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Abstract

The popularity of location empowered devices such as GPS enabled smart-
phones has immensely amplified the use of location-based services in so-
cial networks. This happened by allowing users to share Geo-tagged con-
tents such as current locations/check-ins with their social network friends.
These location-aware social networks are called Location-based Social Net-
works (LBSN), and examples include Foursquare and Gowalla. The data of
LBSNs are being used for providing different kinds of services such as the
recommendation of locations, friends, activities, and media contents, and the
prediction of user’s locations. To provide such services, different queries are
utilized that exploit activity/check-in data of users. Usually, LBSN data is
divided into two parts, a social graph that encapsulates the friendships of
users and an activity graph that maintains the visit history of users at lo-
cations. Such a data separation is scalable enough for processing queries
that directly utilize friendship information and visit history of users. These
queries are called user and activity analytic queries. The visits of users at
locations create relationships between those locations. Such relationships can
be built on different features such as common visitors, geographical distance,
and mutual location categories between them. The process of analysing such
relationships for optimizing location-based services is termed Location Ana-
lytics. In location analytics, we expose the subjective nature of locations that
can further be used for applications in the domain of prediction of visitors,
traffic management, route planning, and targeted marketing.

In this thesis, we provide a general LBSN data model which can support
storage and processing of queries required for different applications, called
location analytics queries. The LBSN data model we introduce, segregates
the LBSN data into three graphs: the social graph, the activity graph, and
the location graph. The location graph maintains the interactions of locations
among each other. We define primitive queries for each of these graphs. In
order to process an advanced query, we express it as a combination of these
primitive queries and process them on corresponding graphs in parallel. We
further provide a distributed data processing framework called GeoSocial-
GraphX (GSG). GSG implements the aforementioned LBSN data model for
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efficient and scalable processing of the queries. We further exploit the lo-
cation graph for providing novel location analytics queries in the domain
of influence maximization and visitor prediction. We introduce a notion of
location influence. Such influence can capture the interactions of locations
based on their visitors and can be used for propagation of information be-
tween them. The applications of such a query lie in the domain of outdoor
marketing, and simulation of virus and news propagation. We also provide
a unified system IMaxer that can evaluate and compare different informa-
tion propagation mechanisms. We further exploit the subjective nature of
locations by analysing the mobility behaviour of their visitors. We use such
information to predict the individual visitors as well as the groups of visi-
tors (cohorts) in future for those locations. The prediction of visitors can be
used for better event planning, traffic management, targeted marketing, and
ride-sharing services.

In order to evaluate the proposed frameworks and approaches, we utilize
data from four real-life LBSNs: Foursquare, Brightkite, Gowalla, and Wee
Places. The detailed LBSN data mining and statistically significant experi-
mental evaluation results show the effectiveness, efficiency, and scalability of
our proposed methods. Our proposed approaches can be employed in real
systems for providing life-care services.



Resumé

Populariteten af apparater med indbygget lokationsteknologi som f.eks. GPS
i smartphones har forøget brugen af lokationsbaserede tjenester i sociale
netværk. Det kommer som en konsekvens af at brugere kan dele geo-tagged
indhold såsom nuværende lokation med deres sociale netværk, såkaldte
Location-based Social Networks (LSBN). Foursquare og Gowalla er eksem-
pler på to LSBNs. LSBN data danner grundlag for en række forskellige
tjenester, som f.eks. anbefalinger af steder, venner, aktiviteter og medier.
LSBN data er almindeligvis delt op i en venskabsgraf der beskriver ven-
skab mellem brugere i et socialt netværk og en aktivitetsgraf der beskriver
brugernes besøgshistorik ved diverse lokationer. En sådan dataseparation
tillader at processere forespørgsler der inkorporerer information om vensk-
aber og besøgshistorik direkte i forespørgslen på selv store datasæt. Brugeres
besøgshistorik kan bruges til at skabe relationer mellem lokationer, f.eks.
baseret på fælles besøgende, geografisk afstand, og fælles lokationskate-
gori. En analyse af sådanne relationer med henblik på at optimere lokations-
baserede tjenester kaldes en lokationsanalyse. En lokationsanalyse betragter
verden fra et lokationsperspektiv fremfor et brugerperspektiv og kan bruges
til bl.a. at forudsige besøgende, trafikstyring, ruteplanlægning og målrettet
marketing.

I denne afhandling præsenterer vi en generel LSBN datamodel der un-
derstøtter lagring og processering af forespørgsler til lokationsanalyse. Data-
modellen separerer LSBN data i en venskabsgraf, en aktivitetsgraf og en
lokationsgraf. Lokationsgrafen modellerer lokationers indbyrdes interak-
tioner. Vi definerer simple forespørgsler for hver af disse grafer. Avancerede
forespørgsler defineres som en kombination af de simple forespørgsler, og
de simple forespørgsler processeres i parallel i deres tilhørende grafer. Vi
præsenterer GeoSocialGraphX (GSG), en distribueret model til processering
af avancerede forespørgsler. GSG bruger den 3-delte datamodel til at pro-
cessere forespørgsler effektivt og skalérbart. Yderligere udnytter vi lokation-
sgrafen til at udføre nye former for forespørgsler til influence maximization i
sociale netværk og forudsigelse af besøgende. Vi introducerer begrebet loka-
tionsindflydelse til at beskrive interaktionerne mellem lokationer baseret på
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deres besøgende og kan bruges til at propagere information mellem noder
i lokationsgrafen. Lokationsindflydelse kan f.eks. bruges til outdoor mar-
keting, samt simulering af vira- og nyhedsspredning. Ydermere præsenterer
vi IMaxer, et samlet system der kan evaluere og sammenligne forskellige
spredningsmekanismer. Vi analyserer også brugeres bevægelsesmønstre, og
bruger informationen til både at forudsige de enkelte besøgende og grupper
af besøgende. Forudsigelse af besøgende kan forbedre trafikstyring, målrettet
marketing, ride-sharing tjenester og planlægning af begivenheder.

Vi evaluerer vores tilgange og modeller eksperimentelt ved at benytte data
fra fire LSBN: Foursquare, Brightkite, Gowalla og Wee Places. Vi demonstr-
erer med statistisk signifikans at de foreslåede metoder er effektive, skalér-
bare og producerer resultater af høj kvalitet. Vores foreslåede metoder kan
forbedre kvaliteten af mange forskellige tjenester.
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1. Introduction

1 Introduction

1.1 Background and Motivation

In recent years, social networks have undergone a rapid growth. These net-
works provide the opportunity to build relationships, share multimedia con-
tents, and provide recommendations to users. Social network analysis is be-
ing used in a wide range of applications such as on-line marketing, product
promotions, recommendations, and health-care [1]. The recent pervasiveness
of location-aware devices has managed to reduce the gap between the virtual
world of the social networks and the real world. This happened by allowing
social network users to share Geo-tagged content such as GPS coordinates of
their current location and pictures with geographical tags. Such social net-
works which are enriched with location information are denoted by the term
Location-Based Social Networks (LBSN). Examples of LBSNs are Foursquare,
Brightkite, Gowalla, Facebook, and Twitter. The data analysis of these LBSNs
is not only being used to improve existing applications that were built using
data from traditional social networks but are also a source of novel appli-
cations and services. These services usually analyse mobility behaviours of
users and utilize them for applications such as product promotion, outdoor
marketing, route planning, traffic management, and recommendation ser-
vices like next location of a user, activities to perform in a particular region,
or friends who have similar mobility behavior [2].

LBSN data is composed of two types of entities, user and location. A per-
son who uses the LBSN is termed as a user. It is represented by u. A location
in an LBSN is a point of interest (POI) that is represented by a quadruple
(l, lat, long, C), where l is the location identifier, lat and long are the GPS co-
ordinates of the geographical space where the POI is situated, and C is the
set of categories of the POI. The categories typically show the context of the
location and are usually assigned by visitors of the locations. For instance,
a restaurant may have categories: “Food”, “Restaurant”, and “Danish cui-
sine”. Based on these entity types, LBSN data is traditionally divided into
two parts based on the interactions of the entities. The first part is a so-
cial network containing connections between users called friendship/social
graph. Usually, the social graph is an undirected and non-weighted graph
where the edges express the friendship relation. The second part of LBSNs is
composed of visits/check-ins of users at locations. A check-in of an user at
a location is represented by a triplet (u, l, t) where u is the user/visitor, l is
the location, and t is the visiting time. In LBSNs, such information is repre-
sented by a bipartite graph called activity graph. The activity graph consists
of directed edges from users to their corresponding locations and maintains
visiting time as an edge attribute. An example of an LBSN is given in Fig-
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Fig. 2: Example of a traditional way of dividing LBSN data into a social graph and activity
graph.

ure 2. Here, {u1, u2, ..., u8} and {l1, l2, ...l7} represent users and locations,
respectively.

The LBSN data along with the rich geographical information inherit sev-
eral challenges. The first problem is the volume of the data. The LBSN data is
huge in size. For instance, the most popular LBSN, Foursquare, has 8M daily
check-ins on average, 55M monthly active users, and 100M POIs. Moreover,
LBSN data are temporal, spatial and graph nature. These diverse features
and the huge size of LBSN data impose several computational and structural
challenges in processing. Thus, in order to better exploit LBSNs for improv-
ing existing and providing novel applications, we require mechanisms that
support efficient and scalable processing of data of such a diverse nature.

1.2 Location Analytics

Usually, the social graphs and the activity graphs of LBSNs are utilized for
providing user and activity-based services such as user, activity, and loca-
tion recommendations [3]. However, the subjective nature of locations was
overlooked in the past which can be utilized for diverse applications. For
instance, interactions of locations can be used for finding the top-k most fa-
mous locations that are visited together, and the top-k most frequent common
visitors between two locations. Similarly, in order to find potential visitors
for targeted marketing for a trip consisting of multiple locations, we can find
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1. Introduction

the groups of users who frequently have been visiting such locations together
in the past. Further, by finding locations that are commonly visited by the
users, we can provide some joint incentives/discount offers on the activities
that can be performed there or use such information for traffic management,
and route planning. Exploiting the activity graph for finding such infor-
mation is computationally expensive. The reason is that the activity graph
only maintains the relationship of users with locations and requires intensive
computation to find relationships between locations. Thus, it is important to
maintain information of interactions of locations. This information can then
directly be used for processing of queries that requires such interactions of
locations, termed Location Analytics queries.

Fig. 3: The structure of the thesis: Paper A introduces the LBSN data model for Location Analyt-
ics that is further exploited by rest of the papers. Papers F, B, and C cover location-based influ-
ence propagation and maximization methods, where Paper G is an overview paper that covers
the idea at an abstract level. Paper F formally introduces the notion of location-based influence.
Paper B extends the Paper F by incorporating all of its contents and further providing optimized
models for capturing the location influence. Paper F and Paper G, may thus be skipped when
reading the thesis cover to cover. In Paper C, a unified system is provided that supports a wide
range of information propagation models for LBSNs. Paper D and Paper E provide mechanisms
for predicting individuals and groups of visitors at locations, respectively. A logical, optimized,
and precise way to go through the thesis is: Paper A=>Paper B=>Paper C=>Paper D=>Paper E.
Reading Paper F and Paper G is optional.

In this thesis, we provide a general LBSN data storage and processing
model with a focus on novel location analytics queries. The overall structure
of the thesis is given in Figure 3. The figure shows that the thesis is basically
divided into three parts, where we first provide a general data management
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model for LBSN data and then, based on this, provide novel location analyt-
ics queries in the domain of influence maximization and visitors prediction.
We further show how the papers are built upon each other with their cor-
responding research questions. Next, we discuss the topics covered in this
thesis, in detail.

2 General and Scalable LBSN Data Management

2.1 Motivation and Problem Statement

The check-in information and social interactions of users in LBSN data are be-
ing used for different kinds of services such as recommendations of locations,
users, and activities [4–7]. These services require LBSN queries of diverse na-
ture such as finding visitors of a location, range friends and top-k visited
locations. The processing of these diverse LBSN queries requires data to be
collected, maintained, and processed in ways that require huge storage and
computation costs. For instance, finding visitors of a location only requires
information about users’ activities. However, a range query that aims to find
friends of a user within a given radius from his or her location, requires the
social network attributes of the user to find friends and spatial measures to
calculate the distance among them. In order to tackle such challenges, a gen-
eral framework [3] for the processing of LBSN queries has been proposed.
The authors focus on queries that require social interactions and activities of
users. However, their framework overlooked location analytics queries that
require interactions of locations. For instance, finding top-k locations that are
visited together. The efficient processing of such queries demands an LBSN
data model that is generalized enough to support location analytics as well as
user and activity analytic queries. Moreover, the enormous amount of LBSN
data leads to another challenge of scalability of processing of these queries.
This highlights the importance of a data processing system for LBSN data.
Several distributed data and graph processing systems have been proposed
in past such as Spark [8], SpatialHadoop [9], and GraphLab [10]. However,
none of them is capable of efficiently dealing with all the features of LBSN
data which are of graph, temporal, and spatial nature. The Paper A addresses
aforementioned two challenges that require: 1) a generalized LBSN data stor-
age and query processing model for diverse types of queries. 2) a scalable
framework that can process LBSN data efficiently.

2.2 LBSN Data Storage and Processing Model

In order to provide the generalized LBSN data model, we exploit the entities
of LBSNs: users and locations, and their interactions with each other such
as user-user, user-location, and location-location interactions. Based on these
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2. General and Scalable LBSN Data Management

Fig. 4: A segregated graphs (the social graph, the activity graph, and the spatial/Location graph)
based LBSN data storage and query processing model [11].

interactions, we segregate the LBSN data into three graphs, the Social graph
(GS), the Activity graph (GA), and the Spatial/Location graph (GL), respectively,
as shown by the Graph Segregation in the Figure 4. These graphs are defined
below. The following definitions are reproduced from [11].

Definition 0.1. SocialGraph(GS) is an undirected graph, where vertices represent
users and edges represent relationships/ friendship between them. It is given by,
GS = (U, F), where U is the set of vertices that represents users, and F is the set of
edges representing connections between them, i.e., F ⊆ U ×U.

The activity graph records the visits/check-ins of users at locations (user-
location interactions) with the corresponding visiting time in a bipartite graph.

Definition 0.2. ActivityGraph(GA) consists of users and their Activities. It is
given by GA = (U, L, A), where U and L are the two sets of vertices: users and
locations, respectively. A is the set of edges which represents activities of users U at
locations L at times T. It is given by A ⊆ U × L× T.

The location graph captures the interactions of locations. In this paper, we
consider the edges between locations based on following definition of com-
mon visitors of the locations. Our data model can support other various def-
initions of the locations’ interactions such as based on geographical distance,
trajectories, and mutual location categories.

Definition 0.3. CommonVisitors(Uc(lm, ln)) is the set of users who visited the
locations lm and ln. It is given by: Uc(lm, ln) = {u ∈ U|∃(u, lm, ta), (u, ln, tb) ∈
A}.
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Graphs Categories Primitives Notations

GS

Selection FindFriends FF

Structural
FindSocialSeparationDegree FSoSD
FindCliqueFriends FCF

Aggregate Top-k ConnectedUsers TCU

GA

Selection
FindUserLocation FUL
FindLocationVisitors FLV

Structural
FindRangeLocations FRL
FindSpatialSeparationDegree FSpSD

Aggregate
Top-k NearestLocations TNL
Top-k Visitors TV
Top-k VisitedLocations TVL

GL

Selection
FindCommonVisitors FCV
FindLinkedLocations FLL

Structural Find LocationSeparationDegree FLSD

Aggregate
Top-k VisitedLinkedLocations TVLL
Top-k ConnectedLinkedLocations TCLL

Table 1: Query Primitives for social graph, activity graph and spatial graph [11].

The location graph based on the common visitors is defined as:

Definition 0.4. The SpatialGraph (GL) graph represents the locations as vertices
and the relationships as edges. It is given by GL = (L, E), where L is the set of
vertices and E represents the set of edges, i.e., E ⊆ L× L. An edge is a pair of
locations having common visitors.

Next, for scalable processing, we exploit the parallel nature of these seg-
regated graphs. We define query primitives for each of these graphs. To
process an advanced query, we divide it into these primitives and run them
on corresponding graphs in parallel as shown in the LBSN Query Engine of
Figure 4. The query primitives for all graphs are given in Table 1. The query
primitives are further divided into three types based on their functionalities:
selection, structural, and aggregate primitives as shown in the table. For in-
stance, the selection queries such as finding friends, locations of users, and
common visitors of locations are considered selection primitives. The queries
that require structural processing of graphs such as finding clique friends
and separation degrees are considered structural primitives. The top-k re-
lated aggregated queries such as finding top-k visitors and nearest locations
are termed aggregate primitives.

Example 2.1
For the sake of example, we show the processing of an advanced query:
RangeFriends as given in Figure 5. We divide the query into three query
primitives, FindFriends, FindLocationVisitors and FindRangeLocations. We
first process FindFriends and FindRangeLocations in parallel on the social
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2. General and Scalable LBSN Data Management

Fig. 5: Query Plan for Range Friends [11]

graph and the activity graph, respectively. Then, based on the results of
FindRangeLocations, we further compute FindLocationVisitors. Finally, we
combine the results with the output of FindFriends to get the RangeFriends.

2.3 GeoSocial-GraphX

In order to find an underlying tool for implementing the proposed LBSN data
model and processing of query primitives, we evaluate different open source
distributed tabular data, graph, and spatial data processing systems. We
choose GraphX, an Apache Spark based graph-parallel system for building
our proposed framework called GeoSocial-GraphX (GSG) based on its capa-
bilities of efficient processing of both tabular and graph data. GSG inherits
the properties of tabular and graph data processing systems from Spark and
GraphX, respectively. GSG further provides support for efficient spatial data
processing. The architecture of the GSG is divided into four parts based on
their functionalities as shown in Figure 6. 1) The Storage layer manages the
appropriate data structures for storing the LBSN graphs. To do that it uti-
lizes the extension of Spark’s Resilient distributed dataset (RDD) by GraphX:
VertexRDD and EdgeRDD for storing vertices and edges, respectively. 2) The
Operation layer is responsible for providing operators for processing of the
query primitives. The operators are divided into two types, core operators
which are baselines such as mapEdges, and triplets and advanced operators
that utilize core operators for processing such as Pregel and ConnectedCompo-
nents. 3) The Index layer’s job is the efficient processing of query primitives
that involve spatial attributes. We provide a two-level indexing mechanism
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that consists of a Global Index and a Local Index. The global index is responsi-
ble for distribution of data across nodes of the cluster where the local index
handles the data partitioning within a node. To do that we provide standard
indexing mechanisms, such as Quadtree, Octree and k-d tree. 4) The Query
Engine provides the implementation of the query primitives that can further
be extended for implementing advanced LBSN queries.

Fig. 6: Architecture of GeoSocial-GraphX [11].

2.4 Discussion

For the experimental evaluation, we use three datasets taken from real-world
LBSNs, Foursquare, Brightkite and Gowalla. We first evaluate the effective-
ness of the LBSN data storage and query processing model by implementing
a set of social, activity and location analytics queries. We show that the loca-
tion graph of our proposed model can be used to process the location analyt-
ics queries up to 4 orders of magnitude faster than a traditional LBSN data
model as shown in Table 2. Although the computation of the location graph
is more time consuming, we show that it is offset after a single query. Next,
we analyse GSG’s scalability and optimization based on spatial indexing and
show that it outperforms GraphX up to 7x for location analytics queries. We
also compare the query performance of GSG with a Hadoop based spatial
data processing framework, SpatialHadoop (SH). The results show that GSG
outperforms SH in terms of runtime and scalability up to 20x and 7x, respec-
tively. The overall evaluation results validate the significance of the proposed
LBSN data model and show that GSG outperforms the competitors in terms
of efficiency and scalability.
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3. Location Influence

Data set Graph Time Query Activity Graph Spatial Graph

1 5 10 15 1 5 10 15

Brighkite

GA 43.7
FCV 7.5 35.4 71.3 109.1 0.3 1.6 3.1 3.9
FLL 31125.6 155625.9 311254.9 466881.9 2.4 11.9 21.5 32.6

GL 31127.12
TCLL 31127.5 155620.9 311253.4 466880.5 2.4 7.7 14.7 21.3
TVLL 31125.4 155622.8 311249.7 466871.5 1.7 6.3 12.2 17.8
FLSD 31127.2 155632.6 311264.6 466863.8 3.4 11.6 22.3 30.5

Table 2: Comparison of computation time (in seconds) of spatial primitives on activity graph
and location/spatial graph [11]

3 Location Influence

3.1 Motivation and Problem Statement

One of the applications of the social network analysis that gained significant
importance in recent past is viral marketing using influence maximization.
In these studies, influence of a user is measured by the number of followers
of his activities. For instance, if a user u posts a status on social media, the
number of his friends who re-shared his status within a particular time de-
fines the influence of u. In a viral marketing approach, these influential users
are utilized for product promotion. They are usually asked to share promo-
tional messages for a product to maximize its visibility among his followers.
Existing influence maximization studies focus on finding such top-k influen-
tial users for product promotion via word of mouth marketing. However, the
geo-tagged contents of LBSNs allow us to further exploit it for other market-
ing approaches which require displaying ads on billboards and banners such
as out-of-home/outdoor marketing. Outdoor marketing takes approximately
6% of the total marketing budget [12] which shows the significance of such
approaches. Paper G shows how the activity data of users from social net-
works and LBSNs can be utilized to optimize the information propagation
and influence maximization mechanism for diverse marketing approaches.

We exploit the location graph and utilize the locations’ interactions for
proposing an information propagation mechanism that can be used for such
marketing approaches. On the basis of the proposed mechanism, we compute
the influence of locations on each other and find top-k influential locations.
For example, consider a marketer who aims to promote his product to the
maximum regions of a city by giving free promotional items such as a cap
with a promotional message on it. In order to do that he needs to find loca-
tions where he should distribute those caps to visitors so that the message is
spread to the maximum regions. The paper F focuses on finding such loca-
tions. We formally define our problem statement [13]: Given an LBSN and a
parameter k, find a set of k locations such that their combined location influence is
maximal.
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Check-ins
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g e
h a
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Fig. 7: Running example of an LBSN: Check-ins (L) shows the visits of users (represented by
small letters) at locations (represented by capital letters) at time stamps t=1,2 and 3. Graph(C)
depicts the movement of users between consecutive locations. Friendships(R) show the friends
of each user in the social network. [13]

3.2 Location-Based Influence

We first introduce a notion for capturing such influence among locations,
called Location Influence. We define the location influence of a location s by its
capacity to spread its visitors to another location d within a particular given
time ω. The intuition behind such an influence is that users who are exposed
to a message at a location promote it indirectly by talking to their friends and
colleagues at the locations they visit afterwards. Such visitors/information
carriers are called Bridging Visitors.

Example 3.1
Consider the running example, given in Figure 7. The bridging visitors
BD(T1, T2) from location T1 to location T2 within time window ω = 2 are a
and f .

Next, in order to measure the location influence between two locations s
and d, we propose following two location influence models. 1) The Absolute
Influence model captures the influence based on the number of bridging visi-
tors. The intuition behind this is that a compelling activity is usually repeated
by a significant number of people. The absolute location influence IA(s, d) of
s on d is given by [13].

IA(s, d) :=

{
1, if |B(s, d)| ≥ τA

0, otherwise
(1)

where B(s, d) is a set of bridging visitors from s to d and τDA is absolute
influence model threshold.
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2) The Relative Influence Model measures the relative influence IDR(s, d)
from s to d based on the ratio of the number of bridging visitors from s to d
and the number of visitors at d (VD(d)). The motivation behind finding such
an influence is to avoid bias towards considering all popular locations with
many visitors as influential locations. The relative influence of s on d is given
by [13]:

IR(s, d) :=

1, if
|B(s, d)|
|V(d)| ≥ τR

0, otherwise
(2)

where V(d) is the set of users who visited location d and τR is relative
influence model threshold.

Example 3.2
In the running example given in Figure 7. Suppose τ = 2, ω = 2 and
τR = 0.4, then IA(T1, H1) = 1 and IR(T1, H1) = 1.

Usually, users like to follow the activities of their friends. We find this
observation by analysing the LBSN datasets. Based on this observation, we
propose a friendship based location influence model. In this model, we in-
corporate friends of bridging visitors as potential information carriers. To
determine the friendship based influence, we replace B(s, d) in Equation 1
and Equation 2 by a set of bridging visitors from s to d together with their
friends. Further, in Equation 2, we replace V(d) with a set of visitors of d and
their friends.

A location s may not influence another location d alone but together with
other locations may influence it. For instance in Figure 7, T1 and M1 alone
cannot influence T2 for ω = 2 and τA = 3. However, together they influence
T1. We called such an influence, Combined Location Influence (φI). We aim to
find the locations that maximize such combined influence.

3.3 Influence Oracle

Next, in order to compute the location influence, we first provide a data
structure called Influence Oracle and then we use it for finding top-k influ-
ential locations. In influence oracle, for each location, we maintain a list of
locations which have at least one bridging visitor from the location, called
Location Summary. We provide an on-line incremental algorithm for find-
ing such location summaries. To do that, we maintain sets of user histories
that record the visits of users with corresponding locations and latest visiting
time. As our input check-in data is sorted in increasing order of time, we
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update user histories on every new check-in/visit. For a check-in (u, l, t), we
update the location summary of a location l by adding the set of locations
that are visited by a user u within time [t− ω, t]. For the relative model, we
further maintain total visitors of every location.

Maintaining the location summaries requires a lot of space and process-
ing time. In order to improve the space and time efficiency, we provide a
probabilistic data-structure, modified Hyperloglog (mhll) to store the loca-
tion summaries. Based on this, we improve both space and time efficiency as
given in Table 4. Once we computed such data-structure, we utilize standard
greedy algorithms for computing top-k influential locations.

Fig. 8: GPS coordinates of 13 location-ids on GoogleMaps [13].

3.4 Discussion

In order to evaluate the proposed concepts and algorithms, we utilized three
datasets, Foursquare, Brightkite, and Gowalla. In these datasets for some
of the GPS coordinates, multiple location ids are provided. For instance, in

(a) Naive BrightKite (16 locations) (b) Our BrightKite (72 locations)

Fig. 9: Comparison of top- 5 influential locations (green) and their spread (red) between naive
and our approach [13].
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Figure 8, 13 GPS coordinates with different location ids are associated with
the same house. To avoid such issues, we cluster the GPS coordinates to get
POIs using density-based spatial clustering. We use such POIs for all the
experiments. We performed detailed experimental analysis and provide the
suitable values for the thresholds of the location influence models. We also
show the effect of these thresholds on the influence spread and computational
resources. In order to evaluate the effectiveness of our proposed approach,
we compare the influence spread of top-k locations fetched by our proposed
approach and a naive greedy approach. Our proposed approach outperforms
the naive approach in influence spread by 5 times as shown in Figure 9. We
further analyse the effect of approximate algorithms on the accuracy. To do
that for each location, we compute the relative error for the influence set
and compare it with the exact approach. We show that the approximate
algorithms require 5 times less computation time and 4 times less memory
as compared to the exact algorithms.

4 Effective and Efficient Location Influence Min-
ing

4.1 Motivation and Problem Statement

The Location Influence introduced in Paper F [13] can be used for applica-
tions like outdoor marketing, monitoring and controlling of a virus and fake
news propagations. Several models for capturing such location influence are
provided. However, no quantitative comparison of influence spread of these
models is provided. Furthermore, in the friendship-based influence model,
all the friends are assumed to follow the activities of bridging visitors. How-
ever, usually, in real-life, only a subset of friends follow the activities. Thus,
it is important to identify and incorporate significantly influenced friends to
optimize the accuracy of the influence spread.

Moreover, in real life, there exist several cases in which a single influencer
may carry the influence. For instance a virus spread or information propa-
gation in specialized information networks. LBSN data is also often sparse
which leads to very few visitors to locations. For such cases, we can more
efficiently compute the location influence. To do that, in Paper B, which is
an extension of Paper F, we first focus on an effective influence model that
incorporates the influenced friends of bridging visitors for finding location
influence. Then, we further focus on efficient algorithms for finding single
influencer based location influence. Finally, we emphasize on an extensive
experimental evaluation to show the effectiveness of the proposed model in
comparison with a baseline naive approach and as well as state-of-the-art
influence models.
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Location-Based Influence Models
Absolute Influence Relative Influence

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Label
Direct Absolute
Model (MDA)

Friends Absolute
Model (MFA)

Influenced Friends
Absolute Model
(MIA)

Direct Relative
Model (MDR)

Friends Relative
Model (MFR)

Influenced
Friends Relative
Model (MIR)

Parameters τDA, ω τFA, ω τIA, ω, θ τDR, ω τFR, ω τIR, ω, θ

Location
Influence

IDA IFA IIA IDR IFR IIR

Table 3: Summary of different types of Location-Based Influence Models with corresponding
notations and threshold [14].

4.2 Effective Influence Models

In order to find friends that most likely follow activities of users, we first
find the influence of users among each other based on their visiting activi-
ties. We consider influence of a user u on a user v if v visits a location l after
u within a particular time. To compute such influence of u on v, we provide
an algorithm that computes the influence probabilities using Bernoulli distri-
bution that computes this by the fraction of the number of times v followed
the activities of u and the total number of activities of v. If v is influenced by
multiple other users, we divide the influence credit among all such influencer
users using a partial credit distribution model. Furthermore, considering the
observation that usually influence of an activity remains active within a par-
ticular time, we incorporate a discrete-time based model and consider the
influence if it is spread within the given time window. We incorporate the
activities that are performed at the same locations for measuring influence.
We further introduce a threshold θ and consider the influence between two
users if the influence probability is greater than the threshold. Furthermore,
it is worth noting that a user u alone may not influence v but along with other
users may influence him. Thus, we consider the complete bridging visitor set
for a pair of locations (influential and influenced) for finding their influenced
users. Next, for finding absolute location influence based on these influenced
friends of the bridging visitors, we replace the bridging visitor set with a set
of users containing the bridging visitors and their corresponding influenced
friends called Influenced Friends-based bridging visitors. It is given by [14]

Definition 0.5. Influenced Friends-Based Bridging Visitors: Given an LBSN(GS, A),
time window ω, locations s and d, BD(s, d), and a threshold of the influence probabil-
ity between users θ, a set of Influenced Friends-Based bridging visitors between
s and d is denoted by BI(s, d):

BI(s, d) = BD(s, d) ∪ {u ∈ U| ∑
v∈BD(s,d)

pv,u ≥ θ} (3)
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4. Effective and Efficient Location Influence Mining

Exact Approx
Memory Oracle Time Query Time Memory Oracle Time Query Time

MDA O(|U|(|L|2 + ω)) O(ω log(|U|)|A|)

O(|S||L||U||U|)

O(|L|2b + |U|ω)
O(ω|A|)

O(|S||L|b)MDR
O(|L|2b
+|U|ω + |L||U|)

MFA

O(|U|(|L|2 + ω
+|U|))

O(ω|U| log(|U|)|A|)
O(|L|2b
+|U|ω + |U|2) O(ω|U||A|)

MFR

O(|L|2b
+|U|ω + |U|2
+|L||U|)

MIA O(ω|U| log(|U|)|A|
+|L|2|U|2
+|A|(|A|+ |U|))

N/A
MIR

Table 4: Summary of time and space complexities for the influence models [14].

where pu,v show the influence probability of user u on user v. For the rela-
tive location influence model, we further incorporate the influenced friends
of the visitors of the destination location. Moreover, we introduce minimum
influence thresholds for both the absolute and the relative influenced friends-
based influence models. All the proposed influence models with correspond-
ing parameters and notations are given in Table 3.

In order to find top-k locations using influenced friends-based influence
model, we first compute the influence oracle which contains the location sum-
maries of all the locations and then used it for finding top-k locations. To do
that, we first compute the influence probabilities of users among each other
using the aforementioned algorithm. Next, we consider the bridging visi-
tors of each influential and influenced pair of locations and incorporate their
influenced visitors having influence probability greater than the influenced
visitor based influence threshold θ. It is important to note that this is an
off-line algorithm. The is reason is that we need to first find all the bridging
visitor of the locations which requires a complete traversal of the data and
then find their combined influenced visitors. We follow the same procedure
for incorporating the influenced friends for the visitors of the destination lo-
cations in the relative influence model. After computing the influence oracle,
we use the standard greedy algorithm to compute the top-k locations. For
this model, we compute the exact influence. The reason is that the probabilis-
tic data structure (mhll), which is used in approximate algorithms for other
models provides an approximate count of a set. However, for this model, we
need Ids of the bridging visitors for finding the influenced visitors. The time
and space complexity for all the influence models is given in Table 4.

4.3 Efficient Location Influence Models

Next, we provide efficient algorithms for single influencer based influence.
These algorithms improve the computation time for building an influence or-
acle by exploiting the following observation. For single influencer, we do not
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need to maintain the bridging visitor sets for locations as only one visitor is
enough to carry the influence. Moreover, considering that we only need car-
dinality of the influenced locations for finding top-k locations, we replace the
actual locations summary sets with a HyperLogLog (HLL) set. We provide
two algorithms for computing single influencer based location influence, On-
Sin which is an on-line algorithm and Off-Sin which is an off-line algorithm
but a more efficient algorithm. For the On-Sin algorithm, for every visit, we
add the current location of the user as an influenced location for all the loca-
tions in the user history, i.e., the locations user has visited earlier within time
window ω. For the off-line algorithm, we traverse the check-ins in a reverse
order. For every visit, we add all the locations within ω in the user’s history
into the location summary of the visited location. Off-Sin is more efficient
than On-Sin. The reason is that for On-Sin, for each visit, the number of lo-
cation summaries that need to be updated is the total number of locations in
the user’s history within ω. However, for Off-Sin, for each visit at a location,
we only need to update the location summary of that visited location. The
time and space memory for these algorithms are given in Table 5.

Off-Sin On-Sin

Memory
Time

Oracle
Time

Query
Memory

Time
Oracle

Time
Query

MA O(b(|L|+ |U| log ω))
O(b log(ω)|A|) O(|S|b) O(b|L|+ |U|ω)

O(ω|U||A|) O(|S|b)
MR O(b(|L|+ |U| log ω) + |L||U|) O(b(|L|+ |U| log ω) + |L||U|)

Table 5: Summary of time and space complexities for Single influencer-based Influence [14]

4.4 Discussion

For experimental evaluation, we compare the effectiveness of our proposed
models with a PageRank based approach, PR − LCG and two variants of
the most relevant state-of-the-art approach, IRS and IRS− window. In order
to evaluate, we divide the datasets such that each part consists of check-ins
of one month. We compute the top-k influential locations using the dataset
of one month and evaluate their spread on the dataset of the next month
in the sequence. We repeat this for all the parts of the dataset and report
the total influence spread. We compute the spread for 5 different values
of k, i.e., 1, 3, 5, 10, 15, and 20 to have statistically significant results. The
results are given in Table 6. It can be observed that in terms of influence
spread, our proposed models outperform all the competitors. Overall the
absolute influence models perform better than the relative influence models.
More specifically, the spread of the top-k locations fetched by MIA is up
to 45%, 700%, and 400% more than that of MDA, MFA, and IRS − window,
respectively. This shows the significance of considering influenced friends-
based bridging visitors for finding location influence. Moreover, we compare
the computational resources required by the single influencer based location
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5. Unified System for Influence Propagations in LBSNs

Dataset K
Number of Influenced Nodes

Absolute Influence Model Relative Influence Model
IRS IRS-window PR-LCG

MDA MFA MIA MDR MFR MIR

FourSquare

1 89 37 98 66 66 66 79 71

N/A

3 190 116 195 159 160 159 82 105
5 230 117 255 216 196 216 121 116
10 322 159 361 273 260 273 124 167
15 380 200 421 307 288 307 130 174
20 432 255 495 330 326 330 132 191

BrightKite

1 662 657 671 648 655 648 512 537 657
3 943 882 959 896 882 896 613 743 924
5 1,153 9,67 1,112 1,041 994 1,041 666 835 1,100
10 1,458 1,140 1,465 1,269 1,259 1,269 749 1,027 1,437
15 1,717 1,257 1,686 1,449 1,444 1,449 821 1,171 1,693
20 1,921 1,381 1,951 1,589 1,570 1,589 867 1,275 1,928

Gowalla

1 676 111 982 446 405 446 453 613

N/A

3 1804 153 1787 1129 1212 1129 821 1072
5 2834 238 3087 1772 1716 1772 997 1134
10 4875 860 5197 3302 3218 3302 1116 1445
15 6236 1395 6767 4136 3645 4136 1244 1854
20 7460 1877 8165 4668 4119 4668 1452 2015

Table 6: Influence spread of top-k influential locations fetched by the proposed influence models,
IRS, IRS−window and PR− LCG. The check-ins are divided on monthly basis. The influential
keys are fetched on one part and spread is computed on the next part in the sequence. The
process is iteratively repeated for all the months and the total influence spread for each value of
k, for each dataset is depicted [14].

influence models with that of the other models. The results show that the
single influencer based algorithms require up to 20 times less computation
time and 50 times less memory for finding the location influence.

5 Unified System for Influence Propagations in LB-
SNs

5.1 Motivation and Problem Statement

LBSNs are being utilized for providing several information propagation mech-
anisms such as Location influence (Paper F) and users’ activity based infor-
mation propagations methods. These information propagation methods have
diverse objectives such as viral marketing, outdoor marketing, and location
promotion. Thus, for a particular use-case, there might be several ways to
propagate information and maximize the influence.

Example 5.1
For instance, a marketer is interested to promote its product to the maxi-
mum regions. To do that, he would like to find a better method between
following two options.
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• Case 1: He can display the advertisement using billboards on loca-
tions which are visited by the most frequent travelers who after see-
ing the message may spread it to the regions they visit.

• Case 2: He can give some promotional items such as t-shirts with a
promotional message on it to the frequent travelers who spread these
messages indirectly to the people of regions they visit.

In order to explore, analyze and compare these diverse information prop-
agation and influence maximization mechanisms, we need a system that can
support processing of these methods. Moreover, the process of influence
maximization requires several steps: data selection, data pre-processing, in-
fluence maximization, and spread estimation. Thus, the system should be
able to provide all of these steps. The Paper C focuses on providing such a
system that can handle these aforementioned challenges.

Fig. 10: The Unified Influence Maximization Model [15]

5.2 Unified Influence Propagation Model in LBSNs

In order to provide such a system, we identify diverse information propaga-
tion mechanisms in the LBNSs. To do that, we exploit the interactions of users
and locations. Based on these interactions, we provide a unified model that
supports information propagations through different sorts of interactions.

The unified model has three layers as shown in Figure 10. 1) The Node
Dimension identifies the source (influential) and destination (influenced) ver-
tices based on the type of influence. For instance, in case 1, it is intended to
spread the influence from locations (billboards) to the users of the maximum
number of other locations. Thus, both the source and the destination vertex
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5. Unified System for Influence Propagations in LBSNs

will be location in this case. However, in the second case, influence is to be
spread by the visitors having promotional items to the users of other loca-
tions. In this case, the source vertex is user and the destination (influenced)
vertex is location. 2) The Characteristic Dimension identifies the features of the
source and destination nodes. For instance, if it is intended to spread mes-
sages from a specific community or an age group then only corresponding
nodes of users will be considered as source vertices. Further, it is also used
for estimating potential spread. For example, the cardinality of influential
nodes that should be used to spread a message. 3) The Interaction Network
layer provides a graph of influential and influenced nodes based on the node
selection in the node dimension. These networks are further utilized for influ-
ence maximization and spread simulation. With this unified model, we can
support four different types of information propagation and corresponding
influence maximization mechanisms as shown in Table 7.

