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Abstract-Distributed generation inverters are generally operated in parallel with P-f/Q-V and P-

V/Q-f droop control strategies. Due to mismatched resistive and inductive line impedance, power 

sharing and output voltage of the parallel DG inverters deviate from the reference value. This 

leads to instability in the microgrid system. Adding virtual resistors and virtual inductors in the 

control loop of droop controllers improve the power sharing and stability of operation. But, this 

leads to voltage drop. Therefore, an improved P-f/Q-V and P-V/Q-f  droop control is proposed. 

Simulation results demonstrate that the proposed control and the selection of parameters enhance 

the output voltage of inverters.  

Keywords-Distributed generation inverters, droop control, microgrid, output impedance, virtual 

resistors, virtual inductors. 

1. Introduction 

 Distributed generation (DG) systems use renewable energy resources such as wind, solar, 

tidal energy, and some non-renewable energy sources such as fuel cells, gas turbines, micro-

turbines, and generators [1]. As compared to traditional power systems, DG systems are 

decentralized and highly flexible [2]. Hence, accounts for reduced transmission cost and 

improved stability and reliability of power systems [2]. The distributed power supply in DG 

systems is not controllable. When directly connected, causes negative impact on the power grid 

[3]. To avoid this adverse effect on the power grid, United States Electrical Reliability 

Technology Solutions Consortium has studied the role of distributed power in low-voltage power 

grids and proposed the concept microgrid [4],[5].  

 Microgrid can be categorized as AC, DC and AC-DC microgrids [5], [6],[7]. In AC 

microgrids the parallel operation of DG inverters can be divided into wired and wireless parallel 

control. Wired parallel control include circular chain control (3C) [8], centralized control [9], and 

master slave control [10], among others. Wired parallel control strategy uses interconnected 

signal lines for communication between the DG inverters. However, too many communication 

signal lines leads to a complex structure of the microgrid and inhibits expansion. In order to 

solve the signal line problem of wired interconnection control, a wireless parallel control strategy 

mailto:joz@et.aau.dk
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based on active and reactive power droop control is proposed [11], [12]. Wireless control 

includes droop control [10], [12],[33] reverse droop control [14], hierarchical droop control [12], 

improved droop control [15], [16], [17] and virtual power droop control [18], among others. 

 Droop control in a microgrid has a broad application prospects, as it does not require 

physical communication links and easy to achieve plug and play operation [11]. The traditional 

P-f/Q-V droop control and P-V/Q-f droop control as the research background, the main research 

is summarized on the following aspects: Droop decoupling control strategy [12], droop 

coefficient self-tuning optimization algorithm [19], virtual impedance control [20], [21]. In an 

inductive line environment, droop control can achieve better results. But, mostly for microgrid 

voltage level of 10 kV the line impedance is resistive, thus affects the droop control 

performance. The use of traditional droop control method makes it difficult to achieve precise 

power sharing and circulation suppression [22]. A variety of improved droop control methods are 

proposed. In [23], [24] an improved droop control is proposed by designing control parameters, 

so that the inverter output impedance is always inductive. However, this method has a limited 

range of effective output impedance adjustment. In [25], by adding differential links in the 

traditional droop control equation, the power sharing of the parallel DG inverter is quickly 

stabilized. But this leads to harmonic amplification and output voltage distortion. Virtual 

impedance method [20], [21], [26] is adopted for parallel DG inverters to improve power sharing 

under different line conditions. However, virtual impedance does not completely eliminate the 

influence of line impedance and increases the voltage drop. In an actual microgrid system, 

differences in parameters and line impedance, makes active and reactive powers not completely 

decoupled, thus affecting the accuracy of the droop controllers.  

 In view of the aforesaid problem, by amplitude frequency characteristics analysis, 

different control parameters effects on the output impedance of DG inverters and appropriate 

control parameters are selected. In order to solve the parameters differences and uneven 

distribution of power between the parallel DG inverters in a microgrid, virtual resistors and 

inductors are added into the control loop of the droop controllers. The introduction of virtual 

resistors and inductors cause DG inverter output voltage to drop. In order to reinstate the effect, 

an improved P-f/Q-V and P-V/Q-f droop with secondary control is proposed. 

 The paper is organized as follows. In Section 2, power flow characteristics of droop 

control is presented for DG inverters. In Section 3, dual loop control parameters are altered using 

virtual resistors and inductors for improving power sharing between DG inverters and also 

secondary control is proposed to improve the voltage deviations. In Section 4, simulation results 

are presented. Finally, the concluding remarks are deliberated in Section 5. 
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2. Droop control basic principle 

2.1 Power flow characteristics between equivalent voltage sources 

 A simplified schematic of parallel DG inverters is shown in Fig.1. The sum of the output 

impedance of the inverter and the line impedance of DG inverter1 and DG inverter2 is given by 

 1 1 1 1 1 1 1Z r jx R jX ZLine Line       , 

 2 2 2 2 2 2 2Z r jx R jX ZLine Line       . 

where r1, r2 are the DG inverters equivalent output resistances; x1, x2 are the inverter equivalent 

output reactances; ,1 2R RLine Line  are the line resistances; ,1 2X XLine Line  are the line 

reactances; 0Vcom
 
is the ac bus voltage amplitude; ,1 2V V  are DG inverter output voltages; 

,1 2 
 
are the DG inverter output voltage phase angles; ,1 2   are the total impedance angles of 

DG inverters; ,1 2i io o  are the output currents of DG inverters; oi is the load current [27]. 

