems accessing this data can recognize the relevant associations.

5 Use Case: Gigantium Cultural and Sports Center

Gigantium is a large cultural and sports center in Aalborg, Denmark, which opened to
the public in 1999. Initially, it housed a hall with indoor football and handball courts,
a sports hall and meeting facilities. In 2007, two ice skating halls were added,
followed by swimming facilities in 2011. Today, Gigantium hosts an ice skating arena
and training facility, sports halls, a concert and exhibition hall, swimming and
wellness facilities, athletics hall, meeting rooms, a conference room, a cafe, and a



lobby. The total area of the center is about 34,000 m?. The ice skating arena can host
5,000 spectators and the main hall capacity during concerts is 8,500.

Operational building data is being collected through a sensor network consisting
of 35 nodes, divided in all spaces. The nodes monitor Temperature (°C), Relative
Humidity (%), Air Pressure (hPa), Indoor Air Quality (Total Volatile Organic
Compounds ((TVOC), ppb) and CO2 (ppm)), illuminance (lux) and motion. The
purpose of the data collection spans from monitoring indoor climate and thermal
comfort, to providing information on space use for maintenance of the facilities.
Clearly, the diversity of facilities and activities will be reflected in the collected data.
For instance, temperature and relative humidity for meeting rooms, ice hockey arenas,
and swimming pool will clearly be different. As a result, this use case provides an
ideal dataset that can be used to test the proposed knowledge discovery approach in
diverse environments within the same building. Most importantly, the discovered
patterns can then inform design decisions related to thermal comfort and indoor
climate. For example, persisting issues have been experienced with overheating in the
conference room, which has led to a decision to renovate the mechanical ventilation
system. The discovered insights would be invaluable to the decision-making related to
the system design, by preventing uninformed decisions or use of design parameters
that previously led to these issues.

5.1 Capturing the Building Semantics Using a Semantic Graph

As the use case building was built in 1998, there was no BIM model or 3D geometry
available as project data. Instead, access was only available to 2D CAD data in PDF
format. In this research, we generated a semantic graph from the available data. The
spaces are represented using the BOT ontology as bot:Space instances. Each of the
spaces is linked to its corresponding sensor nodes. These are defined as bot: Element
and gig:SensorNode class instances. The gig:SensorNode class is a direct subClass of
the sosa:Platform class, which is defined by the SOSA ontology to “carry at least one
Sensor, Actuator, or sampling device to produce observations, actuations, or samples”.
Each sensor node hosts sensors, tracking different observable properties (Section 5).
The information is described in a graph, following a combination of the BOT and
SOSA ontologies, including custom classes and properties (namespace “gig:”).

Important to note is that the data values are not directly stored in the semantic
graph. Instead, a custom gig-values datatype property points to a web address that
returns the data values as requested using the HTTP protocol. One is able to add
attributes to an HTTP request, thereby setting query parameters such as time frame
and refresh rate (e.g. from=now-30d&to=now&refresh=30s). The result includes the
pointer to the data stream for a sosa:Result of a sosa:Observation. A full data sample
is available®, yet, access to the sensor data streams is obviously restricted.

inst:room_1
rdf:type bot:Space ;

3 http://users.ugent.be/~pipauwel/CIBW87_additionaldata.html
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rdfs:label "Main hall" ;

bot:hasSpace inst:room_2 ;

gig:hasSensorNode inst:sensorNode 00000097, inst:sensorNode 000000B0,
inst:sensorNode 00000077 ;

geom:hasGeometry “2000, 3000, 4000, 6000 wkt:linestring.

inst:sensorNode 00000097 rdf:type gig:SensorNode, bot:Element ;
rdfs:label "00000097" ;
gig:observation "Space use" ;
sosa:hosts inst:sensor 00000097 1 ;
gig:placement "Placed in the middle of the hall, 8m above the floor. " .

inst:result 1 rdfitype sosa:Result ;
rdfs:label "Result of observation of Relative Humidity" ;
gig:values
"https://gigantium.dk/Gigantium2018instances?orgld=1&datastrea
m=true" .

Although not in direct focus for this paper, geometry of spaces is also stored in
this semantic graph (geom:hasGeometry). This representation relies on a Well-Known
Text (WKT) and can be used for simple visualization of the relevant spaces in a
web-based floor plan layout visualization.