Source Dest. Influential Activity (I) Application (Maximizes)
User User u follows u′ Followers
Location Location l spreads visitors to l′ Geographical spread
User Location u visits l′ Unique visited locations
Location User l visited by u′ Unique visitors

Table 7: Information propagation mechanisms w.r.t. types of the influential and influenced
nodes in LBSNs. Here, u and l are the influential user and location, respectively and u′ and l′

are the influenced user and location, respectively. [15]

5.3 IMaxer

Next, based on the unified influence maximization model, we provide a sys-
tem called IMaxer. We divided the IMaxer into four modules based on tra-
ditional data mining steps as shown in Figure 11. 1) Data Selection: This
module is responsible for data managing tasks such as uploading LBSN data
in a given format, slicing it based on input attributes for users, locations, ac-
tivity time and geographical regions. 2) Data Preprocessing and transformation:
In this module, we pre-process the data based on user requirements. For
instance, by clustering, granularities of locations/POIs can be changed based
on the demand. 3) Influential Nodes Mining: In this module, we provide sev-
eral state-of-the-art influence maximization algorithms that can be used for
finding influential nodes using the unified influence maximization model. 4)
Spread Simulation: Finally, the potential spread of the fetched top-k nodes is
estimated by this module. We provide a set of algorithms for computing the
potential spread. We further visualize the influential and influenced locations
using the Google Maps APIs.
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Fig. 11: Compact snapshots of usage of IMaxer for maximizing geographical spread with loca-
tions in New York City [15]

Example 5.2
Figure 11 show the processing of different modules of IMaxer for the use
case 1. Here, we first upload the Foursquare dataset and filter based on
location, NYC. Then using grid clustering granularities of the locations are
raised. Next, a location influence maximization algorithm [13] is used for
finding top-5 influential locations and finally, TCIC [13] model for estimat-
ing their spread. It can be observed that using top-5 locations the spread
is 236. Similarly, the influence spread for the use-case 2 can be computed
and compared with the results of use-case 1 for finding the optimal one.
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6. Prediction of Visitors

User Location Time Location Category Coordinates

u1 l1
13:25
11/12/2017

l1 Sports 42.99,-71.46

u1 l1
14:30
12/12/2017

l2 Arts 42.98,-71.45

u1 l3
13:05
14/12/2017

l3 Sports 42.97,-71.44

u2 l1
13:10
11/12/2017

u4 u3

u2u1

u2 l1
15:10
14/12/2017

u3 l1
14:20
11/12/2017

u3 l2
13:16
12/11/2017

u3 l3
16:20
14/12/2017

u4 l2
15:15
11/12/2017

Fig. 12: Toy example: Checkins (left), Location categories (top right) and social graph (bottom
right) [16]

6 Prediction of Visitors

6.1 Motivation and Problem Statement

LBSNs have been widely studied for recommendation services such as sug-
gesting potential visiting locations to the users based on their historic activ-
ities and interests. However, another perspective of such services which has
been often overlooked in the past is the prediction of visitors at locations.
Predicting potential visitors for a particular location can be used for applica-
tions such as traffic management and event planning. For instance, consider
a theatre owner who wants to find out that who will attend the next planned
play at his theatre to better organize the event based on the audience. Pa-
per D exploits the concept of finding potential visitors given in Paper B, for
such prediction of visitors at the locations. We formally define the problem
statement [16]: Given an LBSN, a location l, and a time interval T, predict the
users who will visit l within T.

6.2 Collective Matrix Factorization-based Visitor Prediction
Model (CMViP)

In order to predict visitors, we analyzed the LBSNs data for finding features
that affect the mobility of users and provide a potential visitor based predic-
tion model called CMViP. CMViP utilizes following five factors that signifi-
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cantly contribute towards visiting a location l for a user u. 1) visit frequency
of u at l, 2) visits’ frequencies of u at locations having similar categories with
l, 3) visits’ frequencies of u at a given time interval, 4) distance of l from the
current location of u, and 5) influence of u on friends for being followed.

For each user u, we first find its potential for visiting the given location on
the basis of the first four aforementioned features. We combine these features
using the following linear equation to compute the total potential of a user u
for visiting a location l, called visit score (YS) [16].

YS(u, l, c, T) = α.YU(u, l) + β.YC(u, c) + γ.YT(u, T) + η.YD(u, l) (4)

Here, YU , YC, and YT capture the number of activities user u performed at lo-
cation l, categories of l, and at time T, respectively. YD captures the difference
between the maximum distance u travelled for the consecutive visits between
two locations and the distance of l from the u′s current location. Further,
α, β, γ, and η are the coefficients for the features showing their correspond-
ing significance for predicting visitors. We provide a minimum visit score
threshold θ. The users having visit score greater than θ are termed Potential
Visitors UP [16]:

UP(l, c, T) = {u|YS(u, l, c, T) ≥ θ} (5)

Example 6.1
For instance, consider an example given in Figure 12. Here, assume t1 =
13 : 00, α, β, γ, η = 0.25, and θ = 0.8. Then, YS(u1, l1, c1, t1) = 0.84. Simi-
larly, YS(u2, l1, c1, t1) = 0.875, YS(u3, l1, c1, t1) = 0.66 and YS(u4, l1, c1, t1) =
−∞. Thus, UP(l1, c1, t1) = {u1, u2}.

Next, we further exploit another observation based on the LBSN data
analysis that users tend to follow the activities of their friends. Based on this
observation, we assume that if a user is visiting a location, his friends may
also join him. To find out such friends, we compute the influence of poten-
tial visitors, on their friends. Such influenced friends are called Influenced
Potential Visitors (I(UP)) [16]:

I(UP) = {v| ∑
u∈UP

p(u, v) ≥ ξ ∧ (u, v) ∈ F} (6)

where ξ is the influence threshold that represents the minimum influence
probability by which a user should be influenced to be considered a follower.
Thus, a set of predicted potential visitors is given by: UP ∪ I(UP).
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6. Prediction of Visitors

Example 6.2
Next, to find the set of predicted potential visitors, we consider the exam-
ple 6.1 where UP = {u1, u2}. Further, suppose, ω = 1h and ξ = 0.2. In
this case, since, for the location l1, u1 and u2 are followed by u3 and for the
location l3, u1 is followed by u3 within the given time window ω. Thus,
the influence probability of UP on u3 is p(UP, u3) = 0.3 ≥ ξ [14]. So, the
set of the predicted visitors is {u1, u2, u3}.

In order to compute the visit score of all the users, we utilize a non-
negative collective matrix factorization approach. We compute the four fre-
quency matrices: 1) visitor-location frequency matrix: YU ∈ RU×L that cap-
tures the number of visits of users U at locations L, 2) visitor-category matrix
YC ∈ RU×C that captures the number of visits of users for categories C, 3)
visitor-time matrix: YT ∈ RU×T that shows the number of visits of users
for each hour of the day, and 4) visitor-distance matrix: YD ∈ RU×L which
shows the average distance users U travel for visiting locations L from their
last locations. Next, we decompose the frequency matrices into the com-
mon latent space and their corresponding feature latent space matrices. For
a given location and a time interval, we utilize these matrices for finding the
visit scores of the users. To do that, for each user, we compute his potential
scores for all the features by combining the common latent space and corre-
sponding feature latent space matrices. These scores are further combined
using the Equation 4 for finding the visit scores. Then, based on θ, we find
the potential visitors. Next, we find the influenced potential visitors by us-
ing a Bernoulli distribution and a partial credit distribution based discrete
time constrained model, given in Section 4.2. The predicted set of users for
a given query is then computed by combining the potential visitors and the
influenced potential visitors.
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Fig. 13: Precision Recall Curve [16]
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6.3 Discussion

In order to evaluate the effectiveness of CMViP, we utilize two real-world
datasets with two different natures, 1) Foursquare that is smaller but denser
and 2) Wee which is larger but sparser. We compute the accuracy of pre-
dicting the visitors using the precision-recall curve. To do that, we sort the
dataset in ascending order of visiting time and divide it into two parts, the
training data and the test data. We utilize the training dataset for predicting
the visitors and then compare it with the visitors in the test dataset. We com-
pare the results of CMViP with four variants of a state-of-the-art approach
POI2Vec [17]. The results show that CMViP outperforms POI2Vec up to 6
times as shown in the Figure 13. We further also show the effectiveness of
CMViP for another use-case of finding potential visitors, that is predicting
the number of visitors. To do that, we compute mean absolute error (MAE)
and root-mean-square error (RMSE) for evaluating the CMViP performance.
We show that the error values decreases up to 2 for θ = 0.4 while considering
all five factors. This shows the significance of the factors incorporated by
CMViP for prediction.

7 Prediction of Geo-Social Cohorts

7.1 Motivation and Problem Statement

A prominent type of recommendations pertains to groups of users, as opposed
to individuals as given in Paper D. For instance, a discount offer for a skydiv-
ing activity may be recommended to a group of friends that have performed
similar activities in the past. Similarly, mobility activities of users can be uti-
lized to predict a group that would be interested to join an event. Finding
such groups can be utilized for several applications. For instance, consider
the following example. A travel agency owner, Viking Travel, is interested to
promote an offer for a group travel package in the Norwegian Arctic towards
groups of users potentially interested in joining such a given travel package
together. Thus, he would like to find such potential group of users. Existing
research has investigated several aspects of such location-based recommen-
dations [2]. Yet, there has been no attempt to combine information about
social ties and mobility to predict potential groups of users (cohorts) who
will perform multiple given activities together using LBSN data. Paper E
focuses on providing such potential groups of visitors. The formal problem
statement is defined as [18]: Given a set of categories and a parameter k, find the
top-k biggest groups of users (cohorts) such that they are friends and their potential
to visit the locations of the given categories is maximal.
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7. Prediction of Geo-Social Cohorts

C1 T2 B1

R1 R2 T1

a, d

a, b, d

a, c, d b, a

c

a, b, d

a, d

a, b

Users Locations Time
a, b, c, d R1 t1
a, b, d T1 t2
a, c, d R2 t3
a, c, d T2 t5
a, b, d B1 t6
a, b, d C1 t7
a, b R1 t8
a, b T1 t9

Fig. 14: Example location history (L) and check-ins (R) [18]

a b

dc

Fig. 15: Social Graph (undirected) for running example [18]

7.2 Cohort Discovery in LBSNs (COVER)

In order to find such cohorts, we performed detailed LBSN analysis to find
the features that affect the mobility of users in groups. We observe that
more than 75% of times, cohorts consist of clique friends, where all users
are friends. Usually, users like to join different friends based on the na-
ture/category of the location. Further, users tend to perform multiple activi-
ties with different friends than those with whom they like to perform single
activities. Based on these observations, we define the following two features
of a cohort that its users should: 1) form a clique in the social graph and 2)
have been significantly performing activities together in the past.

Example 7.1
For instance, consider the example given in Figure 14 and Figure 15. In
this example, we aim to find the group of users who would like to visit
“bar” and “cinema” together. In this case, we would choose {a,b} as they
have been performing activities together on the given categories as well as
on other locations in the past. Thus, it can be induced that they like to
perform activities together. Moreover, they are also friends in the social
network.
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For the first feature, we exploit the social graph G(V, E) where V is the
set of users and E is the set of friendship relationships between the users.
For the second feature, we need to process the historic visit logs for finding
the users who have been performing activities together in the past. To do
that, we define an activity graph (GLA) over the set of users V where the edge
weight between a pair of users w(u, v) is given by the following definition.

Definition 0.6. The edge weight wuv between the pair of users (u, v) in GLA is
defined via the (consecutive) spatiotemporal join

⋃
cat∈L{A(u, cat) on A(v, cat)},

normalized by dividing by the highest value obtained among all pairs of users, as
follows [18]:

wuv =
|⋃cat∈L{A(u, cat) on(c) A(v, cat)}|

maxx,y∈V |
⋃

cat∈L{A(x, cat) on(c) A(y, cat)}|
(7)

where A(v, cat) show the set of activities v performed over locations of cate-
gory cat.

For cohorts, we are interested to find the users who form cliques in the
social graph and have high density in the activity graph, i.e., have been per-
forming many activities with each other in the past. Moreover, cohorts with
a larger number of users are preferred. We assume that such groups of users,
will behave similarly in the future and thus, can be predicted accordingly. In
order to find the trade-off between the high density and the size of cohorts,
we find the optimal quasi-cliques (OQC) [19] on the activity graph. We show
that finding such OQC on the activity graph is NP-hard.

Next, to find such top-k cohorts, we provide an algorithm called COVER.
COVER, first fetches the maximal cliques from the social graph and then
evaluate them for finding the OQC based on their edge weights in the activity
graph. COVER provides a heuristic based solution to avoid computational
overhead and to prune the maximal user cliques groups which do not have
potential to emerge in top-k cohorts.

7.3 Discussion

In order to evaluate our proposed approach, we utilize three real-world LBSN
datasets; Foursquare, Wee, and Gowalla. For comparisons, we provide a
baseline approach (BF) in which we mine the cohorts using a brute force way
and two variants of a state-of-the-art approach, Group Finder [20], i.e., GF-
PAV and GF-PLM. We sort the dataset in the ascending order of the visiting
time and divide it into the training data and the test data such that both have
an equal number of check-ins. A group of users having at least two users
who have visited at least two locations together consecutively is considered
a cohort. Such cohorts are fetched using the BF approach from the test data
and used as ground truth. We use COVER and other competitors to find
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7. Prediction of Geo-Social Cohorts
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cohorts from the training dataset. If a predicted cohort exists in the ground
truth, i.e., cohorts fetched by the BF from the test dataset, we consider it
a correct prediction. We evaluate the performance based on following four
measures: accuracy, P@K, mean average precision (MAP), and normalized
discounted cumulative gain (NDCG). We define the accuracy by the following
equation [18].

Acc =
|C ∪ T|

min{|C|, |T|} (8)

where C and T represents the set of fetched cohorts by COVER and the set
of cohorts in the test data, respectively. The results show that BF outperforms
COVER for P@K and MAP in few cases, but takes 3 orders of magnitude
more computation time. This makes BF an infeasible solution. However,
COVER outperforms the variants of group-finder for all the measures and
BF for accuracy and NDCG as shown in Table 8.

8 Summary of Contributions

The thesis provides a general LBSN data model with a focus on the efficient
and scalable processing of existing and novel location analytics queries. The
thesis is composed of 7 papers. A summary of contributions for each paper
is given below.

• Paper A [11] introduces the concept of location graph based on interac-
tions of locations. Such a graph is used to provide an LBSN data stor-
age and processing model. The proposed model divides the LBSN data
into three graphs; the social graph, the activity graph and the location
graph. A set of query primitives is defined for each graph for process-
ing of advanced queries. Moreover, a general and scalable framework,
GeoSocial-GraphX is proposed for efficient and scalable processing of
these queries using the proposed data model. The experimental evalu-
ation shows that the proposed model and framework are effective, effi-
cient and scalable, and outperform the existing approaches and frame-
works for location analytics queries.

• Paper G [21] exploits a location graph based on visitors of locations and
shows that the mobility data can be used to improve the information
propagation and influence maximization mechanism. Based on this ob-
servation, Paper F [13] introduces a notion of location influence that
defines the influence of locations among each other by the ability of a
location to spread its visitors, called bridging visitors to the other loca-
tions. Such influence can be used to spread a message to the maximum
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8. Summary of Contributions

geographical regions and is thus useful for applications such as out-
door marketing, simulation of virus/news propagations. The location
influence models are defined for determining the location influence. To
measure such influence an accurate algorithm and an approximate but
efficient algorithm are provided. The experimental evaluation shows
the significance of our proposed notion and the efficiency and scalabil-
ity of our algorithms.

• Paper B [14] extends the Paper F to provide efficient and effective lo-
cation influence models. For effectiveness, influenced friends of the
bridging visitors are considered and for efficiency, single influencer
based influence models are proposed. Moreover, an extensive quan-
titative evaluation to compare the proposed models with the existing
location influence models and state-of-the-art approaches is provided.

• Paper C [15] provides a unified model for evaluating information propa-
gations and influence maximization mechanisms in LBSNs. The model
captures four types of information propagations based on correspond-
ing types of interactions of locations and users. A system called IMaxer
is provided that implements the unified model. IMaxer provides four
modules that support all steps required in influence maximization; Data
Selection, Data preparation and transformation, Influential nodes min-
ing, and Spread estimation. IMaxer is further enriched with several
state-of-the-art approaches for influence maximization and spread esti-
mation.

• Paper D [16] exploits the subjective nature of locations to provide a
model called CMViP for predicting visitors at a given location and at a
particular time. This paper identifies the features which affect the mo-
bility of users and based on these features computes the potential of a
user to visit a particular location. To do that, a non-negative collective
matrix factorization approach in combination with an influence maxi-
mization method is provided. The experimental evaluation shows that
CMViP outperforms the competitor in both precision and recall.

• Paper E [18] provides a method for predicting top-k groups of users (co-
hort) that will visit a set of given locations together. To do that, we pro-
posed a heuristic algorithm called COVER. COVER enumerates cliques
from the social graph and finds optimal quasi-cliques from the activity
graph which is composed of the mutual historic activities of users. The
experimental evaluation shows that COVER outperforms brute force
based methods and different variants of state-of-the-art approaches.
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9 Future Work Directions

In future work, we aim to improve the expressiveness of the LBSN data model
such that it can support any relational algebra query. In order to achieve this,
more query primitives for the LBSN segregated graphs: the social graph, the
activity graph, and the location graph should be provided such as group by
query primitives. Novel query primitives should be introduced to support
state-of-the-art queries such as trajectory/flow-based queries. Moreover, in-
teractions of locations based on other features such as common visitors, and
trajectories should be considered for the location graphs. Location graphs
based on these features should be used to exploit LBSN data for further op-
timizing LBSN applications.

Other LBSN data models should be considered such as aggregated graphs
and graph cubes based LBSN data models. For instance, a heterogeneous
graph consisting of user and location nodes and their diverse types of inter-
actions with each other can be used for modelling LBSN data. Such an LBSN
data model can be used for finding communities based on the heterogeneous
information such as friends of users, their travel history, and relationships of
locations they visit. Similarly, in another LBSN data model, we can materi-
alize friendship, visit history, and location interactions based information in
temporal and spatial graph based cubes. Such an LBSN data model can be
used for providing trend aware queries.

In order to provide an efficient implementation of these LBSN data mod-
els, extension of suitable data processing frameworks should be considered.
Relational algebra and calculus should be designed for the primitive queries
of these LBSN data models and corresponding query languages should be
introduced. Further, based on the LBSN data model and underlying frame-
works, advanced data processing and query optimization methods should
be proposed. For GeoSocial-GraphX (GSG), Spark SQL should be used for
providing a query language for processing queries. Furthermore, Spark’s lat-
est APIs should be used to further optimize the indexing and partitioning
mechanisms.

The location influence maximization studies focus on finding top-k seeds
that can be used for maximizing the influence. Nevertheless, in real life, the
locations for displaying advertisements or promotional messages, i.e., bill-
boards are fixed and already known in advance. Thus, we should focus on
optimizing the propagations methods based on given seed nodes. The loca-
tions are usually visited by the visitors of diverse interests. Further, users
are attracted by the contents of their interest. Thus, we should consider the
interest of visitors of a location for designing advertisements/promotional
messages to be displayed at the seed locations for maximizing influence.
Based on this corresponding context-aware location influence models should
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be proposed that can capture such context-aware location influence. Further-
more, different information propagations models should be considered for
evaluating location influence such as independent cascade and linear thresh-
old models. Further, distributed solutions for implementing these location
influence models should be proposed based on the proposed query primi-
tives.

For the visitor predictions, more features should be considered for op-
timizing predictions, such as days of week or weekend, and popularity of
the locations. The state-of-the-art machine learning methods such as neural
network and deep learning based approaches should also be used for im-
proving effectiveness. Moreover, distributed and parallel processing of query
primitives based algorithms should be provided for efficient processing.
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Abstract

Using GPS-enabled smart phones, social network services are enriched with location
information which allows users to share geo-tagged contents with their friends. This
so-called location-based social network (LBSN) data has a dual spatial and graph
nature. The growing scale and importance of LBSN data necessitate a platform which
(i) has both spatial and graph capabilities; (ii) supports a wide range of queries,
e.g., selection, structural, and aggregate queries; (iii) supports scalable distributed
processing of large data volumes.

In this paper, we propose such a platform, called GeoSocial-GraphX, that segre-
gates the LBSN data into several specific graphs capturing user-user, user-location,
and location-location relationships, and enables a wide range of LBSN queries by
proposing a comprehensive set of query primitives that can be composed into more
advanced queries. We implement the platform based on GraphX, a map-reduce in-
frastructure for distributed graph computation. We further improve the query per-
formance in several ways. For social-related data, we use vertex-centric messaging
operators which better address the recursive nature of graph data than traditional
two-stage map-reduce. For spatial-related data, we use effective spatial partitioning
and indexing methods. Experiments on both synthetic and real LBSN datasets show
that GeoSocial-GraphX can process a variety of LBSN queries efficiently, scales on
multicore architectures, and achieves much better performance than the state of the
art competing framework, SpatialHadoop.

c© 2016 IEEE. Reprinted, with permission, from Muhammad Aamir Saleem,
Xike Xie and Torben Bach Pedersen, Scalable Processing of Location-based
Social Networking Queries, 17th IEEE International Conference on Mobile
Data Management (MDM ’16), June/2016.
The layout has been revised.



1. Introduction

1 Introduction

With the ubiquity of location-aware mobile terminals, social network users
are allowed to share geo-tagged contents with their friends. These social
networks with location information are called location-based social networks
(LBSN). For example, users make comments on Twitter about an event hap-
pening somewhere, upload geo-tagged pictures in Flickr, or report their “check-
ins” in Foursquare. LBSN data offers richer interdependency between people
and locations thus holds potential for a wide range of services.

For example, the context of a location can be deciphered by its historical
visitors; the mobility behaviour of a user can be investigated by his/er histor-
ical visits. It is interesting to query for top-k popular places for a given user,
and top-k frequent travellers for a set of places. Such information leverages
ranking and recommendation in order to facilitate travel and social interac-
tions [1–3]. In another example, one might need to find nearby friends for an
activity, or detect a community in a local area. Similarly, one might also be
interested to find a set of locations that are famous for visiting together. Such
applications require considering structural information in LBSN.

Another challenge arises in the recent explosion of the amounts of LBSN
data. As reported in [4], Foursquare has more than 55 million users with
6 billion check-ins. The map-reduce framework, e.g., Hadoop, is generally
accepted as a solution for scalable processing of large volume datasets. How-
ever, it falls short in fully addressing the challenges in LBSN data which is
of both spatial and graph nature. First, the data partitioning method used in
HDFS does not consider the recursive nature of graph data and consecutive
nature of spatial data. Thus, it does not efficiently support multiple random
data accessing which is essential for spatial or graph queries. Second, the
two-stage computation framework has limited capabilities in handling itera-
tive algorithms required by graph (or structural) queries in LBSN.

In particular, SpatialHadoop [5] , MongoDB [6], and MD-base are map-
reduce frameworks equipped with spatial features. GraphX, which is built on
top of Apache Spark is a data-parallel computation framework supporting big
graph data. None of them have capabilities to support big data of both spatial
and graph nature. It is thus desirable to have a platform which embeds
both spatial and graph capabilities and is able to process large volume LBSN
queries that are diverse in nature.

Motivated by these challenges, this paper makes the following contribu-
tions. We consider the two major roles, user and location, in LBSN. These roles
formulate three types of relationships, user-user, user-location, and location-
location. In response to such characteristics, we segregate the LBSN data into
three graphs, namely social graph, activity graph, and spatial graph. We present
a comprehensive set of query primitives defined on these graphs. The LBSN
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query primitives are classified into three categories: selection, aggregate, and
structural queries, such that general-purpose LBSN queries can be answered
by the combination of one or more primitives. For example, we can retrieve
a local community by combining results of a structural query on the social
graph and a selection query on the spatial graph. Furthermore, we present a
platform that: (i) is capable of handling large volume and distributed LBSN
data; (ii) answers general purpose LBSN queries. The first objective of the
platform is reached by building a data-parallel platform, GeoSocial-GraphX (
GSG in short). Based on that, we incorporate indexing and partitioning tech-
niques for supporting spatial data. The second objective of the platform is
reached by implementing a number of query primitives which are essential
for LBSN queries on top of the platform. In order to evaluate our system, we
perform experiments on three real LBSNs namely, BrightKite, Gowalla and
FourSquare and one synthetic dataset. The experiments show that segrega-
tion of LBSN into three graphs and usage of the spatial graph for location-
centric queries improve the performance up to four orders of magnitude.
Furthermore, the partitioning and indexing methods for spatial data enhance
the performance by 6 times on average. Experimental results also confirm
the scalability of GSG on multiple cores. Moreover, GSG outperforms Spa-
tialHadoop, a leading spatial distributed framework, in terms of efficiency,
scalability, and ease of implementation, i.e., lines of code, up to 20x, 7x, and
13x, respectively.

The rest of the paper is organized as follows. Section 2 provides the
LBSN model including definitions of the basic roles in LBSN and the segre-
gated graphs. Section 3 presents the query primitives and advanced LBSN
queries. Section 4 covers the architecture of the proposed platform, GSG, in-
cluding storage layer, operation layer, index layer, and query engine. Section
5 presents the experimental evaluation. Section 6 presents related work, and
Section 7 concludes the paper and points to future work.

2 LBSN Model

We present basic concepts in Section 2.1 and define the three segregated
graphs in Section 2.2.

2.1 Preliminaries

Definition A.1. Users(U) is the set of persons that are using the LBSN. A user is
identified by the unique identifier ui. In Figure A.1, users are U = {u1, u2, u3, u4,
u5, u6, u7, u8}.

Definition A.2. Locations(L) is the set of locations. We consider a location as a cir-
cular region that covers a geographical space. A location is a four-tuple (lm, xm, ym, rm),
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2. LBSN Model

Fig. A.1: LBSN Model

where the lm is the identifier, xm and ym represent the center of the region, and rm is
the radius of the region. In Figure A.1, locations are L = {l1, l2, l3, l4, l5, l6, l7}.

Definition A.3. Activities(A) is the set of activities of the users. An activity is a
checkin of a user including both location and time. It is given by (ui, lm, ta), where
ui is the user identifier, lm is the location identifier, and ta is the visiting time. In
Figure A.1, activities are shown by dotted lines, e.g., u1 has visited l1, l2, l3, and l5
at sometime.

2.2 LBSN Graphs

Traditionally, LBSN data is maintained into two components on the basis of
its roles: user and location. The components are termed as social compo-
nent and activity component. The social component represents relationships
among users, i.e., user-user. The activity component deals with users’ visits
at locations and captures user-location relationships. However, a location is
a subject in the LBSN that has attributes such as GPS coordinates. Further-
more, the interactions of LBSN roles in the social and activity component
yield the relationships between locations, i.e., location-location, such as com-
mon visitors and distances among locations.

For LBSN queries about user-user and user-location relationships, the so-
cial component and the activity component can be used, respectively. How-
ever, for queries about location-location relationships, it is very expensive to
use the social and the activity components. An example of such queries is to
find a user’s best travel companions based on their common visited places.
In order to process such queries in an efficient and a scalable way, it is bene-
ficial to maintain a component that represents location-location relationships
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in LBSN which directly handle location oriented queries and recommenda-
tions. In this work, such a component is called spatial graph.

We segregate the LBSN data into three graphs, i.e., social graph, activity
graph, and spatial graph as shown in Figure A.1. Details of these graphs are
given below.

Social relationships between users are categorized into two types: directed
and undirected. For example, if users are friends on Facebook their relation-
ship is undirected. However, Twitter users are either followers or followees,
therefore, their relationship is directed. For the sake of simplicity, this study
considers undirected relationships between users. However, directed rela-
tionships can be treated similarly. The social graph stores the relationships
of users in the form of a graph as shown in Figure A.1, where u1 is a friend
of u2 and u8.

Definition A.4. SocialGraph(GS) is an undirected graph, where vertices represent
users and edges represent relationships/ friendship between them. It is given by,
GS = (U, F), where U is the set of vertices that represents users, and F is the set of
edges representing connections between them, i.e., F ⊆ {U ×U}.

Activities of users, i.e., visits/interactions of users at locations, is the essence
of LBSN. The activity graph maintains this information in the form of a bi-
partite graph as shown in Figure A.1, where u1 visits l1, l2, l3, and l5.

Definition A.5. ActivityGraph(GA) consists of users and their Activities. It is
given by GA = (U, L, A), where U and L are the two sets of vertices: users and
locations, respectively. A is the set of edges which represents activities of users U at
locations L at times T. It is given by A ⊆ {U × L× T}.

Locations are related to each other in several ways on the basis of their
properties, e.g., distances, trajectories, and common visitors. In this study,
we consider common visitors for building relationships between locations 1.
The definition of common visitors is given below.

Definition A.6. CommonVisitors(Uc(lm, ln)) is the set of users who visited the
locations lm and ln. It is given by: Uc(lm, ln) = {u ∈ U|(u, lm, ta), (u, ln, tb) ∈ A},
where u is a user that visited both locations lm and ln, and ta and tb are visit times.

The locations lm and ln that have at least one2 common visitor are called
LinkedLocations and are represented as llk(lm, ln). Next, the spatial graph de-
fined on the basis of common visitors is presented.

1We are aware of other methods to associate locations to each other, e.g., [7]. Our spatial
graph extensions can support their applications with simple alterations.

2 A threshold describing the minimum number of common visitors among locations to be
considered as the LinkedLocations, can be utilized to control the density of the spatial graph. For
example, for FourSquare dataset [8] by setting the threshold to 3, the graph density is reduced
to 1.02x10−6.
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Definition A.7. The spatial graph represents the locations as vertices and the rela-
tionships between each other as edges. It is given by GL = (L, E), where L is the set
of vertices and E represents the set of edges, i.e., E ⊆ {L× L}. An edge is a pair of
LinkedLocations having common visitors.

3 LBSN Queries

This section presents the LBSN queries. We define query primitives in Section
3.1 and advanced queries in Section 3.2.

3.1 Query Primitives

Query primitives are defined as fundamental operations for processing of
LBSN queries. Below, we define a comprehensive set of such query primi-
tives for each type of graph, in a way that each segregated graph is sufficient
to independently process its primitive queries. The primitives of each graph
are grouped based on the type of processing performed into selection, struc-
tural, and aggregate queries, as shown in Table A.1. The primitive queries
can further be combined to answer a wide range of general purpose LBSN
queries.

The first group contains social query primitives that exploit the relationships
among users over the social graph. Among them, FF is a selection query;
FSoSD and FCF are structural queries; TCU is an aggregate query.

• FindFriends(ui, σ) : Given a user ui and a social separation degree σ,
return the set of users that require minimum σ steps to connect ui.

• FindSocialSeparationDegree(ui, uj) : Given the users ui and uj, return
the social separation degree, i.e., minimum number of hops required
for connecting them.

• FindCliqueFriends(ui) : Given a user ui, return the set of users that are
friends with ui and as well as with each other.

• Top− k ConnectedUsers(k, σ) : Given a value of separation degree σ and
a parameter k, return top− k users based on their maximum number of
connections with users in social separation degree of σ.

In the second group, we define activity query primitives that exploit the
user and location interactions over the activity graph. Here, FUL and FLV
are selection queries; FRL and FSpSD are structural queries; TNL, TV and
TVL are aggregate queries.

• FindUserLocation(ui, ta, tb) : Given a user ui and a time interval [ta, tb],
return the set of locations that ui visited between ta and tb.
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Table A.1: LBSN query primitives

Graphs Categories Primitives Notations

GS

Selection FindFriends FF

Structural
FindSocialSeparationDegree FSoSD
FindCliqueFriends FCF

Aggregate Top-k ConnectedUsers TCU

GA

Selection
FindUserLocation FUL
FindLocationVisitors FLV

Structural
FindRangeLocations FRL
FindSpatialSeparationDegree FSpSD

Aggregate
Top-k NearestLocations TNL
Top-k Visitors TV
Top-k VisitedLocations TVL

GL

Selection
FindCommonVisitors FCV
FindLinkedLocations FLL

Structural Find LocationSeparationDegree FLSD

Aggregate
Top-k VisitedLinkedLocations TVLL
Top-k ConnectedLinkedLocations TCLL

• FindLocationVisitors(lm, ta, tb) : Given a location lm, and a time interval
[ta, tb], return the set of users that visited lm between ta and tb.

• FindRangeLocations(lm, dr) : Given a location lm and a radius dr, return
the set of locations within the circular region centered at lm with radius
dr.

• FindSpatialSeparationDegree(ui, uj, ta, tb) : Given the users ui and uj,
and a time interval [ta, tb], return the minimum number of hops re-
quired for connecting ui with uj based on their visited locations.

• Top− k NearestLocations(lm, k) : Given a location lm, and a parameter
k, return the set of k locations in the ascending order of distances from
lm.

• Top − k Visitors(k, ta, tb) : Given a parameter k, and a time interval
[ta, tb], return top − k users based on their maximum number of ac-
tivities during ta and tb.

• Top− k VisitedLocations(k, ta, tb) : Given a parameter k, and a time in-
terval [ta, tb], return top− k locations with maximum number of visits
between ta and tb.
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The third group defines the spatial query primitives that exploit the relation-
ships among locations, i.e., spatial graph. Here, FCV and FLL are selection
queries; FLSD is a structural query; TVLL and TCLL are aggregate queries.

• FindCommonVisitors(lm, ln) : Given the locations lm and ln, return the
common visitors of lm and ln, if there are any.

• FindLinkedLocations(lm, λ) : Given a location lm and a degree of sepa-
ration λ , return the set of locations that require no more than λ steps
to connect lm.

• FindLocationSeperationDegree(lm, ln) : Given the locations lm and ln,
return the minimum number of steps required for connecting them.

• Top− k VisitedLinkedLocations(lm, k) : Given a location lm, a set of its
LinkedLocations and a parameter k, return top− k LinkedLocations of lm
based on their maximum number of CommonVisitors.

• Top− k ConnectedLinkedLocations(k) : Given a parameter k, return top−
k locations based on their maximum vertex degree, i.e., connections
with other locations.

3.2 Advanced LBSN Queries

Advanced LBSN queries utilize the combinations of the query primitives for
processing. These queries are divided into four groups on the basis of these
primitives, i.e., the queries that are composed of social and activity, social and
spatial, activity and spatial, and social, activity and spatial query primitives,
respectively. Due to limited space, we provide only two groups of these
queries.

In the first group, we define the queries that combine the social and the
activity query primitives.

• RangeFriends(ui, σ, lm, ta, tb, dr) : Given a user ui, a social separation
degree σ, a location lm, a time interval [ta, tb] and a radius dr, return
the set of friends of ui in social separation degree of σ whose locations
during [ta, tb] are within the circular region centered at lm with radius
dr.

• Top− k NearestFriends(ui, σ, lm, ta, tb, k, U, A, ) : Given a user ui, a social
separation degree σ, a location lm, a time interval [ta, tb] and a parame-
ter k, return the set of k users that are friends of ui in social separation
degree of σ, in the ascending order of distances between their current
locations and lm during [ta, tb].
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• Top− k NearestStarGroup(ω, lm, ta, tb, k) : Given a number of users ω, a
location lm, a time interval [ta, tb] and a parameter k, return the k groups
of ω users each, in ascending order of aggregate distance of the user’s
locations among each other and with lm during [ta, tb] such that users
of each group are connected by at least one common friend [9].

In the second group, we define the advanced LBSN queries that combine the
social and the spatial query primitives.

• Top− k EndorsedLinkedLocation(ui, lm) : Given a user ui, a location lm
and parameter k, return the k LinkedLocations of lm that have maximum
number of the user’s friends as Common Visitors in between.

• Top− k CommonVisitorFriends(U) : Given a user ui, return the k friends
of ui based on their maximum number of appearances as CommonVisitors
with ui.

4 GSG Architecture

GSG is a graph-parallel platform that supports distributed processing of
LBSN queries on large volume data. The architecture of GSG is composed of
four parts, i.e., storage layer, operation layer, index layer and query engine,
as shown in Figure A.2.

4.1 Storage layer

This layer is responsible for providing the data structures and mechanisms
for storage of LBSN graphs in a distributed way.

The underlying framework of GSG, GraphX extends the Spark’s [10] dis-
tributed data scheme, RDD [11]. RDD is an immutable, persistent and par-
allel data structure that supports distributed operations on it. In GraphX,
VertexRDD and EdgeRDD [12] extend RDD to support augmented attributes
for vertices and edges, respectively, and are abstractly combined to construct
the graphs. GSG utilizes this data scheme for storage of the LBSN graphs.

In LBSN graphs, there are two types of vertices: users and locations. A
user vertex maintains a user identifier and a vertex type. A location vertex
keeps the location id as the identifier and corresponding location informa-
tion (e.g., latitude, longitude, and radius) as attributes. Furthermore, the
LBSN graphs posses three types of edges with their corresponding unique
attributes. An edge of the social graph maintains the ids of users as source
and destination vertices, and their corresponding relationship, i.e., friends as
an attribute. An edge of the activity graph is composed of ids of a user as
a source vertex, a location as a destination vertex, and visit time of user at
the location as an edge attribute. An edge of the spatial graph consists of

46



4. GSG Architecture

Fig. A.2: Architecture of GeoSocial-GrapX

location ids as source and destination vertices, and ids of common visitors as
edge attribute. Figure A.3 (a) shows an example of the storage of the spatial
graph.

In order to store the graphs, both VertexRDDs and EdgeRDDs are parti-
tioned and distributed among nodes, where a node represents a computa-
tional unit (e.g., a computer). The vertex cut approach is utilized to partition
the graph. This approach helps to reduce more communication and storage
overhead as compared to the edge cutting approach [13]. Vertices are kept on
the same node with their connecting edges. Figure A.3 (b) shows an example
of the distributed spatial graph. The graph is split into two partitions, each
of which corresponds to a node. Here, vertices 2 and 4 are cut in order to
split the graph. These vertices are replicated and stored on both nodes. Next,
we provide the algorithm for the construction of the spatial graph. The con-
struction for the social and activity graphs are similar. They are thus omitted
due to page limits.

In Algorithm A.1, users’ check-ins data are utilized to extract two kinds
of information, i.e., check-ins that contain the visits of users at their corre-
sponding locations (line 6) and vertices, i.e., locations (line 8). The users are
grouped on the basis of their visited locations to extract edge attributes, i.e.,
common visitors (line 12). These groups are then used to create the list of
edges (lines 14-21). The extraction of check-ins, vertices, and grouping of
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(a) vertexRDD and EdgeRDD

(b) property graph

Fig. A.3: Data storage for the spatial graph

users are performed by map-reduce operations. However, the construction of
edges utilizes concurrent programming to exploit maximum computational
resources in the cluster. We use scala based concurrent programming model:
akka [14] for parallel operations, i.e., nested for loops (lines 14-21 and 16-20).
Further, the graph is constructed by utilizing vertices and edges (line 22).

4.2 Operation layer

The role of this component is to provide the operators that are applied on
the graphs for processing of LBSN queries. These operators are grouped into
two types, i.e., core operators such as mapEdges, triplets, and aggregateMessage,
and advanced operators such as pregel, and connectedComponents. The core
operators transform the structures and properties of input graphs on the basis
of user-defined functions. The advanced operators are the optimized variants
of core operators that provide advanced graph algorithms. We selectively
discuss two core and one advanced operators which we believe best reflect
the nature of the operators of corresponding groups.
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Algorithm A.1: ConstructSpatialGraph(UserCheck-ins): GL
1 begin
2 Check− ins = ∅
3 edges = ∅
4 vertices = ∅

5 foreach (u1, loc1) ∈ UserCheck− ins do
// loc1 contains the attributes o f location

6 Check− ins+ = (u1, loc1)
7 if l1 6∈ Location then
8 vertices+ = new Location(loc1, ”location”)
9 end

10 end
11 foreach loc1 ∈ vertices do
12 UsersGroupByLocation+ = Check− ins.groupBy(loc1)

// provide visitors o f each location
13 end

14 parallel foreach (loc1, U1) ∈ UsersGroupByLocation AND
count <= size(UsersGroupsByLocations)/2 do

15 count ++
16 parallel foreach (loc2, U2) ∈ UsersGroupByLocation do
17 if loc1 6= loc2 then
18 edges+ = Edge(loc1, loc2, (U1 ∩U2))
19 end
20 end
21 end
22 GL = createGraph(vertices, edges)
23 return spatial graph
24 end

• triplet is a core graph operator that combines edges along with at-
tributes of their neighbouring vertices.

• aggregateMessage is a core aggregate operator that aggregates values
from neighbouring edges and vertices of each vertex.