1 1V 

1 1r jx 1 1Line LineR jX

1 1Z 

2 2Line LineR jX 2 2r jx

2 2V 

2 2Z 

0comV 

oi

1oi 2oi

Equivalent 

circuit of DG 

inverter1

L
L

R
jX



Equivalent 

circuit of DG 

inverter2

 

Figure 1: DG Inverters equivalent circuit in autonomous mode. 

 The DG inverters output current and power is given by: 

 

*0
, (i 1, 2..... )i i com

i i i i i i i

i i

V V
i S V i P jQ n

Z






  
      


                                                (1) 
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where n is the number of DG inverters; iP  and iQ  are the active and reactive power output of the 

ith DG inverter respectively which are expressed as: 

  21
[( cos )cos sin sin ]i i com i com i i com i i

i

P VV V VV
Z

                                                          (2) 

 

21
[( cos )sin sin cos ]i i com i com i i com i i

i

Q VV V VV
Z

                                                           (3) 

 When the sum of output impedance and line impedance is purely inductive, 90i  , so 

the equations (2) and (3) are  simplified as: 

 

i com
i i

iLine

VV
P

X
                                                                                                                      (4) 

 

2

i com com
i

iLine

VV V
Q

X


                                                                                                                (5) 

 From equations (4) and (5), it is clear that the power angle i  determines the flow of 

active power, whereas, voltage amplitude comV  determines the flow of reactive power. Voltage 

phase angle i  and active power, voltage amplitude comV  and reactive power, have linear 

relationship. The P-f/Q-V droop control curve is shown in Fig. 2(a) and control equations are 

given by [10], [11], [27]: 

 
* *( )i i i i if f m P P                                                                                                            (6) 

 
* *( )i i i i iV V n Q Q                                                                                                            (7) 

where 
*

if and *

iV are the voltage amplitude and frequency of the DG inverters output; ,i im n  are 

the P-f/Q-V control coefficients;
*

iP and 
*

iQ are respectively the rated active and reactive power of 

the thi DG inverter output. 

 Similarly, when the sum of output impedance and line impedance is purely 

resistive, 0  , equations (2) and (3) are simplified and the P-V/Q-f droop control curve is as 

shown in Fig. 2(b). The control equations are given by [14], [29]: 

 
* *( )i i i i if f n Q Q                                                                                                            (8) 

 
* *( )i i i i iV V m P P                                                                                                             (9) 
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(a) P-f/Q-V Droop control curve. 
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(b) P-V/Q-f Droop control curve. 

max,iP and 
max,iQ : Maximum allowable active and reactive power of the DG inverter.  

max,if and 
max,iV : Maximum output frequency and output voltage amplitude of the DG inverter. 

min,if and 
min,iV : Minimum frequency and voltage amplitude allowed by the DG inverter. 

Figure 2: Droop control characteristics. 

2.2 Power distribution condition between DG inverters  

 When the parallel DG inverters is operated in isolated mode, the output frequency and 

voltage of each DG inverter is the same [30], [31]. The droop control method to achieve a 

reasonable distribution of the load power, needs to meet the following equations. 

 
* * * * * * * *

1 1 2 2 1 1 2 2 1 2 1 2, , ,m P m P n Q n Q f f V V                                                                        (10) 

 

1 2 1 2
1 2 1 2

1 2 1 2

, , ,Line Line Line LineX X X X
V V

m m n n
                                                                    (11) 
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* * * * * * * *

1 1 2 2 1 1 2 2 1 2 1 2, , ,n P n P m Q m Q f f V V                                                                        (12) 

 

1 2 1 2
1 2 1 2

1 2 1 2

, , ,Line Line Line LineR R R R
V V

n n m m
                                                                      (13) 

 Equations (10), (11), (12) and (13) show that, to realize the proportional sharing of active 

and reactive power of parallel DG inverters, it is necessary to satisfy the following conditions.  

1) Each DG inverter droop coefficients should be inversely proportional to the rated capacity. 

2) Each parallel DG inverter voltage and frequency should match to the rated value.  

3) The output voltage of each DG inverter should have same amplitude and phase.  

4) The line impedance at the output of each DG inverter is inversely proportional to droop 

coefficients [29], [31]. 