5.2 Knowledge Discovery in Operational Building Data

According to Fan et al. [29], operational building data is essentially multivariate time
series data, where each observation is a vector of multiple measurements, and time
intervals between subsequent observations are fixed. In that case, knowledge
discovery can help capture relationships between variables over particular time
periods (frequent repetitive patterns (motifs) and association rules [30]). This article
demonstrates the implementation of these approaches on the diverse data streams
from the cafe in the lobby. The location is chosen for its varying number of visitors
both on a daily basis and during events, thereby minimising the likelihood of
discovery of patterns due to regularly scheduled events. The data is collected in the
period 12.03-16.05.2018, which constitutes the full available dataset so far. The
hourly observations are exported as CSV files and preprocessed to enable motif
discovery. Missing data fields are treated with five iterations of multiple imputation
by running the Expectation Maximisation bootstrap algorithm in R. Symbolic
Approximate Aggregation (SAX) [31] is further applied for dimensionality reduction
and transformation of the input time series into strings. The univariate motifs in the
multivariate time series data are discovered by identifying Longest Repeated
Substrings with Suffix Tree implementation [32]. All repeated instances in the
symbolic representation of the time series were identified, as for this effort only
disjoint and non-overlapping motifs were considered. Figure 2 shows a graphical
representation of the labelled discovered motifs (M1, M2,..., M14) in the sequence of



the six variables. Overlapping motifs, as well as motifs contained within other motifs
were excluded from observation.

TVOC Relative Humidity
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M3 M4 M5 M3 M5 M4 M10 M10 M10 m11 M1
| \ [ W ,’\\ ) A ]
\ VU L/WAJ Ve VAR IS \/j v \\_//\ﬁ |

Temperature BME280 Air Pressure
Ms M7 m7 M6 M12 M13 M12 M13 M4 M14
N

\ | I \ )

Fig. 2. Discovered univariate motifs (M1-M14) in the observed variables

To enable association rule mining, the discovered motifs are further used to
construct a co-occurrence matrix. The columns of the matrix correspond to the motif
number and the values for each row (1 or 0) indicate whether an univariate motif
occurs or not. For example, M3 co-occurs with M10 and M6. Using the co-occurrence
matrix, we obtained 10 sets of co-occurring items for the considered space.
Associations between the items of these 10 sets have then been identified by using the
association rule mining algorithm defined in [33]. Setting the minimum support and
confidence as 0.2 and 0.8 respectively, this results in 13 association rules with support
equal to 0.2 and confidence 1. Nine association rules are related to the co-occurrence
of M7, M9 and M14. Other association rules are M1 => M10, M3 =>M10, M12 =>
M10, M13 => MBS, the last of them being a bidirectional association rule.
This means that, for instance, when M12 occurs, the probability of M10 co-occurring
is 100%. In this case, the rule indicates an association between observation patterns
related to air pressure and CO2. Naturally, the meaning of the discovered rules needs
to be interpreted relatively to the design purpose. To be able to use the discovered
knowledge, it also has to be connected to the semantic graph in Section 5.1. This can
be done by representing the rules in a semantic graph, and linking this graph to the
representation of sensor node 00000014, to create a single motif-enriched graph.

6 Conclusion

Knowledge discovered in operational data can be linked directly to a semantic
representation of the building and can also be used for retrieving and re-using



patterns. In this work, we aimed at making high-performance design rely more
explicitly on tangible evidence from operational building data. In order to untap as
much knowledge as possible from available sources, data mining and semantic data
modelling are used. The combination of these techniques is not often intensively
deployed in an AEC context. Yet, this combination provides great advantages, as
formal semantic query can be combined with flexible and high-performing pattern
recognition techniques. In this paper, we employ these techniques for the Gigantium
Cultural and Sports Center in Aalborg. We hereby relied on the W3C ontologies for
linked building data to model the building in direct connection to the available data
streams. Furthermore, motif discovery and association rule mining were applied to the
sensor data, thereby providing hidden knowledge through the semantic graph. This
technique can in future work be used to build a repository that can inform any
building designer of high-performing building design techniques.
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