• pregel is a bulk-synchronous parallel graph operator that recursively
use a vertex-centric approach for traversing the graph.

triplet logically combines VertexRDD and EdgeRDD, and provides an aug-
mented EdgeRDD. The augmented EdgeRDD contains the attributes of edges
and well as attributes of their source and destination vertices. In order to
avoid confusion, we call each record of augmented EdgeRDD as triplet tu-
ple. triplet is utilized when attributes of both vertices and edges are needed.
Furthermore, it is utilized for other operations such as aggregateMessage and
pregel.

aggregateMessage performs aggregate operations using local communica-
tion, i.e., messaging among neighbouring vertices. This operation is consid-
ered suitable for LBSN queries that require aggregated information of neigh-
bouring vertices, e.g., FF and FUL. The traditional map-reduce structure falls
short in addressing such local interactions that make it expensive to estab-
lish communication among vertices. On the other hand, aggregateMessage es-
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tablishes this communication by two sub-functions: sendMsg and mergeMsg.
Following example provides the usage of aggregateMessage for processing of
a LBSN query.

Consider the query FF for all vertices of the social graph. In order to
process it, first, the augmented EdgeRDD is created by using triplet. Then,
sendMsg concurrently sends the ids of source vertices to their destination ver-
tices for each triplet tuple. mergeMsg runs at every user vertex and combine
all the messages received. Thus, every user vertex ends up with the ids of
directly connected vertices, i.e., friends.

pregel utilizes vertex-centric approach similar to aggregateMessage to com-
municate among neighbouring vertices. However, it operates recursively in a
series of iterative steps, called super-steps. Compared with map-reduce, the
parallel communication among neighbouring vertices, and optimized stor-
age, and un-persistence of intermediate results are utilized to efficiently pro-
cess the query by the pregel operator.

For example, consider a query that requires to find degrees of a given
user with all other users in the social graph. we use pregel and implement the
single source shortest path algorithm to process this query in the super-step
fashion. In order to process this query, initially, every vertex maintains its de-
gree value from the source vertex that is 1 for directly connected edges and
infinity for non-directly connected edges. In each super-step, vertices com-
municate and receive the updated values of their neighbouring vertices from
the previous super-step. On the basis of this information, vertices compute
the minimum value to connect the source vertex. Vertices update their values
only if the newly computed value is smaller than their current values. These
intermediate results are maintained in the memory in an optimized way and
used for next super-step. The iterations are continued until there remain no
vertices to be updated. At this moment, the values of vertices represent their
degrees from the source vertex.

4.3 Index layer

Query primitives that involve spatial attributes (i.e., those on the spatial
graph and the activity graph) can be further optimized by indexing tech-
niques. With an index, the mapping phase of map-reduce operators benefits
from the efficient locating of data. The indexing scheme for GSG is composed
of two parts: global index and local index.

Global index partitions the data across cluster nodes. It is maintained on
the master node. The purpose of the global index is to locate the edges of
nearby locations on the same node.

We provide two types of global indexes: grid and k-d tree. Grid based
indexes divide the geographical space into equal-sized partitions and dis-
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Fig. A.4: Indexing mechanism for the spatial graph: k-d tree and quadtree are used for the global
and local indexes, respectively.

tribute data accordingly. k-d tree partitions the space in a more adaptive
manner. Thus, it is preferred for skewed data.

The computation of the global index is performed by the following steps.
(1) Default non-partitioned graph is created and augmented EdgeRDD using
triplet is obtained. (2) Minimum bounding rectangles (MBRs) are constructed
for triplet tuples of the augmented EdgeRDD based on user-defined parti-
tioning strategy, i.e., grid or k-d tree. On the basis of these MBRs, the triplet
tuples are mapped and distributed among nodes. (3) Edges are extracted
from the augmented EdgeRDD on corresponding nodes. The vertices are
also transferred to the nodes that store their connecting edges. (4) The mem-
ories used for storing augmented EdgeRDD and non-partitioned graph are
released. (5) The k-d tree or grid is maintained at the master node as the
global index.

Local index For each node, a local index to efficiently retrieve the lo-
cal data is stored. We provide two indexing methods: a two-dimensional
method, i.e., quadtree and a three-dimensional method, i.e., octree, for the
spatial graph and the activity graph, respectively. The quadtree is used for
the spatial graph because its triplet tuples have only spatial attributes: lat-
itude and longitude. The octree is deployed for the activity graph because
triplet tuples in the activity graph are of both spatial and temporal attributes.
The maximum number of triplet tuples in a tree node is controlled by a given
capacity. When the capacity of a tree node is reached, it splits into sub-tree
nodes. It splits into 4 sub-tree nodes for a quadtree and 8 sub-tree nodes for
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Fig. A.5: Query plan for RangeFriends(u, σ, lm, ta, tb, dr)

an octree. Thus, the height of a quadtree is more than an octree. The overall
process of computation of index is shown in Figure A.4.

In order to retrieve a data item, the global index is used to find the node
on which the required data resides. Then, the local index is used to efficiently
fetch the required data item.

4.4 Query Engine

This component provides the implementation of all the query primitives and
advanced LBSN queries mentioned in Section 3. It exposes a programmable
API that provides the opportunity for building general purpose LBSN queries.
In this section, we provide the mechanisms to process advanced LBSN queries
with the help of a sample query plan.

Advanced queries are segregated into query primitives and processed
on corresponding LBSN graphs. There are two kinds of benefits that are
achieved by opting this way of query processing. First, data based optimiza-
tions are performed on corresponding graphs and utilized for efficient pro-
cessing of data that can be difficult for hybrid graph structures, e.g., spatial
data oriented indexing or graph partitioning strategies for the activity and
spatial graph. Second, efficiency is achieved by executing basic primitives in
parallel on their respective graphs. Distributed processing of a job may not
require all the resources of clusters, i.e., mappers and reducers. Thus, concur-
rent threads utilize the available resources to efficiently process the queries.
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Table A.2: Statistics of Datasets (in Million)

LBSN Vertices Edges
Users Locations GS GA GL

BrightKite 0.06 0.77 0.2 4.49 0.65
Gowalla 0.2 1.28 0.95 6.44 0.15
FourSquare 0.02 0.85 0.12 2.07 0.39
Synthetic 31.18 50.97 114.64 147.34 172.02

The following example provides the processing of an advanced LBSN query:
RangeFriends that is defined in Section 3.2. The overall query plan is shown
in Figure A.5. The query is segregated into three primitives: FF, FRL, and
FLV. FF is processed on the social graph. Simultaneously, FRL and FLV are
processed on the activity graph. We exploit akka programming model [14]
for concurrent programming. An independent thread is run for processing of
each primitive, i.e., FF and FRL. The output of FRL is utilized for FLV. Then,
the intermediate results of FF and FLV are combined by utilizing distributed
operations on the cluster to get the final output.

5 Experiments

5.1 Setup

We conduct our experiments on a multi-processor machine with 4 AMD
Opteron 6376 processors with 2.3GH, having 8 cores each. The machine has
512 GB RAM. To simulate the distributed environment, we create five virtual
nodes with 4 cores and 100GB of RAM each. Among them, one is master
and four are slaves/workers. This is used as a default setting for the cluster
of GSG and SH. The OS is Ubuntu 14.04 LTS. GSG is implemented based on
GraphX 1.3.1. Moreover, SpatialHadoop v2.2 with Apache Hadoop 1.2.1 is
used for comparison. For concurrent programming, we exploit Akka 2.3.6.
The experiments are conducted in Scala 2.10.4.

Datasets. We utilize both real and synthetic datasets. Three real LBSN
datasets are used: Brightkite [15], Gowalla [15] and FourSquare [8]. The
number of edges in the spatial graph is determined by the minimum number
of CommonVisitors. Here, in order to capture all the common visitors among
locations, we set its value to 1. To test the scalability of our proposals, we
create a synthetic dataset of size 25GB by iteratively scaling up the graphs
of the Brightkite dataset. In order to create this synthetic dataset, in each
iteration, first nodes and edges are replicated then offset with new ids thus
a new dataset is fetched. The vertices in both the original and replicated
datasets are connected by random connections. At each iteration, 1% of the
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vertices in the original graph are randomly chosen to connect with those in
the replicated graph. The iterations are continued until required dataset is
retrieved. The details about datasets are shown in Table A.2.

5.2 Results

Scalability: The first experiment tests the scalability of query processing.
Few queries from each primitive groups of the graphs, i.e., selection, aggre-
gate, and structural query primitives, that best reflect the behavior of the
corresponding groups are considered for evaluation. We evaluate the scala-
bility of GSG by performing two types of experiments.

First, we analyze the query execution time by keeping the number of cores
constant and varying the size of the dataset. The purpose is to analyze the
performance of GSG when the dataset grows. Figure A.6 presents the results.
Here, it is observed that the scalability for all types of queries is very close
to linear. This shows that GSG scales well when data grows. All the queries
show the same pattern, however, aggregate queries scale a bit less than the
rest, since they require the processing of the whole graph.

Second, we fix the dataset size and vary the number of cores. The pur-
pose of this experiment is to test how GSG scales with the amount of compu-
tational resources. The results are shown in Figure A.7. Here, as the number
of cores grows from 1 to 16 cores, we can see the maximum speed-up is
9.8x. The savings in execution time are better for fewer nodes, i.e., we see a
speed-up up to 3.4x for 1 to 4 cores. However, afterwords the gain in speed-
up decreases gradually, i.e., from 4 to 16 cores the speed-ups are 6.2x, 8.3x,
and 9.8x, respectively. The reasons for the smaller gains when adding many
cores is that the ratio of communication to computation cost grows. This is
consistent with the observations in [16]. Further, it can also be observed that
aggregate queries show better speed-up. Because they require more process-
ing and thus decrease the effect of communication.

SpatialHadoop Comparison: We compare the efficiency, scalability, and
ease of implementation of GSG with the leading Big Data system, Spatial-
Hadoop (SH). SH is a map-reduce based system, however, GSG’s underlying
framework uses memory based computation. Thus, to make a fair compar-
ison, we do not count the I/O cost. We consider queries from all types of
query primitives, i.e., FF from the selection, FCF, FLSD and FRL from the
structural, and TNL from the aggregate query primitives. We use FF to eval-
uate the vertex-centric approach of the operator aggregateMessage (AM) in
GSG. Furthermore, it is implemented with the different number of degrees,
i.e., σ (1-3) to reflect the performance with respect to different iterations. To
simulate a real workload, we execute multiple queries concurrently, with ran-
dom input parameters. The results of all the datasets provide similar trends,
however, due to page limits, the results of Gowalla and FourSquare are omit-
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Fig. A.6: Scalability of the GSG with respect to data size
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ted. Figure A.8 (a) shows the results for the Brightkite dataset where GSG
outperforms SH on average by 2.5 times for a single query and this time dif-
ference increases up to 4 times for 3 degrees. Moreover, when going from 1
to 200 concurrent queries, GSG scales 1.5 times better than SH for 1-degree
and 3.5 times better for 3-degrees. GSG’s better performance is due to its
vertex-centric approach as compared to SH’s map-reduce based methods.

Figure A.8 (b) shows the results of structural queries, i.e., FCF and FLSD.
GSG outperforms SH by 2.5x and scales 1.3 times better than SH from 1 to
200 queries. GSG uses the operators AM and pregel while SH utilizes tradi-
tional map-reduce methods for the implementation of FLSD. Vertex-centric
approach by AM shows a significant improvement as compared to SH and
outperforms it by 2x. The computation time of pregel is 4 times slower as com-
pared to AM for a single query. The reason is that pregel computes the social
separation degree of a given vertex with all vertices of the social graph. How-
ever, it retains the query time for multiple queries and outperforms AM by
9x for 50 queries. The speed-up increases with the number of queries. Thus,
we conclude that pregel is beneficial for the queries that require a traversal of
the whole graph or multiple concurrent queries. Furthermore, it also shows
better performance in processing higher degrees operations. However, AM
is effective for a single query that requires processing up-to few degrees of
vertices.

SH is designed for efficient processing of spatial data. Thus, we utilize
its corresponding features to compare the results with GSG. We implement
aggregate spatial queries, i.e., FRL and TNL to compare the results. These
queries are implemented by considering the locations as Point in SH. Fur-
thermore, indexes for both SH and GSG are used to compare the computa-
tion time. The corresponding results are depicted in Figure A.8 (c). GSG
computes FRL 20 times faster and scales 7 times better up to 200 queries as
compared to SH. Similarly, for FNL, GSG outperforms SH by 4x and scales
1.5 times better. Results for the Gowalla and FourSquare datasets are similar
and not shown due to space constraints.

GSG exposes a programmable API for building general purpose queries.
We analyze the ease of implementation of queries in GSG as compared to SH.
We calculate and compare the Lines of Code (LoC), required to implement
queries for both systems. The queries, FF, FCF, FLSD, FRL and TNL take 3
LoC with GSG, but requires 31, 39, 34, 15, and 12 LoC with SH, respectively,
i.e., 4-13 times more LoC as compared to GSG.

Spatial Graph: This set of experiments shows the significance of GSG’s
materialized spatial graph in processing of the spatial primitives. These prim-
itives can also be processed on the activity graph, i.e., by traversing the user-
location data. However, the activity graph based solution has to repeatedly
retrieve a large number of check-ins for query processing. The spatial graph
based solution alleviates the problem by reusing the intensive computation
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Table A.3: Comparison of computation time (in seconds) of spatial primitives on activity graph
and spatial graph

Data set Graph Time Query Activity Graph Spatial Graph

1 5 10 15 1 5 10 15

Brighkite

GA 43.7
FCV 7.5 35.4 71.3 109.1 0.3 1.6 3.1 3.9
FLL 31125.6 155625.9 311254.9 466881.9 2.4 11.9 21.5 32.6

GL 31127.12
TCLL 31127.5 155620.9 311253.4 466880.5 2.4 7.7 14.7 21.3
TVLL 31125.4 155622.8 311249.7 466871.5 1.7 6.3 12.2 17.8
FLSD 31127.2 155632.6 311264.6 466863.8 3.4 11.6 22.3 30.5

Gowalla

GA 59.4
FCV 12.8 48.1 95.9 127.1 0.06 0.2 3.1 4.9
FLL 52180.2 104360.5 156541 208721.5 0.4 0.9 2.4 3.7

GL 52183.1
TCLL 52180.2 104360.7 156541.2 208721.7 0.3 1.02 2.3 3.8
TVLL 52180.2 104360.7 156541.2 208721.6 0.2 0.6 1.52 2.67
FLSD 52184.2 104372.1 156563.6 208757.4 0.39 1.0 2.8 4.1

FourSquare

GA 52.19
FCV 8.7 37.8 75.9 108.9 0.5 1.1 2.1 2.9
FLL 24078.6 48157.3 72235.9 96314.7 2.9 12.3 21.9 30.4

GL 24079.2
TCLL 24078.6 48157.3 72236.1 96314.8 2.6 8.4 17.1 25.1
TVLL 24078.5 48157.1 72235.8 96314.4 1.3 5.5 10.6 16.1
FLSD 24080.6 48163.1 72247.8 96333.7 2.3 10.4 20.1 30.9

during the graph construction. We implement the query primitives as listed
in row GL of Table A.1 to compare the results. These primitives are imple-
mented on the activity graph as well as on the spatial graph. We compare the
evaluation time for the query processing on corresponding graphs as shown
in Table A.3.

It can be observed that the query execution time of a single query(FLL)
on the spatial graph for Brightkite is 13,000 times less when using the activ-
ity graph. This time difference increases up to 14,000 times for 15 queries.
Among the queries examined, FCV is an outlier. For FCV the speed-up in-
creases from 25 times to 28 times for one to 15 queries. The reason is that
its processing requires less traversal of the activity graph as compared to
the other queries. The speed-up is more than four orders of magnitude for
Gowalla and three orders of magnitude for the FourSquare. The reason for
less speed-up for FourSquare is high number of edges in the spatial graph
as compared to the Gowalla. These results confirm the importance of the
spatial graph for processing of the spatial primitives. Moreover, it can be
observed from the Table A.3 that the construction time of the spatial graph
is significantly higher than that of the activity graph, i.e., 7000 times in the
Brightkite. Furthermore, materialization costs for Brightkite, Gowalla, and
FourSquare datasets are 10 MB, 5 MB, and 8 MB, respectively, which is negli-
gible in comparison to other storage. Taking this in combination, we observe
that the seemingly high cost of computing the spatial graph is offset already
after a single query

GSG Optimization: We evaluate the optimizations of GSG by using par-
titioning and indexing methods. We select a query from the activity graph
primitives: FRL that best reflects the spatial nature of LBSN queries. We com-
pare its execution time in three conditions, i.e., non-indexed, partitioned only,

59



Paper A.

1 50 100 150 200

0

1

2

3

Number of Queries

R
un

ti
m

e(
se

c)

Ind.+Part.

None

Part. only

Fig. A.9: Improvement of the GSG with partitioning and indexing for the query: FRL.
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and combined partitioned and indexed. We use the k-d tree for partitioning
of data among nodes. Furthermore, we use the k-d tree for the global index
and octree as the local index. Figure A.9 provides the results for this experi-
ment. Here, it can be observed that the query execution time for partitioned
data is similar to the time of non-partitioned and non-indexed data. The rea-
son is that by partitioning the data, we locate the data items of nearby places
on the same node. However, for FRL, the whole dataset is traversed to find
the results because the locations of required data points are not determined.
Thus, only partitioning is not enough to improve the query execution time.
On the other hand, by providing indexes with partitioned data, the nodes that
contain the required data are identified and only relevant data is traversed.
Thus, for combined partitioning and indexing method, a speed-up of 7x is
achieved for FourSquare. Here, the speed-up remains approximately same
for an increasing number of concurrent queries. In the case of BrightKite and
Gowalla, we get a speed-up of around 5x and 6x, respectively. However, due
to limited space, results are not shown here. Furthermore, the computation
time for multiple queries decreases significantly. The reason is that the usage
of concurrent programming maximizes the computational resources.

We further evaluate the optimization for processing of advanced LBSN
queries. We select an advanced query: RangeFriends for the evaluation.
The overall query plan is shown in Figure A.5. The query is decomposed
into 3 query primitives, i.e., FF, FRL, and FLV. The query is implemented by
two ways. First, we compute the query primitives in a sequential way. Sec-
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Fig. A.10: Optimization for an advanced LBSN query: RangeFriends. (BrightKite)

ond, the query primitives are computed by using the Akka based concurrent
programming model. We further run the experiments for multiple queries.
These queries are also processed in parallel. Figure A.10 presents the results
on BrightKite dataset, where seq represents sequential traversal. Here, it can
be observed that we achieve a speed-up of 1.4x for a single query. The de-
pendency of FLV on FRL causes the decrease in parallelism and therefore,
the speed-up. On increasing the number of concurrent queries, the speed-up
reaches to 1.2x. The reason is that concurrent threads of multiple queries ac-
quire computational resources that cause the decrease in speed-up for paral-
lel computation of query primitives. Similar trends are observed from results
on Gowalla and FourSquare datasets. The results are omitted due to page
limits.

6 Related Work

In this section, we present the existing work in two parts, i.e., data processing
systems in terms of their appropriateness for processing of LBSN data (graph
and spatial data), and data management strategies for LBSN data.

Big Data Systems: First, We provide the analysis of well known open
source graph database systems. Neo4j [17] is a single tier graph database.
It maintains data in graph formats thus, efficiently process corresponding
operations. Apache Giraph [18] and GraphLab [19] are general purposed
distributed graph processing systems. Giraph is an analogous system of
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the proprietary Pregel. Pregel and Giraph exploit Bulk Synchronous Par-
allel model while GraphLab implements an asynchronous method. These
systems work on a vertex-centric approach, thus suitable for iterative graph
algorithms and graph analytics. There are several other graph database sys-
tems that lies in same category such as VertexDB [20], HypergraphDB [21],
flockdb [22], and Trinity [23]. GraphX [24] is a graph parallel platform that
is built on top of the distributed tabular data framework, Spark [10] with the
optimization for graph processing. Thus, it efficiently supports both tabular
and graph based data processing. However, none of these systems explicitly
contribute towards spatial operations.

Next, we analyze well known open source spatial data processing sys-
tems. PostGIS [25] is a spatial database extension for PostgreSQL. It is a
RDBMS based system with the support of processing at a single machine.
Neo4j-Spatial [26] is a single tier graph database system with the support of
spatial operations. Esri provides tools and APIs [27] for spatial data process-
ing with distributed computing framework Hadoop, i.e., spatial framework
for Hadoop and geoprocessing tools for Hadoop. Further, SpatialHadoop [5]
is also a distributed system, especially designed for spatial data that opti-
mizes the spatial queries by using map-reduce based spatial indexes. How-
ever, none of them can handle large volume spatial graph data efficiently.

We choose GraphX as the underlying framework for building our GSG
platform because it has better support for efficient and scalable graph pro-
cessing. The GraphX data structures and operators are given in Section 4
along with the corresponding changes and extensions in GSG.

LBSN Data Management: This section narrates the overview of existing
work in perspective of LBSN data management. In [28], authors maintain the
LBSN data in an adjacency matrix. That may cause storage and computation
overhead in large LBSNs. In [29], authors aggregate the data and exploit hy-
brid indexes for data access that may require extensive cost due to the rapid
increase of check-ins. In [9], authors segregate the LBSN data into social and
geographical (activity) components. This framework works efficiently for the
social and activity-centric queries. However, for location-centric queries they
need to recursively traverse geographical component that causes the huge
computation overhead. Thus, a data management mechanism that could ef-
ficiently maintain all the types of queries is required. Further, it should be
scalable enough to deal with huge data of LBSN.

Our proposed GSG framework provides a data management mechanism
to deal with these issues. We segregate the LBSN data into three graphs
namely, social graph, activity graph and spatial graph. Furthermore, it is
capable of dealing with LBSN queries with graph and spatial nature on large
volumes of data.
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7 Conclusion and Future Work

In this paper, we present a platform, GeoSocial-GraphX (GSG) for distributed
processing of LBSN queries on large data volumes. GSG segregates the LBSN
data into three graphs, namely social graph, activity graph, and spatial graph,
to support scalable and efficient processing. A comprehensive set of query
primitives is defined on these graphs. The primitives can be combined to an-
swer a wide range of general purpose LBSN queries. GSG also features dis-
tributed storage mechanisms, vertex-centric operators, and spatial indexing
and partitioning techniques that are used to further optimize the processing
and scalability of LBSN queries.

The experiments on real and synthetic datasets show that GSG scales well
on multicore architecture and for increasing dataset sizes. The partitioning
and indexing methods improve the performance up to 6 times. Furthermore,
segregation of LBSN and usage of the spatial graph improves the processing
of location-centric queries upto four orders of magnitude. GSG also outper-
forms the competing system, SH in terms of efficiency, scalability and LoC
by up to 20X, 7X and 13x, respectively.

In the future, we plan to consider updates in LBSN graphs. The graphs
will be updated using batch updates to optimize the update process. Further-
more, GSG will be enriched with more LBSN queries with corresponding
optimization methods for query specific data management and processing
techniques.
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Abstract

Location-based social networks (LBSN) are social networks complemented with loca-
tion data such as geo-tagged activity data of its users. In this paper, we study how
users of an LBSN are navigating between locations and based on this information
we select the most influential locations. In contrast to existing works on influence
maximization, we are not per se interested in selecting the users with the largest set
of friends or the set of locations visited by the most users; instead, we introduce a no-
tion of location influence that captures the ability of a set of locations to reach out
geographically by utilizing their visitors as message carriers. We further capture
the influence of these visitors on their friends in LBSNs and utilize them to predict
the potential future location influence more accurately. We provide exact on-line
algorithms and more memory-efficient but approximate variants based on the Hy-
perLogLog and the modified-HyperLogLog sketch to maintain a data structure called
Influence Oracle that allows to efficiently find a top-k set of influential locations.
Experiments show that our new location influence notion favors diverse sets of loca-
tions with a large geographical spread and that our algorithms are efficient, scalable
and allow to capture future location influence.

The layout has been revised.



1. Introduction

1 Introduction

One of the domains in social network analysis [1–4] that received ample at-
tention over the past years is influence maximization [5], which aims at finding
influential users based on their social activity. Applications like viral mar-
keting utilize these influential users to maximize the information spread for
advertising purposes [6]. With the pervasiveness of location-aware devices,
nowadays, social network data is often complemented with geographical in-
formation. For instance, users of a social network share geo-tagged content
such as locations they are currently visiting with their friends. These social
networks with location information are called location-based social networks
(LBSNs). In LBSNs, the location information offers a new perspective to view
users’ social activities. In this paper, we study navigation patterns of users
based on LBSN data to determine influential locations. Where other works
concentrate on finding influential users [7], popular events [8], or popular loca-
tions [9], we are interested in identifying sets of locations that have a large
geographical impact. Although often overlooked, the geographical aspect is of
great importance in many applications. This geographical information can be
utilized to provide more targeted marketing strategies. For example, unlike
viral marketing which focuses on finding influential users and spreading the
message via word of mouth marketing (WOMM), influential locations can
be found and information can be spread using out-of-home/ outdoor mar-
keting (OOH) e.g., by putting advertisements on billboards and distributing
promotional items on such locations. For instance, consider the following
example.

Example 1.1
A marketer is interested in creating visibility for her products to the max-
imum regions in a city by offering free promotional items such as T-shirts
with a printed promotional message. To do that she has to choose locations
to distribute the promotional items to visitors.

In order to choose the most suitable locations for offering these items,
not only the popularity of the places is important, but also the geographical
reach. By visiting other locations, people that were exposed to the adver-
tisement, especially the receivers of the promotional items, may indirectly
promote the products. For example, by wearing the shirt they expose the
T-shirt’s message to the people at the places they go to and they talk about it
with their friends and relatives. Thus, when the goal is to create awareness
of the product name, it may be preferable to have a moderate presence in
many locations throughout the whole city rather than a high impact in only
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Fig. B.1: [10] Running example of an LBSN: Check-ins(L) shows the visits of users (represented
by lower-case letters; a, b, etc.) at locations (represented by upper-case letters; T1, H1, etc.)
at time stamps t=1, 2 and 3. Graph (C) depicts the movement of users between consecutive
locations. Friendships (R) show the friends of each user in the social network.

a few locations. An illustration of this example is given in Figure B.1. Nodes
represent popular locations of different categories, such as tourist attractions
(T1, T2), a metro station (M1), and hotels (H1 and H2). Lowercase letters rep-
resent users. For each user, her friends in the social network and check-ins
have been given. The top-2 locations with the maximal number of unique
visitors are T1 and M1. The geographical impact of these locations, however,
is not optimal; visitors of these locations reach only T2 and H1. On the other
hand, the visitors of T1 and H2 visit all locations, i.e., users a, f and b, c, e visit
T2 and H1 after visiting T1, respectively, and users d, i visit H1 and M1 after
H2.

To capture geographical spread and influence, in Section 3, we introduce
the notion of a bridging visitor between two locations as a user that visits
both locations within a limited time span. If there is a significant number
of bridging visitors from one location to another, we say that there is an in-
fluence. We introduce different models that capture when the number of
bridging visitors is considered to be sufficient to claim influence between lo-
cations. One model is based on the absolute number of visitors, and one on
the relative number. For each of these two models, we further present a direct
bridging visitor based location influence model and two friendship-based lo-
cation influence models that take the social graph of the LBSN into account.
The friendship-based location influence models are based on the following
observations obtained by detailed analysis of three real-life LBSNs. The first
observation is that users tend to follow their friends and perform the same ac-
tivities; e.g., in Figure B.1, users i and f visited the same locations T1 and H1
after their friend b did. The second observation is that sometimes the number
of visits/activities to some locations can be rather low because of data spar-
sity, especially when the time window used in the algorithms is small. The
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data sparsity may affect the location influence models and capture less in-
fluential seeds. Considering these observations, the friendship-graph-based
models allow to compute potential future bridging visitors. By incorporating
such visitors, the models overcome the data sparsity problem and capture lo-
cation influence more accurately. The first friendship-based influence model
considers all friends of bridging visitors, while the second model computes
the influence of bridging visitors on their friends in LBSNs and only incor-
porates the strongly influenced friends as potential future bridging visitors.
Based on these models, we define influence for sets of locations and the lo-
cation influence maximization problem: Given an LBSN and a parameter k, find a
set of k locations such that their combined location influence on other locations is
maximal.

To solve this problem, in Section 4 a data structure, called Influence Ora-
cle, is presented that maintains a summary of the LSBN data that allows to
determine the influence of any set of locations at any time. Based on this
data structure, we can easily solve the location influence maximization prob-
lem using a greedy algorithm. As for large LBSNs with lots of activities the
memory requirements of our algorithm can become prohibitively large, we
also develop a more memory-friendly version based upon the well-known
HyperLogLog sketch [11]. This algorithm gets further refined in Section 4.3
where we introduce a single-carrier-based influence maximization mecha-
nism for capturing influence in information propagation scenarios where
even a single carrier can carry the influence such as propagation of infec-
tions, and confidential information in specialized information networks. We
provide off-line and on-line memory- and time-efficient algorithms for the
single-carrier-based-influence maximization. Next, in Section 5 we provide a
greedy algorithm for finding top-k influential locations.

In Section 6 we analyze several LBSNs to select reasonable threshold val-
ues for our models and to verify our claims. In Section 7 we evaluate the
proposed notions and algorithms using the real-world datasets in term of
effectiveness and efficiency.

In summary, the main contributions of this paper are (i) the introduction
and motivation of a new location influence notion based on LBSN data, (ii)
the development of an efficient Influence Oracle, and (iii) the demonstration
of the usefulness of the location influence maximization problem in real-life
LBSNs.

This paper is an extended version of the conference paper [10]. As an
extension, we present a novel mechanism for spreading location influence
that incorporates the influential users based on their geographical activities
and social friends. The mechanism is given in Section 3.1. On the basis
of the mechanism, we further propose two variants of absolute and rela-
tive influence models (given in Section 3.2). The new algorithms for finding
such location influence are provided in Section 4.1. Furthermore, the single-

71



Paper B.

carrier-based influence maximization mechanisms (given in Section 4.3) and
the two algorithms for capturing such influence also constitute previously
unpublished work. The methods for finding suitable values of the thresholds
for new models are given in Section 6. We further present a set of new ex-
periments for validating the proposed approaches in terms of effectiveness
(Section 7.2) and efficiency (Section 7.5) as well to evaluate their significance
in comparison with existing methods.

2 Related Work

Influence maximization in the context of traditional social networks and LB-
SNs has been studied in much detail. We divide the existing studies in the
domain into three groups. The first group consists of approaches for find-
ing influential users in traditional social networks. The second group covers
studies that use check-ins as an additional source of data to identify influen-
tial users in LBSNs, whereas the third group utilizes the check-ins for finding
influential locations in LBSNs.

Influential Users in Social Networks. The influence maximization ap-
proaches in social networks are generally divided into two main groups. The
first group of studies [5, 12–14] operates on static graphs and assumes that
the influence relationships among nodes are already known. They compute
the influence probability of a node using probabilistic simulations and use
them for determining influence among nodes. These approaches do not cap-
ture the temporal and dynamic nature of real networks such as social media.
On the other hand, the second group of studies in this category [15–18] is
data-driven and requires interactions of users and their activities. They com-
pute influence probabilities based on relationships and historic activities of
nodes such as common actions among two friends within a specified time.
Thus, these studies are more suitable for dynamic networks such as LBSNs.
Goyal et al. [18], propose the first data-based approach for finding influential
users in social networks by considering the temporal aspect in the cascade
of common activities of users. In [17], they further introduce a time window
based approach to determine the true leaders in social networks. In [19],
they present several models to compute influence probabilities. They pro-
vide static models based on likelihood estimation, as well as continuous and
discrete time models for capturing the dynamic behavior of users in social
networks. However, the limitations of these approaches are their assump-
tions that information propagation is non-cyclic and thus users can perform
an action only once. In order to find the influence of users, we provide an
extension of [19] as part of our influential friends-based location influence
model. Our algorithm identifies influential nodes without any constraints
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on the number of times a user performs an action. It further allows cyclic
propagation of information.

Influential users and events in LBSNs. Zhang et al. [8] use the social and
the geographical correlation of users to find influential users and popular
events. Users with many social connections are considered influential and
events visited by them are considered important. Similarly, Wu et al. [7]
identify influential users in LBSNs on the basis of the number of followers
of their activities (check-ins). Li et al. [20] and Bouros et al. [21] on the other
hand, identify regionally influential users on the basis of their activities. The
focus of the work by Wen et al. [22] and Zhou et al. [23] is to find and utilize
the influential users for product marketing strategies such as word-of-mouth.
Our focus, however, is to find influential locations that could be used, e.g., for
outdoor marketing, hence, none of the previous works applies directly to our
problem.

Location Promotion in LBSNs. Zhu et al. [9], Hai [24], and Wang et
al. [25] study location promotion. Given a target location, their aim is to find
the users that should be advertised to attract more visitors to this location.
Doan et al. [26] compute the popularity ranks of locations based on the
number of visitors. Zhou et al. [23] study the product promotion in O2O
(on-line to off-line) model using LBSNs. Their model combines the on-line
features, i.e., network topology (social network) and off-line user properties
such as daily activity area and location preferences of users. Based on these
features they find top-k users that can maximize the number of influenced
users for a given location (product). These studies have different objectives
as compared to our problem statement as they focus on finding top-k users
that can attract the maximum visitor for a given location.

Novelty. Our work is different from all of the above as we focus on find-
ing a set of influential locations where influence is defined using visitors as a
mean to spread influence to other locations. Applications include outdoor
marketing by selecting locations with the maximal geographical spread.

3 Location-Based Influence

In this section, we first provide preliminary definitions, then present location
influence and different models to capture it, and finally we formally define
the Location Influence Maximization and Oracle problems.

Let a set of users U and a set of locations L be given.

Definition B.1. An activity [10] is a visit of a user to a location. It is a triplet
(u, l, t), where u ∈ U is a user, l ∈ L a location and t is the time of visit of u to l.
The set of all activities over U and L is denoted A(U, L).
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Definition B.2. A Location-based Social Network (LBSN) [10] over U and L
consists of a graph GS(U, F), called the social graph, where F ⊆ {{u, v}|u, v ∈ U}
represents friendships between users, and a set of activities A ⊆ A(U, L). It is
denoted LBSN(GS, A).

3.1 Bridging Visitors for Location Influence

We define the influence of a location by its capacity to spread its visitors to
other locations. The intuition behind this is that the visitors exposed to a
message at a location will spread the message to other locations they visit.
Thus, the location influence (indirectly) captures the capability of a location
to spread a message to other geographical regions by using common visitors
as message carriers. The effect of an activity in a location, however, usu-
ally remains effective only for a limited time. We capture this time with the
influence window threshold ω. Such visitors that spread messages among loca-
tions based on their activities in LBSNs are called Bridging Visitors (B). Next,
we provide three types of bridging visitors for spreading location influence
in LBSNs.

Direct Bridging Visitors

The first type of bridging visitors is called Direct Bridging Visitors:

Definition B.3. Direct Bridging Visitor [10]: Given an LBSN(GS, A) and time
window ω, a user u is said to be a direct bridging visitor from location s to location
d if there exist activities (u, s, ts), (u, d, td) ∈ A such that 0 < td − ts ≤ ω. We
denote the set of all direct bridging visitors from s to d by BD(s, d).

Example 3.1
Consider the running example of Figure B.1. Let ω = 2. Then,
BD(T1, H1) = {b, c, e}, BD(H2, H1) = {d, i} and BD(M1, H1) = {i}.

Friends-Based Bridging Visitors

Activity data in LBSNs is often sparse in the sense that the number of check-
ins per location is low. In Section 7, we see that the real-world datasets
have only up to 6 check-ins per location on average. This sparsity of data
affects the computation of location influence as usually there are very few
bridging visitors among locations. In order to deal with this issue, we use the
observation that users tend to perform similar activities as their friends (this
claim is verified and confirmed in Section 6). Thus, the friends of bridging
visitors have potential to carry the same message as the bridging visitors do.
Based, on this observation we define Friends-Based Bridging Visitors:
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Definition B.4. Friends-Based Bridging Visitors: Given an LBSN(GS, A), time
window ω, locations s and d, and direct bridging visitors from s to d BD(s, d), the
set of Friends-Based bridging visitors between s and d is denoted by BF(s, d):

BF(s, d) = BD(s, d)
⋃

u∈BD(s,d)

Fu (B.1)

where Fu is the set of friends of u, i.e., Fu = {v|(u, v) ∈ F}

Example 3.2
Consider again the running example of Figure B.1. Let ω = 2.
Then, BF(T1, H1) = {a, b, c, d, e, f , g, i}, BF(H2, H1) = {a, b, d, e, i} and
BF(M1, H1) = {a, b, i}.

Influenced Friends-Based Bridging Visitors

Next, we further improve the notion of bridging visitors based on the follow-
ing observation. Not all friends of bridging visitors may follow them, thus
considering all of them as potential future visitors may bring high inaccuracy
in predicting the number of bridging visitors and so in capturing the location
influence. To improve the accuracy, we evaluate the ability of each bridging
visitor to persuade their friends to follow them. The friends that are signif-
icantly influenced by the bridging visitors are called Influenced Friends-Based
Bridging visitors.

A user v is considered to be influenced by a user u, if u visits a location
l and v visits the same location after u within a particular time. In order
to find such influence, we present an extended version of an existing algo-
rithm given in [19] that computes the influence probabilities using a Bernoulli
distribution based on partial credit distribution and discrete time constraint
models [19]. According to the model, the influence probability is measured
by the ratio of the number of successful attempts to persuade the influenced
user to follow the influential user’s activities over the total number of trials.
Considering that a user can be influenced by multiple sources for an activ-
ity, the influential credit for each following activity is distributed among all
such influential parents using the Partial Credit Distribution model. Further-
more, as influence probability is dependent on time, a discrete time constraint
model is incorporated, which ensures that a user can influence other users
only within the given time window. It is worth noting that such a time win-
dow can be different than the ω given in Definition B.3. However, for our
experiments, we consider the same ω for such a time window because we
consider ω as a maximal time between two activities to still consider them
connected. Goyal et al. in [19] do not capture repeating activities of users
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considering that traditional social network users are unlikely to repeat their
actions such as re-posting the same contents. However, in LBSNs, users may
visit the same locations again. This implies that, if an influential user visits a
location after her influenced user, she is considered to be influenced by her
influenced user. Our proposed algorithm (given in Algorithm B.2) captures
multiple activities of users at the same locations and thus, such aforemen-
tioned relationships. We ensure however that a user is influenced maximally
once for an activity, i.e., a visit to a location, regardless of the number of
times she visits the same location within ω. However, if the influential user
visits the same location at another time, she may influence the same influ-
enced user again. We denoted the influence probability of a user u on v as
pu,v. Next, we utilize such influence probabilities to define the influenced
friends-based bridging visitors.

Definition B.5. Influenced Friends-Based Bridging Visitors: Given LBSN(GS, A),
time window ω, locations s and d, direct bridging visitors from s to d BD(s, d), and a
threshold of the influence probability between users θ, a set of Influenced Friends-
Based bridging visitors between s and d is denoted by BI(s, d):

BI(s, d) = BD(s, d) ∪ {u ∈ U| ∑
v∈BD(s,d)

pv,u ≥ θ} (B.2)

Example 3.3
Let τIA = 2, ω = 2 and θ = 0.2. In the running example, a is the influenced
user of h. a followed one out of two activities of h, i.e., for visiting T2 and
there is no other friends influencing a for this activity, thus, ph,a = 1/2 =
0.5 ≥ θ. Similarly, the influenced users of b and c are {i, f }, and {a, f },
respectively. The other users do not have any influenced visitors as their
influence probability is less than θ.

3.2 Methods for determining Location Influence

Next to the selection of message carriers, a second dimension is when we
consider influence to be present and to what extent. For this purpose, we
introduce two influence models (M).