 In a microgrid system, the above is the condition of power sharing between DG inverters 

under the inductive and resistive line model. In addition, the output impedance of the inverter 

and line impedance to the load  are different, considering geographical location and other factors, 

with a certain degree of randomness, it is difficult to satisfy equations (10), (11), (12) and (13) 

and is difficult to realize the proportional power sharing between the DG inverters according to 

the P-f/Q-V, P-V/Q-f  droop control schemes. 

3. Microgrid droop control strategy 

 In a microgrid, a droop control is actually used to simulate the droop characteristics of the 

synchronous generator to adjust the voltage and frequency of the DG inverters output, so that the 

micro-grid can operate under different load requirements. As can be seen from Fig. 3, where L  is 

the filter inductor, C is the filter capacitor, r is the filter inductor equivalent resistance and ZLoad 

is the load impedance, the droop control model of microgrid can be divided into two parts: 

voltage and current loop control model and power droop control model. First, the output voltage 

and current of the micro-power supply are obtained by  sampling the DG inverter module. The 

output power of the micro-power supply is obtained by the power calculation unit and the low-

pass filter, and then calculated according to the active power droop controller and the reactive 

power droop controller respectively. The reference voltage values Vdref and Vqref is finally 

adjusted by the voltage PI control and idref and iqref are adjusted by the current P control to obtain 

controllable sinusoidal modulation signal m to the DG inverter. 
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
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Inverter
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Figure 3: Droop control block diagram. 

3.1 Voltage and current dual loop control of DG inverters 

 Voltage and current dual-loop control [21] is the main inverter control strategy as shown 

in Fig. 4, in which the current inner loop improves system stability, system dynamic response 

and damping properties. The inner current loop feedback is of two types, capacitor current mode 

[26], [31] and inductor current mode [30]. As compared to the inductor current mode feedback, 

the feedback capacitor current mode provides better noise immunity, but is unable to carry out 

inverter current limit protection. Research in [21] have shown that, for larger values of current 

controller proportional parameter piK , better dynamic response of the current loop is achieved. 

But, if piK  is too large, there is a deterioration in the system stability. On the other hand, the 

smaller values of voltage controller parameter pvK , the DG inverter output impedance is 

resistive. If pvK  takes larger values, the  DG inverter output impedance is inductive. Similarly, 

the selection of the integral parameter viK  has a significant effect on the characteristics of the 

inverter output impedance. In other words, the steady-state as well as the dynamic characteristics 
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of DG inverter output depends on the parameter design of the controller. When the control 

parameter is a fixed value, it is difficult to meet the microgrid island operation in adjusting the 

voltage amplitude and frequency, during the changes in power supply fluctuations. Therefore, it 

is necessary to control the use of reasonable structure and parameter tuning method to achieve 

stable control of microgrid in islanding mode. In Fig. 4-5, refV  is the voltage loop reference, 0V
 
is 

the inverter output voltage, PWMK
 
is the gain of the three phase full bridge circuit, ( )vG s

 
and 

( )iG s  respectively are the voltage loop and current loop controllers, 0i  is the output current of 

the inverter and ci  is the capacitive feedback signal.  




(s)vG (s)iG PWMK  





   

refV

oi

oV
Li

1

Ls r

1

Cs

 

Figure 4: Voltage and current dual loop control block diagram. 

piK PWMK  


 



 
oi

Li Ci1

Ls r

refi

oV

 

Figure 5: Current loop block diagram. 

 To make sure the inner current loop has a better tracking performance under different 

load conditions, the inner current loop cut off frequency is chosen as 
1

5
f fib s

 
[31]. The impact 

of the load current io  is neglected. Current loop closed loop block diagram is as shown in Fig. 5 

and the transfer function is given by: 

 

( ) ( )
G ( )

( ) (s) K

i s G s Kc i PWMsi
i s Ls r Gref i PWM

 
 

                                                                       (14) 

 From equation (14) the amplitude frequency characteristics of the transfer function is: 
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G ( )
2 2 2( )

K Kpi PWM
ji

L K K rpi PWM







 

                                                                       (15) 

 Current loop control parameter 2.5K pi   is obtained from the bode diagram as shown in 

Fig. 6. 

  

Figure 6:  Bode diagram of the current loop. 

 ( )iG s




refV 1

Cs
vi

pv

K
K

s


oV

 

Figure 7: Voltage loop block diagram. 

 In order to avoid mutual coupling on the voltage loop and current loop, the cut off 

frequency of the voltage loop should be less than half of the current loop bandwidth. Hence, 

voltage loop cutoff frequency is chosen as 800 Hz [31]. From the voltage loop closed loop block 

diagram as shown in the Fig. 7, the transfer function is obtained as: 

 

( ) ( )

( )

( ) ( )

KviK G spv i
sG sv KviCs K G spv i

s





 

                                                                                   (16) 

 In equation (16), at first, integral coefficient Kvi  is set to 0; the outer voltage cut-off 

frequency is set to 800 Hz; K pv  is obtained as 0.6. In order to ensure that the system bandwidth 
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is within the required range, the selected system bandwidth is fvb = 810 Hz, then Kvi =290 is 

obtained. Voltage loop bode diagram as shown in the Fig. 8. 

 

Figure 8: Bode diagram of the voltage loop. 

 The inverter output impedance transfer function is given by: 

 

2

1 2

3 2

3 4 5 6

( )o

A s A s
Z s

A s A s A s A




  
                                                                                        (17)

 
1 2 3 4

5 6

, , , ,

1, .

pi pwm pi pwm

pi pwm pv pi pwm vi

A L A r K K A LC A K K C rC

A K K K A K K K

     

  
                                                (18) 

 Due to the presence of the output filter inductor and inductive components of the device 

parameters, the equivalent output impedance of the inverter is generally considered inductive. 

But, equivalent output impedance of the closed loop of inverter has a relationship with control 

strategy adopted [22], [27] by adjusting the inverter control parameters. The equivalent output 

impedance of the DG inverters can be changed to resistive or inductive. 

 

 (a) Bode diagram of inverter output impedance with different Kpv. 
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(b) Bode diagram of inverter output impedance with different Kvi. 

 

(c) Bode diagram of inverter output impedance with different Kpi. 

Figure 9: Bode diagram of inverter output impedance with different parameters variation Kpv, Kvi and Kpi. 

 Fig. 9(a) shows that the voltage loop proportional factor has some influence on the DG 

inverter output impedance. When 0pvK  , the inverter output impedance at 50 Hz is more 

inductive. With the increasing pvK  value the DG inverter output impedance at 50 Hz is more 

resistive. 

 Fig. 9(b) shows that the voltage loop integral factor has some influence on the inverter 

output impedance. When viK =0, the inverter output impedance at 50 Hz is approximately more 

resistive, with increasing viK  the output impedance of the DG inverter at 50 Hz is more 

capacitive. 
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 Taking piK =0.1, 2, 20, 50 the DG inverter output impedance at 50 Hz is as shown in Fig. 

9(c). The current loop proportional coefficient has little effect on the output impedance nature of 

DG inverters.  

 Based on the PI control parameters obtained from the bode diagram in the Fig. 6 and 8, 

pvK =0.6, viK =290, piK =2.5. The output impedance of the DG inverters are calculated using 

equation (19). The output impedance angle at 50 Hz is 83 as shown in the Fig. 10. In ensuring 

the stability of the microgrid system, the DG inverters output impedance is approximated as 

inductive for P-f/Q-V droop control and resistive for the P-V/Q-f droop control. If the DG 

inverter closed loop output impedance design is reasonable, it can reduce the impact of line 

impedance imbalance. Different values of the system parameters of the DG inverters output 

impedance magnitude and angle has a direct impact on power sharing. To further reduce the 

effect of DG inverter output impedance and line impedance effect on the parallel DG inverters, 

virtual resistors and inductors are added to the control loop, so that DG inverter output 

impedance nature is changed to inductive for the P-f/Q-V droop control and resistive for  the P-

V/Q-f droop control.  

 

Figure 10:  Bode diagram of DG inverter output impedance. 

3.2  Virtual impedance design for DG inverters 

 Virtual impedance control has become a necessary condition for multi voltage source 

inverter operated in parallel for normal operation in the microgrid system [21], [26]. Equivalent 

output impedance of the DG inverters is affected by multiple factors, filter parameters, voltage 

and current control loop parameters, the differences of these factors led to inconsistencies of 

power sharing between the parallel DG inverters. Virtual impedance block diagram as shown in 

Fig. 11 and is given by [25], [29]. 

 *V V Z iref ref vir o                                                                                                         (19) 
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 *( ) ( ) [ ( ) ( ) Z ( ) ( )]V G s G s V G s G s s Z s io i v ref i v vir o o                                                    (20)  
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Figure 11: Virtual impedance control block diagram. 

 Virtual inductor is expressed as [16]: 

 

2

1 2

3 2

3 4 5 6

, ( )vir v o

B s B s
Z sL Z s

B s B s B s B


 

  
                                                                       (21) 

 

1
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pi pwm v pi pwm vi

pi pwm

pi pwm vi

pi pwm vi

B L L K K K

B r K K L K K K

B LC B K K C rc

B K K K

B K K K

 

  

  





                                                                                   (22) 

 

Figure 12: Bode diagram of inverter output impedance with virtual inductor. 
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 If the line impedance is inductive, virtual inductors are added the control loop of  the P-

f/Q-V droop control to improve the power decoupling effect. Impedance angle at 50 Hz is 88 as 

shown in the Fig. 12. The parallel inverter output impedance tends to more inductive, which has 

a major role in improving the power sharing. 