Absolute Influence Model (MA)

In practice, if a significant number of people perform an activity, then it
is considered compelling. Thus, in order to avoid insignificant influences
among locations, we use a threshold τA. The influence of a location s on a
location d is considered only if the number of bridging visitors from s to d is
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greater than τA. This model is referred as the Absolute Influence Model (MA).
The influence of a location s on d under MA is represented by IA(s, d):

IA(s, d) :=

{
1, if |B(s, d)| ≥ τA

0, otherwise
(B.3)

We instantiate B in Equation B.3, with BD, BF or BI , and τA with τDA, τFA
or τIA to compute direct absolute influence (IDA), friends absolute influence
(IFA) or influenced-friends absolute influence (IIA), respectively.

Example 3.4
Consider the running example of Figure B.1. Let the information car-
riers be the direct bridging visitors BD, τA = 2, and ω = 2. Then,
IDA(T1, H1) = 1 because |BD(T1, H1)| = 3. Similarly, IDA(H2, H1) = 1.
However, IA(M1, H1) = 0 because |BD(M1, H1)| = 1.

The influence between two locations may change with the value of
τA and ω. For example, if we update the value of τA to 3 and ω to 2,
IDA(T1, H1) = 1, but, IDA(H2, H1) becomes 0.

Relative Influence Model (MR)

In MA, the influences of two pairs of locations are considered equal as long
as the number of their bridging visitors is greater than τA. Sometimes, how-
ever, the relative number of contributed bridging visitors is important. Con-
sider, for example, a popular location s that attracts many visitors and a
non-popular location d with few visitors. In such a setting, to capture the in-
fluence of s on d, we may have to set the absolute threshold τA very low. This
low value of τA, however, may result in many other popular locations being
influenced by s, even if only a very small fraction of their visitors comes from
s. Therefore, in such situations, it may be beneficial to use different thresholds
for different destinations, relative to the number of visitors in these destina-
tion locations. This notion is captured by the Relative Influence Model (MR).
The influence of s on d under MR is represented by IR(s, d) and is parame-
terized by the relative threshold τR:

IR(s, d) :=

1, if
|B(s, d)|
|V(d)| ≥ τR

0, otherwise
(B.4)

where V(d) is the set of users who visited location d. We instantiate B
in Equation B.4, with BD, BF or BI , τR with τDR, τFR or τIR, and V with VD,
VF: a set of VD and their friends, or VI : a set of VD and influenced friends
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Location-Based Influence Models
Absolute Influence Relative Influence

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Label
Direct Absolute
Model (MDA)

Friends Absolute
Model (MFA)

Influenced Friends
Absolute Model
(MIA)

Direct Relative
Model (MDR)

Friends Relative
Model (MFR)

Influenced
Friends Relative
Model (MIR)

Parameters τDA, ω τFA, ω τIA, ω, θ τDR, ω τFR, ω τIR, ω, θ

Location
Influence

IDA IFA IIA IDR IFR IIR

Table B.1: Types of location-based influence models with labels and the parameters. Further,
notations of the location influences captured by these models are also depicted.

of visitors in VD, to compute direct relative influence (IDR), friends relative
influence (IFR) or influenced-friends relative influence (IIR).

Example 3.5
Consider the running example given in Figure B.1. Let the information
carriers be the direct bridging visitors BD, τI R = 0.4, and ω = 2. In
this example, IDR(T1, H1) = 1 because |BD(T1,H1)|

|VD(H1)|
= |{b,c,e}|
|{b,c,d,e,i}| =

3
5 ≥ τIR,

Similarly, IR(H2, H1) = 1 and IDR(M1, H1) = 0.

In subsection 3.2, we presented two ways to determine the location influ-
ence. Each of the ways can utilize any of the three types of bridging visitors
(given in subsection 3.1) to spread the location influence. Thus, in total, we
have six models for spreading influence in LBSNs as given in Table B.1.

3.3 Combined Location Influence

Based on the influence models, a location can influence multiple other loca-
tions. In order to capture such influenced locations, we define the location
influence set:

Definition B.6. Given a location s, and an influence model M, the location Influ-
ence Set φIM (s) is the set of all locations for which the influence of s on that location
under M is 1, i.e., φIM (s) = {d ∈ L | IM(s, d) = 1}.

Next, we define combined location influence for a set of locations S. To do
this, we use the following principled approach: any activity at one of the
locations of S is considered an activity from S. In that way we can capture
the cumulative effect of the locations in S; even though all locations in S, in
isolation may not influence a location d, together they may influence it. The
bridging visitors from a set of locations S to d is represented by B(S, d):

B(S, d) =
⋃
s∈S

B(s, d) (B.5)
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The influence of a set of locations S on location d under MA and MR
is defined similarly as for single locations. For instance, the influence of S
under MA is given by

IA(S, d) :=

{
1, if |B(S, d)| ≥ τA

0, otherwise
(B.6)

Example 3.6
In Figure B.1, let ω = 2, τA = 3 and S = {T1, M1}. Under MA, T2 6∈ φ(T1)
and T2 6∈ φ(M1). However, T2 ∈ φ(S) as |B(S, T2)| = |{a, f , g}| ≥ τA.

3.4 Problem Formulation

Based on these influence models, we now formally define the problem state-
ments. We first present a problem statement for finding the most influential
locations in LBSNs:

Problem B.1. (Location Influence Maximization Problem) Given a parameter k, an
LBSN(GS, A), and an influence model M, the location influence maximization prob-
lem is to find a subset S ⊆ L of locations, such that |S| ≤ k and the number of
influenced locations

∣∣φIM (S)
∣∣ is maximum.

In order to solve the location influence maximization problem efficiently,
we first introduce an efficient solution to the following subproblem.

Problem B.2. (Oracle Problem) Given an LBSN(GS, A) and an influence model
M, construct a data structure that allows to answer: Given a set of locations S ⊆ L
and a threshold τ, what is the combined location influence φIM (S).

4 Influence Oracle

In this section, we provide solutions for the Oracle problem. First, in Sec-
tion 4.1, we provide a generic algorithm for constructing an influence oracle
for any influence model. Then, in Section 4.2, we present an approximate but
a more memory- and time-efficient algorithm for constructing the Influence
Oracles for the MD(MDA and MDR) and the MF(MFA and MFR) models. Af-
ter that, in Section 4.3 we present an even more efficient algorithm for the
special case of the MDA model with τ = 1.
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4.1 Exact Influence Oracle

In this section, we provide a data structure for maintaining exact location
summaries for each location which works for the MD model. Extension of
this algorithm for incorporating the MF and the MI model are discussed later
in this section.

Definition B.7. The Complete location summary for a location s ∈ L is the set of
locations that have at least one bridging visitor from s, together with these bridging
visitors; i.e., ϕ(s) := {(d, B(s, d)) | d ∈ L ∧ |B(s, d)| > 0}.

We assume activities arrive continuously and deal with them one by one.
For the Oracle, we maintain a summary that consists of the collection of indi-
vidual summaries ϕ(s) for each location S. We present an on-line algorithm
(Algorithm B.1) to incrementally update these summaries.

If a user u visits a location s at time t, then u acts as a bridging visitor be-
tween all the locations u visited within the last ω time stamps and s. There-
fore, for each user u ∈ U, we maintain a set of locations the user has visited
and the corresponding latest visiting time. This is called the visit historyH(u)
and is defined as H(u) := {(s, tmax)|u ∈ V(s), tmax = max{t | (u, l, t) ∈ A}}.
Suppose that we have the complete location summary for the check-ins so far
and the visit history of all users, and a new activity (u, d, t) arrives. We up-
date the complete location summary as follows: the location-time pair (d, t) is
added in H(u) if d does not already appear in the visit history, otherwise the
latest visit time of d is updated to t in H(u) (line 13). Furthermore, for every
other location-latest visit time pair (s, t′) in the history of u, ϕ(s) is updated
by adding user u to the set of bridging visitors from s to d provided that the
difference between the time stamps t − t′ does not exceed the threshold ω
(line 5− 10). This procedure is illustrated in Algorithm B.1. The visit history
H(u) is pruned at line 11 to remove those locations which were visited by u
more than ω time ago. Pruning of old locations from the visit history can be
done at regular interval for all locations.

Example 4.1
We illustrate the algorithm using the running example shown in Figure B.1.
For simplicity, we only consider the activities of two users: d and i. We also
add a new activity of d at H2 at time stamp 5. In this example, we consider
ω = 2. The activities are processed one by one in increasing order of
time. We show how the visit history H(i), H(d) and the complete location
summaries ϕ(H1), ϕ(H2), ϕ(M1) evolve with different activities at different
timestamps in Figure B.2. Note, at time stamp 5 only ϕ(M1) is updated
even though M1 and H1 are both in the visit histories of d because ω = 2.
The visit history of d is pruned by removing H1 from the H(d) as no future
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t = 1 t = 2 t = 3 t=5

Activity:
(i, H2, 1)
(d, H2, 1)

(i, M1, 2)
(d, H1, 2)

(i, H1, 3)
(d, M1, 3)

(d, H2, 5)

H(i) : {(H2, 1)} {(H2, 1),
(M1, 2)}

{(H2, 1),
(M1, 2),
(H1, 3)}

{(H1, 3)}

H(d) : {(H2, 1)} {(H2, 1),
(H1, 2)}

{(H2, 1),
(H1, 2),
(M1, 3)}

{(M1, 3),
(H2, 5)}

ϕ(H1) : {} {} {(M1, {d})} {(M1, {d})}

ϕ(H2) : {} {(H1, {d}),
(M1, {i})}

{(H1, {d}),
(M1, {i, d})}

{(H1, {d}),
(M1, {i, d})}

ϕ(M1) : {} {} {(H1, {i})} {(H1, {i}),
(H2, {i})}

Fig. B.2: [10] An example of updating locations summaries for location H1, H2 and M1 and visit
histories of users i and d under MA model for ω = 2 at every time stamp.

activities by d affect ϕ(H1). The visit time of H2 is updated to the latest
visit time. Similarly, H(i) is also pruned.

It can be observed from the example that a new activity of a user u only
updates the complete location summary of the locations in the recent visit
history of u. Notice that, since the activities of a user arrive in strictly in-
creasing order of time, the size of H(u) is upper bounded by ω, as only
locations that are visited within a time window ω are processed and a user
can only visit one location at a time.

Proposition B.1. For the MDA model, the time required to process an activity by
Algorithm B.1, isO(ω log(|U|)). The complete location summary {ϕ(l)|l ∈ L} can
be stored in O(|L|2|U|) memory and the visit history{H(u)|u ∈ U} in O(|U|ω)
memory.

Proof. The visit history H(u) for a user u can at maximum have ω locations
hence the for loop in line 4 of the algorithm will run for maximum ω it-
eration. The maximum set size of the bridging visitors is |U|, so adding
an element to the set will take maximum log(|U|) time using an appropri-
ate data structure, such as a balanced tree for storing a set. Thus, the total
time for processing an activity in the worst case is O(ω log(|U|)). The mem-
ory complexity is straightforward as there could be maximally |L| influenced
locations and the bridging visitor set size is at most |U|, hence, the memory
complexity is O(|L||U|) in the worst case for a location hence for all locations
it is O(|L|2|U|). �
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Algorithm B.1: Exact Oracle: Updating complete location summaries
[10]

1 Input: New activity (u, d, t); threshold ω; ∀l ∈ L, ϕ(l) is given; H(u)
2 Output: Updated ϕ(.) and H(.)
3 begin
4 foreach (s, t

′
) ∈ H(u) do

5 if t− t
′ ≤ ω then

6 if ∃(d, B(s, d)) ∈ ϕ(s) then
7 replace (d, B(s, d)) ∈ ϕ(s) with (d, B(s, d) ∪ {u})
8 end
9 else

10 add (d, {u}) to ϕ(s)
11 end
12 end
13 else
14 H(u)← H(u) \ {(s, t

′
)} ; // Too old to be a bridging

visitor
15 end
16 end
17 if ∃(d, t′) ∈ H(u) then
18 replace (d, t′) with (d, t)
19 end
20 else
21 add (d, t) to H(u)
22 end
23 end

Proposition B.2. For the MDA model, the time required to produce φ(S) from
{ϕ(l)|l ∈ S} for given threshold τ and set of locations S is O(|S||L||U|).

Proof. Every location can have influence on maximally |L| locations with the
bridging visitor set size at most |U|. Hence, to produce φ(S), the union of
sets of size |U| has to be taken at most |S||L| times, thus, the time complexity
is O(|S||L||U|). �

Extending for Relative models. For the relative models, we additionally
have to maintain the total number of unique visitors per location, which can
be done in the worst case time O(log(|U|)) and space O(|U|) per location
and hence does not affect the overall complexity.

Extending for Friends based bridging visitors. For this scenario, we
assume the friendship graph is given as an adjacency list < u, u f riends >
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Algorithm B.2: Influence Probabilities among users

1 Input: List of activities A, time threshold ω, Friendships F
2 Output: in f luenceEdges
3 begin
4 in f luenceEdges = Map() , userActs = Map() ,

in f luenceActs = Map()
5 Ag(l)= Group activities by location and sort by time
6 foreach A(l) ∈ Ag(l) do
7 currentSet = φ
8 f ollowersSet = φ
9 foreach (u, l, tu) ∈ A(l) do

10 increment userActs(u)
11 parents = φ
12 foreach v : (v, l, tv) ∈ currentSet & (u, v) ∈ F do
13 if (v, u, tv) /∈ f ollowerMap then
14 if tu − tv ≥ ω then
15 increment in f luenceActs(v→ u)
16 add (v, u, tv) to f ollowersSet
17 add v to parents
18 end
19 end
20 end
21 foreach v ∈ parents do
22 update in f luenceEdges < (v, u), pv,u >
23 end
24 add (u, l, tu) in currentSet
25 end
26 end
27 end

indexed by u. Hence, whenever we add u in the bridging visitor set (line 7
and 9 in Algorithm B.1), we just have to add all the friends of the user u in
the set of bridging visitors. As the number of friends is bounded by |U|, we
get:

Proposition B.3. For Algorithm B.1, the time required to process an activity for
Friends based bridging visitors is O(ω|U|). The memory required to maintain the
summary is the same as for the MD, O(|L|2|U|).

Proof. Every user can have maximally |U| friends and hence adding them in
the bridging visitor set would take |U| time. There are maximum ω location
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in the visit history of a user, thus, bridging visitors of ω locations would be
updated giving a total time complexity of O(ω|U|). �

Extending for Influenced Friends based bridging visitors. In this case,
we first compute the influence probabilities of users among each other. The
influence probabilities are computed using the algorithm B.2. In this algo-
rithm, first, we initialize in f luenceEdges that stores the influence probabili-
ties for each pair of influential and influenced users, userActs that maintains
the count of activities for users, and in f luenceActs that tracks the number
of influential activities of users among each other. We then group the activ-
ities based on locations (Line 5). We iteratively process all the activities that
are performed at a location (line 9). In line 13, we ensure that a user is not
influenced multiple times by the same activity. We consider the activities in-
fluential if they the time difference in following the activities is less than the
window threshold (line 14). In lines 18-19, we compute/update the influence
probability by which a user is influenced using the Bernoulli equation based
on the number of influential activities, all activities and the influential users.
The influence probabilities are stored in a hash-map.

Next, we use the influence probabilities for adding the influenced friends
of bridging visitors for every pair of locations (influential-influenced loca-
tions). The pseudo code for the algorithm is given in Algorithm B.3. It is
worth noting that this is an off-line algorithm as we need to process all the
activities first using Algorithm B.1. After that, we process a complete bridg-
ing visitor set of a location pair at a time(line 6-16 in Algorithm B.3). To do
that, for each user in a bridging visitor set, we first fetch her influenced users
with corresponding influence probabilities (lines: 10-12). Then, we compute
the cumulative influence probability for each influenced user by adding the
influence probabilities of the influenced user with her every influential user
in the bridging visitor set. The influenced users with cumulative influenced
probability greater than the minimum influence threshold (θ) (given in Equa-
tion B.2) are added in the set of bridging visitors (lines: 13-16). The same
procedure is followed for adding influenced friends for VD in the case of MR.

Proposition B.4. For Algorithm B.1, the space complexity for MI is the same as
for MF i.e, O(|L|2|U| + ω + |U|2), and the time required to compute influence
oracle for the influenced friends-based model is O(ω|U| log(|U|)|A|+ |L|2|U|2 +
|A|(|A|+ |U|)).

Proof. A user can at most influence all of her friends which is equivalent to
adding all friends of users in a bridging visitor set, as we do in MF. Thus,
the space complexity for MI is same as for MF, i.e., O(|L|2|U|+ ω + |U|2).

For computing influence oracle for MI , we further need to find the in-
fluenced friends of bridging visitors. Thus, we first need to compute the
influence probabilities among users. To do that we group the activities on
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Algorithm B.3: Exact Oracle for Influenced Friends: Updating com-
plete location summaries

1 Input: A all activities, ω time window, θ minimum influence
threshold, F friendships

2 Output: Complete location summary ϕ(l) for all l ∈ L
3 begin
4 In f luenceEdges= Influence Probabilities among users(A, ω, F) ;

// Algorithm B.2
5 Run Algorithm B.1 ∀(u, d, t) ∈ A ; // This will generate ϕ(l)

for all l ∈ L
6 foreach l ∈ L do
7 foreach s ∈ ϕ(l) do
8 In f luencedFriends← φ
9 In f luentialBVs← φ

10 foreach (u, v, Pu,v) ∈ In f luenceEdges do
11 if x ∈ B(l, s) then
12 add (u, v, pu,v) to In f luentialBVs
13 end
14 end
15 foreach v : (u, v, Pu,v) ∈ In f luentialBVs do
16 if (Sum(Pu,v), ∀u : (u, v, pu,v) ∈ In f luentialBV) ≥ θ

then
17 add v to In f luencedFriends
18 end
19 end
20 B(l, s) = B(l, s)∪ influenced friends
21 end
22 end
23 end

the basis of location and then sort the activities performed at a location in a
chronological order. Then, for each location, we iteratively consider all the
activities to evaluate the influence relationship of users who performed them
among each other and update their corresponding influence scores. As each
activity is evaluated with every other activity thus in total we have |A| ∗ |A|/2
iterations. We further traverse all influential users to assign them their credit,
which can at most be |U|. The influence probabilities are computed once
and stored in a hashmap. To add influenced friends in a bridging visitor
set, we need to fetch the influenced friends and influence probabilities for
every user in the bridging visitor. The time to fetch the influenced visitors
is constant. Thus, the time to add the influence visitors for a set of bridging
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visitors which at most can be |U| is |U| ∗ |U| and thus, for each location pair,
it is |L|2|U|2. This makes the overall time complexity for computing oracle
for MI as O(ω|U| log(|U|)|A|+ |L|2|U|2 + |A|(|A|+ |U|)). �

Exact Approx
Memory Oracle Time Query Time Memory Oracle Time Query Time

MDA O(|U|(|L|2 + ω)) O(ω log(|U|)|A|)

O(|S||L||U||U|)

O(|L|2b + |U|ω)
O(ω|A|)

O(|S||L|b)MDR
O(|L|2b
+|U|ω + |L||U|)

MFA

O(|U|(|L|2 + ω
+|U|))

O(ω|U| log(|U|)|A|)
O(|L|2b
+|U|ω + |U|2) O(ω|U||A|)

MFR

O(|L|2b
+|U|ω + |U|2
+|L||U|)

MIA O(ω|U| log(|U|)|A|
+|L|2|U|2
+|A|(|A|+ |U|))

N/A
MIR

Table B.2: Summary of time and space complexities for the influence models.

4.2 Approximate Influence Oracle for MD and MF

In the worst case the memory requirements of the exact algorithm presented
in the last section are quite stringent: for every pair of locations (s, d), in
ϕ(s) the complete list of bridging visitors from s to d is kept. Therefore, here
we present an approximate algorithm for maintaining the complete location
summaries in a more compact form. This compact representation leads to a
significant saving especially in those cases where the window size ω is large
since in that case the number of bridging visitors increases.

We observe that when computing the number of bridging visitors be-
tween s and d we do not need the exact set of bridging visitors between s and
d, but only the cardinality of that set. For the relative number of bridging
visitors, we additionally need only the numbers of visitors |V(s)|. Further-
more, as per Equation B.5, in order to find the accumulated complete loca-
tion summary, we need to combine two complete location summaries; for
instance: the complete location summary ϕ({s1, s2}) is obtained by taking
the following pairwise union of ϕ(s1) and ϕ(s2): if ϕ(s1) and ϕ(s2) respec-
tively contain the pairs (d, B(s1, d)) and (d, B(s1, d)), then ϕ({s1, s2}) contains
(d, B(s1, d)∪ B(s2, d)). But then again, for further computations, we only need
the cardinality of the bridging visitor sets. Hence, if we accept approximate
results, we could replace the exact set B(s, d) with a succinct sketch of the set
that allows to take unions and get an estimate of the cardinality of the set.
Please note that we can approximate the bridging visitor set B(s, d) only for
the direct and friends-based bridging visitor sets. For the Influenced Friends
based bridging visitor set, we need the exact set as we need to know all the
users in B(s, d) to find the set of Influenced friends. Therefore, the approx
algorithm is only for the direct and friends-based influence models.
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In our approx algorithm, we use the HyperLogLog sketch (HLL) [11] to
replace the exact sets B(s, d) and V(s). The HLL sketch is a memory-efficient
data structure of size 2k that can be used to approximate the cardinality of
a set by using an array. The constant k is a parameter which determines
the accuracy of the approximation and is in our experiments in the order
of 6 to 10. Furthermore, the HLL sketch allows unions in the sense that
the HLL sketch of the union of two sets can be computed directly from the
HLL sketches of the individual sets. For our algorithm, we consider the
HLL algorithm as a black box. By using HLL, we not only reduce memory
consumption but also improve computation time, because adding an element
in an HLL sketch can be done in constant time and taking the union of two
HLL sketches takes time O(2k); that is: the time to take the union of two sets
is independent of the size of the sets.

Proposition B.5. Let b = 2k be the size of the HLL sketch. For the MD and MF
models, the time needed to process an activity using the HLL sketch to maintain
B(s, d) is O(ω). The memory required to maintain the complete location summary
{ϕ(l)|l ∈ L} is O(|L|2b). The memory requirement for the visit history {H(u)|u ∈
U} will remains O(|U|ω) as in the exact algorithm mentioned in Proposition B.1.

Proof. Adding an element in a HLL set takes constant time, hence, to process
the activity HLL set of ω locations will be updated in O(ω). The size of
the HLL set is b irrespective of the number of elements in the set and thus,
the memory required to store ϕ(l) is O(|L|b). Hence, for all locations the
memory required is O(|L|2b). �

4.3 Single-Influencer based Influence Oracle

In this subsection, we go one more step further and develop an even more ef-
ficient algorithm for a very special case. In real life, there may be situations in
which even one information carrier can spread information among locations.
Examples may include infections or information items in highly specialized
information networks with confidential information. Moreover, LBSN data
is often sparse, thus, usually, has a very low number of influence carriers.
These situations may also have been created artificially by lumping together
multiple traces for reasons of privacy; in such a situation a single visit trace
may actually correspond to multiple visitors. Thus, in such situations, we
may have to rely on single carriers as a proxy for larger unobserved streams
of people.

In this section, for this special case, we provide two approximate but more
efficient algorithms; an on-line algorithm called On-Sin and an off-line but
far more efficient algorithm called Off-Sin for solving the influence oracle
problem.
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On-Sin approach

The On-line Single influencer based influence oracle (On-Sin) approach is
based upon the simple observation that for τ = 1, we do not need to maintain
the bridging visitor set VB(s, d) for locations s and d, because even one visitor
implies influence and hence the location influence set φ(s) can be directly
maintained by adding d whenever a user u visits d within ω time after visiting
s. Hence, in the special case we do not need to maintain the complete location
summary ϕ(s) and directly maintain φ(s).

Furthermore, in order to find the most influential locations, we just need
the cardinality of the location influence summary. Hence, we can replace φ(s)
by a HyperLogLog(HLL) sketch. The memory required to store {φ(l)|l ∈ L}
is O(|L|b) as for every location we just keep a HLL sketch. Please note that
the time required to process an activity still remains the same at O(ω) as
in the worst case we still need to iterate over ω locations in the user visit
history. Next, we provide an approach in which we could actually store an
approximation of the user visit history to provide tremendous speedups.

Off-Sin approach

The Offline Single influencer based influence oracle (Off-Sin) algorithm is
based on the observation that while processing an activity (u, s, t), if we know
all the future locations u will visit during time t to t+ω, then we can directly
add those locations in the location influence set φ(s). In order to achieve this,
we process all the activities in reverse order of time. As we are going reverse
in time we cannot run this algorithm incrementally for new activities hence
it is an off-line algorithm. A simple case is shown in the following example.

Algorithm B.4: Off-Sin: Location Influence summary by using mod-
ified HLL for τ = 1
1 Input: Activity list A.
2 Output: φ(s) ∀s ∈ L
3 begin
4 Sort A in decreasing order of time.
5 φ(s)← HLL ∀s ∈ L
6 u f ← vHLL ∀u ∈ U

7 foreach (u, s, t) ∈ A do
8 φ(s)← φ(s) ∪ subset(H f (u), t, ω)

9 H f (u).add(s, t)
10 end
11 end
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t = 5 t = 3 t = 2 t=1

Activity: (d, H2, 5)
(i, H1, 3)
(d, M1, 3)

(i, M1, 2)
(d, H1, 2)

(i, H2, 1)
(d, H2, 1)

H f (d) : {(H2, 5)} (H2, 5),
(M1, 3)

{(M1, 3),
(H1, 2)}

{(M1, 3),
(H1, 2),
(H2, 1)}

H f (i) : {} {(H1, 3)} {(H1, 3),
(M1, 2)}

{(H1, 3),
(M1, 2),
(H2, 1)}

φ(H1) : {} {} {M1} {M1}
φ(H2) : {} {} {} {H1, M1}
φ(M1) : {} {H2} {H2, M1} {H2, M1}

Fig. B.3: An example of updating location influence set for locations H1, H2 and M1 for τ = 1
and ω = 2 by processing data in reverse order of time using Off-Sin algorithm.

Example 4.2
Consider the activities of users i and j given in Figure B.1. We process
the activities of these users in reverse order of time. Figure B.3 shows the
update of φ(l) and H f (u) for each activity. For sake of understanding, we
represent the exact sets in the example but for the efficient algorithm the
sets φ(s) and H f (u) are approximated with HLL and vHLL sets respec-
tively. At time t = 3, location H2 is added into influence set φ(M1) as
(H2, 5) was in H f (d) and hence is within time window 2. H f (d) and H f (i)
is updated as well. Note at time t = 2, H f (d) is pruned and (H2, 5) is
removed as it is out of window from current time.

Now, instead of the visit history H(u), we maintain the future visit his-
tory represented by H f (u). At time t, H f (u) = {(s, t′)|t′ ≥ t, t′ − t ≤
ω, (u, s, t′) ∈ A, @t′′ : t ≤ t′′ < t′ ∧ (u, s, t′′) ∈ A}. That is, the future visit
history H f (u) of a user u, maintains every location a user u visits in future
and the earliest time in future the user visits that location. We can see that
adding all locations H f (u) that will be visited by u in φ(s) is much more
efficient than adding s to φ(d) for all locations d in H(u). This is because
now for every activity (u, s, t), instead of updating summaries of all loca-
tions in H(u) we need to just update the summary of s by merging it with
H f (u). Furthermore, we do not need the individual locations anymore in
history, but only their cardinality. Thus, we can approximate the setH f (u).

Now, while processing an activity (u, s, t), we update φ(s) and add all
the locations, d in H f (u) for which H f (u) − t ≤ ω. We do not need to
iterate over the elements of the set H f (u) but just need a subset of H f (u)
to get elements added during current time and a time window ω. Using
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Off-Sin On-Sin

Memory
Time

Oracle
Time

Query
Memory

Time
Oracle

Time
Query

MA O(b(|L|+ |U| log ω))
O(b log(ω)|A|) O(|S|b) O(b|L|+ |U|ω)

O(ω|U||A|) O(|S|b)
MR O(b(|L|+ |U| log ω) + |L||U|) O(b(|L|+ |U| log ω) + |L||U|)

Table B.3: Time and Space complexities for Single influencer-based Influence.

a versioned HyperLogLog sketch (vHLL) [27], we can achieve such a time
window based approximate set with much less memory and time require-
ments. vHLL is an extension of the HLL data structure which approxi-
mates a set and allows to get the cardinality of the set based on a specified
time window. While adding an element, vHLL also maintains the time of
addition of the element. vHLL provides a subset function which takes time
t and window ω as an input and produces an HLL representation of a set.
This set consists of elements that were added in vHLL during time t and
t + ω.

Algorithm B.4 represents the off-Sin batch algorithm. We go through
activities list A in reverse order. We treat the activities with later time
stamps working our way from the end to the start of the log. The functions
subset(H f (u), t, ω) at line 8 and H f (u).add(d, t) at line 9 are functions pro-
vided by vHLL.

Proposition B.6. The time required to process an activity by Off-Sin in Algo-
rithm B.4 is O(b log(ω)). The memory requirements to maintain H f (u) improves
from O(ω) to O(b log(ω)).

Proof. The time required to process an activity will be equal to the time re-
quired to find subset in line 8 and then updating H f (u) at line 9. According
the time complexity of vHLL given by Kumar et al. in [27], the add function
takesO(log ω) time and the subset function takesO(b log(ω)) time. The sub-
set function returns a HLL sketch and φ(s) is also a HLL sketch, the union
of two HLL sketches takes O(b) time. Hence, the total time complexity of
Algorithm B.4 is O(b log(ω) + log(ω) + b) = O(b log(ω)). H f (u) is a vHLL
set and as given by Kumar et al. in [27] the memory required by a vHLL set
is O(b log(ω)). �

5 Location Influence Maximization

In this section, we show that the influence oracle can be used for finding
the most influential locations. We utilize the influence oracle and apply the
standard greedy algorithm to compute top-k as obtaining an exact solution is
intractable as the next proposition states.
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Proposition B.7. The following problem is NP-hard for all influence models: given
an LBSN and bounds k and β, does there exist a set of locations S of size k such that
|φ(S)| ≥ β.

Proof. NP-hardness follows from a reduction from set cover. Consider an
instance S = {S1, . . . , Sm} with all Si ⊆ {1, . . . , n} and bound k of the set
cover problem: does there exist a subset S ′ of S of size at most k such
that

⋃ S ′ = {1, . . . , n}. We reduce this instance to a LBSN as follows: L =
{l1, . . . , ln} ∪ {s1, . . . , sm}, U = {u1, . . . , um}, F = ∅, A = {(ui, si, 0) | i =
1 . . . m} ∪ {(ui, lj, j) | i = 1 . . . m, j ∈ Si}. That is, every element j of the do-
main {1, . . . , n} is associated to a location lj, and for every set Si we introduce
a location si visited by user ui at time 0. Furthermore, user ui visits all loca-
tions lj such that j ∈ Si at time stamp j. If we use the absolute model with
τ = 1 and ω ≥ n + 1, for i = 1 . . . m, φ({si}) = {lj | j ∈ Si}. As such there
exists a set cover of size k if and only if there exists a set of locations S of size
k such that |φ(S)| = n. �

Recall that the influence of a set of locations S is computed by accumu-
lating the effect of all locations in S. It is hence possible that two locations
s and s′ separately do not influence a target location d because individually
they have too few bridging visitors to d, but together they reach the thresh-
old. This situation occurs for instance in Figure B.1, for the locations H2 and
M1. These locations individually do not reach the threshold to influence H1
for τA = 2 and ω = 1. However, together they do. One inconvenient con-
sequence of this observation is that the influence function that we want to
optimize is not sub-modular [28]. Indeed, in the example above, adding H2
to the set {M1} gives a higher additional benefit (1 more influenced location)
than adding H2 to {}. Therefore, we do not have the usual guarantee on the
quality of the greedy algorithm for selecting the top-k.

The main reason that we do not have the guarantee is that the benefit
is not gradual; before the threshold is reached it is 0, after the threshold is
reached it is 1. This means that a location that has τ − 1 bridging visitors to
1000 other locations each, gives the same benefit as a location that does not
have any bridging visitors. Clearly, nevertheless, the first location is more
likely to lead to a good solution if later on additional locations are selected.
Therefore, we would like to incorporate potential future benefits into our ob-
jective function. Thus, in order to compute the influence of a location, we
consider locations that are influenced as well as those locations that are not
yet influenced but have potential to be so in future. To characterize the poten-
tial of future benefit in combination with the number of influenced locations,
we use the following formula:

LI(S) = (1− α)× |φ(S)|+ (α)× ∑
d∈L−S

(min{|B(S, d)|, τ}) (B.7)
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In this formula, α = [0, 1] represents a trade-off between the number of influ-
enced locations and a reward for potentially influenced locations. For relative
models, we replace the |B(S, d)| with |B(S, d)|/|V(d)|.

Next, we apply a greedy method on the basis of location influence to find
top-k locations. We start with an empty set S of locations and iteratively add
locations to it until we reach the required number of top elements: k. We start
with an empty set S of locations and iteratively add locations to it until we
reach the required number of top elements: k. In each step, for each location
s ∈ L, we evaluate the effect of adding s to S, and keep the one that gives the
highest benefit LI(S). Then, we update S← S ∪ {l}.

Example 5.1
Consider the case in Figure B.2 for ω = 1, ϕ(H2) = {(H1, {d}), (M1, {i})},
ϕ(M1) = {(H1, {i})} and ϕ(H1) = {(M1, {d})}. We aim to find top-2
locations in this example with α = 0.1 and τ = 2. During the first iteration,
LI(H2) = 0.9× 0 + 0.1× (1 + 1) = 0.2, because H2 does not completely
influence any other location, however H1 and M1 are potentially influenced
locations for the bridging visitors d and i, respectively. Similarly, LI(M1) =
0.1 and LI(H1) = 0.1. Thus, we choose H2 as first seed as it has maximum
value. In the next iteration, we first combine the seed H2 with M1 and
compute the combined influence. Here, LI({H2, M1}) = 0.9× 1 + 0.1×
(2) = 1.1. Similarly, LI({H2, H1}) = 1.1 . Since M1 and H1 provide equal
benefit of 0.9 when combined with H2, we can randomly choose either M1
or H1 as second seed.

6 LBSN Data Analysis

The influence models of Section 3.2 have several parameters to set: τ, ω,
and θ. Furthermore, while defining the friendship-based bridging visitors,
and influence-friends based bridging visitors, the assumption was made that
friends tend to follow friends. Before going to the experiments, in this sec-
tion, we show how to set the thresholds with reasonable values based on an
analysis of the LBSN datasets given in Table B.4 and verify and confirm the
friendship assumption.

Datasets. We used 3 real-world datasets : FourSquare [29], BrightKite,
and Gowalla [30]. Each dataset consists of two parts: the friendship graph
and an ordered list of check-ins. A check-in record contains the user-id,
check-in time, GPS coordinates of location, and a location-id. The statistics of
the datasets are given in Table B.4.

Data Prepossessing. The real-life datasets required preprocessing be-
cause many locations are associated with multiple location identifiers with
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Fig. B.4: [10]An example of ambiguous location ids: GPS coordinates of 13 location-ids in
FourSquare corresponds to a single, unique location on GoogleMaps

Users Locations Check-ins POIs

FourSquare 16K 803K 1.928M 582K
BrightKite 50K 771K 4.686M 631K
Gowalla 99.5K 1.257M 6.271M 1.162M

Table B.4: Statistics of datasets: number of users, location, visits and clustered locations/POIs

slightly different GPS coordinates. Consider, for instance, Figure B.4. In this
figure, 13 GPS coordinates that appear in the FourSquare dataset are shown
which correspond to different locations Ids in the dataset, but which clearly
belong to one unique location. In order to resolve this issue, we clustered
GPS points to get POIs. We used the density-based spatial clustering algo-
rithm [31] with parameters eps=10 meters and minpts=1 to group the GPS
points. New location Ids were assigned to each cluster for all 3 datasets. The
statistics of the new Ids are reported in column POIs of Table B.4.

6.1 Setting parameters for the influence models

In order to determine the value of influence window threshold ω, we mea-
sured the time difference between consecutive visits of users to distinct lo-
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Fig. B.5: CDF of time difference between consecutive visits of users to distinct locations
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Fig. B.6: Cumulative distribution function (CDF) of thresholds for corresponding influence mod-
els. All locations pairs having at least one bridging visitors are considered and CDF values of
the threshold based on the bridging visitors of these locations and visitors of the destination
locations are plotted.

cations. The cumulative distribution functions (CDF) for three LBSNs are
given in Figure B.5. It can be seen that for all LBSNs in our study, 80% of
the consecutive activities are performed within 8 hours. After that, there is
only a moderate increase in the number of activities with respect to the time
interval. Thus, in order to capture only the most common activities, we keep
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ω = 8. However, it can, of course, be changed if the data distribution is
different, or there are different user or application requirements.

Next, we find suitable values for the thresholds of the influence models. In
order to do that, we considered all the influence models, i.e., MDA, MDR, MFA,
MFR, MIA, and MIR, for each pair of locations with at least one bridging vis-
itor. The cumulative distribution functions for each of these numbers are
depicted in Figure B.6. We can utilize the CDF values for controlling the
number of influences in the dataset, and thus also for finding the suitable
values for thresholds in our models. The values of the thresholds are an
application-dependent choice and can be considered accordingly. For ex-
ample, if an application requires finding many influential relationships and
indirectly many influential and influenced locations, then a lower threshold
should be considered and vice versa. In this paper, we consider the top 20%
influential relationships among locations for all the models. To do that for
each influence model, we consider the CDF value of 0.8 (100%-20%=80%)
as its threshold. Therefore, the values of τDA, τDR, τIA, τIR, τFA and τFR are
2, 0.6, 4, 0.6, 120 and 0.6, as shown in Figures B.6a, B.6b, B.6c and B.6d, B.6e
and B.6f, respectively.

6.2 Mobility analysis of friends

In real life, usually activities of friends are more similar than activities of non-
friends. In LBSNs, this implies that a visit of a user to a location increases
the chances of visits of her friends to the same location. We considered this
assumption when constructing our friendship-based bridging visitors and
influenced-friends based bridging visitors in Section 3.1 and Section 3.1, re-
spectively. We now show the correctness of this assumption by computing the
correlations between activities of users, their friends and non-friends: Let Lu
and Lv be the locations visited by users u and v, respectively. The correlation
between activities of u and v is measured by the Jaccard Index [32] between
Lu and Lv given by |Lu ∩ Lv|/|Lu ∪ Lv|. The average correlation of activities
of users and those of their friends is denoted friendship correlation (p f

corr), and
the average correlation between activities of users and their non-friends is
denoted non-friendship Correlation (pn f

corr). In order to avoid an unreasonable
bias due to the fact that friends tend to live in the same city, we restricted our
computation of the average non-friendship correlation to users in the same
city. We picked four regions of the United States, i.e., Brooklyn, Manhattan,
Pittsburgh, and Washington and considered the activities of users in these
regions to study the correlations. The statistics of p f

corr and pn f
corr of all the

users are given in Figure B.7. The figure presents boxplots without outliers.
It can be seen that the median of p f

corr, even though still small, is up to 5 times
larger than of pn f

corr. The same pattern is observed for all the datasets. This
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Fig. B.7: Jaccard index based correlations of activities of friends and non-friends users.

validates our assumption that the activities of friends are more similar than
those of non-friends.

Although the activities of friends are more correlated than those of non-
friends, even between friends the correlation between the sets of locations
they visited is low. Thus, in order to tackle this, we considered only the
potential influenced friends rather than all friends. To do that we computed
the influence probabilities of users among each other using the method given
in Section 3.1. We plotted the CDF of these influence probabilities and found
a suitable value for the influence threshold, as shown in Figure B.8. The
value of the influence threshold depends on the application. For example, a
higher value would be given to θ if a stronger relationship among influential
and influenced users is expected. In this paper, we assume that users having
influential probabilities in the top 20% will follow the influential users within
ω. Thus, by default, we consider θ = 0.2. However, the insights for location
influence with respect to different values of θ are also shown in Section 7.2.
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Fig. B.8: CDF of Influence Probabilities of all the pairs of influential and influenced users.
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(a) MIA: k=10, spread=78
locations

(b) IRS: k=10,spread= 53
locations

(c) IRS − window: k=10,
spread=62 locations

(d) MIA: k=15, spread=92
locations

(e) IRS: k=15, spread=55
locations

(f) IRS − window: k=15,
spread=63 locations

(g) MIA: k=20,
spread=102 locations

(h) IRS: k=20, spread=63
locations

(i) IRS − window: k=20,
spread=66 locations

Fig. B.9: Influenced locations w.r.t. to different number of top-k influential locations fetched by
MIA, IRS, and IRS− window in NYC for BrightKite.

7 Evaluation

In this section, we evaluate the notions defined in Section 3 and the algo-
rithms introduced in Section 4 and Section 5, respectively.

Experiment settings. We conducted our experiments on a Linux machine
with 4 AMD Opteron 6376 processors with 2.3GH and 512 GB RAM. The
algorithms 1 are implemented in Scala. The description and preprocessing of
the datasets used for the experiments are given in Section 6.

1Code of the algorithms are given at: https://github.com/rohit13k/LBSNAnalysis
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Base-line competitors: To evaluate the effectiveness, we consider the
most relevant state-of-the-art influence maximization method, called Influence
Reachability Set (IRS) [27]. For each node u, IRS fetches all the nodes which are
reachable from u based on the temporal path [33] within a given time win-
dow. Once the influence reachability sets of all the nodes are obtained, the
top-k most influential nodes are found using the standard greedy algorithm
such that the combined influence reachability set size of these nodes is the
maximum. We consider this algorithm for comparison with our models due
to following common features: 1) the model of capturing interactions among
users based on their activities, 2) consideration of temporal sliding window
for influence estimation, 3) using a standard greedy algorithm for finding
top-k influential nodes. The IRS method is used for finding the influence of
users among each other based on their activities. However, in our approach,
we consider bridging visitors for constructing relationships among locations.
In order to evaluate IRS on LBSN data, we propose the two methods below
for constructing location interaction graphs. We then run the IRS algorithm
for finding top-k influential locations.

• Location interaction graph: In this approach, we use the check-in data
to generate a graph of interactions between locations. An interaction
graph is a graph where the edges between the vertices are timestamped
and represents an interaction between the node at that time-stamp. In
LBSN data, we consider two locations l1, l2 are interacting at time stamp
t when a user does consecutive check-ins (l1, t′) and (l2, t). The method
of finding top-k influential locations using IRS on location interaction
graph is denoted by IRS.

• Time window based location interaction graph: Usually, influence re-
mains active within a particular time. Hence, we consider this obser-
vation for constructing interactions of locations from the LBSN data.
We consider an interaction between two locations l1, l2 at time stamp
t if a user u performs consecutive check-ins (l1, t′) and (l2, t) such that
t− t′ ≤ ω. The method of finding top-k influential locations using IRS
on time window based location graph is denoted by IRS− window.

Location correlation graph with PageRank: In this approach, we con-
struct a location correlation graph [4] for a given LBSN. An edge between
two locations in a location correlation graph exists if the number of common
visitors between them is greater than a threshold. Since, we take the value of
τ = 2 for the absolute influence model so, we take the same value, i.e., 2 for
the threshold. We then use the Jaccard index to compute the edge weights
based on the common visitors and the visitors of the locations. Once the lo-
cation correlation graph is created, we run the PageRank algorithm to find
the top-k locations having the highest PageRank values. This approach is de-
noted by PR− LCG. The idea behind using the location correlation graph is
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to evaluate the significance of our proposed models for capturing the location
influence.

7.1 Qualitative significance of the Location Influence

In order to demonstrate our notion of location influence, we compared the
results of our method using the absolute influence friends based bridging
visitor model (MIA) with IRS and IRS− window. To do that, we considered
the activities performed in New York and fetched top-k influential locations
for k=10, 15, 20 using MIA, IRS and IRS − window. We then plotted the
coordinates of the influenced locations of the top-k influential locations us-
ing Google Map, as shown in Figure B.9. In the figure, it can be observed
that MIA leads to a set of locations with a larger spread as compared to the
other two approaches, both geographically and in terms of the number of
influenced locations. It can further be seen that the difference of influenced
locations increases with an increasing value of k. This shows the significance
of our proposed method. All the datasets show similar trends. Thus, due
to space limits, the results are only shown for the BrightKite because of its
median data size and check-in density among all three datasets.

7.2 Comparison of Influence Models

Influence spread prediction: Next, we evaluated the influence spread pre-
diction ability of all the models and compared the results with the baseline
approaches. To do that, we divided the activities based on time such that each
part is composed of the activities of one month. We computed the seeds on
one part of the dataset called training set and found their spread on the next
part in the sequence called test set. MA was used to compute the influence on
the test set. To compare the results, we computed and compared the number
of influenced nodes for the top-k influential locations where k=1, 3, 5, 10, 15,
and 20. We iteratively repeated the experiment for all the parts of activities
and reported the total spread of all of these iterations for each value of k. The
results are shown in Table B.5. Here, it can be observed that our proposed
models, outperformed both IRS and IRS − window for all the values of k,
for all the three datasets. Further, our proposed models also outperformed
PR − LCG for BrightKite. We only computed PR − LCG for BrightKite
due to intensive computation time, i.e., more than 48 hours, required for con-
structing the location correlation graph. For all the methods, the difference in
spread increases with an increasing value of k. Overall, the top-k influential
locations fetched by the absolute influence models influenced more locations
as compared to the relative influence models. More specifically, the spread
of MIA is up to 45% more than MDA, 700% more than MFA, and 400% more
than IRS−window. The reason is that unlike the MDA and MFA, MIA incor-
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Dataset K
Number of Influenced Nodes

Absolute Influence Model Relative Influence Model
IRS IRS-window PR-LCG

MDA MFA MIA MDR MFR MIR

FourSquare

1 89 37 98 66 66 66 79 71

N/A

3 190 116 195 159 160 159 82 105
5 230 117 255 216 196 216 121 116
10 322 159 361 273 260 273 124 167
15 380 200 421 307 288 307 130 174
20 432 255 495 330 326 330 132 191

BrightKite

1 662 657 671 648 655 648 512 537 657
3 943 882 959 896 882 896 613 743 924
5 1,153 9,67 1,112 1,041 994 1,041 666 835 1,100
10 1,458 1,140 1,465 1,269 1,259 1,269 749 1,027 1,437
15 1,717 1,257 1,686 1,449 1,444 1,449 821 1,171 1,693
20 1,921 1,381 1,951 1,589 1,570 1,589 867 1,275 1,928

Gowalla

1 676 111 982 446 405 446 453 613

N/A

3 1804 153 1787 1129 1212 1129 821 1072
5 2834 238 3087 1772 1716 1772 997 1134
10 4875 860 5197 3302 3218 3302 1116 1445
15 6236 1395 6767 4136 3645 4136 1244 1854
20 7460 1877 8165 4668 4119 4668 1452 2015

Table B.5: Influence spread of top-k influential locations fetched by the proposed influence
models, IRS, IRS− window and PR− LCG. The check-ins are divided on monthly basis. The
influential keys are fetched on one part and spread is computed on the next part in the sequence.
The process is iteratively repeated for all the months and the total influence spread for each value
of k, for each dataset is depicted.

porate the friends of bridging visitors that have potential to become bridging
visitors in future. The relative models filter out the excessive influence of
popular locations thus the influence spread of the models is almost same.

Computational resources. We compared the computation time and mem-
ory requirements for the influence models. The results are shown in the
Table B.6. Here, it can be observed that the computation time for MIA is
more than MDA. The reason is that for the influenced-friends based bridg-
ing visitors, we further need to compute the influence probabilities of users
among each other which requires more computation time. Since we incor-
porate the influence-friends of the bridging visitors as well for constructing
influence oracle thus more memory is consumed. The computation time and
memory consumption of MFA is more than both other models. The reason
is that for friends-based bridging visitors, we incorporate all the friends of
bridging visitors which largely increases the bridging visitor set. Thus, it

Dataset
Time Memory

MDA MFA MIA MDA MFA MIA
FourSquare 596 2,220 1,140 29,562 77,334 29,654
BrightKite 808 4,363 1,259 30,199 228,391 30,602
Gowalla 2,957 Out of Memory 6,973 186,363 Out of Memory 189,195

Table B.6: Computation time and memory for all influence models.
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requires more time to process and more memory to maintain the set for con-
structing influence oracle. The base line competitors, IRS, IRS − time and
PR− LCG require more computational resources in comparison with all the
influence models. The reason is that an intensive computation is required for
constructing the location interaction graph, the time window based location
interaction graph, and the location correlation graph for IRS, IRS− time, and
PR− LCG, respectively.

Conclusion: Our proposed models outperformed baseline competitors in
terms of influence spread as well as required computational resources. Over-
all, the absolute models performed better than the relative models. In case
of the relative models, MDR should be chosen as it needs minimum com-
putational resources but yields the same influence as other models. For the
absolute models, although MIA requires more computational resources, but
yields the maximum influence. On the other hand, MDA requires fewer re-
sources but the influence spread is also lower. MFA is the worst in terms of
computational resources and influence spread. Thus, the choice of the model
among MIA and MDA can be made by considering the trade-off between com-
putational resources and influence spread, i.e., if a higher influence spread
is more desirable than computational resources then MIA should be chosen,
and vice versa.

7.3 Approximations for MDA and MFA

Next, we analyzed the approximate algorithms for constructing influence or-
acle for MDA and MFA. We analyzed the impact of approximation on ac-
curacy, computation time and memory. The results are similar for all the
datasets and hence we only present results for the smallest and the biggest
datasets, i.e., FourSquare and Gowalla, respectively.

Approximation accuracy. For every location with a non-empty influence
set, we used the HLL-based approximate version of the Oracle to predict
the size of the influence set. Then the relative error as compared to the real
size was computed for every location. In Table B.7 the mean and standard
deviation of this relative approximation error over all locations with a non-
empty influence are given. The experiments are performed for MDA, MFA,

FourSquare Gowalla
mean ±σ mean ±σ

b=64 b=128 b=256 b=64 b=128 b=256

R
el

.e
rr

or MDA 0.03 ± 0.15 0.01 ± 0.01 0.01 ± 0.06 0.03 ± 0.17 0.01 ± 0.12 0.01 ± 0.01
MFA 0.26 ± 0.45 0.19 ± 0.34 0.15 ± 0.35 Out of Memory
MDR 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.2 0.17 ± 0.41 0.17 ± 0.41 0.17 ± 0.4
MFR 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.21 Out of Memory

Table B.7: Accuracy (relative error) for approximate algorithms w.r.t bucket size.
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FourSquare Gowalla
b=64 b=128 b=256 b=64 b=128 b=256

Time
MDA 378 428 544 2,031 2,605 2,499
MFA 928 955 993 9,479 9,685 9,912

Memory
MDA 14,275 18,636 27,372 89,418 116,847 171,908
MFA 14,569 18,943 27,726 90,793 118,173 172,985

Table B.8: Time (sec) and memory (MB) required by the approximate algorithms w.r.t, bucket
size.

MDR, and MFR. We ran the experiments for different numbers of buckets (b)
for the HLL sketch, being, 64, 128 and 256. It can be seen in the table that the
errors are unbiased (0 on average) and the standard deviation decreases as
the number of buckets increases. The error is a bit higher for MR as compared
to MA because in the relative model the influence is computed by taking the
ratio of two approximated set cardinalities. Values for b beyond 256 yielded
only modest further improvements and hence we used b = 256 in all further
experiments. The results for MFA and MFR for the Gowalla could not be
computed due to the huge memory requirement.

Time and space consumption. Next, we analyzed the computation time
and memory requirements for the approximate approach by computing the
influence oracles for MD and MF. The results are shown in Table B.8. It can
be observed that time and memory increase with increasing number of buck-
ets b. Furthermore, it can also be observed that the approximate approach
outperformed the exact approaches in computation time and memory given
in Table B.6. The improvement for MF in the computation time is two folds
while using only 18% of memory. Due to the sparsity of data, however, the
gain for MD is less, i.e., 63% of the time and 48% of the memory is required by
the approximate approach as compared to exact one. This is because the sizes
of the sets of bridging visitors are very modest. The results for Gowalla for
MF could not be computed by the exact algorithm due to insufficient mem-
ory. However, for all the bucket sizes the approximate algorithm computes it
by taking less than half of the available memory.

7.4 Effects of parameters: ω and τ

Computation time. We studied the runtime of the algorithms on all the
datasets for different values of ω := 8, 20 and 50. Considering the signifi-
cant improvement of the approximate algorithms in computational resources
without compromising on accuracy, for all further experiments, we use ap-
proximate variants for MDA and MFA. However, the exact algorithm for MIA
is used as we do not have its approximate variant. The average runtime for
processing all the activities (Tp) under the models varies only depending on
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Fig. B.10: Total Time (Tp) in seconds w.r.t. ω to process all activities for τ = 2 under MDA, MFA
and MIA models.

the influence models, i.e, whether or not we consider friends; it does not
depend on τ. Also, the oracle query time (Tq) is independent of τ and the
influence model. The run times for processing all the activities are shown
in Figure B.10 for the three datasets FourSquare, BrightKite and Gowalla.
The running time increases with increasing influence window size ω as more
locations from the visit history remain active. Running time is higher in the
MF which is not surprising either as the number of users to include in the
bridging visitors sets increases due to the addition of friends. For the MI , we
needed to find influenced users of bridging visitors thus computation time is
higher as compared to MD. The time taken to process Gowalla dataset is the
highest as it has the largest number of locations.

Memory consumption. We also studied the memory required by the ap-
proximation algorithm on all the datasets for different values of ω := 8, 20
and 50. Unlike for the processing time, the average memory required to pro-
cess all the activities under MD and MF does not vary based on whether we
consider friends or not. This is because the HLL sketch storing the bridging
visitor set size remains constant in size even if a larger number of users is
added to it. The memory requirement increases slightly with ω as more lo-
cations are getting influenced due to a larger influence window. The results
are shown in Figure B.11. The total memory requirements increased linearly
with time as new locations came in over time for which a complete influence
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Fig. B.11: Total Memory in GB w.r.t. ω to process all activities for τ = 2 under MDA and MFA.
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Fig. B.12: User visit history set size growth w.r.t to number of activities processed with and
without cleanup process.

summary was needed to be maintained. We further pruned the outdated lo-
cations in the visit histories thus, over time the size of user history remained
constant as shown in Figure B.12.

7.5 Single-Influencer based Location Influence

Next, we present the resource requirements of the algorithms for constructing
single-influencer based influence oracles. The memory consumption by the
On-Sin and the Off-Sin algorithms is shown in Figure B.13. Since the mem-
ory requirement for the algorithms is log(ω), thus a very modest change in
the memory with respect to different values of ω was observed. The Off-Sin
requires less memory as compared to the On-Sin. The reason is that for the
Off-Sin, we consider the activities in reverse order of time, so we approximate
the user history using the probabilistic data structure. However, for On-Sin,
we maintain the exact user history which requires more memory. The differ-
ence of time and memory requirements among On-Sin and Off-Sin is modest
because of the data sparsity and small window size. However, these algo-
rithms for the special case outperformed the approximate algorithm for all
influence models (shown in Figure B.11) up to 22x in memory consumption.
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Fig. B.13: Comparison of memory consumption for Off-Sin and On-Sin
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Fig. B.14: Comparison of computation time for Off-Sin and On-Sin

The reason is for the special case we do not maintain the bridging visitor set
because the influence is spread by a single carrier, and thus the memory is
saved.

The computation time by the On-Sin and Off-Sin are shown in Figure B.14.
Here, it can be observed that for the Off-Sin algorithm, like for memory con-
sumption, there was a modest improvement in computation time as com-
pared to the On-Sin. Similarly, both of these algorithms required up to 20x
less computation time as compared to the approximate algorithm for all in-
fluence models (shown in Figure B.10).

7.6 Influence Maximization

Influence of α. Our next goal is to study how the influence maximization
algorithm performs for different values of α. In order to avoid data sparsity
issues, we filtered out those locations which have only one visitor from all the
datasets. We tested the spread of top 200 locations obtained by considering
values of α from 0.01 to 0.99. We observed that the number of bridging
visitors per location is highly skewed as can be learned from Figure B.6a. Due
to this, the potential influenced locations having few bridging visitors are less
likely to affect the influenced set of the locations. The effect of varying alpha
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Fig. B.15: Plot of ratio of total influence spread w.r.t. alpha (200 seeds).
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τ
Time (sec)

FourSquare BrightKite Gowalla
k = 10 k = 20 k = 50 k = 10 k = 20 k = 50 k = 10 k = 20 k = 50

τDA = 2 37 40 120 24 50 218 132 213 723
τDR = 0.6 108 101 180 84 132 545 521 525 778
τIA = 5 10 18 60 15 32 208 70 173 706
τIR = 0.6 50 45 99 37 73 177 292 346 563
τFA = 120 19 61 525 35 553 7776 181 1168 19302
τFR = 0.6 68 96 591 201 151 591 450 557 1386

Table B.9: Time taken to find top k locations.

on the influence spread is shown in Figure B.15. As expected for these sparse
datasets, our algorithms performed best with a lower value of α. We use
α = 0.03 for our experiments.

Computation time. We study the computation time for finding top-k
influential locations under all influence models. The runtime is close in the
both MA and MR. The time increases with k. Nevertheless, the increase is
modest; for instance, finding the top-50 locations takes less than 2 minutes
for FourSquare. We report the results in Table B.9.

8 Conclusion and Future Work

In this paper, we introduced a location influence maximization approach that
can be used to optimize outdoor marketing strategies such as finding optimal
locations for advertising products to maximize the geographical spread. In
order to do that, we captured the interactions of locations on the basis of their
visitors to compute the influence of locations among each other. We provided
two models namely the absolute influence model and the relative influence
model. We further provide three variants of these models that incorporate
the social graph and consider the friends of users that have potential to re-
peat their activities in future, and improve the location influence up to 45%.
We proposed a data structure: influence oracle to efficiently compute the
influence of locations on the basis of these models for finding top-k influ-
ential locations. In order to maintain this data structure, we first provided a
set-based exact algorithm. Then, we optimized the time and memory require-
ments of the algorithms by utilizing a probabilistic data structure. We further
introduced a method in which single carriers can be used to spread the in-
fluence. For this case, we provide two algorithms, an off-line and an on-line.
With the help of these algorithms, we further improved the computation time
and memory requirement by 20x and 22x, respectively. Finally, we provided
a greedy algorithm to compute the top-k influential locations. In order to
evaluate the methods, we utilized three real datasets. We first analyzed the
LBSN datasets: FourSquare, BrightKite and Gowalla to verify some claims
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and to provide optimal values for thresholds of the influence models. Then,
we evaluated our approaches for the computation of the Oracle and finding
top-k locations in terms of accuracy, computation time, memory requirement
and scalability. We further show the effectiveness of our proposed models by
comparing the influence spread of top-k locations fetched by our approach
with that of two variants of a state-of-the-art approach; IRS and IRS-window.

In the future, we plan to enrich location influence models by incorporating
the activities users perform with their friends in groups. Moreover, we aim
to provide distributed techniques for computing the Oracle data structures
and influences for the models.
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Abstract

Due to the popularity of social networks with geo-tagged activities, so-called location-
based social networks (LBSN), a number of methods have been proposed for influence
maximization for applications such as word-of-mouth marketing (WOMM), and out-
of-home marketing (OOH). It is thus important to analyze and compare these differ-
ent approaches. In this demonstration, we present a unified system IMaxer that both
provides a complete pipeline of state-of-the-art and novel models and algorithms for
influence maximization (IM) as well as allows to evaluate and compare IM tech-
niques for a particular scenario. IMaxer allows to select and transform the required
data from raw LBSN datasets. It further provides a unified model that utilizes inter-
actions of nodes in an LBSN, i.e., users and locations, for capturing diverse types of
information propagations. On the basis of these interactions, influential nodes can
be found and their potential influence can be simulated and visualized using Google
Maps and graph visualization APIs. Thus, IMaxer allows users to compare and pick
the most suitable IM method in terms of effectiveness and cost.
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1. Introduction
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Fig. C.1: Toy example: the tables “Check-ins” and “Friendships” shows the activities of users,
and their social friends in an LBSN, respectively. The graph in the center, extracted from the
LBSN shows the influence among locations based on visitors that are spread from one location
to another [1].

1 Introduction

In this demonstration, we present IMaxer, a unified system that supports
a number of different models and algorithms for analyzing and comparing
information propagation and influence maximization techniques in LBSNs.
In an LBSN, the nodes, i.e., users and locations, form two types of edges: 1)
friendships that represent relationships; 2) activities that represent check-ins
of users at locations. The propagation of information in LBSNs is studied
based on friendships and activities. Let A and B be two nodes representing
users who are friends. We say that A influences B, or A spreads information
to B, if B follows an activity of A. If there are many such following actions by
B, A is considered to have a strong influence on B. The process of finding the
most influential nodes is called Influence Maximization. Applications like viral
marketing utilize these influential nodes to maximize the information spread
for advertising purposes.

A number of techniques has been proposed in this area. For instance,
in [2, 3], authors propose methods for maximizing the number of influenced
users. In [1, 4, 5] methods for maximizing the number of influenced loca-
tions for geographical spread of a message and location promotion are pro-
posed. Moreover, several information propagation models have also been
proposed, such as the Linear Threshold, the Information cascade models [6], the
Time Constraint [2] and the Absolute and Relative Influence based information cas-
cade models [1]. On the other hand, industrial applications [7, 8], focus on
management of social media accounts to maximize the spread such as deter-
mining the best moment to upload content to maximize viewers. However,
to the best of our knowledge, there does not exist any system which provides
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a complete pipeline of algorithms and models required for all steps of influ-
ence maximization and which supports a range of influence maximization
techniques for diverse contexts and allows comparison among them. Such a
system is useful for selecting an appropriate information propagation mech-
anism in terms of effectiveness and cost. In this demo, we present a system
to handle all such problems in influence maximization.

Example: Consider a marketer interested in spreading her promotional
message to the most regions in New York City (NYC). The information can
be propagated using locations or users to achieve this goal as given in the
following two use cases. Consider the example LBSN in Figure C.1 where for
each user, her friends and check-ins in LBSN are given. The graph represents
the influence of locations among each other where nodes, labeled with capital
letters represent locations and lowercase letters on edges represent visitors as
carriers of influence.

Use Case 1: Find locations where she should display the advertisements
such that people who see them visit the maximum number of other locations
in NYC and spread the message indirectly by talking to their friends and
relatives.

Use Case 2: Find users who visit together the most regions of NYC. Give
them promotional gifts such as a t-shirt so that they indirectly promote the
message to the people of regions they visit.

For aforementioned use cases, a system is required that can be used to se-
lect activities in NYC, find influential locations and users for both use cases
and simulate their potential influence. The system should allow to analyze
and compare different methods and find a suitable way to propagate infor-
mation. The architecture of IMaxer achieves this by providing the following
four components.

• Data selection: selects a desired slice from a dataset in order to target a
particular audience.

• Data preprocessing and transformation: pre-processes the data to improve
the data quality for better accuracy.

• Influential nodes mining: captures information propagation mechanisms
of diverse contexts for applications such as WOMM or OOH, and find
the corresponding influential nodes.

• Influence spread simulation: simulates, visualizes and analyzes the in-
fluence of influential nodes. This component can be used to compare
information propagation methods and select the most suitable one for
a particular use-case.

In short, IMaxer makes following contributions:
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• a novel system that provides a complete pipeline of models and algo-
rithms for evaluating and comparing influence maximization mecha-
nisms

• a unified model for capturing diverse information propagation and in-
fluence maximization algorithms

• an extensible plugin architecture that allows to integrate new algo-
rithms.

2 IMaxer System Overview

In this section, we map the modules of IMaxer to traditional data mining
steps and explain their working:

Data Selection: Usually, marketing approaches target the audience with
specific attributes. The data selection module allows users to upload the
LBSN dataset and select the desired slice of data based on several given cri-
teria, such as constraints on attributes of users and locations, time, region,
combination of friendships and activities. The dataset is filtered on the basis
of the given constraints and persisted on disk for subsequent processing.

Example: For both the use cases, in this module, the dataset is filtered to
fetch the activities in the region of interest, i.e., NYC.

Data Preprocessing and Transformation: Due to privacy concerns, inaccu-
racy of GPS devices, and different business models of service providers, there
exist anomalies in LBSN datasets, e.g., multiple location Ids are assigned to
the same GPS coordinate. Further, in LBSNs different applications may re-
quire different location granularities e.g., from a location to a region. Thus,
in order to solve data anomaly issues as well as to provide different granu-
larities of locations, we cluster the locations such that each cluster represents
a POI. IMaxer provides two algorithms for clustering locations: grid-based
clustering, and density-based spatial clustering.

Example: In this module, for both use cases, we transform the location Ids
in NYC such that each location represents a POI.

Influential Nodes Mining using Unified IM Model: IMaxer provides a uni-
fied model composed of three layers as shown in Figure C.2 to capture diverse
information propagation scenarios. First, the node dimension is responsible
for identifying the influential and influenced nodes called source node and
receiver node, respectively, which can either be users or locations. Next, the
characteristics dimension filters the source and receiver nodes on the required
attributes such as age, and gender of users. Moreover, it defines the cardi-
nality for source and receiver nodes, i.e., the number of nodes that should
be selected as source to spread the information and as receiver that should
be influenced, respectively. Finally, the interaction network layer on the basis
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Fig. C.2: The Unified Influence Maximization Model

of possible interactions among nodes of LBSNs provides four types of inter-
action networks, i.e., user-user, user-location, location-user, location-location
interaction networks. Based on the selection of types of source and receiver
nodes the corresponding type of influential activity is fetched as shown in
Table C.1 and the corresponding interactions network is constructed. Influ-
ence scores of source nodes using IM algorithms are computed on the basis
of these interactions and finally, the nodes capable of influencing maximum
nodes are selected as top-k influential nodes.

Example: In use case 1, we are interested in maximizing geographical
spread using locations, the influential activity is spreading of visitors from
a location to another location as shown in Figure C.1. Thus location is con-
sidered as influential as well as influenced node, and interaction network
is location-location interaction network. On the basis of it top-2 influential
locations in the figure are T1 and H2 as they spread their visitors to the maxi-
mum number of other locations. For the use case 2, maximizing geographical
spread using users is intended. Thus, visit of a location by a user is consid-
ered an influential activity. In this case, user and location are considered
influential and influenced nodes, respectively, and the interaction network is
user-location interaction network. Here, the top-2 influential users are d and
a as they together visit most of the locations.

Influence Spread Simulation: In this module, IMaxer takes the influential
nodes as input and outputs the potentially influenced nodes. The influence of
top-k nodes are simulated and propagated through the interaction network
and all the nodes that are influenced are fetched as potentially influenced
nodes. In order to do that IMaxer provides a number of spread simulation
algorithms (discussed in Section 3). The potentially influenced nodes are
further displayed using Google Maps and Gephi to visualize the spread of
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the influential nodes, for location and user nodes respectively. Since this
module allows users to provide influential seeds directly as an input to find
their influenced nodes, it can be used to compare and analyze the results
of multiple influence maximization methods and choose the best one for a
particular scenario.

Example: In use case 1, in the Figure C.1, T1 and H2 are influencing all
other locations. Because, users a, f visits T2 and b, c, e visits H1 after visiting
T1, and users d, i visits H1 and M1 after visiting H2. Similarly, for use case
2, the potentially influenced locations of the top-2 influential users d and a
are all the locations. Because, d visits M1, H1, and H2, and a visits T1 and T2.
In this case, as influence of both approaches is same, decision can be made
based on cost of considering a user versus location for spreading message.
On the other hand, if we consider k = 1, then the the top influential user d
propagate message to one more location that the top influential location T1,
thus, in this case it can be chosen for more influence.

3 IMaxer’s technical overview

In this section, we first model four different types of information propagation
and their corresponding IM mechanisms using the unified IM Model. Then
based on this model, we provide abstractions of algorithms for IM and spread
simulation. Finally, we present the implementation details of the system and
methods to incorporate other existing as well as new algorithms.

3.1 Modeling IM using Unfied IM Model

Given a set of users U and a set of locations L, an activity is a visit/check-
in of a user at a location. It is a triplet (u, l, t), where u ∈ U is a user,
l ∈ L a location and t is time of the visit of u at l. The set of all activities
over U and L is denoted by A(U, L). The LBSN over U and L consists of a
graph GS(U, F), called social graph, where F ⊆ {{u, v}|u, v ∈ U} represents
friendships between users, and a set of activities A ⊆ A(U, L).

Given u, u′ ∈ U ∪ L, we measure u′s influence on u′ by two factors.
First, the number of influential activities I(u → u′) that implies an im-
pact/influence of u on u′. Second, a time window during which the activities
are performed called influence window ω. The influence among two vertices
is 1 if the number of influential activities is greater than a threshold τ, other-
wise 0. The values of τ and ω may vary on the basis of types of influential
activities and users’ requirements. However, for simplicity and to capture all
activities we take τ = 0 and ω = 3 for all the examples given below. The
unified IM Model utilizes the interactions of nodes in LBSNs to model four
different types of information propagation mechanisms which are further
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Source Dest. Influential Activity (I) Application (Maximizes)
User User u follows u′ Followers
Location Location l spreads visitors to l′ Geographical spread
User Location u visits l′ Unique visited locations
Location User l visited by u′ Unique visitors

Table C.1: Information propagation mechanisms w.r.t. types of the influential and influenced
nodes in LBSNs. Here, u and l are the influential user and location, respectively and u′ and l′

are the influenced user and location, respectively.

utilized to formulate influential activities. These information propagation
mechanisms with corresponding influential activities and potential applica-
tions are shown in Table C.1. Next, we define influences on the basis of these
interactions and influential activities.

Influence among users: The influence of a user u ∈ U on a user u′ ∈ U is
determined by the number of activities performed by u that are followed by
u′ within the time window ω, such that u and u′ are friends. The influence
of u on u′ is considered 1 if the number of such followed activities by u′ is
greater than the threshold τ.

Example: Most influential users in this context can be utilized to maximize
the number of followers. Such users are exploited in applications like viral
marketing. In Figure C.1, top-2 such influential users are b and c which
influence f and i, and a and f , respectively.

Influence among locations: The influence of a location l ∈ L on a location
l′ ∈ L is determined by the number of users that after visiting l visits l′,
within time window ω. The influence of l on l′ is 1, if such visitors are
greater than τ.

Example: Use case 1 is the example of this type of influence. In Figure C.1,
the top-2 influential locations are T1 and H2 and the influenced locations are
T1, T2, M1, H1 and H2.

Influence of user on location: The influence of a user u on a location l′

is determined by the number of visits of u at l′ within ω. If such visits are
greater than τ then the influence of u on l′ is 1.

Example: Use case 2 lies in this category of the influence. In Figure C.1,
the most influential users for this type of influence are d and a and their
influenced locations are T1, T2, M1, H1, and H2.

Influence of location on user: The influence of a location l on a user u′ is
determined by the number of times l is visited by u′ within ω. The influence
of l is considered 1 if the number of such visits of u′ at l is greater than τ.

Example: Such type of influence can be used to find the locations on which
advertisements can be displayed such that the message is viewed by the max-
imum number of users. In Figure C.1, the top-2 most influential locations for
this type of influence are H1 and T2, which collectively attracts all the users.
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Fig. C.3: Compact snapshots of usage of IMaxer for maximizing geographical spread with loca-
tions in NYC

Influence Maximization: Next, we utilize these interactions and influ-
ential activities to create interaction networks. An interaction networks is
a directed graph G(V , E), where V ⊆ U ∪ L is the set of vertices and E is
the set of edges: {(u, u′) | I(u → u′) > τ}. The set of vertices that are
influenced by a vertex u is called influence set σ(u). Once the interaction
network G(V , E) is obtained for a use case we can use the corresponding
IM algorithms to determine the influence set of individual vertices. IMaxer
provides 2 IM algorithms taken from [2, 3] for capturing user-user influence,
from [1] for location-location and two novel IM algorithms based on time
constraint window and edge degree of interaction network for user-location
and location-user influence. Once the influence sets of individual vertices are
known we apply a greedy method based on influence scores of vertices to
find top-k vertices.
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Fig. C.4: Potential geographical spread with users in NYC

Spread Simulation: The next problem IMaxer addresses is simulation of
the influence spread of the selected top-k vertices after influence maximiza-
tion. In order to do that, IMaxer currently, provides the implementation of
Linear Threshold model, Independent Cascade model [6], Time Constrained
Information Cascade Model [2], and, Absolute and Relative Influence based
information cascade models [1].

3.2 System Implementation

The IMaxer’s system implementation is modular as it is based on the factory
design pattern. Currently, IMaxer provides three datasets taken from real
world LBSNs: Foursquare, BrightKite, and Gowalla. However, it allows to
add new data sources. Moreover, IMaxer allows its users to add other influ-
ence maximization algorithms by implementing an interface: BaseAlgo.java.
Similarly, new algorithms for spread simulation can be added by implement-
ing the interface BaseSimulation.java. The resulting visualization is not con-
figurable and is fixed based on the receiver node dimension. If the receiver
is location, Google Maps are used to visualize the spread and for the cases
when the receiver is a user, graph visualization using Gephi is provided.

IMaxer is built using Java for business logic with HTML and Javascript for
the front end. We use the Google Maps API 1 to present the location spread
and Gephi 2 to present user spread. The configuration details are stored as
XML files making it easier to configure new data sources and attributes.

4 Demonstration

We demonstrate the two use cases given in Section 1 to show and compare the
propagation of information using locations and users, respectively, with a real

1https://developers.google.com/maps/
2https://gephi.org/
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dataset from Foursquare LBSN. The information is spread to 236 locations in
use case 1 as compared to 192 locations in use case 2. Due to space limit, we
combined the snapshots of usage of different modules of IMaxer for use case
1, as shown in Figure C.3. Further, the potential influence of users in case 2
is shown in Figure C.4. Moreover, we explain the working of IMaxer for both
use cases in the video [9].

Demonstration: First, an IMaxer’s user uploads the mandatory files con-
taining friendship and check-in information of the data set (Foursquare) as
shown in step 1 in Figure C.3. Then she filters the data on the basis of user
requirements as shown in step 2. By default, she considers all users and lo-
cations. However, only activities within NYC and given dates are fetched. In
step 3, she transforms the location using grid clustering and maps the activ-
ities correspondingly. In step 4, first types of source and destination nodes,
and their cardinalities are asked by the user. Then, the influence maximiza-
tion algorithm is selected, i.e., LI. The nodes marked in green in step 4.a were
obtained by running the LI algorithm for maximizing geographical spread [1]
to find the top-5 most influential locations. The usage of spread simulation
is shown in step 5. The locations marked in red in step 5.a indicate the lo-
cations in NYC that will potentially get influenced according to the selected
spread simulation algorithm TCIC. Moreover, IMaxer also provides details
of the influenced locations with their corresponding influential locations in a
summary table.
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Abstract

Location-based social networks (LBSN) are social networks complemented with users’
location data, such as geo-tagged activity data. Predicting such activities finds ap-
plication in marketing, recommendation systems, and logistics management. In this
paper, we exploit LBSN data to predict future visitors at given locations. We fetch
the travel history of visitors by their check-ins in LBSNs and identify five features
that significantly drive the mobility of a visitor towards a location: (i) historic visits,
(ii) location category, (iii) time, (iv) distance and (v) friends’ activities. We provide a
visitor prediction model, CMViP, based on collective matrix factorization and influ-
ence propagation. CMViP first utilizes collective matrix factorization to map the first
four features to a common latent space to find visitors having a significant potential
to visit a given location. Then, it utilizes an influence-mining approach to further
incorporate friends of those visitors, who are influenced by the visitors’ activities and
likely to follow them. We provide a detailed analysis on the contribution of each con-
sidered feature in the predictive task. Our experiments on two real-world datasets
show that our methods outperform the state of art in terms of precision and accuracy.

The layout has been revised.



1. Introduction

1 Introduction

Social network analysis allows the provision of diverse recommendations to
users, e.g., friends and activities. At the same time, the pervasiveness of
location-aware devices allows users of online social networks to share geo-
tagged contents such as their current location. Such online social networks
that exploit location information are called location-based social networks
(LBSNs). The geo-tagging of activities in LBSNs provides an opportunity to
capture and utilize the mobility behavior of users such as to provide location-
based recommendations. For instance, one can analyze the historical activities of
users and recommend locations to them for their potential visit; in such cases,
the focus is on providing recommendations to the users. An overlooked
perspective to the recommendation is the prediction of users that will visit a
given location; such a perspective finds application in event planning, traffic
management, mobile phone capacity planning, etc. For instance, consider the
following example:

Example 1.1
A cinema owner wants to know the persons who would choose to watch
the movie Pirates of Caribbean at a cinema at a certain time.

To answer such queries, we need to predict that whether a user will visit
a location of a particular category, e.g., cinema, in a particular region and
at a particular time. An illustration of this example is shown in Figure D.1.
Here, we show the users’ check-ins in the form of triplets: user, location and
time. We also show the characteristics of locations, i.e., location id, category
and GPS coordinates and a social graph depicting friends of users in LBSNs.
Here, in order to predict the visitors at l1 at t1 (hour of the day): 13:00, we
compute the potential of users based on their check-ins at l1, at locations of
category Sports (l′1s category) and at time t1. Based on these values, u1 and
u2 are considered as potential visitors of l1 at t1 as they have the highest
number of check-ins under these conditions. In this paper, we address such
a problem: Given a location, its category, and a time period, predict the visitors to
this location within the given time period using LBSN data on past mobility.

To address this problem, we need to identify which features in past mo-
bility data affects users’ mobility. To that end, we analyze the available LBSN
data and identify the following mobility-affecting features: (i) historic visits,
(ii) location category, (iii) time, (iv) distance, and (v) friends’ activities. We
show the effect of each of these features on user mobility in Section 3.2.

We provide a novel model CMViP for predicting visitors that combines
collective non-negative matrix factorization approach with an influence dif-
fusion model. Initially, we compute a set of frequency matrices, capturing the
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User Location Time Location Category Coordinates

u1 l1
13:25
11/12/2017

l1 Sports 42.99,-71.46

u1 l1
14:30
12/12/2017

l2 Arts 42.98,-71.45

u1 l3
13:05
14/12/2017

l3 Sports 42.97,-71.44

u2 l1
13:10
11/12/2017

u4 u3

u2u1

u2 l1
15:10
14/12/2017

u3 l1
14:20
11/12/2017

u3 l2
13:16
12/11/2017

u3 l3
16:20
14/12/2017

u4 l2
15:15
11/12/2017

Fig. D.1: Toy example: Checkins (left), Location categories (top right) and social graph (bottom
right)

frequency of users’ visits at the given location(s), at locations of similar cat-
egories, as well as visiting times and distances among users’ current locations
and the location(s) for which visits are to be predicted. Then, we decompose
these matrices into four non-negative low-rank matrices, i.e, HU , HC, HT ,
and HD, respectively, and a common latent space matrix W, so that W × HU ,
W × HC, W × HT , and W × HD give approximated scores according to user’s
preferences. We use a linear combination of these matrices to form a score
matrix WHX that represents the potential of each user to visit the given loca-
tion (“visit score”). We consider all users having significant visit scores and
find their friends that are presumably influenced by their activities and likely
to follow them in the given time period. To do so, we compute the influence
probabilities of these users on their friends in the LBSN by a Bernoulli-distribu-
tion-based partial credit distribution and time constraint model. Users having
a significant visit score, along with their significantly influenced friends, are
considered as potential visitors to the location. It is worth noting that a user
u may not influence another user v alone, yet, taken together with another
user x, they may influence v; that is the reason why we first find all the users
having a significant visit score and then fetch their influenced visitors.

In summary, we make the following contributions.

• We find the features that can be utilized for finding visitors at a location
in LBSNs.
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• We propose a visitor prediction model based on collective non-negative
matrix factorization and influence propagation (CMViP).

• We provide an extensive experimental evaluation of our proposed meth-
ods on real-world datasets to showcase their precision and accuracy.