Virtual resistor is expressed as [29]: 

 

2

1 2 3

3 2

4 5 6 7

( ) , ( )vir v o

C s C s C
Z s R Z s

C s C s C s C

 
 

  
                                                                    (23) 

    
1 2 3 4

5 6 7

, , ,

, 1 ,

pi pwm pv v v pi pwm vi

pi pwm pi pwm vi pi pwm vi

C L C r K K K R C R K K K C LC

C rC K K C C K K K C K K K

    

    
                                      (24) 

 

Figure 13: Bode diagram of inverter output impedance with virtual resistor. 

 If the line impedance is resistive, virtual resistor is added the control loop of P-V/Q-f 

droop control to improve the power decoupling effect. Impedance angle at 50 Hz is 1.9  as 

shown in the Fig. 13. The parallel inverter output impedance tend to be more resistive, which has 

a major role in improving the power sharing. 

3.3 Droop controllers with frequency and voltage restoration secondary control 

 In the island type microgrids with traditional P-f/Q-V andP-V/Q-f droop control, when the 

load power fluctuates, the output voltage and frequency of the inverter will have a large 

deviation. Virtual impedance control provides decoupling of active and reactive power for 

parallel DG inverters, but the virtual impedance method inevitably leads to a voltage drop in the 

microgrid system. In order to ensure the quality of the voltage and high precision distribution of 
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active and reactive power, the introduction of voltage, frequency and active power secondary 

adjustment, so that the voltage and frequency to maintain the rated output, active and  reactive 

power reasonable distribution. Each inverter unit includes reverse droop control and secondary 

adjustment, without the need for a central controller, enhancing system stability. When the load 

active power increase to cause the voltage amplitude drop,  through the voltage secondary 

adjustment control to restore the voltage to the rated value. When the load reactive power 

increase to cause the frequency to decrease, the frequency is restored to the rated value by the 

frequency adjustment.  

Voltage amplitude and frequency variations of DG inverters is improved by proposing secondary 

control for P-f/Q-V and P-V/Q-f droop control as shown in the Fig.14-15. The introduction of the 

feedback link to achieve the inverter output frequency and voltage amplitude compensation, so 

as to improve the system adaptability and stability [17]. The expression for P-f/Q-V droop 

control is given by: 

 

*
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i
i i
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                                                                                  (25) 
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 The expression for P-V/Q-f droop control is given by: 
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Figure 14: Block diagram of secondary control with P-f/Q-V droop control. 
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Figure 15: Block diagram of secondary control with P-V/Q-f droop control. 

 In equations (6), (7), (8) and (9), the frequency difference f fi  and the voltage 

difference V Vo
 
as the feedback signal with PI control to modify the  P-f/Q-V and P-V/Q-f 

droop coefficients of the feedback line to form a improved droop control method. Adjusting the 

proportional coefficient ,K Kap bp  and the integral coefficient ,K Kia ib  of the PI control to 
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compensate the influence of the output voltage variation of the parallel DG inverters in 

microgrid. The coefficients 
*mi  and *ni  are the amplification correction droop coefficients, 

mainly to amplify the feedback part of the voltage and frequency compensation, because the 

original feedback coefficient mi  and ni  are too small. 

4. Simulation Results 

 In this section, two simulation models of distributed generation inverters connected in 

parallel are built to verify the proposed P-f/Q-V and P-V/Q-f  improved droop control strategy 

with resistive and inductive line impedance to ensure the rational allocation of power between 

parallel inverters. The simulation parameters are shown in the Table 1 ( Refer Appendix A). 

Case 1:Power sharing analysis of P-f/Q-V,P-V/Q-f  droop control under resistive line impedance. 

 

Figure 16: Active power sharing using P-f/Q-V droop control under resistive line impedance. 

 

Figure 17: Reactive power sharing using P-f/Q-V droop control under resistive line impedance. 
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Figure 18: Active power sharing using P-V/Q-f droop control with virtual resistor under resistive line impedance. 

 

Figure 19: Reactive power sharing using P-V/Q-f droop control with virtual resistor under resistive line impedance. 

 

Figure 20: Parallel inverter output frequency using P-V/Q-f droop control with virtual resistor under resistive line 

impedance.  
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Figure 21: Parallel inverter output voltage using P-V/Q-f droop control with virtual resistor under resistive line 

impedance. 