The rest of the paper is organized as follows. Section 2 covers related
work in the domain. Section 3 provides preliminaries, mobility analysis of
users in LBSNs and give details on CMViP. We provide details on our solution
framework in Section 4, present evaluation results in Section 5, and conclude
in Section 6.

2 Related Works

In this section, we survey existing studies on LBSN-based recommendations.
We divide these studies into two parts, namely recommendations to users and
visitor prediction.

2.1 Recommendations to Users

This group incorporates four types of recommendations [1].

1. Location Recommendation recommends locations to users for their poten-
tial visit, utilizing users’ profile information such as historic visits, geo-
tagged contents [2–4]. Collaborative filtering is widely used to provide
such recommendations [5–7].

2. Activity Recommendation recommends to users one or more activities
that are appropriate to perform at their location, fetching the users’ cur-
rent locations by their geo-tagged contents [8–10] and using inference-
based and collaborative-filtering-based models. Due to data sparsity,
the latter outperforms the former [11, 12].

3. Social Media Recommendation suggests to users digital contents such as
photos, videos, and posts, utilizing spatial keyword search [13–15].

4. User Recommendation has been extensively explored from different per-
spectives, such as popular user discovery, friend recommendation, and
community detection. Traditional LBSN approaches use users’ geo-
graphical influence to model groups of friends through collaborative
filtering [16] or factorization models [17, 18].

All aforementioned studies provide recommendations to LBSN users, yet
our objective is to predict users at given locations. None of these studies can
be applied to our objective.
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2.2 Visitors Prediction

Some past studies have attempted to answer visitor prediction queries. Lasek
et al. [19] focus on predicting visitors to locations with applications such as
estimating restaurant sales and demands. Koshiba et al. [20] use a Bayesian
network to predict users at a location, based on location categories, con-
ditions of purchase, and demographic information of visitors. Sellers and
Shmueli [21] propose Poisson regression models [22, 23] to predict the num-
ber of customers at a restaurant during a certain time period. Similarly, Mor-
gan and Chintagunta [24] apply a regression model to predict the number of
visitors throughout a calendar year.

Nevertheless, all the aforementioned approaches fail to take into consid-
eration the sequential transitions from one location to another. To tackle this
challenge, some works exploit Markov chain models [25, 26], factorization
models to define the personalized sequential information [27], or both, in a
Factorized Personalized Markov Chain (FPMC) [28], as well as Metric Em-
beddings to model the user preferences and POI transitions [29].

Most recently, Feng et al. [30] proposed an embedding model, POI2Vec,
that predicts visitors to a Point of Interest (POI). POI2Vec modifies the Word2vec
technique for word embeddings to learn POI representations by considering
their geographical influence, user preferences, and sequential transitions, us-
ing the GPS coordinates of locations and visiting timestamps. POI2Vec is
the most relevant previous work to ours, as it also aims to predict visitors
at a location using LBSNs. However, our approach is technically different.
While POI2Vec is based on a vector embedding of locations, we employ a
collective matrix factorization to find joint embeddings of users’ historic vis-
its, categories, time, and distance features. Furthermore, we combine the
prediction outcome of the factorized model with an influence propagation
method to fetch friends of users that are likely to visit a certain location as
well. Our comparison in Section 5.5 shows that our proposed model CMViP
outperforms all variants of POI2Vec in both accuracy and precision.

3 Problem Formulation

Here, we define preliminaries, present a mobility analysis of users, define the
CMViP model, and formulate our problem.

3.1 Preliminaries

Definition D.1. A point of interest is a geographical location (e.g., an amenity)
represented by a quadruple (l, lat, lon, C), where l is the identifier, lat and lon are the
latitude and longitude of the GPS coordinates of the center of the POI, and C ⊆ Cat
is a set of categories that this location belongs to (e.g., “Food", “Restaurant", and
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Fig. D.2: CDF of visits w.r.t. locations, categories and times

“French cuisine". Such categories are usually assigned by the visitors, and may
thus change dynamically. However, we consider each location to have a fixed set of
categories. A set of POIs is denoted as L.

Definition D.2. A user is a person that visits POIs. A set of users is denoted by U.

Definition D.3. An activity refers to a visit or check-in of a user u ∈ U at a
location l at a discretized time interval t, represented as a triplet (u, l, t). The set of
all activities over U and L is denoted A(U, L).

Definition D.4. An Location-Based Social Network (LBSN) over U and L con-
sists of a graph GS(U, F), called the social graph, where F ⊆ {{u, v}|u, v ∈ U}
represents friendships between users, and set of activities A(U, L). It is denoted as
LBSN(GS, A).

3.2 Users’ mobility analysis in LBSNs

We now explore the features affecting user mobility on real-world LBSNs
data. We further show the impact of these parameters in predicting visitors
in Section 5.

We assume that users tend to visit locations of the same categories. To
investigate this hypothesis, we compute the cumulative distribution function
(CDF) of the visit frequency of users per locations and their visit frequency
of users per category. Figure D.2 shows that the frequency of check-ins in at
least one location is higher than that of check-ins in at least one category.
This fact implies that users visit locations of the same category multiple
times. Similarly, users visit several locations within the same time interval
(for which we use hour). Both datasets we examine, i.e., Foursquare and
Wee, exhibit the same behavior.
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Fig. D.3: Distance and Time difference between checkins

Next, we analyze distance and time gaps between consecutive visits. We
first consider the distance which users travel to visit locations. The CDF of
the distance is given in Figure D.3a. In the Foursquare data, around 50%
of the time, users travel no more than 4 km from one location to the next,
while for about 20% of check-ins, users travel more than 10km. We deduce
that users prefer to travel to nearby places. The behavior on Wee data is
similar. Last, we consider the time intervals after which users travel to a new
location. Figure D.3b shows the time CDF. In Wee, around 90% of the time,
users check-in at a new location within 30 minutes of their last check-in.

Next, we evaluate the extent to which one’s friends are influenced to visit
the same location. We utilize an influence maximization approach described
in Section 3.3. We compute the influence users exercise on their friends to
perform the same activities within a specified time, i.e., 1 hour. We first exam-
ine whether users tend to perform the same activities as their friends do; to
that end, we derive the correlation of activities of friends and non-friends as
a Jaccard index. Considering that a user has fewer friends than non-friends,
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Fig. D.4: Activity correlation among friends and non-friends
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we only capture check-ins within a limited territory. Yet a limited territory
has a limited number of POIs, so the chance for a person to visit all of them
is quite high. To ameliorate this effect, we consider three highly populated
US cities, where the POI density is higher. Figure D.4 shows the results. The
average correlation of activities among friends is up to 3 times higher than
that of non-friends. Both datasets exhibit similar behavior.

These results show that users tend to follow the activities of their friends.
We can then compute a suitable value of the influence probability among
friends. To do so, we compute the CDF of the influence probabilities of users.
Figure D.5 shows the result. An influence probability value of 0.04 (shown
by a dotted line) already covers 90% of users. We then set a threshold for
influence probability at 0.04 and consider those users that are influenced to
follow their friends’ activities with a probability higher than that threshold,
i.e., 10% of users.

3.3 CMViP

By the analysis given in Section 3.2, we utilize five features to predict a visit
of a user u to a location l: (i) historic visit frequency of u at l, (ii) historic visit
frequency of u in categories of l, (iii) visit frequency of u at time of day T
(iv) distance of l from current location of u, and (v) influence of u on friends.
Next, we provide the scores for each of these features.

131



Paper D.

Visit frequency score

People tend to visit locations of their interests [31]. We evaluate the interest
of a user u in a location l based on a visit frequency score, computed as follows.

YU(u, l) =
|A(u, l)|
|A(u)| (D.1)

where A(u, l) is the set of activities of u at l and A(u) is all activities of u.

Example 3.1
Consider the toy example, given in Figure D.1. Here, YU(u1, l1) =
2/3, YU(u2, l1) = 2/2, YU(u3, l1) = 1/3 and YU(u4, l1) = 0

Location category score

People like to visit locations of their general interest, identified by a location’s
category, such as “museum” and “Chinese restaurant”. To incorporate this
effect we compute the location category score, given by the following equation.

YC(u, c) =
∑l|c∈l.C |A(u, l)|
|A(u)| (D.2)

where l.C is the set of categories of l.

Example 3.2
Consider the running example, given in Figure D.1. Let us denote Sports
with c1. Here, YC(u1, c1) = 3/3, YC(u2, c1) = 2/2, YC(u3, c1) = 2/3 and
YC(u4, c1) = 0.

Visit time score

Another feature that drives the visits of users is time. Usually, users visit a
location at similar times of the day [31]. We compute the potential of a user
to visit a location at a given time (considering time in a granularity of hours)
by a visit time score, as follows.

YT(u, T) =
|{(u, l, t′) ∈ A|t′ = T}|

|A(u)| (D.3)

where T represents time in the form of an hour of a day.
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Example 3.3
Consider the running example, given in Figure D.1. We take hours of visit
time for computing Yt. Let’s T1 = 1300, then YT(u1, T1) = 2/3, YT(u2, T1) =
1/2, YT(u3, T1) = 1/3 and YT(u4, T1) = 0.

Distance score

People tend to visit nearby places [31]. To capture this effect, we measure
the distance between the current location of the user and the location which
we aim to evaluate. We utilize the GPS coordinates of locations to measure
distances and compute a distance score by the following equation.

YD(u, D) = 1− D(lc, l)
Dmax

(D.4)

where lc represents the current location of user u, l shows the location for
which the visit is to be predicted, D(lc, l) shows the distance between lc and
l, and Dmax is the maximum distance u traveled to visit any location.

Example 3.4
Consider the running example, given in Figure D.1. Let the location for
which we aim to predict visitors is l1, then YD(u1, l1) = 1− 1

1 = 0. Simi-
larly, YD(u2, l1) = 0, YD(u3, l1) = 0.5 and YD(u4, l1) = −∞.

Next, we combine all these aforementioned scores using a linear combi-
nation to compute the overall potential of users. We call this potential a visit
score denoted by YS. It is given by:

YS(u1, l1, c1, T1) = α.YU(u1, l1) + β.YC(u1, c1)+

γ.YT(u1, T1) + η.YD(u1, l1)
(D.5)

Here, α, β, γ, and η are the coefficients for visit frequency, location cate-
gory, visit time, and distance respectively, showing their corresponding im-
portance in predicting visitors. {α, β, γ, η} ∈ [0, 1], however, we provide op-
timal values for these parameters in Section 5. We utilize Equation D.5 to
compute the visit score for all the users in LBSN. Then, we prune the users
with less potential of visiting the location based on their visit score. To do
that we use a threshold θ. All the users having visit score greater than θ are
considered potential visitors UP and given by:

UP(l, c, T) = {u|YS(u, l, c, T) ≥ θ} (D.6)

where θ is a threshold for visit score.
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Example 3.5
Consider the toy example, given in Figure D.1. Let α = 0.25, β = 0.25, γ =
0.25, η = 0.8, and θ = 0.8. Then, YS(u1, l1, c1, t1) = 0.84, YS(u2, l1, c1, t1) =
0.875, YS(u3, l1, c1, t1) = 0.66 and YS(u4, l1, c1, t1) = −∞.

Friends Influence

Users tend to follow the activities of their friends, as shown in Subsection 3.2.
To capture this effect, we compute the influence of users on their friends, i.e.,
assess their potential to persuade friends to follow their activities.

We consider a user v to be influenced by his friend u if u visits a location
l and v visits the same location after u within a particular time. To find such
influence, we compute influence probabilities using Bernoulli distribution
based on partial credit distribution and discrete time constraint models [32].
According to this model, the influence probability is measured as the ra-
tio of the number of successful attempts to persuade the influenced user to
follow the influencer user’s activities over the total number of trials. Con-
sidering that a user can be influenced by multiple sources for an activity, the
influence credit for each followed activity is distributed among all influencer
users. Further, as the influence probability depends on time, we incorporate a
discrete time constraint model which ensures that a user can influence other
users only within a given time window. We consider the time window ω = 1,
as we capture the visit times in hours. The influenced friends of a user u are:

I(u) = {v|p(u, v) ≥ ξ ∧ (u, v) ∈ F} (D.7)

where p(u, v) is the influence probability of u on v, ξ is a threshold repre-
senting minimum influence to persuade a user to follow an activity, and F
is the set of friends pairs in an LBSN. A user v may not be influenced by a
single user u, but by many other users taken together. Thus, we compute
the influence of all potential visitors on all of their friends together, using the
following equation.

I(UP) = {v| ∑
u∈UP

p(u, v) ≥ ξ ∧ (u, v) ∈ F} (D.8)

where UP is the set of users having a significant visit score. Thus, I(UP) are
also considered as potential visitors. So, the total potential visitors are given
by the union of UP and I(UP) It is given by: UP ∪ I(UP).

Example 3.6
Consider the toy example, given in Figure D.1. Let UP = {u1, u2}, ω = 1h
and ξ = 0.2. Then, I(UP) = {u3} as p(UP, u3) = 0.3 ≥ ξ Because, u3
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follows u1 and u2 for visiting l1 and follows u1 for visiting l3 within ω. So,
the predicted visitors are {u1, u2, u3}.

3.4 Problem Statement

Next, we formally define our problem statement as follows:

Problem D.1. Given a LBSN(GS, A), a location l, the categories C of l, and a time
interval T, predict the users that will visit l within T.

Once we obtain potential visitors, we can utilize it for several other use-
cases such as finding the number of visitors at a location or finding the types
of visitors etc.

4 Solution Framework

In this section, we present our solution for visitor prediction using non-
negative collective matrix factorization and influence propagation mecha-
nisms. We explain the steps involved in the detail below.

4.1 Construction of Matrices

For each feature that derives the users’ mobility (identified in Section 3.3),
we construct a two-dimensional frequency matrix. For visit frequency, we
construct a user-location frequency matrix: YU ∈ RU×L where U is the set
of users and L is the set of locations. Each element of YU represents the
number of times a user has visited the corresponding location. Similarly,
we define visitor-category matrix YC ∈ RU×C which represents frequency
of users at location categories, visitor-time matrix: YT ∈ RU×T shows the
frequency of users’ visit at hours of the day, and visitor-distance matrix: YD ∈
RU×D presenting the distance of user from their current locations to the other
locations they visited. The values of each item in these matrices lie in the
range [0, ∞]. The first column of Figure D.6 presents the frequency matrices
for the toy example given in Figure D.1.

4.2 Initialization

The input matrices may possess a different range of values based on their
features, as seen in Section 4.1. This may result towards a local optimal
solution. However, we are interested in a globally-optimal solution. Thus,
we normalize all the matrices in a row-wise fashion using L2-norm. Hence,
we attain all the values within the range of [0, 1].
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Fig. D.6: Example of Collective Non-neg. Matrix Factorization

4.3 Non-Negative Collective Matrix Factorization

The LBSN data is often sparse (shown in Table D.1). This badly affects the
prediction accuracy by emphasizing more on the available data. To avoid
this, we use matrix factorization which leads to finding hidden latent rep-
resentations in a common space. Moreover, we have multiple features: visit
frequency, categories, time and distance to consider thus, we need to collec-
tively factorize them. To do that, we use collective matrix factorization. Fur-
thermore, since we do not anticipate any negative values in our data, we use
non-negative collective matrix factorization. To do so, we decompose each
of the four frequency matrices mentioned above into a common latent space
matrix: W and corresponding feature latent space matrix H. Each row of
W represents the relation between a visitor and the number of latent factors.
Similarly, each column of H represents the relation between the number of
latent factors and the features. For example in Figure D.6, YU is decomposed
into W and HU .

Next, we formally define the non-negative collective matrix factorization
for the four frequency matrices:
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min : f (W) =
1
2
[α‖YU −WHU‖2

2 + β‖YC −WHC‖2
2

+γ‖YT −WHT‖2
2 + η‖YD −WHD‖2

2

+λ(‖W‖2 + ‖HU‖2 + ‖HC‖2 + ‖HT‖2 + ‖HD‖2)]

s.t.W ≥ 0, HU ≥ 0, HC ≥ 0, HT ≥ 0, HD ≥ 0

(D.9)

where W represents the common latent space during the decomposition
of YU , YC, YT , and YD as observed in Figure D.6, while {α, β, γ, η} ∈ [0, 1]
are hyper-parameters that control the importance of each matrix during the
factorization. Setting them as 0.25 gives equal importance to decomposition
matrices, while different values give more importance to the factorization of
YU (or YC, or YT , or YD). The remaining terms are Tikhonov regularization
[33] of W,HU , HC, HT , and HD controlled by the hyper-parameter λ ≥ 0.
It is used to enforce the smoothness of the solution and avoid overfitting.
Note, the matrices HU , HC, HT , and HD when multiplied by W give us an
approximated score to the input matrices as seen in Figure D.6.

Multiplicative Update Rules

The proposed model applies multiplicative update rules as regularization
term of HU , HC, HT , HD, and W. This technique updates the scores in each
iteration until reaches the stationary point. Formalizing the update rules, we
first have the partial derivatives of the functions as:

∇ f (W) = αWHU HT
U − αYU HT

U + βWHC HT
C − βYC HT

C

+γWHT HT
T − γYT HT

T + ηWHD HT
D − ηYD HT

D + λIk

∇ f (HU) = αWTWHU − αWTYU + αWT HU + λIk

∇ f (HC) = βWTWHC − βWTYC + βWT HC + λIk

∇ f (HT) = γWTWHT − γWTYT + γWT HT + λIk

∇ f (HD) = ηWTWHD − ηWTYD + ηWT HD + λIk

(D.10)

where Ik is the identity matrix with k× k dimensions.
Calculating the derivatives of f (W), f (HU), f (HC), f (HT), f (HD) from

Equations (10) leads to following update rules:
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W =
[αYU HT

U + βYC HT
C + γYT HT

T + ηYD HT
D]

[αHU HT
U + βHC HT

C + γHT HT
T + ηHD HT

D + λIk]

HU = (αWTW + λIk)
−1 � αWTYU

HC = (βWTW + λIk)
−1 � βWTYC

HT = (γWTW + λIk)
−1 � γWTYT

HD = (ηWTW + λIk)
−1 � ηWTYD

(D.11)

where � and •
• corresponds to the element-wise matrix product and left

division, respectively.
Each iteration of the proposed model gives us a solution for the pair-wise

division. As we map any negative values to zero, the W matrix becomes
non-negative after each update. Furthermore, the objective function and the
delta decrease on each iteration of the above update rules, guaranteeing the
convergence into a stationary point.

4.4 Optimization

The proposed model applies alternating least squares optimization to mini-
mize the objective function [34], which performs as follows: (1) fix the value
of W while minimizing f (W) over HU , HC, HT , HD; then (2) fix the value of
HU , HC, HT , HD while minimizing f (HU), f (HC), f (HT), and f (HD) over W.
Considering a matrix with yi rows and yj columns, with a relation defined
by vi j, we can define the correlation among n neighbors’ data points. This
results in a matrix A which can later be used to measure the local closeness
of two data points yi and yj.

Collective factorization reduces data points yi from a matrix Y, into a
common-latent space W as wi. The distance between two low dimensional
data points is calculated using the Euclidean distance: ‖wi−wj‖2, and mapped
into a matrix A. Based on the matrixA, we can iteratively run these two steps
until the stationary point, or until the established number of maximum iter-
ations as follows:

M =
1
2

n

∑
i,j=1
‖wi − wj‖2Ai j

=
n

∑
i=1

(wT
i − wi)Dii−

n

∑
i,j=1

(wT
i − wi)Dii

= Tr(WT DW)− Tr(WT AW) = Tr(WT LW),

(D.12)

where Tr(•) denotes the trace function, and D is a diagonal matrix whose
entries are row sums of A (or column, as A is symmetric), i.e., Dii = ∑iAij;
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L = D−A is called the Laplacian matrix, we need to incorporate it to enforce
the non-negative constraints.

The problem of optimizing f (W) can be re-written as:

min : f (W) =
1
2
[α‖YU −WHU‖2

2

+β‖YC −WHC‖2
2 + γ‖YT −WHT‖2

2

+η‖YD −WHD‖2
2 + ϕTr(WT LW)

+λ(‖W‖2 + ‖HU‖2 + ‖HC‖2

+‖HT‖2 + ‖HD‖2)]

s.t.W ≥ 0, HU ≥ 0, HC ≥ 0, HT ≥ 0, HD ≥ 0

(D.13)

where L is the Laplacian matrix, and ϕ is a hyper-parameter which con-
trols objective function’s extent. The hyper-parameters α, β, γ, η and λ have
the same semantics as in Eq. 9.

4.5 Prediction of Visitors

The preferences scores for a user u is given by si = WHx, where W are
the factors in the common latent space that explain the preferable places of
ui ∈ U, and Hx represents the relation among the output matrices HU , HC,
HT , and HD as shown in Eq. 14.

WHX = α.WHU(u, l) + β.WHC(u, l)

+γ.WHT(u, l) + η.WHD(u, l),
(D.14)

where, + corresponds to the element-wise sum, while {α, β, γ, η} ∈ [0, 1]
are hyper-parameters controlling the importance of each factorized matrix.
The sum of hyper-parameters are set to be 1.

The visit score of a user is given by WHX . It is worth noting that Equa-
tion D.14 provides an approximate version of Equation D.5. Next, we prune
all the users having less visit score than the threshold θ. Users having visit
score more than θ are considered potential visitors UP given in equation D.6.
We further utilize them to find their influenced visitors using the algorithm
given in Section 3.3. We combine the potential visitors with their influenced
visitors and predict them as visitors of the location.

5 Experimental Evaluation

In this section, we provide a detailed experimental evaluation of the solutions
using two real-life data sets. We first describe the datasets, then we present
the data prepossessing and preparation. Finally, we provide results for our
experimental evaluation.
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Users Locations Checkins POIs Friend pairs Duration

FourSquare 4K 0.2M 0.47M 0.12M 32K 1322 days
Wee 16K 0.9M 8M 0.76M 0.1M 2796 days

Table D.1: Dataset Statistics

5.1 Datasets

We utilize two real-world datasets taken from Foursquare and Weeplaces
[35]. The datasets were chosen considering two scenarios to analyze CMViP
performance, where Foursquare is small and dense, while Wee is large and
sparse. Table D.1 shows the statistics of the data. Each of these datasets
consisted of three parts: the social friendship graph, an ordered list of check-
ins, and a collection of Venues. A check-in record contains the user-id, check-
in time, GPS coordinates, and a location-id. Venues provide the details of
locations, i.e., city, country, and semantic categories of those locations.

Data Prepossessing. The real-life nature of the datasets requires exten-
sive preprocessing, as many locations are associated with multiple location
identifiers, each having slightly different GPS coordinates. Consider, for in-
stance, Figure D.7. This figure shows 13 GPS coordinates that appear in the
Foursquare dataset; these coordinates correspond to different locations Ids
in that dataset, but they clearly belong to the same unique physical location.
In order to address this multiplicity issue, we clustered GPS points to get
POIs. We used a grid-based spatial clustering with a grid of size 10 meters
× 10 meters, so as to group GPS points. Then, we assigned a new, unique
location Id to each resulting cluster; these ids are then used in all our exper-
iments. All two datasets presented similar multiplicity problems, which we
addressed in the same manner. Statistics regarding these new POI Ids are
reported in Table D.1.

Fig. D.7: GPS coordinate of 13 location-ids on GoogleMaps
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5.2 Evaluation Measures

We first evaluate our proposed methods for prediction of visitors for a loca-
tion. To do so, we measure Precision and Recall. Then, we further evaluate for
one use-case: predicting the number of visitors of location. For this purpose,
we measure RMSE and MAE. In order to evaluate CMViP based on these
measures, we utilize the cross-validation approach. We divide our datasets
based on time stamp of check-ins such that each part contains check-ins of
one month. We train our model on a dataset of one month and test its per-
formance on the data set of next month. We iteratively perform this for all
the parts of the datasets and then show the average results.

We consider the check-ins of training dataset to construct the queries
which are composed of locations, categories and timestamps of check-ins.
Moreover, for each of these queries, we predict the visitors using CMViP.
With this we obtain four possible outcomes for users for the input parame-
ters: visitors, non-visitors, predicted, not predicted. We use these values to
construct confusion matrix and compute precision and recall based on it.

We follow a similar approach to calculate the error, where we check the
number of visitors against a query in the test dataset in comparison to the
training dataset. We use this information to calculate MAE and RMSE.

5.3 Parameter Analysis

CMViP uses several hyper-parameters while computing the visit score and
incorporating the influence of potential visitors as shown in Equations D.5,
D.6 and D.7. In this section, we provide optimal values of these parameters.

During the factorization process in Section 4, we use k: the number of
latent factors; α, β, γ, and η: coefficients of visit score, frequency score, time
score and distance score, respectively; and λ: for controlling the smoothness
of the solution. The parameter k controls the number of factors considered
by the system, consequently the complexity of the model. Small values of
k under-fit, on the other hand, large values of k over-fit the data and lead
to poor performance. We evaluate CMViP for a set of different values and
consider the value k = 50, which provide us most optimal values. Similarly,
to find the suitable values of the coefficients α, β, γ, and η we perform ex-
periments with several combinations of values for each coefficient. The most
optimal values are α = 0.9, β = 0.09, γ = 0.009, and η = 0.001. This show
that the visit score is the most important feature in predicting the visitors.
λ provides the smoothness of the solution and avoid overfitting. The larger
value of λ oversimplify the model and decrease the performance, however,
the lower values keep the accuracy stable. The most optimal value we ob-
served is λ = 0.5.
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Next, we evaluate the optimal value for θ, which shows that what should
be the visit score for considering a user a potential visitor. θ controls the num-
ber of predicted visitor: less the value of θ is more the number of predicted
visitors we get. The optimal value of θ = 0.4. However, we show the be-
havior with respect to different values of θ for the evaluations. Furthermore,
we find the optimal value of influence probability threshold. We assume that
users influenced with probability greater than this threshold will follow their
influential friends’ activities. We consider the value of this threshold 0.04 as
we assume that the top 10% the most influenced visitors follow the activities.
We use these values of the parameters for evaluating CMViP.

5.4 Competitors

We compare the performance of CMViP against four different variants of
POI2Vec, the latest state-of-the-art method.

• PI2Vec-U: utilizes user’s preferences.

• PI2Vec-A: considers only users with recent locations.

• PI2Vec-UA: incorporates both preference and recent locations.

• PI2Vec-MUA: applies aggregation to incorporate preferences and tran-
sition among locations.

We use the optimal parameter values for each variant.

5.5 Results

We evaluate the effect of features considered in Section 4.

Precision We first evaluate the precision. Figure D.8 presents the preci-
sion of CMViP according to different θ values for Wee dataset 1. Figure D.8a
presents the results considering a single feature, where we observe the user
visit frequency score WHU has higher precision than the other matrices: visit
category WHC, visit time WHT , and visit distance WHD. In figure D.8b we
combine two matrices considering the importance degree is given by the first
experiment with only one matrix. Overall, precision increases with two fea-
tures. More specifically, combining visit frequency WHU and visit category
WHC, give us the best precision among all the combination of two features.
This presents, the significance of historic check-ins and categories for users’
prediction. Figure D.8c presents the results for combining three matrices,
where we observe an improvement in the precision when we combine WHU ,

1Due to space constraints results for Foursquare are placed in the Appendix of Technical
Report (https://goo.gl/UA9Jzc).
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Fig. D.8: Precision for Wee dataset

WHC, and WHD. Combining WHU , WHC, WHD, and HT presented by Fig-
ure D.8d shows a slight improvement, due to incorporating visit time. Finally,
in Figure D.8e we achieve the maximum precision by considering influenced
friends of the users’ who have visit score greater than θ. The improvement of
2% in precision shows the significance of considering influenced visitors for
visitor prediction.

Recall We present the recall measure with respect to different values of θ
as shown in Figure D.9. Figure D.9a presents the results considering single
features WHU , WHC, WHD, or HT . Here, we observe that the users’ histor-
ical check-ins WHU have the highest recall than other matrices WHc, WHt,
and WHd. Figure D.9b combines two matrices, where WHU and WHC give
us better recall than the previous experiment, showing us user check-ins and
categories when combined improve the model’s recall. It is worth noting
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Fig. D.9: Recall for Wee dataset

that due to higher recall from WHU , this experiment gives higher importance
degree to WHU than categories. Figure D.9c presents the improved recall
results when combining three matrices, WHU , WHC, and WHD. The results
of incorporating all features: WHU , WHC, WHD, and HT is shown in Fig-
ure D.9d, with an improvement of up to 5%. Last, incorporating influenced
visitors improves recall by up to 60% as shown in Figure D.9e.

Mean Absolute Error (MAE) Furthermore, we evaluate the performance of
CMViP for predicting the number of visitors. To do so, we first compute the
mean absolute error (MAE) with respect to different values of θ as shown
in Figure D.10. Here, our goal is to minimize the MAE value. Figure D.10a
presents the results considering all the features individually. Users’ historical
check-ins WHU presented the lowest MAE than other features: WHC, WHT ,
and WHD. Figure D.10b depicts the results when two features are com-
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Fig. D.10: MAE for Wee Dataset

bined, where, by combining WHU and WHC the MAE is decreased. Figure
D.10c presents the results for combining three matrices. We observe further
decrease in MAE when we combine WHU , WHC, and WHD. Similarly, by
incorporating HT further decrease the MAE. Ultimately, the minimum error
is attained by incorporating influence visitors as shown in Figure D.10d. It
is worth noting that the curve presents a parabolic curve, which shows that
both before and after the optimal value of θ our error increases. This hap-
pens because if the value of θ is less we incorporate many users that have
less visit score and do not really visit the location. On the other hand, when
the value of θ is greater than optimal value, we consider a less number of
potential visitors and thus miss many visitors that actually visit the location
which increases the MAE value.
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Fig. D.11: RMSE for Wee dataset

Root Mean Square Error (RMSE) Figure D.11 presents the root mean square
error (RMSE) with respect to θ. Results by considering all feature individually
are presented in Figure D.11a, where we observe the user historical check-ins
WHU presents lower error than other features WHC, WHT , and WHD. Simi-
lar to MAE, we decrease the RMSE value with the addition of more features.
The minimum error is achieved when we combine all the features and incor-
porate influenced visitors. These results are shown in Figure D.11e. RMSE
presents similar parabolic curve to MAE, where beyond and after an optimal
value of θ RMSE values increase.

Performance Comparison Last, we compare the performance of CMViP
with different variants of POI2Vec as given in Section 5.4. The parameters
and their optimal values for CMViP are shown in Section 5.3. The value of
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Fig. D.12: Precision Recall Curve

parameters for POI2Vec are latent factors k = 50, score threshold θ = 0.4 and
learning rate is 0.05.

Figure D.12 presents the experimental results considering precision-recall
curve, where we observed, CMViP outperforms POI2Vec: (1) U, (2) A, (3) UA,
and (4) MUA. CMViP outperforms U to predict the potential visitors. Even
though U uses user’s preferences to predict visitors, it does not consider other
features as categories, time, and distance. This means CMViP has better user
modelling in the vectorial space. U first learns the location representation,
and the user representation is learned when the location representation is
fixed. However, as CMViP presented better performance than U, it shows the
collective factorization and linear model is more reasonable for this task.

A considers only recent check-ins presenting a poor performance in com-
parison with other techniques since old check-ins present an important role
to determine the future visitors. The results show it is important to consider
both users with recent and old check-ins. MUA outperforms UA, indicating
that combining user preference and sequential transition plays an important
role to predict potential visitors. However, it under-performs CMViP, since
this model uses categories, time, and distance to jointly predict the visitors.
Furthermore, CMViP adds user’s social influencers to improve its accuracy.

Observing the Figure D.12, we can conclude collectively learning the lo-
cation and visitor’s latent factors and further aggregating visitor’s social in-
fluencers in a linear model, significantly improves the prediction given by
CMViP. Although CMViP performs better than POI2Vec, it presents different
results given the datasets. CMViP consistently improves the visitors’ predic-
tion for locations which have received a small number of visitors as observed
on sparse dataset Wee. However, it performs worse for active visitors as pre-
sented on Foursquare dataset. This happens, because CMViP explicitly makes
use of jointly process latent factors to learn better latent representations, espe-
cially when visitor-location history data is sparse. POI2Vec cannot accurately
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infer inactive visitors’ preferences, what is a disadvantage since most of the
datasets do not have active users, a problem is known in recommend systems
as long tail.

Aggregating visitor’s social influencers in a linear model present an im-
portant contribution since it has a direct impact on visiting popular locations.
Predicting the most popular locations is not a hard task, however, combining
factorization and influencers presents a better balance on the final prediction
score, because CMViP predicts not only the relevant (sometimes rare loca-
tions) but also the popular locations. POI2Vec presents lower performance
than CMViP, because does not consider the popular items given by influ-
encers, showing a lower precision, but high recall.

6 Conclusion

We proposed a model, CMViP, that predicts visitors given a location, its cat-
egory and visit time. We first identify features that derive mobility of users:
visit frequency, category, time and distance. We analyze the LBSN data for
analyzing and finding the importance of these features. CMViP employs
non-negative collective matrix factorization to find the potential of visitors
and further leverages these potential visitors to find their influence on their
friends in social networks and thereby incorporate highly influenced visitors
as potential visitors.

We have empirically shown that the CMViP outperforms the state-of-the-
art approaches using real-world datasets of two different natures: 1) small
and dense, and 2) large and sparse. We evaluate the performance based on
two measures. We first evaluate the performance of CMViP for predicting
visitors using precision and recall measures and then evaluate the accuracy
of predicting the number of visitors using RMSE and MAE. Our results show
that CMViP outperform state-of-the-art methods in precision and recall up to
10 times. We further show the significance of considered features for visitor
prediction.

In the future, we plan to extend the proposed model considering more
contextual features, such as week-days and week-ends. Further, we plan to
improve performance by pruning users with less potential visitors.
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Abstract

Given a record of past geo-tagged activities and a web of social ties, how can we
predict groups, or cohorts, of future companions? Can our predictions go beyond
groups that appear in the training data set? We propose that we can mine and predict
such cohorts by leveraging information on two levels: (a) social bonds, and (b) past
common activities. In particular, we introduce a prediction scheme that detects sets
of users that (i) form cliques of friendships — a constraint our experimental study
shows is necessary; and (ii) maximize a function of past common pairwise activities
among their members. We show that mining such groups is an NP-hard problem,
and propose an efficient and nontrivial algorithm therefor, which works as if it were
enumerating maximal social cliques, but guides its exploration by an activity-driven
criterion in place of a clique maximality condition. In an experimental study with
real-world data, we demonstrate that our methodology achieves high predictive power
for future consecutive common activities, surpassing an adaptation of previous work
in terms of quality and a brute-force baseline in terms of efficiency, while it correctly
predicts future cohorts that do not appear in the training set.

The layout has been revised.



1. Introduction

1 Introduction

Advances in positioning and communication technologies enable the sharing
of geo-tagged content in the web, and hence the provisioning of location-
based social networking services. Weeplaces, Foursquare, Gowalla, GeoLife,
and Twinkle are built around positioning capabilities, while Facebook and
vKontakte provide users with the option to check-in at visited locations and
thereby build a location history. Online social networks encompassing loca-
tion information are called Location-Based Social Networks (LBSNs).

Such online LBSNs can capture the mobility of users and utilize it in rec-
ommendation services, even directed to groups of users, as opposed to indi-
viduals. For instance, a discount offer for a concert performance may be rec-
ommended to a group of friends that have habitually visited similar concerts
and other events together; a car-pooling service may suggest group forma-
tions to its customers who may not be fully aware of their similar activities;
or a travel agency may promote an offer for a group travel package to groups
of users potentially interested in traveling together. Extant research has pro-
posed location-based recommendations on locations, routes, users, activities,
and media [1]. Some works refer to individual predictions [2], while oth-
ers detect communities based on location preferences and mobility patterns;
for example, [3] builds trajectory profiles and then clusters those profiles to
discover users of similar behavior; similarly, [4] infers similarity of interests
among users based on their location history, thereby building a hierarchy of
user clusters. Yet these studies do not examine whether users both act together
and are socially linked.

Well-connected groups of users are prone to form dense subgraphs, and
such real-life social connectivity is manifested in two dimensions: compan-
ions are both socially tied — as we show, they form cliques in the social graph
— and also often engage in common activities along with each other.

C1 T2 B1

R1 R2 T1

a, d

a, b, d

a, c, d b, a

c

a, b, d

a, d

a, b

Users Locations Time
a, b, c, d R1 t1
a, b, d T1 t2
a, c, d R2 t3
a, c, d T2 t5
a, b, d B1 t6
a, b, d C1 t7
a, b R1 t8
a, b T1 t9

Fig. E.1: Example location history (L) and check-ins (R)
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a b

dc

Fig. E.2: Social Graph (undirected) for running example

We illustrate the discussed concepts with an example in Figure E.1. The
diagram on the left side shows the movements of four users across six loca-
tions, while the table on the right side shows the check-ins of those users at
locations. Capital letters R, T, B, C represent categories of locations, namely
restaurant, transportation station, bar, and cinema respectively, while subscripts
indicate different locations within these categories. Lowercase letters a, b, c, d
stand for users, while ti’s indicate check-in time stamps. Figure E.2 shows
the social connections among those users. Users a, b form a cohort moving
between categories R, T and B, C. Later, users a, b engage in similar behavior
for categories R, T again. Thus, if we choose to observe which users move
together from bars to cinemas, we can predict cohort {a, b}, which maintains
such cohort behavior indeed. On the other hand, if we were interested in
categories R, T, then we would detect cohort {a, c}, which does repeat such
behavior in the rest of the data set. Notably, cohort {a, c} appears only once
up to time stamp t7, contrary to two appearances of cohort {a, b}, hence we
have lower confidence in the reappearance of the former.

We define an activity graph GA as a graph distinct from the graph of so-
cial connections albeit coterminous in the vertex set, in which pairs of user
nodes are connected by edges expressing the pairs’ history of co-presence in
common activities. A group of users who engage in such common activities
frequently appear in GA as a connected subgraph with high weighted edge
density; in other words, such users form a quasi-clique of high normalized
edge weight in GA. In our example, those groups who form cohorts in terms
of activities are also connected in the social graph. Yet, to our knowledge, no
attempt has been made to discover groups by combining information about
both social and mobility ties.

In this paper, we aim to mine cohorts of companions who are likely to
move together consecutively in the future, and test the predictive power of
our method. We conjecture that such companions are directly or transitively
connected in terms of past common activities, but also in terms of tight social
links. Therefore, we leverage information in the social domain, i.e., a graph of
social friendship links, and in the activity domain, i.e. an activity graph GA
of common and consecutive geo-tagged activities. Our rationale is that, for
a group of users to be predisposed to act in unison, it should exhibit both

156



2. Related Work

these kinds of connectedness. After all, a person may have a large circle of
friends and acquaintances, yet may engage in specific activities only with
particular ones, with whom they share interests related to those activities.
Further, we utilize the categories of locations of interest, so as to tune detected
cohorts to particular interests. For example, a group may have shown interest
in museums of modern art and extreme sports; we can detect such a cohort and
propose new locations to them.

We formulate the problem as one of mining sets of nodes that form sub-
graphs that maximize a certain edge density function in the activity graph
GA and also induce cliques in the social graph G. Our contributions are out-
lined as follows: (a) We introduce the problem of mining cohorts in LBSN
data based on subgraph density criteria and show it is NP-hard; (b) we pro-
pose a heuristic that concurrently enumerates cliques on a social graph G,
conditioned on forming a densest subgraphs on an activity graph GA; and (c)
we conduct an experimental study, in which we demonstrate the efficiency of
our solution and its predictive power with regard to future groups of com-
panions in real-world data, versus adaptations of previous works to this task.

2 Related Work

In this section, we review work on related problems. In the conventional
sense, group recommendation refers to the recommendation of items towards
a given group of users [5]. On the other hand, group discovery refers to the
extraction of user groups from collaborative rating data sets [6]. Our problem
formulation is mostly related to community detection problems based on the
extraction of, potentially overlapping, cliques from a graph.