 Power sharing of parallel inverters is investigated with common load of Pload = 1000 W, 

Qload = 30 VAR and at 0.5 s sudden local load value of Pload = 900 W, Qload = 30 VAR is added to 

verify the dynamic response and line impedance of 1 1R jXLine Line
 

= 0.5+j0.001 

Ω, 2 2R jXLine Line
 
= 0.6+j0.002 Ω. Initially P-f/Q-V droop control is applied to the parallel 

DG inverters and output power of parallel DG inverters does not reach to a given proportional 

load sharing, because of the poor decoupling of power as shown in the Fig. 16-17. When the line 

impedance is resistive P-f/Q-V droop control cannot realize the proportional load sharing of 

active and reactive powers. Now with the same parameters, P-V/Q-f droop control based on 

virtual resistors can reduce the influence of the line impedance difference on the parallel 

inverters by setting the total output impedance of the DG inverters to be resistive, which 

improves decoupling of power and realize the proportional load sharing P1=491 W, P2=489 W, 

Q1=25 VAR, Q2=23 VAR and at load change at 0.5 s, P1=932 W, P2=928 W, Q1=55 VAR, 

Q2=52 VAR  as shown in the Fig. 18-19 and frequency variation of DG inverters is within the 

range of 49.97 Hz to 49.98 Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 20. 

Voltage variation of DG inverters is V1=310.5 V, V2=309.5 V as shown in the Fig. 21. Thus, the 

P-V/Q-f droop control with virtual resistors ensures that the voltage change is not greater than 

5% and the frequency change is not greater than 1%. This establishes the fact that better 

accuracy and effectiveness is achieved in the microgrid system.  

Case 2: Power sharing analysis of Secondary control with P-V/Q-f  droop control under resistive 

line impedance 
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Figure 22: Active power sharing using secondary control  with virtual resistor under resistive line impedance. 

 
Figure 23: Reactive power sharing using secondary control with virtual resistor under resistive line impedance. 

 

Figure 24: Parallel inverter output frequency using  secondary control with virtual resistor under resistive line 

impedance.  
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Figure 25: Parallel inverter output voltage using  secondary control with virtual resistor under resistive line 

impedance. 

Power sharing of parallel inverters is investigated with common load of Pload = 1000 W, Qload = 

30 VAR and at 0.5 s sudden local load value of Pload = 900 W, Qload = 30 VAR is added to verify 

the dynamic response and line impedance of 1 1R jXLine Line
 

= 0.5+j0.001 

Ω, 2 2R jXLine Line
 
= 0.6+j0.002 Ω. P-V/Q-f droop control based on virtual resistors with 

secondary control can reduce the influence of the line impedance difference on the parallel 

inverters by setting the total output impedance of the DG inverters to be resistive, which 

improves decoupling of power and improves the proportional load sharing P1=497 W, P2=496 

W, Q1=28 VAR, Q2=27 VAR and at load change at 0.5 s, P1=943 W, P2=942 W, Q1=56 VAR, 

Q2=54 VAR  as shown in the Fig. 22-23 and frequency variation of DG inverters is within the 

range of 49.99 Hz to 50.001 Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 24. 

Voltage variation of DG inverters is V1=311.1 V, V2=310.9 V as shown in the Fig. 25. Thus, the 

proposed secondary control for P-V/Q-f  droop control, ensures voltage amplitude and frequency 

are restored to the rated value of 50 Hz and 311 V. 

Case 3:Power sharing analysis of P-f/Q-V,P-V/Q-f  droop control under inductive line 

impedance. 
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Figure 26: Active power sharing using  P-V/Q-f droop control under inductive line impedance. 

 

Figure 27: Reactive power sharing using  P-V/Q-f droop control under inductive line impedance. 

 

Figure 28: Active power sharing using P-f/Q-V droop control with virtual inductor under inductive line impedance. 
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Figure 29: Reactive power sharing using  P-f/Q-V droop control with virtual inductor under inductive line 

impedance. 

 

Figure 30: Parallel inverter output frequency using P-f/Q-V droop control with virtual inductor under inductive line 

impedance. 
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Figure 31: Parallel inverter output voltage using P-f/Q-V droop control with virtual inductor under inductive line 

impedance. 

 Power sharing of parallel inverters is investigated with  common load of Pload = 1200 W, 

Qload = 25 VAR and at 0.5 s sudden local load value of Pload = 600 W, Qload = 25 VAR is added to 

verify the dynamic response and line impedance of 1 1R jXLine Line
 

= 0.001+j0.2 Ω,                

2 2R jXLine Line
 
= 0.002+j0.3 Ω. Initially P-V/Q-f droop control is applied to the parallel DG 

inverters and output power of parallel DG inverters does not reach to a given proportional load 

sharing, because of the poor decoupling of power as shown in the Fig. 26-27. When the line 

impedance is inductive P-V/Q-f droop control cannot realize the proportional load sharing of 

active and reactive power. Now with the same parameters P-f/Q-V droop control with virtual 

inductors can reduce the influence of line impedance difference on the parallel DG inverters by 

setting the total output impedance of the DG inverters to be inductive, which improves 

decoupling of power and realize the proportional load sharing P1=591 W, P2=589 W, 

Q1=21VAR, Q2=19 VAR and at load change at 0.5 s, P1=882 W, P2=878 W, Q1=42 VAR, 

Q2=38 VAR  as shown in the Fig. 28-29 and frequency variation of DG inverters is within the 

range of 49.99 Hz to 50.01 Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 30. 