2.1 Finding Cliques

Tomita et al. [7] studied the worst-case complexity of finding and enumer-
ating maximal cliques on a graph. Such cliques can be used to define com-
munities in several ways; for example, one may consider only those maximal
cliques of size above a threshold, and define communities as the disconnected
components of the graph formed by the union of those cliques [8]. Alterna-
tively, one may use cliques of fixed size, k; the clique percolation method [9]
finds all such k-cliques in a network, and then finds clusters made out pairs
of k-cliques sharing k− 1 nodes.

2.2 Dense Subgraph Discovery

The densest subgraph problem, asking for a vertex subset S ⊆ V on a graph
G(V, E) such that its induced subgraph achieves the maximum average de-
gree, is solvable in polynomial time via the solution to a maximum flow
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problem [10], while a greedy 1
2 -approximation scheme requires linear time

[11–13]. Asahiro et al. [14] study the k− f (k) dense subgraph problem, which
calls for finding a k-vertex subgraph of a given graph G that has at least f (k)
edges, for different functions f (k). When a restriction is imposed on the size
of set S, the problem becomes NP-hard [13]. Recently, the problem has been
studied in streaming and MapReduce setting [15].

2.3 Community Detection

There is a vast literature on community detection, which bears some resem-
blance to the problem we examine, yet does not attempt to extract informa-
tion from two graphs and is not oriented towards consecutive activities. Here
we present a brief survey of such works.

Brown et al. [16] examine the collocation behavior among groups in a
social network, defined as appearance at the same locations, yet consider
neither consecutive appearances that indicate group mobility, nor the social
ties among groups. Taking a step further, some works [17, 18] present meth-
ods for recommending LBSN companions to a given user, based on observed
activities. Yet, again, activities are considered as stand-alone activities, with-
out considering consecutivity. Besides, such works aim to detect groups rel-
evant to a particular querying user, not to discovering all groups of interest.
In a similar vein, Purushotham [19] devise an approach that recommends
groups to a particular LBSN user, based on a hierarchical Bayesian model for
joint topic modeling of stand-alone (i.e., no consecutive) activity locations and
group preferences.

A line of work a bit closer to ours is that of detecting communities in over-
lapping networks. Comar et al. [20] combine two networks to mine commu-
nities; yet the notion of combining in [20] is that of merging diverse networks
so as to discover larger communities than one would otherwise. The case
of networks sharing common nodes, as in our problem, is called community
detection in multi-layer graphs [21]. A series of algorithms have been proposed
in the multi-layer domain. Li et al. [22] study community discovery among
large document corpora, considering both textual attributes and relations.
Other works employ matrix factorization to fuse information from different
graph sources [23–25]. Zhou et al. [26] propose a graph clustering method
that takes into consideration both structural and attribute similarity among
heterogeneous vertices. In another direction, Zeng et al. [27] mine the com-
plete set of frequent coherent (i.e., dense enough) closed quasi-cliques from
vertex-labeled graph transaction databases, where the notion of quasi-cliques
is based on a vertex degree bound. Yet the focus in [27] is on mining dense
transaction structures based on their frequency, rather than their density itself.
Boden et al. [28] apply a similar notion on edge-labeled multi-layer graphs,
where a multi-layer coherent subgraph contains vertices densely connected by
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edges with similar labels in a subset of the graph’s layers; This technique
applies the same density criterion on multiple layers; in contrast, we apply
different density criteria on two graph layers: a clique constraint on the one
vs. quasi-clique optimality on the other; this distinction is cardinal for the
functionality of our method — as we show, by relaxing the clique constraint,
it loses its predictive power. Last, Ruan et al. [29] propose methods to mine
communities based on link strength and content similarity.

Symbol Meaning
l POI/ Location identifier
u User identifier (u ∈ V )
cat Category of a POI
t time interval
A(u, cat) Activities by u at POIs of category cat
L Categories of interest
G Social graph
GA Activity graph
GLA Activity graph on categories L
wuv edge weight in GL
fα Edge surplus function

Table E.1: Notations

3 Problem Formulation

Let V be a set of LBSN users and U a universe of categories (i.e., types,
based on function and audience) to which locations of interest are associated.
We start out by defining preliminary concepts that we use in our problem.
Table E.1 lists the notations we employ.

3.1 Preliminary Concepts

Definition E.1. A point of interest (POI) is a geographical location (e.g., the
Metropolitan Museum of Art) represented by a quadruple (l, lat, lon, cat), where
l is the identifier, lat and lon are the latitude and longitude of the GPS coordinates
of the center of the POI, and cat ∈ U is a category that this location belongs to.

Definition E.2. An activity refers to a visit or check-in of a user u ∈ V at a location
l at a large discretized time interval t, represented as a triplet (u, l, t); when the user
u is clear from the context, we may represent an activity by the pair (l, t).
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Definition E.3. An activity set for a user u, A(u), denotes a set of activities
user u has engaged in; likewise, an activity set for a category cat, A(cat), denotes
the set of all recorded activities associated with category cat among all users in V;
last, A(u, cat) denotes the set of all activities by user u over POIs of category cat.
We overload each of these notation to also denote ordered sequences of activities
depending on the context.

Definition E.4. A spatiotemporal join operation among sets of activities S and
T , S on T , returns the set of pairs of activities {(l, t) ∈ S , (l′, t′) ∈ T }, where
l = l′ and t = t′ Furthermore, a consecutive spatiotemporal join is defined
among two temporal sequences of activities S and T , S onc T , and returns the set
of quadruples of activities (l, t), (lsuc, tsuc) ∈ S , (l′, t′), (l′suc, t′suc) ∈ T }, where
(lsuc, tsuc) is the successor activity of (l, t) in sequence S and (l′suc, t′suc) the suc-
cessor activity of (l′, t′) in sequence T , such that (l, t) = (l′, t′) and (lsuc, tsuc) =
(l′suc, t′suc).

From our last definition it follows that the spatiotemporal join between
S and T returns all pairs of activities that have occurred in both S and T ,
according to the coarse discretization we employ. Further, a consecutive spa-
tiotemporal join returns all quadruples of activities that have occurred, as two
consecutive pairs, in both sequences S and T . These concepts are going to
be useful in the following, when we define weights in the activity graph GA.

3.2 Objective

Given a data set of users, their relationships, and their past records of activ-
ities, and a query set of categories of interest, L ⊂ U , we are interested to
identify any group of users C ⊂ V that are likely to participate, as a group,
in future activities related to L.

We leverage two sources of information: (i) a social graph G(V, E), where
V is the set of users and E the set of friendship relationships among them; and
(ii) an additional activity graph GLA(V, E′), coterminous with (i.e., defined
over the same set of vertices V as) G, built out of the historical log records
of users’ past user activities on a set of categories L as follows: an edge
(u, v) ∈ E′ between any pair of users u, v ∈ V, acquires a non-zero weight,
wuv ∈ (0, 1], representing the extent to which these two users are recorded to
participate in activities associated with L, together, according to the following
definition.

Definition E.5. The edge weight wuv between the pair of users (u, v) in GLA is
defined via the (consecutive) spatiotemporal join

⋃
cat∈L{A(u, cat) on A(v, cat)},

normalized by dividing by the highest value obtained among all pairs of users, as
follows:
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wuv =
|⋃cat∈L{A(u, cat) on(c) A(v, cat)}|

maxx,y∈V |
⋃

cat∈L{A(x, cat) on(c) A(y, cat)}|
(E.1)

We intend to discover groups, or cohorts, of users having high edge weight
density in the activity graph, i.e. having a history of common activities among
group members, while also forming a clique (i.e., being related to each other)
in the social graph. Intuitively, such cohorts tend to keep acting together,
just like cohort {a, b} did in the example of Figure E.1, as opposed to group
{a, c}; therefore, they may be used for recommendation, prediction, and so-
cial analysis. Formally, we define our problem as follows:

Problem E.1. [Cohort Discovery] Given a set of LBSN users V, a set of cate-
gories L, a social graph G(V, E) among users in V, and a weighted activity graph
GLA(V, E′) among users in V, where edges in E′ are weighted according to activ-
ities in L, find a set C of k cohorts of users, where for each C ∈ C it holds that
C ⊆ V, such that: (i) the subgraphs these cohorts induce in the social graph G are
cliques, and (ii) the subgraphs the same cohorts induce in the activity graph GLA ob-
tain, among all activity graph subgraphs that form cliques in the social graph G, the
top-k highest values in terms of an activity density (or weighted edge density)
function fL(C).

3.3 Maximizing Activity Density

A question that arises at this point is, what function of weighted edge density
should we aim to maximize as activity density? To answer this question, the
concept of an Optimal Quasi-Clique (OQC), introduced by Tsourakakis et
al. [30], comes handy. The OQC problem is defined as follows [30]:

Problem E.2. [OQC] Given a graph G = (V, E) and α ∈ (0, 1), find a subset of
vertices S∗ ⊆ V such that

fα(S∗) = e[S∗]− α

(
|S∗|

2

)
≥ fα(S), for all S ⊆ V. (E.2)

where e[S] is the number of edges in the subgraph of G induced by S. The set
S∗ is called an optimal quasi-clique of G, while function fα is called the edge
surplus.

This OQC definition captures edge density without favoring large sub-
graphs: a subgraph achieves a high value of edge surplus fα not merely by
means of a high average degree, as large subgraphs may have, but by coming
close to completing a clique among its nodes. This measure is appropriate
for our purposes: it offers a size-independent density measure as we need,
and can also be straightforwardly generalized to the weighted edges in an
activity graph. Thus, we define our activity density function as follows:
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Definition E.6. Given an activity graph GLA = (V, E′) and a cohort (subset) of
vertices C ⊆ V, and a parameter α ∈ (0, 1), the activity density over C is defined
as:

fLα (C) = w[C]− α

(
|C|
2

)
(E.3)

where w[C] is the sum of normalized edge weights for all edges in the subgraph
induced by C: w[C] = ∑u,v∈C wuv.

We aim to discover cohorts under the constraint of forming a clique in a
social graph and the optimization objective of maximizing an edge surplus
function in the activity graph. To address this problem, it is useful to inves-
tigate the hardness of the simple OQC problem itself. After all, in case our
social graph is a complete graph, and all non-zero edge weights in the ac-
tivity graph are equal to 1, then Cohort Discovery is effectively reduced to
the OQC problem, hence it is at least as hard as OQC. Tsourakakis et al. [30]
suspect OQC to be NP-hard, yet provide no formal proof of hardness. We
provide such a proof in the following. To arrive there, we start out with some
lemmata regarding the nature of the OQC problem.

Lemma E.1. For any α ∈ (0, 1), any clique in graph G = (V, E) has a positive
edge surplus.

Proof. By definition, the number of edges in a clique S ⊆ V is e[S] = (|S|2 ).
Then, the edge surplus of S is fα(S) = e[S]− α(|S|2 ) = (1− α)(|S|2 ) > 0.

Lemma E.2. For any α ∈ (0, 1), a maximum clique of a graph G = (V, E) has the
maximum edge surplus among all cliques in G.

Proof. By Lemma E.1, the edge surplus of a clique S ⊆ V is fα(S) = (1−
α)(|S|2 ) > 0. A maximum clique achieves the maximum number of vertices |S|
among all cliques in G; therefore, it also has the maximum edge surplus.

Now we can prove the following theorem.

Theorem E.1. Given a simple undirected graph G = (V, E), for α = 1− (|V|2 )
−1

,
a subset of vertices S ⊆ V has positive edge surplus if and only if it is a clique.

Proof. The ⇐ direction is provided by Lemma E.1. We now prove the ⇒
direction: The edge surplus of a subset of vertices S ⊆ V is fα(S) = e[S]−
α(|S|2 ) = e[S]− (1− (n

2)
−1)(|S|2 ) = e[S]− (|S|2 )+

|S|(|S|−1)
|V|(|V|−1) . If S has positive edge

surplus, then fα(S) > 0 ⇔ e[S] > (|S|2 )−
|S|(|S|−1)
|V|(|V|−1) . Since S ⊆ V, it follows

that |S|(|S|−1)
|V|(|V|−1) ≤ 1. Thus, fα(S) > 0⇒ e[S] > (|S|2 )− 1. Yet the only subgraph

of |S| vertices that has more than (|S|2 )− 1 edges is a clique.
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We can now prove the following hardness result.

Theorem E.2. OQC is NP-hard.

Proof. We construct our proof by reduction from the NP-hard Clique prob-
lem, which calls for finding a maximum clique in a simple undirected graph.
Assume we are given a polynomial-time algorithm A(G, α) that can solve the
OQC problem on any simple undirected graph G(V, E) for any parameter
α ∈ (0, 1). Then, given any instance of the Clique problem on a simple undi-

rected graph G(V, E), we invoke A(G, α) with α = 1− (|V|2 )
−1

. We emphasize
that an elaborate reduction is not necessary, as we use the same graph in both
problems. By Theorem E.1, if the returned optimal quasi-clique (OQC) has
non-positive edge surplus, it follows that G has no cliques; otherwise, if the
returned OQC has any positive edge surplus, it is a clique. Moreover, by
definition, the returned OQC has the maximum edge surplus among all such
cliques in G, hence, by Lemma E.2, it is a maximum clique of G. In effect, an
algorithm that solves the OQC problem in polynomial time would also solve
any instance of Clique. Then, by reduction from Clique, it follows that OQC
is at least as hard as any problem in NP.

Our proof resolves a question left open in [30]. Given this result, we
should strive for non-optimal solutions to Cohort Discovery, as this prob-
lem is at least as hard as the OQC problem.

4 COVER Algorithm

In this section we present COVER, our algorithm for the cohort discovery
problem; COVER merges and builds upon techniques for maximal clique
enumeration [7] and the OQC problem [30]. In a nutshell, it searches for
cliques on the social graph, yet, instead of striving to satisfy just a maxi-
mality condition upon them, it checks, for any possible clique candidate, the
edge surplus of its induced subgraphs on the activity graph, pruning from
consideration nodes that cannot lead to higher edge surplus than already dis-
covered. Eventually, it outputs the top-k results by our problem definition.

A cohort should form a social clique and also achieve as high activity
density as possible, as outlined in Section 3.3. COVER explores the social
graph in order to find cliques, as an algorithm for maximal clique enumera-
tion would do. Yet, for each clique it finds in the social graph G, it searches,
in local search fashion, for its subgraphs of high activity density in the activ-
ity graph GA, maintaining a queue of the top-k results, and, thereby, also a
global queue of the top-k cohorts overall. In this process, when considering
a new node v, it evaluates its strength, in terms of marginal activity density,
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Algorithm E.1: COVER: finding top-k cohorts
1 Input: G(V, E), GL(V, E), k, TMax , α
2 Output: Set of k traveler groups : CO
3 begin
4 C = ∅ /* a clique in G */
5 cohG = ∅ /* queue of top-k cohorts within C */
6 CO = ∅ /* global queue of top-k cohorts */
7 searchCliques(V, V, C) /* recursive function */
8 end

that it may bring to any cohort under construction; node v is further consid-
ered only if its marginal activity density can bring an advantage compared
to the top-k cohorts discovered so far.

Algorithm E.1 is the main shell of COVER; it initializes global variables
and priority queues and finds top-k activity-based cohorts recursively on the
back of social cliques.

Algorithm E.2: searchCliques(Sub, Cand, C)
1 begin
2 /* Sub: seed set to be searched for cliques */
3 /* Cand: expansion set for building cliques */
4 /* NG(u): friends of u in G*/
5 if Sub 6= ∅ then
6 u← vertex ∈ Sub maximizing |Cand ∩ NG(u)|
7 foreach v ∈ Cand \ NG(u) do
8 Subv ← Sub ∩ NG(v)
9 Candv ← Cand ∩ NG(v)

10 cohGM ← Candv ∪ C ∪ {v}
11 /* cohGM : largest possible clique on v */

12 if (|cohGM |
2 )(1− α) > minS∈CO ( fα(S)) then

13 searchCliques(Subv , Candv , C ∪ {v})
14 end
15 Cand← Cand \ {v}
16 end
17 end
18 else
19 cohG ← findCohorts(GA , C, k)
20 CO ← CO ∪ cohG
21 end
22 end

Algorithm E.2 searches for promising cliques C in the social graph G. We
start with the set of all users V, and recursively explore subgraphs having a
clique property in depth-first-search manner. We maintain two set variables:
Sub maintains the intersection of the neighbor sets of all nodes already en-
tered in the clique C currently under construction. On the other hand, Cand
maintains the intersection of such neighbor sets minus any nodes that have
already been checked, i.e., included, or considered for inclusion, in C. We use
Cand to generate new candidates for checking at each iteration (Line 7). Be-
sides, to accelerate the search, at each iteration we pick up a high-degree pivot
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node u ∈ Sub having many neighbors NG(u) in Cand (Line 6), and exclude
those neighbors from the search (Line 7), as they will be considered later
(or have already been considered) by virtue of being neighbors of u anyway.
Then, we check candidate nodes v ∈ Cand \ NG(u) (Lines 7-14) for inclusion
in C. A critical check is performed in Line 12: if the largest possible clique
that can be built by including v and its neighbors can yield best-case activity
density among the current top-k cohorts, then C is recursively expanded with
v (Line 13); otherwise, we discard the depth-first search path leading to v is
discarded, as it cannot bring forth new results, and thereby we avoid redundant
computations. Last, when clique C cannot be expanded further, we search
for the top-k cohorts therein by calling Algorithm E.3 and update the global
priority queue CO accordingly (Lines 16-17).

Algorithm E.3 finds top-k cohorts within activity graph GA and social
clique C by local search. A candidate cohort S starts out as the node u ∈ C of
highest ratio of adjacent triangles to degree and its neighbors (Line 3). Then,
we iteratively revise S, first by adding nodes, as long as that can bring a
benefit in activity density, choosing the best such option (Lines 8-12); then by
removing the best node whose removal can bring benefit (Lines 13-16). The
process is repeated until we reach a local optimum or the maximum allowed
iterations Tmax. At each intermediate step, we insert the running S to the
priority queue cohG, and eventually merge the result in the global priority
queue CO.

Algorithm E.3: findCohorts(GA, C, k)
1 begin
2 u : vertex with max #triangles

degree ratio in GA [C]
3 S← N(u) ∪ {u} /* u and GA neighbors */
4 cohG ← {S}
5 b1 ← True, t← 1 /* local search begins */
6 while b1 and t ≤ Tmax do
7 b2 ← True
8 while b2 do
9 if ∃v ∈ C \ S such that fα(S ∪ {v}) ≥ fα(S) then

10 S← S ∪ {v}; cohG ← cohG ∪ S
11 end
12 else
13 b2 ← False /* growth of S stops */
14 end
15 end
16 if ∃x ∈ S such that fα(S \ {x}) ≥ fα(S) then
17 S← S \ {x}; cohG ← cohG ∪ S
18 end
19 else
20 b1 ← False /* local search stops */
21 end
22 t← t + 1 /* iteration counter */
23 end
24 end
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Given the analysis of the worst-case complexity of clique enumeration
in [7], the worst-case complexity of the COVER algorithm is O(3

n
3 + cTmaxm),

where n is the number of nodes, c the number of enumerated cliques that
reach Line 12 in Algorithm E.2, m the number of activity graph edges, and
Tmax the number of iterations in Algorithm E.3, which touches at most once
per iteration [30]. In practice, we avoid this worst-case scenario by a massive
discarding of paths in Line 12 of Algorithm E.2. Therefore, as we will see,
the algorithm is efficient in practice.
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Fig. E.3: Statistics on cohorts: all users vs. cliques
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5 Experimental Study

In this section, we present the result of an extensive experimental evalua-
tion of COVER, including its ability to predict future group of companions,
regardless of whether they form a social clique.

Users Locations Checkins POIs Friend pairs Duration Categories

FourSquare 4K 0.2M 0.47M 0.12M 32K 1322 days 35
Gowalla 77K 2.8M 18M 2M 4M 913 days 363
Wee 16K 0.9M 8M 0.76M 0.1M 2796 days 770

Table E.2: Dataset characteristics

5.1 Datasets

We utilize three real-world datasets [31] taken from Foursquare, Gowalla,
and Weeplaces. Table E.2 gathers information about the data. Each of the
datasets consisted of three parts: the social friendship graph, an ordered
list of check-ins, and a collection of Venues. A check-in record contains the
user-id, check-in time, GPS coordinates, and a location-id. Venues provide
the details of locations, i.e., city, country, and semantic categories of those
locations.

Data Prepossessing. The data required cleaning, as many locations were
associated with multiple location identifiers, each having slightly different
GPS coordinates. We clustered GPS points to get POIs. We used a grid based
spatial clustering with a grid of size 10 meters × 10 meters, so as to group
GPS points. Then, we assigned a new, unique location Id to each resulting
cluster; these Ids are then used in all our experiments. All three datasets
presented similar multiplicity problems, which we addressed in the same
manner. Statistics regarding these new POI Ids are reported in Table E.2.

5.2 Brute-Force Cohort Discovery

We first present a baseline that mines groups of users having similar mobility
behavior by brute force.

In order to find groups of common mobility, we first divide the activities
of each user into a series of time intervals, or snapshots, using a time-stamp
threshold tS, recording one activity per interval: the last recorded activity.
We can tune ts so as to strike a fine balance in the tradeoff between time
granularity and computation time. With larger ts values, it becomes likelier
to miss activities within a time snapshot. In order to set a suitable ts value,
we plotted all time differences between consecutive user activities. Figure E.4
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Fig. E.4: CDF of time between consecutive activities

shows their cumulative distribution. Based on this plot, we set ts = 1 hour,
which covers a sufficiently large ratio of activities.

We mine cohorts from recorded activities. A cohort should: (i) contain a at
least two users moving together across locations; and (ii) involve a at least two
locations consecutively visited by those users during its lifetime. We maintain
an ongoing cohorts list L and iterate over the data snapshots in increasing
temporal order. For each snapshot, we group activities by location and check
each group against the ongoing cohorts list. If a group extends an existing
cohort C, we update C accordingly. Otherwise, if a group first forms a cohort
in this snapshot onwards, we insert it in L. We store away any items in L that
are no longer expandable and already form a cohort. This process goes on
until the last snapshot. We emphasize that this brute-force approach is more
computationally demanding than COVER’s activity density estimation: it de-
tects and expands all groups in the training set, while COVER only considers
pairs of users and at most pairs of consecutive common activities; in other
words, COVER uses data about only the smallest possible value, 2, for number
of users and number of locations consecutively visited by those users, whereas
the brute-force method explicitly mines cohorts for all values. Figure E.3
shows statistics on cohorts so discovered vs. those whose members also form
social cliques. About 76% of all cohorts form social cliques. This finding val-
idates our conjecture that people are likely to move along with friends in social
cliques, hence vindicates the clique constraint in COVER.

5.3 Holdout Approach

We configure an experiment to assess the predictive power of COVER on
groups that form mobility companions in the future. That is, we do not test its

168



5. Experimental Study

ability to find groups forming a social cliques in the future. We just surmise
that the clique constraint in our definition allows to predict future common
mobility.

We use a holdout approach: first, we sort activities by ascending timestamp;
then, we divide them into two parts, the training (earlier) and test (later) data,
such that both have an equal number of activities. If a group found in the
training data (or its superset) exists as common companions in the test data,
we count it as a success. Under this approach, we mine cohorts in two ways.

Without Input Categories: This way we simply find groups that are most
likely act as cohorts in the future. We first find cohorts in the naive way and
then we count their appearances. The cohort with the highest count is the
best candidate.

With Input Categories: In this case, we are given not only a log of check-
in data, but also a set of categories of locations of interest L. We can then
find groups that are most likely to act in cohort fashion in the future, moving
among locations of the given categories. In order to identify such groups, we
filter the dataset such that only activities at locations of L are maintained.
Then, we fetch cohorts as explained above; again the group that has formed
most cohorts in the logs is the best candidate.

As there is no previous work the problem we study, we evaluate COVER
on its ability to predict the results of naive cohort discovery. We measure this
ability by an accuracy metric, defined as:

Acc =
|C ∪ T|

min{|C|, |T|} (E.4)

where C is the set of top-k cohorts returned by COVER and T is the set
of cohorts in the test data. We sanitize the measure with division by the
minimum of |C|, |T| so that its values are in [0, 1].

5.4 Revalidating the Clique Constraint

Before we proceed, it is worth to re-validate our social clique conjecture. To
do so, we test COVER without considering the social graph. We extract top-k
groups in terms of activity edge surplus in the training data, for k = 1, 3, 5.
This way, we only get a positive prediction with the Wee dataset for k = 3,
which is five times less accurate than what we achieved using the clique
constraint. This result reconfirms the necessity of that constraint: users who
participate in common activities but do not form a social clique are not likely
to do so again. Further, we relaxed the clique constraint to find quasi-cliques
in the social graph for several α values. Unfortunately, this way we could
not predict any group of travel companions. We emphasize that the groups
we aim to predict are not required to form social cliques. We simply observe
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empirically that groups of future travel companions form social cliques, and
cannot be predicted without this constraint.

5.5 Prediction without Input Categories

We first present prediction results for the case without a restrictive set of given
categories of interest L.

Brute-force cohort discovery: When no categories of interest are specified
in the problem input, we can still run the naive cohort discovery algorithm
on the training dataset and test its predictions on the test dataset. Then, the
naive method returns the k most frequently observed cohorts. If a predicted
cohort exists as such in the test dataset, we score a success; otherwise, a
failure. The last three columns of Table E.3 show the top-k cohort prediction
accuracy results for k = 1, 3, 5. Accuracy reaches 100% in all but two cases.

Input Cat All Cat
k FS GW Wee FS GW Wee

1 0.60 0 0.50 1 1 1
3 0.66 0.17 0.60 1 1 1
5 0.64 0.20 0.70 0.30 0.80 1

Table E.3: Accuracy for brute-force cohort prediction

COVER on plain activity density: Then, we tested COVER on the same
cohort prediction problem. First, we try the case in which we do not take
consecutive activities into consideration when forming edge weights in the
activity graph. We present results on the accuracy of top-k cohort set predic-
tions as a function of the chosen density surplus α in Figures E.5a, E.5e, and
E.5i. We observe that the top cohort prediction becomes correct at the value
of 0.1 and remains true for all the values of α. On the other hand, for top-3
and top-5 returned cohorts, the accuracy starts out lower. This result is due to
variations among training and test data; similar divergencies were observed
in Table E.3 even with the brute-force method. The result that COVER can
achieve almost equally well is remarkable, as it is up to 3 orders of magnitude
faster. In most cases, accuracy drops as the value of k increases, as it is easier
to get a top cohort correctly than the whole group of top 3 or 5.

COVER on consecutive activity density: Next, we examine the case in
which the activity density is defined by a consecutive spatiotemporal join,
considering the extent to which users move along each other. As Figures E.5c,
E.5g, and E.5k show, now the maximum accuracy is achieved with smaller α.
This result is intuitive, as the purpose of α is to force the detection of small
and tightly connected groups. Yet, the consecutivity requirements creates
smaller cohorts on its own, rendering the impact of α less significant. Overall,
COVER’s performance is remarkably high.
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Fig. E.5: Effect of different factors on cohort discovery with three datasets

5.6 Prediction with Input Categories

Now we turn our attention to the case with a restrictive set of given cate-
gories of interest L. We devise 10 categories sets, which appear together in
a real-world context, and we average accuracy over all ensuing queries. For
COVER, edge weights in the activity graph GLA are based solely on locations
in L.

Brute-force cohort discovery: The brute-force method achieves accuracy
up to 66% (Table E.3). The lower accuracy values are due to the fact that
cohorts specific to the input categories may not be met in the training data at
all, but appear in the test data. Likewise, cohorts characterized by the given
categories in the training data may not reappear in the test data, due to data
sparsity.

COVER on plain activity density: The average top-k set prediction ac-
curacy results for COVER based on plain activity density appear in Figures
E.5b, E.5f, and E.5j. While the problem is quite more challenging due to data
sparsity, we still obtain high accuracy in most cases. Less accuracy varia-
tion with varying α appears with the Foursquare data, the smallest of our
datasets, as fewer cohorts arise in it. Accuracy still drops with increasing
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k, except for the case of the Wee data, where including more cohorts in the
result set raises the chances that they will be encountered in the test data.

COVER on consecutive activity density: Last, Figures E.5d, E.5h, and
E.5l show the results for COVER using consecutive activity density. Here, we
both choose input categories and also take consecutivity into consideration.
Remarkably, here accuracy is either similar to or significantly higher than that
in the non-consecutive case reaching 67% for the top-5 cohorts set. This result
vindicates the use of consecutive activity density. In the cases of Foursquare
and Gowalla, by virtue of smaller returned cohort sizes, accuracy increases
sharply with growing α, then stabilizes above 60%.

5.7 Group size vs. surplus α

Prediction accuracy grows with the surplus parameter α. Yet, the size of
returned cohorts is bound to decrease as α grows, as higher values demand
stronger cohesiveness. On the other hand, for several applications, one would
prefer to detect sizeable cohorts. Hence, a tradeoff between size and cohesive-
ness arises. To study this tradeoff, we measure the average returned cohort
size vs. α on the top-5 cohorts with input categories and consecutive activity
density. The results in Figure E.6a show that average cohort size decreases
with increasing surplus up to 0.6; thereafter, cohort size becomes 2, the mini-
mum allowed. A sweet value of α is around 0.4, yielding both high cohort size
and predictive power. We employ this value in the comparative experiments
of Section 5.9.
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5.8 Scalability

Here, we assess all methods in terms of scalability, measuring runtime on
6.25%, 12.5% 25%, 50% and 100% on the Wee data set. Figure E.6b shows
the results for COVER, Brute-Force (called Naive) and GroupFinder (same
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for GF-PAV and GF-PLM), and OQC (α = 0.6). The runtime of COVER
is comparable to that of GroupFinder, while that of Brute-Force (Naive) is
much more demanding and does not scale well. Trends with other data were
similar.

5.9 Comparative Evaluation

We now conduct a comparative evaluation of COVER with fixed α = 0.4
against other approaches on the Wee data set; we juxtapose the COVER re-
sults to those of the following methods:

• BF: The Brute-Force cohort mining method of Section 5.2.

• GroupFinder: A method that finds groups of a given size k in LB-
SNs for a given user u and a set categories [18]. As this method does
not solve the same problem as we do, we adapt it for the sake of con-
ducting a reasonable comparison: Given a set of categories, we apply
GroupFinder to each user in the data set and then choose the best group
of size k, where k is the most popular group size returned by COVER
(in all cases, 2). We utilize both of the pairwise user-item relevance mea-
sures proposed in [18]: pairwise aggregated voting (PAV) and pairwise
least misery (PLM).

• OQC: A variant of COVER that relaxes the clique constraint on the so-
cial network and finds groups that achieve high edge surplus on both
the social and the activity graph; this variant employs two α values,
one for each edge surplus component; to avoid any bias against this
variant, we try out α values with step 0.1 in the edge surplus for-
mula, as well as different weights for the two surplus components in
{0, 0.25, 0.66, 1, 1.5, 4, ∞}, and present the best results.

We evaluate the competitors on the following measures:

• Accuracy, the metric we have used in previous results;

• Precision@K, the ratio of the number of true top-k cohorts by frequency in
the test data that we fetch in the top-k cohorts a method returns, over k,
or over the total number of test data cohorts, if that is less than k;

• Mean Average Precision (MAP), the mean of Precision@K for all k values
up to the examined one; and

• Normalized Discounted Cumulative Gain (NDCG), a popular information
retrieval measure; we apply it on the ranking of top-k results by activ-
ity density with respect to their ranking by frequency in the test data,
computed for cohorts existing in both rankings.
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Table E.4 shows our results on consecutive activity density, with input
categories, for five values of k. Brute-Force sometimes outperforms COVER,
as it finds all exact cohorts in the training dataset, and these appear in the test
data too; yet it is remarkable that COVER stands its ground vs. Brute-Force
in several measures, even while avoiding such an exhaustive calculation. On
the other hand, the groups found by GF-PAV, GFPLM and OQC do not per-
form well by any measure; none of them appears in the top-20, resulting in
0 value for P@K and MAP. GroupFinder performs poorly because it does not
consider group and sequential activities; it only relies on users’ mutual inter-
ests. This result indicates that users tend to visit different types of locations
when they are in certain groups than when they are in other groups or alone.
On the other hand, OQC performs poorly as it abolishes the social clique con-
straint, thus does not detect strongly connected groups. This finding further
corroborates the need for the clique constraint.
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Fig. E.7: Analysis on Predicted Cohorts

5.10 Analysis on Predicted Cohorts

Figure E.7 presents the CDF of cohort characteristics for all predicted cohorts
(E.7a) and correctly predicted ones (E.7b), namely their size and number of
activities performed by their constituent parts (i.e., individuals and pairs).
The size of predicted cohorts goes up to 3, while we predict cohorts correctly
even in cases where they have not performed any activities together on input
categories. This capacity of COVER sets it apart from the brute-force baseline
that can only predict cohorts who act together in the training set.

6 Conclusion

We proposed the problem of predicting future companions in LBSNs, and an
efficient, nontrivial solution, COVER; this solution mines geo-social cohorts
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that satisfy (i) a pragmatically necessary clique constraint on a social graph and
(ii) a density objective on a coterminous graph (i.e., defined on the same set
of nodes) capturing common (and consecutive) pairwise past activities. Our
experimental study with real-life data sets showed that COVER efficiently
predicts cohorts of users that do move along each other in the future, in-
cluding cohorts that do not appear in the training set, while adaptations of
previous work cannot deliver the same results.
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Abstract

Location-based social networks (LBSN) are social networks complemented with lo-
cation data such as geo-tagged activity data of its users. In this paper, we study
how users of a LBSN are navigating between locations and based on this information
we select the most influential locations. In contrast to existing works on influence
maximization, we are not per se interested in selecting the users with the largest set
of friends or the set of locations visited by the most users; instead, we introduce a
notion of location influence that captures the ability of a set of locations to reach
out geographically. We provide an exact on-line algorithm and a more memory-
efficient but approximate variant based on the HyperLogLog sketch to maintain a
data structure called Influence Oracle that allows to efficiently find a top-k set of
influential locations. Experiments show that our algorithms are efficient and scalable
and that our new location influence notion favors diverse sets of locations with a
large geographical spread.
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1. Introduction
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1 Introduction

One of the domains in social network analysis [1–4] that received ample at-
tention over the past years is influence maximization [5], which aims at finding
influential users based on their social activity. Applications like viral mar-
keting utilize these influential users to maximize the information spread for
advertising purposes [6]. Recently, with the pervasiveness of location-aware
devices, social network data is often complemented with geographical in-
formation. For instance, users of a social network share geo-tagged content
such as locations they are currently visiting with their friends. These social
networks with location information are called location-based social networks
(LBSN). In LBSNs, the location information offers a new perspective to view
users’ social activities. This information can be utilized to provide more con-
structive marketing strategies. For example, unlike viral marketing which
focuses on finding influential users and spreading the message via word of
mouth marketing (WOMM), influential locations can be found and informa-
tion can be spread using outdoor marketing (OOH) e.g., by putting advertise-
ments on billboards and distributing promotional items on such locations.

In this paper, we study navigation patterns of users based on LBSN data
to determine influential locations. Where other works concentrate on finding
influential users [7], popular events [8], or popular locations [9], we are in-
terested in identifying sets of locations that have a large geographical impact.
Although often overlooked, the geographical aspect is of great importance in
many applications. For instance, consider the following example.

Example 1.1
A marketer is interested in creating visibility of her products to the maxi-
mum regions in a city by offering free promotional items say T-shirts with
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a printed promotional message. To do that she would like to choose loca-
tions where she should distribute the promotional items to visitors.

In order to choose the most suitable locations for offering these items,
not only the popularity of the places is important, but also the geographical
reach. By visiting other locations, people that were exposed to the adver-
tisement, especially the receivers of the promotional items, may indirectly
promote the products. For example, by wearing the shirt they expose the
T-shirt’s message to the people of the places they go to later and talk about
it with their friends and relatives etc. Thus, when the goal is to create aware-
ness of the product name, it may be preferable to have a moderate presence
in many locations throughout the whole city rather than high impact in only
a few locations. An illustration of this example is given in Figure 1. Nodes
represent popular locations of different categories, such as tourist attractions
(T1, T2), a metro station (M1), and hotels (H1 and H2). Lowercase letters rep-
resent users. For each user, her friends in the social network and check-ins
have been given. The top-2 locations with the maximal number of unique
visitors are T1, and M1. The geographical impact of these locations, however,
is not optimal; visitors of these locations reach only T2 and H1. On the other
hand, the visitors of T1 and H2 visit all locations, i.e., users a, f and b, c, e
visits T2 and H1 after visiting T1, respectively, and d, i after H2 visits H1 and
M1.

To capture geographical spread and influence, in Section 3 we introduce
the notion of a bridging visitor between two locations as a user that visits both
locations within a limited time span. If there are many bridging visitors from
one location to another, we say that there is an influence. We introduce differ-
ent models that capture when the number of bridging visitors is considered
to be sufficient to claim influence between locations. One model is based on
the absolute number of visitors, one on the relative number, and we also have
variants that take the friendship graph into account. Based on these models,
we define influence for sets of locations and the location influence maximization
problem: Given a LBSN and a parameter k, find a set of k locations such that their
combined location influence on other locations is maximal.

To solve this problem, in Section 4 a data structure, called Influence Oracle
(Oracle in short), is presented that maintains a summary of the LSBN data that
allows to determine the influence of any set of locations at any time. Based on
this data structure, we can easily solve the location influence maximization
problem using a greedy algorithm. As for large LBSNs with lots of activities
the memory requirements of our algorithm can become prohibitively large,
we also develop a more memory-friendly version based upon the well-known
HyperLogLog sketch [10].
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In Section 5 we analyze several LBSNs to select reasonable threshold val-
ues for our models. In Section 6 the effectiveness and efficiency of our algo-
rithms are demonstrated on these datasets. In a qualitative experiment, the
effect of our new location influence notion is illustrated.

In summary, the main contributions of this paper are (i) the introduction
and motivation of a new location influence notion based on LBSN data, (ii)
the development of an efficient online Influence Oracle, and (iii) the demon-
stration of the usefulness of the location influence maximization problem in
real-life LBSNs.

2 Related Work

Influence maximization in the context of social networks has already been
studied in much detail [11–13]. We focus here mainly on works that study
the identification of influential users, events, or locations from LBSNs data.
We divide the studies into two groups. The first group covers studies using
check-ins as an additional source of data to identify influential users, whereas
the second group utilizes the check-ins for finding influential locations.

Influential users and events. Zhang et al. [8] use social and geographical
correlation of users to find influential users and popular events. Users with
many social connections are considered influential as well as events visited
by them. Similarly, Wu et al. [7] identify influential users in LBSNs on the
basis of the number of followers of their activities (check-ins). Li et al. [14]
and Bouros et al. [15] on the other hand, identify regionally influential users
on the basis of their activities. The focus of the work by Wen et al. [16]
and Zhou et al. [17] is to find and utilize the influential users for product
marketing strategies such as word-of-mouth. Our focus, however, is to find
influential locations that could be used, e.g., for outdoor marketing. None of
the previous works applies directly to our problem.

Influential locations in LBSNs. Zhu et al. [9], Hai [18], and Wang et
al. [19] study location promotion. Given a target location, their aim is to find
the users that should be advertised to attract more visitors to this location.
Doan et al. [20] computes the popularity ranks of locations based on the
number of visitors. On the other hand, in Zhou et al. [17] study the problem
of choosing an optimal location for an event such that the event’s influence is
maximized; that is, they aim at finding a single location which attracts most
users.

Novelty. Our work is different from all of the above as we focus on find-
ing a set of influential locations where influence is defined using visitors as a
mean to spread influence to other locations. Applications include outdoor
marketing by selecting locations with maximal geographical spread.
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3 Location-based Influence

We first provide preliminary definitions and then present location influence.
Moreover, we formally define the Oracle problem and Location Influence Max-
imization problem.

3.1 Location-based Social Network

Let a set of users U and a set of locations L be given.

Definition F.1. An activity is a visit/check-in of a user at a location. It is a triplet
(u, l, t), where u ∈ U is a user, l ∈ L a location and t is time of the visit of u at l.
The set of all activities over U and L is denoted A(U, L).