Voltage variation of DG inverters is V1=310.6 V, V2=309.6 V as shown in the Fig. 31. Thus, P-

V/Q-f droop control with virtual inductors ensures that the voltage change is not greater than 5%, 

the frequency change is not greater than 1% and established a better accuracy and effectiveness 

in the microgrid system. 

Case 4:Power sharing analysis of Secondary control with P-f/Q-V droop control under inductive 

line impedance. 
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 Figure 32: Active power sharing using secondary control with virtual inductor under inductive line impedance. 

 
Figure 33: Reactive power sharing using  secondary control with virtual inductor under inductive line impedance. 

 
Figure 34: Parallel inverter output frequency using  secondary control with virtual inductor under inductive line 

impedance. 
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Figure 35: Parallel inverter output voltage using secondary control with virtual inductor under inductive line 

impedance. 

 Power sharing of parallel inverters is investigated with  common load of Pload = 1200 W, 

Qload = 25 VAR and at 0.5 s sudden local load value of Pload = 600 W, Qload = 25 VAR is added to 

verify the dynamic response and line impedance of 1 1R jXLine Line
 

= 0.001+j0.2 Ω,                

2 2R jXLine Line
 

= 0.002+j0.3 Ω. P-f/Q-V droop control based on virtual inductors with 

secondary control can reduce the influence of line impedance difference on the parallel DG 

inverters by setting the total output impedance of the DG inverters to be inductive, which 

improves decoupling of power and improves the proportional load sharing P1=597 W, P2=596 

W, Q1=23 VAR, Q2=22 VAR and at load change at 0.5 s, P1=894 W, P2=892 W, Q1=46 VAR, 

Q2=44 VAR  as shown in the Fig. 32-33 and frequency variation of DG inverters is within the 

range of 49.99 Hz to 50.01 Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 34. 

Voltage variation of DG inverters is V1=311.1 V, V2=310.9 V as shown in the Fig. 35. Thus, the 

proposed secondary control for P-f/Q-V droop control, ensures voltage amplitude and frequency 

are restored to the rated value of 50 Hz and 311 V. 

Case 5: Power sharing analysis of  Secondary control with P-V/Q-f  droop control under resistive 

line impedance using different ratings DG inverters. 
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Figure 36: Active power sharing using secondary control with different DG ratings under resistive line impedance. 

 
Figure 37: Reactive power sharing using secondary control with different DG ratings under resistive line impedance. 

  

Figure 38: Parallel inverter output frequency using secondary control with different DG ratings under resistive line 

impedance. 
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Figure 39: Parallel inverter output voltage using secondary control with different DG ratings under resistive line 

impedance. 

Power sharing of parallel inverters is investigated with common load of Pload = 1400 W, Qload = 

80 VAR and at 0.5 s sudden local load value of Pload = 600 W, Qload = 80 VAR is added to verify 

the dynamic response and line impedance of 1 1R jXLine Line =0.5+j0.001 

Ω, 2 2R jXLine Line
 
= 0.6+j0.002 Ω. P-V/Q-f droop control based on virtual resistors with 

secondary control can reduce the influence of the line impedance difference on the parallel 

inverters by setting the total output impedance of the DG inverters to be resistive, which 

improves decoupling of power and improves the proportional load sharing P1=697 W, P2=696 

W, Q1=38 VAR, Q2=37 VAR and at load change at 0.5 s, P1=994 W, P2=992 W, Q1=76 VAR, 

Q2=74 VAR as shown in the Fig. 36-37 and frequency variation of DG inverters is within the 

range of 49.98 Hz to 50 Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 38. 

Voltage variation of DG inverters is V1=311 V, V2=310.75 V as shown in the Fig. 39. Thus, the 

proposed secondary control for P-V/Q-f  droop control with different DG ratings under resistive 

line impedance, ensures voltage amplitude and frequency are restored to the rated value of 50 Hz 

and 311 V. 

Case 6: Power sharing analysis of  Secondary control with P-f/Q-V droop control under inductive 

line impedance using different rating DG inverters. 
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Figure 38: Active power sharing using secondary control with different DG ratings under inductive line impedance. 

 
Figure 39: Reactive power sharing using secondary control with different DG ratings under inductive line 

impedance. 

 

Figure 40: Parallel inverter output frequency using secondary control with different DG ratings under inductive line 

impedance. 
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 Figure 41: Parallel inverter output voltage using secondary control with different DG ratings under inductive line 

impedance. 