Definition F.2. A Location-based Social Network (LBSN) over U and L con-
sists of a graph GS(U, F), called social graph, where F ⊆ {{u, v}|u, v ∈ U}
represents friendships between users, and a set of activities A ⊆ A(U, L). It is
denoted LBSN(GS, A).

3.2 Models of Location-based Influence

We define the influence of a location by its capacity to spread its visitors to
other locations. The intuition behind this is to capture a location on the basis
of its ability to spread its visitors that are exposed to a message, to other
locations. Thus, the location influence indirectly captures the capability of
a location to spread a message to other geographical regions. Recall our
running example that depicts the influence of locations in Figure 1. We can
further filter the locations on the basis of their categories to find the particular
type of influential and influenced locations. For example, in Figure 1, by
considering the hotels as influential locations and their influence only on
tourist attractions (influenced locations), the most influential hotels can be
found which can spread the information to the maximum number of tourist
attractions. The effect of an activity in a location, however, usually remains
effective only for a limited time. We capture this time with the influence
window threshold ω. Visitors that travel from one location to another within
a time ω are called Bridging visitors:

Definition F.3. Bridging Visitor: Given LBSN(GS, A) and ω, a user u is said
to be a bridging visitor from location s to location d if there exist activities
(u, s, ts), (u, d, td) ∈ A such that 0 < td − ts ≤ ω. We denote the set of all bridging
visitors from s to d by VB(ω)(s, d).

The influence of a location s is measured by two factors, i.e., the number
of locations that are influenced by s and the impact by which s influences
the locations. The impact of an influence between two locations s and d is
captured by the influence models (M).
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Absolute Influence Model (MA)

In practice, if a significant number of people perform an activity, then it
is considered compelling. Thus, in order to avoid insignificant influences
among locations, we use a threshold τA. The influence of a location s on a
location d is considered only if the number of bridging visitors from s to d is
greater than τA. The influence of a location s on d under MA is represented
by IA(ω,τA)

(s, d):

IA(ω,τA)
(s, d) :=

{
1, if |VB(ω)(s, d)| ≥ τA

0, otherwise
(F.1)

We omit ω and τA from the notations when they are clear from the con-
text.

Example 3.1
Consider the running example of Figure 1. Let τA = 2 and ω = 2. Then,
IA(T1, H1) = 1 because |VB(T1, H1)| = 3 (≥ τA). Similarly, IA(H2, H1) = 1.
However, IA(M1, H1) = 0 because |VB(M1, H1)| = 1( 6≥ τA).

The influence between two locations may change with the value of
τA and ω. For example, if we update the value of τA to 3 and ω to 2,
IA(T1, H1) = 1, however, IA(H2, H1) becomes 0 because |VB(H2, H1)| =
2( 6≥ τA).

Relative Influence Model (MR)

In MA, the influences of two pairs of locations are considered equal as long
as the number of their bridging visitors is greater than τA. Sometimes, how-
ever, the relative number of contributed bridging visitors is important. Con-
sider, for example, a popular location s that attracts many visitors and a
non-popular location d with few visitors. In such a setting, to capture the in-
fluence of s on d, we may have to set the absolute threshold τA very low. This
low value of τA, however, may result in many other popular locations being
influenced by s even if only a very small fraction of their visitors come from s.
Therefore, in such situations, it may be beneficial to use different thresholds
for different destinations, relative to the number of visitors in these destina-
tion locations. This notion is captured by the relative influence model (MR).
The influence of s on d under MR is represented by IR(ω,τR)

(s, d) and is pa-
rameterized by the relative threshold τR:

IR(ω,τR)
(s, d) :=

1, if
|VB(ω)(s, d)|
|V(d)| ≥ τR

0, otherwise
(F.2)
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where V(d) is the set of users who visited location d.

Example 3.2
Consider the running example given in Figure 1. Let τR = 0.4 and ω = 2.

In this example, IR(T1, H1) = 1 because |VB(T1,H1)|
|VH1 |

= |{b,c,e}|
|{b,c,d,e,i}| =

3
5 ≥ τR,

Similarly, IR(H2, H1) = 1 and IR(M1, H1) = 0.

3.3 Friendship-based Location Influence

Activity data in LBSNs is often sparse in the sense that the number of check-
ins per location is low. In Section 6 we see that in the real-world datasets we
use there have only up to 6 check-ins per location on average. This sparsity
of data affects the computation of location influence. In order to deal with
this issue, we use the observation that users tend to perform similar activities
as their friends (This claim is verified and confirmed in Section 5). Hence, we
define friendship-based influence between locations, by incorporating also
friends of bridging visitors, which we consider potential visitors. The set of
bridging visitors together with the potential visitors from a location s to d
is represented by VB f (ω)(s, d), and the set of visitors to a location d together
with their friends is denoted Vf (d).

In order to incorporate potential visitors in the influence models, we re-
place VB(ω)(s, d) in Equation (F.1) and Equation (F.2) by VB f (ω)(s, d), and V(d)
in Equation (F.2) by Vf (d). The updated influence of s on d under MA and
MR respectively are represented by IA f (ω,τA f )

(s, d) and IR f (ω,τR f )
(s, d). Again,

we omit ω, τA f and τR f from the notations when it is clear from the context.

Example 3.3
Let τA f = 2 and ω = 2. We have IA f (T1, H1) = 1 because
|VB f (T1, H1)| = |{a, b, c, d, e, f , g, i}| exceeds τA f . Similarly, IA f (H2, H1) = 1
and IA f (M1, H1) = 1.

Furthermore, let τR f = 0.4 and ω = 2. We have IR f (T1, H1) = 1 because
|VB f (T1,H1)|
|VH1 f |

= |{a,b,c,d,e, f ,g,i}|
|{a,b,c,d,e, f ,g,i}| = 1(≥ τR f ). Similarly, IR f (H2, H1) = 1 and

IR f (M1, H1) = 0.

3.4 Combined Location Influence

Based on the influence models, a location can influence multiple other loca-
tions. In order to capture such influenced locations, we define the location
influence set:
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Definition F.4. Given a location s, and an influence model M, the location Influ-
ence Set φIM (s) is the set of all locations for which the influence of s on that location
under M is 1, i.e., φIM (s) = {d ∈ L | IM(s, d) = 1}.

Next, we define combined location influence for a set of locations S. To do
this, we use the following principled approach: any activity at one of the
locations of S is considered an activity from S. In that way we can capture
the cumulative effect of the locations in S; even though all locations in S in
isolation may not influence a location d, together they may influence it. The
bridging visitors from a set of locations S to d is represented by VB(ω)(S, d):

VB(ω)(S, d) =
⋃
s∈S

VB(ω)(s, d) (F.3)

The influence of a set of locations S on location d under MA and MR is
defined similarly as for single locations.

Example 3.4
In Figure 1, let ω = 2, τA = 3 and S = {T1, M1}. Under MA, T2 6∈ φ(T1)
and T2 6∈ φ(M1). However, T2 ∈ φ(S) as |VB(S, T2)| = |{a, f , g}| ≥ τA.

3.5 Problem Formulation

Based on these influence models, we now define two problems related to
finding influential locations in a LBSN. We first present a problem statement
of constructing a data structure that can be utilized for providing many in-
teresting applications called Influence Oracle. Next, we present a problem
statement for one such application, i.e., finding the top-k most influential
locations.

Problem F.1. (Oracle Problem) Given a LBSN and an influence model M, con-
struct a data structure that allows to answer: Given a set of locations S ⊆ L and a
threshold τ, what is the combined location influence φIM (S) of S.

Problem F.2. (Location Influence Maximization Problem) Given a parameter k, a
LBSN, and an influence model M, the location influence maximization problem is
to find a subset S ⊆ L of locations, such that |S| ≤ k and the number of influenced
locations

∣∣φIM (S)
∣∣ is maximum.

4 Solution Framework

We first provide a data structure to solve the Oracle problem. We present
an exact algorithm in Section 4.1 and an approximate but more memory-
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and time-efficient algorithm in Section 4.2. Finally, in Section 4.3, we solve
Problem F.2 with a greedy algorithm.

4.1 Influence Oracle

In this section, we provide a data structure for maintaining location sum-
maries for each location. We assume activities arrive continuously and deal
with them one by one. The summary ϕ(s) for a location s consists of the
list of all locations to which it has bridging visitors. We present an online
algorithm to incrementally update these summaries.

Definition F.5. The Complete location summary for a location s ∈ L is the set of
locations that have at least one bridging visitor from s, together with these bridging
visitors; i.e., ϕ(s) := {(d, VB(s, d)) | d ∈ L ∧ |VB(s, d)| > 0}.

If a user u visits a location s at time t, then u acts as a bridging visitor be-
tween all the locations u visited within the last ω time stamps and s. There-
fore, for each user u ∈ U, we maintain a set of locations the user has visited
and the corresponding latest visiting time. This is called the visit historyH(u)
and is defined as H(u) := {(s, tmax)|u ∈ V(s), tmax = max{t | (u, l, t) ∈ A}}.
Suppose that we have the complete location summary for the check-ins so far
and the visit history of all users, and a new activity (u, d, t) arrives. We up-
date the complete location summary as follows: the location-time pair (d, t)
is added in H(u) if d does not already appear in the visit history, otherwise
the latest visit time of d is updated to t in H(u). Furthermore, for every other
location-latest visit time pair (s, t′) in the history of u, ϕ(s) is updated by
adding user u to the set of bridging visitors from s to d provided that the
difference between the time stamps t − t′ does not exceed the threshold ω.
This procedure is illustrated in Algorithm F.1.

Example 4.1
We illustrate the algorithm using the running example shown in Figure 1.
For simplicity, we only consider the activities of two users: d and i. We
also add a new activity of d at H2 at time stamp 5. In this example, we
consider ω = 2. The activities are processed one by one in increasing
order of time. We show how the visit history H(i), H(d) and the complete
location summaries ϕ(H1), ϕ(H2), ϕ(M1) evolve with different activities
at different time stamp in Figure F.2. Note, at time stamp 5 only ϕ(M1) is
updated even though M1 and H1 are both in the visit histories of d because
ω = 2. The visit history of d is cleaned by removing H1 from the H(d) as
no future activities by d affect ϕ(H1). The visit time of H2 is updated to
the latest visit time. Similarly, H(i) is also cleaned up.
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Algorithm F.1: Updating complete location summaries

1 Input: New activity (u, d, t), threshold ω, ϕ(l) for l ∈ L
2 Output: Updated ϕ(.) and H(.)
3 begin
4 foreach (s, t

′
) ∈ H(u) do

5 if t− t
′ ≤ ω then

6 if (d, VB(s, d)) ∈ ϕ(s) then
7 V

′
B(s, d)← VB(s, d) ∪ {u}

8 ϕ(s)← ϕ(s) \ {(d, VB(s, d))}
9 end

10 else
11 V

′
B(s, d)← {u}

12 end
13 ϕ(s)← ϕ(s) ∪ {(d, V

′
B(s, d))}

14 end
15 else
16 H(u)← H(u) \ {(s, t

′
)}

17 end
18 end
19 if ∃t

′
: (d, t

′
) ∈ H(u) then

20 H(u)← (H(u) \ {(d, t
′
)})

21 end
22 H(u)← H(u) ∪ {(d, t)}
23 end

It can be observed from the example that a new activity of a user u only
updates the complete location summary of the locations in the recent visit
history of u. Notice that, since the activities of a user arrive in strictly in-
creasing order of time, the size of H(u) is upper bounded by ω, as only
locations that are visited within a time window ω are processed. The proofs
of the following proposition are trivial and thus omitted.

Proposition F.1. The time required to process an activity is O(ω log(|U|)). The
the complete location summary ϕ(.) can be stored in O(|L||U|) memory and for the
visit history H(.) in O(ω) memory.

The time required to produce φ(S) from ϕ(.) for given threshold τ and set of
locations S is O(|S||L||U| log |U|).

Relative and Friendship-based Location Influence. For the relative mod-
els, we additionally have to maintain the total number of unique visitors per
location, which can be done in the worst case time O(log(|U|)) and space
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t = 1 t = 2 t = 3 t=5

Activity:
(i, H2, 1)
(d, H2, 1)

(i, M1, 2)
(d, H1, 2)

(i, H1, 3)
(d, M1, 3)

(d, H2, 5)

H(i) : {(H2, 1)} {(H2, 1),
(M1, 2)}

{(H2, 1),
(M1, 2),
(H1, 3)}

{(H1, 3)}

H(d) : {(H2, 1)} {(H2, 1),
(H1, 2)}

{(H2, 1),
(H1, 2),
(M1, 3)}

{(M1, 3),
(H2, 5)}

ϕ(H1) : {} {} {(M1, {d})} {(M1, {d})}

ϕ(H2) : {} {(H1, {d}),
(M1, {i})}

{(H1, {d}),
(M1, {i, d})}

{(H1, {d}),
(M1, {i, d})}

ϕ(M1) : {} {} {(H1, {i})} {(H1, {i}),
(H2, {i})}

Fig. F.2: Updating ϕ(l) and H for ω = 2 for MA

O(|U|) per activity and hence does not affect the overall complexity. For the
friendship-based location influence, for every activity, we process the same
activity at the same time for all friends as well. As the number of friends is
bounded by |U|, we get:

Proposition F.2. The time required to process an activity in the friendship-based
influence models is O(ω|U| log(|U|)). The memory required is the same as for the
other models.

4.2 Approximate Influence Oracle

In the worst case the memory requirements of the exact algorithm presented
in the last section are quite stringent: for every pair of locations (s, d), in
ϕ(s) the complete list of bridging visitors from s to d is kept. Therefore, here
we present an approximate algorithm for maintaining the complete location
summaries in a more compact form. This compact representation will repre-
sent a significant saving especially in those cases where the window size ω is
large since in that case the number of bridging visitors increases.

We observe that when computing the number of bridging visitors be-
tween s and d we do not need the set of bridging visitors between s and
d, but only the cardinality of that set. For the relative number of bridging
visitors, we additionally need only the numbers of visitors |V(s)|. Further-
more, as per Equation F.3, in order to find the accumulated complete lo-
cation summary, we need to combine two complete location summaries; for
instance: the complete location summary ϕ({s1, s2}) is obtained by taking the
following pairwise union of ϕ(s1) and ϕ(s2): if ϕ(s1) and ϕ(s2) respectively
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contain the pairs (d, VB(s1, d)) and (d, VB(s1, d)), then ϕ({s1, 22}) contains
(d, VB(s1, d) ∪ VB(s2, d)). But then again, for further computations, we only
need the cardinality of the bridging visitor sets. Hence, if we accept approxi-
mate results, we could replace the exact set VB(s, d) with a succinct sketch of
the set that allows to take unions and get an estimate of the cardinality of the
set. In our algorithm, we use the HyperLogLog sketch (HLL) [10] to replace
the exact sets VB(s, d) and V(s). The HLL sketch is a memory-efficient data
structure of size 2k that can be used to approximate the cardinality of a set
by using an array. The constant k is a parameter which determines the accu-
racy of the approximation and is in our experiments in the order of 6 to 10.
Furthermore, the HLL sketch allows unions in the sense that the HLL sketch
of the union of two sets can be computed directly from the HLL sketches of
the individual sets. For our algorithm, we consider the HLL algorithm as
a black box. By using HLL, we not only reduces memory consumption but
also improve computation time, because adding an element in a HLL sketch
can be done in constant time and taking the union of two HLL sketches takes
time O(2k); that is: the time to take the union of two sets is independent of
the size of the sets.

Proposition F.3. Let b = 2k be the number of buckets in the HLL sketch. The time
needed to process an activity using the HLL sketch is O(ω). The memory required
to maintain the complete location summary is O(|L|b).

4.3 Influence Maximization

In order to solve the location influence maximization problem, we apply the
standard greedy algorithm to compute top-k as obtaining an exact solution is
intractable as the next proposition states.

Proposition F.4. The following problem is NP-hard for all influence models: given
a LBSN and bounds k and β, does there exist a set of locations S of size k such that
|φ(S)| ≥ β.

Proof. NP-hardness follows from a reduction from set cover. Consider an
instance S = {S1, . . . , Sm} with all Si ⊆ {1, . . . , n} and bound k of the set
cover problem: does there exist a subset S ′ of S of size at most k such
that

⋃ S ′ = {1, . . . , n}. We reduce this instance to a LBSN as follows: L =
{l1, . . . , ln} ∪ {s1, . . . , sm}, U = {u1, . . . , um}, F = ∅, A = {(ui, si, 0) | i =
1 . . . m} ∪ {(ui, lj, j) | i = 1 . . . m, j ∈ Si}. That is, every element j of the do-
main {1, . . . , n} is associated to a location lj, and for every set Si we introduce
a location si visited by user ui at time 0. Furthermore, user ui visits all loca-
tions lj such that j ∈ Si at time stamp j. If we use the absolute model with
τ = 1 and ω ≥ n + 1, for i = 1 . . . m, φ({si}) = {lj | j ∈ Si}. As such there
exists a set cover of size k if and only if there exists a set of locations S of size
k such that |φ(S)| = n.
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Recall that the influence of a set of locations S is computed by accumu-
lating the effect of all locations in S. It is hence possible that two locations
s and s′ separately do not influence a target location d because individually
they have too few bridging visitors to d, but together they reach the thresh-
old. This situation occurs for instance in Figure 1, for the locations H2 and
M1. These locations individually do not reach the threshold to influence H1
for τA = 2 and ω = 1. However, together they do. One inconvenient con-
sequence of this observation is that the influence function that we want to
optimize is not sub-modular [21]. Indeed, in the example above, adding H2
to the set {M1} gives a higher additional benefit (1 more influenced location)
than adding H2 to {}. Therefore, we do not have the usual guarantee on the
quality of the greedy algorithm for selecting the top-k.

The main reason that we do not have the guarantee is that the benefit
is not gradual; before the threshold is reached it is 0, after the threshold is
reached it is 1. This means that a location that has τ − 1 bridging visitors to
1000 other locations each, gives the same benefit as a location that does not
have any bridging visitors. Clearly, nevertheless, the first location is more
likely to lead to a good solution if later on additional locations are selected.
Therefore, we would like to incorporate potential future benefits into our ob-
jective function. Thus, in order to compute the influence of a location, we
consider locations that are influenced as well as those locations that are not
yet influenced but have potential to be so in future. To characterize the poten-
tial of future benefit in combination with the number of influenced locations,
we use the following formula:

LI(S) = (1− α)× |φ(S)|+ (α)× ∑
d∈L−S

(min{|VB(S, d)|, τ}) (F.4)

In this formula, α = [0, 1] represents a trade-off between the number of influ-
enced locations and a reward for potential influenced locations. For relative
models, we replace the |VB(S, d)| with |VB(S, d)|/|V(d)|.

Next, we apply a greedy method on the basis of location influence to find
top-k locations. We start with an empty set S of locations and iteratively add
locations to it until we reach the required number of top elements: k. In each
step, for each location s ∈ L, we evaluate the effect of adding s to S, and keep
the one that gives the highest benefit LI(S). Then, we update S← S ∪ {l}.

Example 4.2
Consider the case in Figure F.2 for ω = 1, ϕ(H2) = {(H1, {d}), (M1, {i})},
ϕ(M1) = {(H1, {i})} and ϕ(H1) = {(M1, {d})}. We aim to find top-
2 locations in this example with α = 0.1 and τ = 2. During the first
iteration, LI(H2) = 0.9 × 0 + 0.1 × (1 + 1) = 0.2, because H2 does not
completely influence any other location, however H1 and M1 are potential
influenced locations for the bridging visitors d and i, respectively. Similarly,
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Fig. F.3: Visit correlations
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Fig. F.4: CDF of visit time

LI(M1) = 0.1 and LI(H1) = 0.1. Thus, we choose H2 as first seed as
it has maximum value. In the next iteration, we first combine the seed
H2 with M1 and compute the combined influence. Here, LI({H2, M1}) =
0.9× 1 + 0.1× (2) = 1.1. Similarly, LI({H2, H1}) = 1.1 . Since, M1 and
H1 provide equal benefit of 0.9, when combined with H2, thus we can
randomly choose either M1 or H1 as a second seed.

5 LBSN Data Analysis

When constructing the friendship-based influence model the assumption was
made that friends tend to follow friends. Furthermore, the influence mod-
els of Section 3.3 have several parameters to set: τ and ω. Before going to
the experiments, first in this section we verify and confirm the friendship as-
sumption and show how to set the thresholds with reasonable values based
on an analysis of the LBSN datasets given in Table F.1.

5.1 Mobility analysis of friends

In real life, usually activities of friends are more similar than activities of non-
friends. In LBSNs, this implies that a visit of a user to a location increases
the chances of visits of his/her friends to the same location. We considered
this assumption when constructing our friendship-based influence model in
Section 3.3. We illustrate the correctness of this assumption by computing the
correlations between activities of users, their friends, and non-friends: Let Lu
and Lv be the locations visited by users u and v, respectively. The correlation
between activities of u and v is measured by the Jaccard Index [22] between
Lu and Lv. The average correlation of activities of users and those of their
friends is denoted friendship correlation (p f

corr), and the average correlation
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(b) Relative without-friends
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Fig. F.5: Cumulative distribution function (CDF) of thresholds for all influence propagation
models

between activities of users and their non-friends is denoted Non-friendship
Correlation (pn f

corr). In order to avoid an unreasonable bias due to the fact that
friends tend to live in the same city, we restrict our computation of the aver-
age non-friendship correlation to users in the same city. We randomly picked
four regions of the United States, i.e., Brooklyn, Manhattan, Pittsburgh, and
Washington and consider the activities of users in these regions to study the
correlations. The statistics of p f

corr and pn f
corr of all the users are given in Fig-

ure F.3. The figure presents boxplots without outliers. It can be seen that
median of p f

corr, even though still small, is up to 5 times larger than pn f
corr. The

same pattern is observed for all the datasets, thus only results for Gowalla are
shown due to space constraints. This validates the claim that the activities of
friends are more similar than non-friends.

5.2 Setting ω and τ

In order to determine the value of influence window threshold ω, we measure
the time difference between consecutive visits of users to distinct locations.
The cumulative distribution functions (CDF) for three LBSNs are given in Fig-
ure F.4. It can be seen that for all LBSNs in our study, 80% of the consecutive
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activities are performed within 8 hours. After that, there is only a moderate
increase in the number of activities with respect to the time interval. Thus, in
order to capture only the most common activities, we keep ω = 8. However,
it can, of course, be changed if the data distribution is different, or there are
different user or application requirements.

We furthermore compute the absolute and relative number of bridging
visitors. In order to do that, we consider both the models with-friends and
without-friends, for each pair of locations with at least one bridging visi-
tor. The cumulative distribution functions for each of these numbers are
depicted in Figure F.5. We can utilize the CDF values for controlling the
number of influences in the dataset, and thus also for finding the suitable
values of thresholds for models. The values of thresholds are an applica-
tion dependent choice and can be considered accordingly. For example, if
an application requires to find many influential relationships, and indirectly
many influential and influenced locations, then a lower threshold should be
considered and vice versa. In this paper, we consider the top 20% influential
relationships among locations for all the models. Thus, the thresholds for
all the models are their corresponding CDF values of 0.8 (100%-20%=80%).
Therefore, the values of τA, τR, τA f and τR f are 2, 0.4, 120 and 0.6, as shown
in Figures F.5a, F.5c, F.5b, and F.5d, respectively.

6 Evaluation

We conducted our experiments on a Linux machine with Intel Core i5-4590
CPU @3.33GHz CPU and 16 GB of RAM, running the Ubuntu 14 operating
system. We implemented the exact and the approximate algorithms in C++.

Datasets. We used 3 real-world datasets : FourSquare [23], BrightKite,
and Gowalla [24]. These datasets each consisted of two parts: the friendship
graph and an ordered list of check-ins. A check-in record contains the user-
id, check-in time, GPS coordinates of location, and a location-id. The statistics
of the datasets are given in Table F.1.

Data Prepossessing. The real-life datasets required preprocessing be-
cause many locations are associated with multiple location identifiers with
slightly different GPS coordinates. Consider, for instance, Figure F.6. In this
figure, 13 GPS coordinates that appear in the FourSquare dataset are shown

Users Locations Check-ins POIs

FourSquare 16K 803K 1.928M 582K
BrightKite 50K 771K 4.686M 631K
Gowalla 99.5K 1.257M 6.271M 1.162M

Table F.1: Statistics of datasets
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Fig. F.6: GPS coordinate of 13 location-ids on GoogleMaps

which corresponds to different locations Ids in the dataset, but which clearly
belong to one unique location. In order to resolve this issue, we clustered
GPS points to get POIs. We used the density-based spatial clustering algo-
rithm [25] with parameters eps=10 meters and minpts=1 to group the GPS
points. New location Ids are assigned to each cluster which were used in all
our experiments. All 3 datasets have similar problems. The statistics of the
new Ids are reported in column POIs of Table F.1.

No. of Buckets (b)
64 128 256

R
el

.e
rr

or Abs. mean ±σ 0.02 ± 0.15 0.01 ± 0.1 0.01 ± 0.08
Abs. friends mean ±σ 0.167 ± 0.63 0.08 ± 0.45 0.04 ± 0.49

Rel. mean ±σ 0.06 ± 0.23 0.06 ± 0.23 0.06 ± 0.23
Rel. friends mean ±σ 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.2

Ti
m

e

with-out
friends

Exact 38.7
Approx 40 37.5 42.9

with
friends

Exact 389.6
Approx 61.9 67.1 70.9

M
em

or
y with-out

friends
Exact 505

Approx 531 644 835
with
friends

Exact 3790
Approx 541 658 855

Table F.2: Exact vs Approx algorithm comparison for accuracy (relative error), time (sec) and
memory (MB)
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6. Evaluation

6.1 Approximate vs. Exact Oracle

We analyzed the accuracy of the influence approximation based on the HLL
sketch. We also analyzed memory consumption and computation time im-
provement for the approximate approach. The results are similar for all the
datasets and hence we only present results for BrightKite due to space con-
straints.

Approximation Accuracy. For every location with a non-empty influence
set, we used the HLL-based approximate version of the Oracle to predict
the size of the influence set. Then the relative error as compared to the real
size was computed for every location. In Table F.2 the mean and standard
deviation of this relative approximation error over all locations with a non-
empty influence are given. The experiments are performed for both with-
friends and without-friends for the absolute influence model and relative
influence model. We ran the experiments for different numbers of buckets
(b) for the HLL sketch, being, 64, 128 and 256. As can be seen in the table,
the errors are unbiased (0 on average), and the standard deviation decreases
as the number of buckets increases. The error is a bit higher in the relative
model as compared to the absolute model because in the relative model the
influence is computed by taking the ratio of two approximated sets. Values
for b beyond 256 yielded only modest further improvements and hence we
used b = 256 in all further experiments.

Approximation Efficiency. Next, we compare the computation time and
memory requirements for the approximate approach with that of the ex-
act approach. In order to do so, we computed influence sets with friends
and without friends. The computation times and memory consumption are
shown in Table F.2. The approximate approach outperforms the exact ap-
proach up to a factor 6 in time using only 15% of memory for the mod-
els including friends. Due to the sparsity of data, however, the gain for the
without-friend case is negligible. This is because the sizes of the sets of bridg-
ing visitors are very modest and hence there is no need to reduce memory
consumption. It can be observed that time and memory of the approximate
approach increase with increasing number of buckets b.

[h]

6.2 Influence of ω and τ

Runtime. We study the runtime of the approximate algorithm on all the
datasets for different values of ω := 8, 20 and 50. The average runtime for
processing all the activities (Tp) under the models varies only depending on
whether or not we consider friends; it does not depend on τ. The oracle
query time (Tq) is independent of τ and model. Hence we only show re-
sults for τ = 2. The run times are shown in Figure F.7 for the three datasets
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Fig. F.7: Time to process all activities (Tp) and query Oracle (Tq) for τ = 2 at different ω

FourSquare, BrightKite and Gowalla. The running time increases with in-
creasing influence window size ω as more locations from the visit history
remain active. Running time is higher in the with-friends case which is not
surprising either as the number of users to include in the bridging visitors
sets increases due to the addition of friends. The time taken to process dataset
Gowalla is the highest as it has the largest number of locations.

In Figure F.9b, we report the time taken in function of the number of
activities for ω = 8. Per 1, 000 activities in the BrightKite dataset the runtime
is reported. As can be seen in the figure, the average time taken per 1, 000
activities remains constant. The time taken for the friendship-based influence
model is the highest as more users are merged.

Memory Consumption. We also study the memory required by the ap-
proximation algorithm on all the datasets for different values of ω := 8, 20
and 50. Unlike for the processing time, the average memory required to pro-
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Fig. F.9: Performance evaluation for processing 1000 activities for ω = 8

cess all the activities under the models does not vary based on whether we
consider friends or not. This is because the HLL sketch storing the bridging
visitor set size remains constant in size even if a larger number of users is
added to it. The memory requirement increases slightly with ω as more loca-
tions are getting influenced due to a larger influence window. The results are
shown in Figure F.8. In Figure F.9a, we report the memory used as a function
of the number of activities for ω = 8. Per 1, 000 activities in the BrightKite
dataset the runtime is reported. The total memory requirements increase lin-
early with time as new locations come in over time for which a complete
influence summary needs to be maintained. In Figure F.10 on the other hand,
we see that over time the size of user visit history remains constant due to
the pruning of outdated locations in the visit histories.
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6.3 Influence Maximization

Influence of α. Our next goal is to study how the influence maximization
algorithm performs for different values of α. In order to avoid data sparsity
issues, we filter out those locations which have only one visitor from all the
datasets. We tested the spread of top 200 locations obtained by considering
values of α from 0.01 to 0.99. We observed that the number of bridging
visitors per location is highly skewed as can be learn from Figure F.5a. Due
to this, the potential influenced locations having few bridging visitors are
less likely to affect the influenced set of the locations. The effect of varying
alpha on the influence spread is shown in Figure F.11. As expected for these
sparse datasets, our algorithms perform best with a lower value of α. We use
α = 0.03 for our experiments.

τ
Time (sec)

k = 10 k = 20 k = 50
τA = 2 2 3 35
τR = 0.4 5 6 46
τA f = 120 2 5 46
τR f = 0.6 4 6 53

Table F.3: Time taken to find top k locations (BrightKite)

Computation time. We study the computation time for finding top-k in-
fluential locations under both the with-friends and the without-friends influ-
ence models. The runtime is close in the both absolute and relative models.
The time increases with k. Nevertheless, the increase is modest; for instance,
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(a) Naive BrightKite (16 locations) (b) Our BrightKite (72 locations)

(c) Naive FourSquare (239 locations) (d) Our FourSquare (239 locations)

Fig. F.12: Comparison of top- 5 influential locations (green) and their spread (red) between naive
and our approach

finding the top-50 locations takes less than a minute. We report the results in
Table F.3.

6.4 Qualitative Experiment

In order to demonstrate our model of location influence, we compared the
results of our method with a naive approach for selecting top-k locations. In
the naive approach, we selected the top k locations such that the number of
distinct users visiting those locations is maximized. This result is compared
to the top-k most influential locations found using the absolute influence
model with τ = 1. We compared the influence spread by the top-k locations
of both approaches.

We considered the activities performed in the area of New York in all
the three data-sets and fetched top-5 locations for ω = 8 hours for both ap-
proaches. We further computed the influence spread for the selected loca-
tions of both approaches using the absolute influence model. Top-5 locations
with their influenced locations are plotted using Google Maps as shown in
Figure F.12 for FourSquare and BrightKite. In the figure, it can be observed

203



References

that for BrightKite our method leads to a set of locations with a much larger
spread as compared to the naive approach, both geographically and in terms
of the number of locations influenced. On the other hand, the spread for both
approaches for FourSquare is similar. The reason is that for this dataset the
problem of selecting the top locations is almost trivial as there is only a small
set of locations visited multiple times with as a result that once this limited
set of locations is selected, it does not matter which other users are selected.

7 Conclusion and Future Work

In this paper, we introduced a notion that can be used to optimize outdoor
marketing strategies such as finding optimal locations for advertising prod-
ucts to maximize the geographical spread. In order to do that, we captured
the interactions of locations on the basis of their visitors to compute the in-
fluence of locations among each other. We provided two models namely the
absolute influence model and the relative influence model. We further incor-
porated friends of users in order to deal with data sparsity. We proposed
an Oracle data structure to efficiently compute the influence of locations on
the basis of these models. Oracle can be used for different applications such
as finding top-k influential locations. In order to maintain this data struc-
ture, we first provided a set-based exact algorithm. Then, we optimized the
time and memory requirements of the algorithm up to 6 times and 7 times,
respectively, by utilizing a probabilistic data structure. Finally, we provided
a greedy algorithm to compute the top-k influential locations. In order to
evaluate the methods, we utilized three real datasets. We first analyzed the
LBSN datasets: FourSquare, BrightKite and Gowalla to verify some claims
and to provide optimal values for thresholds of the influence models. Then,
we evaluated our approaches for the computation of the Oracle and finding
top-k locations in terms of accuracy, computation time, memory requirement
and scalability. We further show the effectiveness of our proposed models by
comparing the influence spread of top-k locations fetched by our approach
with that of a naive approach.

In the future, we plan to enrich location influence models by incorporating
the activities users perform with their friends in groups. Moreover, we aim
to provide distributed mechanisms for computing the Oracle data structures
and influences for the models.
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Abstract

Interaction networks consist of a static graph with a time-stamped list of edges over
which interaction took place. Examples of interaction networks are social networks
whose users interact with each other through messages or location-based social net-
works where people interact by checking in to locations. Previous work on finding in-
fluential nodes in such networks mainly concentrate on the static structure imposed
by the interactions or are based on fixed models for which parameters are learned
using the interactions. In two recent works, however, we proposed an alternative
activity data driven approach based on the identification of influence propagation
patterns. In the first work, we identify so-called information-channels to model po-
tential pathways for information spread, while the second work exploits how users in
a location-based social network check in to locations in order to identify influential
locations. To make our algorithms scalable, approximate versions based on sketching
techniques from the data streams domain have been developed. Experiments show
that in this way it is possible to efficiently find good seed sets for influence propaga-
tion in social networks.
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1. Introduction

1 Introduction

Understanding how information propagates in a network has a broad range
of applications like viral marketing [1], epidemiology and outdoor market-
ing [2]. For example, imagine a computer games company that has budget
to hand out samples of their new product to 50 gamers, and want to do
so in a way that achieves maximal exposure. In that situation the company
would like to target those customers that have maximal influence on social
media. For this purpose they monitor interactions between gamers, and learn
from these interactions which ones are the most influential. Notice that for
the company it is also important that the selected people are not only in-
fluential, but that their combined influence should be maximal; selecting 50
highly influential gamers in the same sub-community is likely less effective
than targeting less influential users but from different communities. This
example is a typical instance of the Influence maximization problem [1]. The
common ingredients of an influence maximization problem are: a graph in
which the nodes represent users of a social network, an information propa-
gation model, and a target number of seed nodes that need to be identified
such that they jointly maximize the influence spread in the network under
the given propagation model.

Earlier works in this area studied different propagation models, such as
linear threshold (LT) or independent cascade (IC) models [3], the complex-
ity of the influence maximization problem under these models, and efficient
heuristic algorithms. For instance, Kempe et al. [3] proved that the influence
maximization problem under the LT and IC models is NP-hard and they pro-
vided a greedy algorithm to select seed sets using maximum marginal gain.
As the model was based on Monte Carlo simulations it was not very scalable
for large graphs.

A critical issue in the application of influence maximization algorithms
is that of selecting the right propagation model. Most of these propagation
models rely on parameters such as the influence a user exerts on his/her
neighbors. Therefore, a second important line of work deals with learning
these parameters based on observations. For instance, in a social network
we could observe that user a liking a post is often followed by user b, who
is friend of a, liking the same post. In such a case it is plausible that user
a has a high influence on user b, and hence that the parameter expressing
the influence of a on b should get a high value. The parameter learning
problem is hence, based on a record of activities in the network, estimate
the most likely parameter setting for explaining the observed propagation.
The resulting optimized model can then be used to address the problem of
selecting the best seed nodes. Goyal et al. [4] proposed the first such data
based approach to find influential users in a social network. They estimate
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Fig. G.1: Information channels between different nodes in the network. Every node is a user in
a social network and the edges represents an interaction between users.

the influence probability of one user on his/her friend by observing all the
different activities the friend follows in a given time window divided by total
number of activities done by the user.

All these works share one property: they are based on models and if
activity data is used, it is only indirectly to estimate model parameters. Re-
cently, however, new, model-independent and purely data-driven methods
have emerged. Our two papers, [2] published at WSDM and [5] published at
EDBT should be placed in this category of data-based approaches.

2 Data-Driven Information Maximization

In [5] we proposed a new time constrained model to consider real interac-
tion data to identify influence of every node in an interaction network [6].
The central idea in our approach is to mine frequent information channels be-
tween different nodes and use the presence of an information channel as
an indication of possible influence among the nodes. An information chan-
nel(ic(u, v)) is a sequence of interactions between nodes u and v forming a
path in the network which respects the time order. As such, an information
channel represents a potential way information could have flown in the in-
teraction network. An interaction could be bidirectional, for instance a chat
or call between two users where information flows in both directions, or uni-
directional where information flows from one user to another, for example in
an email interaction or a re-tweet.

Figure G.1 illustrates the notion of an information channel. There are in-
teractions from user a→ b and c→ e at 9 AM, from b→ d and b→ c at 9:05
AM and d → f at 9:10 AM. These interactions form an interaction network.
There is an information channel a → c via the temporal path a → b → c but
there is no information channel from a 6→ e as there is no time respecting path
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Fig. G.2: Running example of a LBSN [2].Nodes in the graph are the locations visited by users
a-h. Edges are the movement of user between locations in a time window.

from a to e. We define the duration(dur(ic(u, v))) of an information channel
as the time difference of the first and last interaction on the information chan-
nel. For example, the duration of the information channel a → b → c is 10
minutes. There could be multiple information channels of different durations
between two nodes in a network.The intuition of the information channel no-
tion is that node u could only have sent information to node v if there exists a
time respecting series of interactions connecting these two nodes. Therefore,
nodes that can reach many other nodes through information channels are
more likely to influence other nodes than nodes that have information chan-
nels to only few nodes. This notion is captured by the influence reachability
set. The Influence reachability set (IRS) σ(u) of a node u in a network G(V, E)
is defined as the set of all the nodes to which u has an information channel

In [5] we presented a one-pass algorithm to find the IRS of all nodes in
an interaction network. We developed a time-window based HyperLogLog
sketch [7] to compactly store the IRS of all the nodes and provided a greedy
algorithm to do influence maximization.

3 Finding Influential Locations

Outdoor marketing can also benefit from the same data based approach to
maximize influence spread [2]. Recently, with the pervasiveness of location-
aware devices, social network data is often complemented with geographical
information, known as location-based social networks (LBSNs). In [2] we
study navigation patterns of users based on LBSN data to determine influ-
ence of a location on another location. Using the LBSN data we construct
an interaction graph with nodes as locations and the edges representing the
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users traveling between locations. For example, in Figure G.2 there is an edge
from location T1 to T2 due to users a and f visiting both locations within one
trip.

We define the influence of a location by its capacity to spread its visitors
to other locations. The intuition behind this definition is that good locations
to seed with messages such as outdoor marketing promotions, are locations
from which its visitors go to many other locations thus spreading the mes-
sage. Thus, location influence indirectly captures the capability of a location
to spread a message to other geographical regions. For example, if a com-
pany wants to distribute free t-shirts to promote some media campaign in a
city, it would get maximum exposure by selecting neighborhoods such that
the visitors of these neighborhood spread to maximum other neighborhoods
in the city. In [2] we provide an exact on-line algorithm and a more memory-
efficient but approximate variant based on the HyperLogLog sketch to main-
tain a data structure called Influence Oracle that allows to greedily find a set
of influential locations.

4 Conclusion

In both of our works, through simulation experiments, we have shown that
the data driven approach is quite accurate in modeling influence spread in
the network. We also used time window based variations of the Hyper-
LogLog sketch as an alternative to capture the influence set of every node
in the network enabling us to scale our algorithms to very high data vol-
umes. Currently, we just use the interaction data or activity as a measure
to determine influence. Considering other meta data associated with these
interactions and activities could improve the influence spread model even
further.
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