Power sharing of parallel inverters is investigated with  common load of Pload = 1300 W, Qload = 

60VAR and at 0.5 s sudden local load value of Pload = 600 W, Qload = 60VAR is added to verify 

the dynamic response and line impedance of 1 1R jXLine Line
 

= 0.001+j0.2 Ω,                

2 2R jXLine Line
 

= 0.002+j0.3 Ω. P-f/Q-V droop control based on virtual inductors with 

secondary control can reduce the influence of line impedance difference on the parallel DG 

inverters by setting the total output impedance of the DG inverters to be inductive, which 

improves decoupling of power and improves the proportional load sharing P1=647W, P2=646W, 

Q1=28VAR, Q2=27VAR and at load change at 0.5 s, P1=944W, P2=942W, Q1=56VAR, Q2=54 

VAR  as shown in the Fig. 38-39 and frequency variation of DG inverters is within the range of 

49.99Hz to 50Hz, the maximum fluctuation of 0.004 Hz as shown in the Fig. 40. Voltage 

variation of DG inverters is V1=311.1 V, V2=310.9 V as shown in the Fig. 41. Thus, the proposed 

secondary control for P-f/Q-V droop control with different DG ratings under resistive line 

impedance, ensures voltage amplitude and frequency are restored to the rated value of 50Hz and 

311V. 
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Appendix A 

 Table 1: Parameters of Parallel DG inverters(3KVA Rating) 

Symbol Value Description 

fs 10 kHz Inverter switching frequency. 

L 4 mH Filter inductor. 

C 10 µF Filter capacitor. 

r 0.1 Ω Filter inductor equivalent resistance. 

Vdc 700 V DC link voltage. 

f 50 Hz Fundamental frequency. 

Rv 1 Ω Virtual resistors. 

Lv 5 mH Virtual inductors. 

m1,m2 

n1,n2
 

0.000025 rad/s/W,  

0.0014 V/VAR 

P-f/Q-V droop coefficients. 

n1,n2 

m1,m2 

0.0014 V/W,  

0.000025 rads/VAR 

P-V/Q-f droop coefficients. 

* *,1 2m m  
 

0.025 rad/s/W, 

 

Improved P-f/Q-V droop coefficients. 

* *,1 2n n  0.14 V/W, 

 

Improved P-V/Q-f  droop coefficients. 

Vo 311 V Output voltage of inverter(microgrid system voltage). 

Kap, Kai 0.8, 20 PI control parameter for improved P-f/Q-V droop control. 

Kbp, Kbi 0.8, 20 PI control parameter for improved P-V/Q-f  droop control. 

 

 Table 2: Electrical parameters of different lines 

Type of line R(Ω/Km) X(Ω/Km) R/X 

Low voltage line 0.642 0.083 7.70 

Medium voltage line 0.161 0.190 0.85 

High voltage line 0.06 0.191 0.31 
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Table 3: Parameters of Parallel DG inverters(3KVA, 9KVA Rating) 

Symbol Value Description 

fs 10 kHz Inverter switching frequency. 

L 7mH Filter inductor. 

C 20 µF Filter capacitor. 

r 0.2 Ω Filter inductor equivalent resistance. 

Vdc 700 V DC link voltage. 

f 50 Hz Fundamental frequency. 

Rv 2 Ω Virtual resistors. 

Lv 6 mH Virtual inductors. 

m1 

m2 

n1 

n2 

0.000025 rad/s/W,  

0.0005 rad/s/W, 

0.0014V/VAR, 

0.002 V/VAR. 

P-f/Q-V droop coefficients. 

n1, 
n2 

m1 

m2 

0.0014 V/W,  

0.002 V/VAR, 

0.000025 rad/s/VAR, 

0.0005 rad/s/W. 

P-V/Q-f droop coefficients. 

* *,1 2m m  
 

0.025 rad/s/W,0.05rad/s/W. 

 

Improved P-f/Q-V droop coefficients. 

* *,1 2n n  0.14 V/W,0.2 V/W 

 

Improved P-V/Q-f  droop coefficients. 

Vo 311 V Output voltage of inverter(microgrid system voltage). 

Kap, Kai 1.2, 25 PI control parameter for improved P-f/Q-V droop control. 

Kbp, Kbi 1.4, 28 PI control parameter for improved P-V/Q-f  droop control. 

 

5. Conclusion 

 In this paper, analysis of improved P-f/Q-V and P-V/Q-f droop control with secondary 

control for DG parallel inverters in microgrid is proposed considering line and output impedance. 

Proportional integral controller is adopted to ensure accurate tracking of the output voltage of the 

inverter to the reference  value and the influence of the controller parameters on the voltage 

closed loop transfer function and the equivalent output impedance of the inverter is analyzed. In 

order to match the total output impedance of the inverter and line impedance in parallel, the P-

V/Q-f and P-f/Q-V droop control strategy based on the inductive and resistive virtual impedance 

is adopted to improve the total output impedance of the inverter through the virtual impedance. 

The proposed P-f/Q-V and P-V/Q-f droop control ,adaptively compensates the virtual resistor and 

inductor voltage drop to improve output voltage amplitude accuracy to the reference value. 

Simulation results show the rationality and effectiveness of the proposed improved control 

method. 
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