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Enhancement and Noise Statistics Estimation for
Non-Stationary Voiced Speech

Sidsel Marie Nørholm, Jesper Rindom Jensen, Member, IEEE,
and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—In this paper, single channel speech enhancement
in the time domain is considered. We address the problem of
modelling non-stationary speech by describing the voiced speech
parts by a harmonic linear chirp model instead of using the
traditional harmonic model. This means that the speech signal
is not assumed stationary, instead the fundamental frequency
can vary linearly within each frame. The linearly constrained
minimum variance (LCMV) filter and the amplitude and phase
estimation (APES) filter are derived in this framework and
compared to the harmonic versions of the same filters. It is shown
through simulations on synthetic and speech signals, that the
chirp versions of the filters perform better than their harmonic
counterparts in terms of output signal-to-noise ratio (SNR) and
signal reduction factor. For synthetic signals, the output SNR for
the harmonic chirp APES based filter is increased 3 dB compared
to the harmonic APES based filter at an input SNR of 10 dB,
and at the same time the signal reduction factor is decreased.
For speech signals, the increase is 1.5 dB along with a decrease
in the signal reduction factor of 0.7. As an implicit part of the
APES filter, a noise covariance matrix estimate is obtained. We
suggest using this estimate in combination with other filters such
as the Wiener filter. The performance of the Wiener filter and
LCMV filter are compared using the APES noise covariance
matrix estimate and a power spectral density (PSD) based noise
covariance matrix estimate. It is shown that the APES covariance
matrix works well in combination with the Wiener filter, and the
PSD based covariance matrix works well in combination with
the LCMV filter.

Index Terms—Speech enhancement, chirp model, harmonic
signal model, non-stationary speech.

I. INTRODUCTION

SPEECH enhancement has many applications as in, e.g.,
mobile phones and hearing aids. Often, the speech en-

hancement is carried out in a transformed domain, a common
one being the frequency domain. Here, the methods based
on computational auditory scene analysis (CASA) [2], [3],
spectral subtraction [4] and Wiener filtering [5] are well
known methods. The CASA methods are based on feature
extraction of the speech signal whereas spectral subtraction
and Wiener filtering require an estimate of the power spectral
density (PSD) of the noise. The PSD can be estimated in
different ways [6]–[8], but common to these methods is that
they primarily rely on periods without speech to update the
noise statistics. In periods of speech, the PSD is mostly
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given by the previous estimate of the PSD. This update
pattern makes the PSD estimates very vulnerable to non-
stationary noise. Furthermore, in order to make enhancement
in the frequency domain, the data needs to be transformed
by use of the Fourier transform. This transform assumes that
the signals are stationary within the analysis window which
for speech signals is often between 20 ms and 30 ms. It
is, however, well known that this assumption of stationary
speech does not hold [9], [10], as, e.g., the fundamental
frequency and formants vary continuously over time in periods
of voiced speech, making the speech signal non-stationary.
One example of this is the diphthong where one vowel is
followed directly by another with a smooth transition. In [11],
[12], it is suggested replacing the standard Fourier transform
with a fan-chirp transform in the analysis of non-stationary
harmonic signals. The voiced speech parts of a speech signal
are often described by a harmonic model, and since voiced
speech is the main constituent of speech, it makes good sense
to use this transform on speech signals. The voiced speech
can also easily be separated from the unvoiced speech by
use of voiced/unvoiced detectors [13], [14]. The assumption
behind the fan-chirp transform is that the harmonic frequencies
of the signal vary linearly over time, and it is shown that
spectra obtained using the fan-chirp transform have much more
distinct peaks at the positions of the harmonic frequencies.
Alternatively, the enhancement can be done directly in the time
domain where, e.g., the Wiener filter has also been defined
[15]. Most time domain filters also depend on noise statistics
in the form of a covariance matrix. These are often obtained
by averaging over a small frame of the observed signal, and,
therefore, the signal in these frames is also assumed stationary.
Also, a common way to filter speech in the time domain is by
describing the voiced speech parts by a harmonic model [16]–
[18]. The signal based on this model is composed of a set of
sinusoids where the frequency of each sinusoid is given by an
integer multiple of a fundamental frequency. The fundamental
frequency in this model is constant within a frame, and so the
voiced speech is assumed stationary. In [17], it is proposed
estimating the noise by subtracting an estimate of the desired
signal based on the harmonic model, and, from this, make a
noise covariance matrix estimate. In doing so, the observed
signal only needs to be stationary within the frame of 20 to
30 ms when the noise statistics are estimated and not from
one speech free period to the next, as was mostly the case
for the PSD. The non-stationarity of speech is considered in
[19]–[21] in relation to modelling and parameter estimation. In
these papers, a modified version of the harmonic model is used
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where a chirp parameter is introduced to allow the frequency
of the harmonics to change linearly within each frame. In
[19], the first model introduced to describe the speech signal is
very flexible, but it is approximated with a Taylor expansion
that leads to bigger and bigger deviations from the original
model when the harmonic number increases, as mentioned in
the paper. In [20], [21], a harmonic chirp model is used to
describe the voiced speech, and the parameters of the model
are estimated based on maximum likelihood estimation, but
using different ways to avoid making a two dimensional search
for the fundamental frequency and chirp rate.

In this work we want to explore if there is a benefit of
taking the non-stationarity of speech into account when speech
enhancement is considered. Therefore, we investigate the har-
monic chirp model further in relation to speech enhancement.
The linearly constrained minimum variance (LCMV) and the
amplitude and phase estimation (APES) filters have previously
been derived under the harmonic framework [18], [22], [23].
One objective of this work is to increase the performance
of these filters by deriving them according to the harmonic
chirp model. Both LCMV and APES filter have the goal
of minimising the output noise power from the filter under
the constraint that the desired signal is passed undistorted,
or equivalently, when the constraint is fulfilled, to maximise
the output signal-to-noise ratio (SNR). Therefore, we evaluate
the performance of the filters by use of the output SNR and
the signal reduction factor which measures the distortion of
the desired signal introduced by the filters. Another objective
is to investigate the noise covariance matrix that is obtained
implicitly when the APES based filter is made in relation
to other filters as, e.g., the Wiener filter. The noise covari-
ance matrix estimate is made under the assumption of non-
stationary speech when the harmonic chirp model is used.
It is generated from the covariance matrix of the observed
signal by subtracting the part that conforms to the harmonic
chirp model. We propose using this estimate in combination
with other filters as well and compare the performance of the
Wiener filter using the APES noise covariance matrix to the
chirp APES based filter. Alternatively, we suggest estimating
the noise covariance matrix based on the earlier mentioned
state of the art PSD estimates [7], [8] since more work has
been put into noise PSD estimates than estimation of time
domain noise statistics. The PSD is related through the Fourier
transform to the autocorrelation and, thereby, to the covariance
matrix as well.

In Section II, the harmonic chirp model is introduced. In
Section III, the LCMV and APES based filters for harmonic
chirp signals are derived. The Wiener filter and a family of
trade-off filters are then introduced. In Section IV, the estima-
tion of covariance matrices are discussed and suggestions on
how to do it is given. In Section V, the performance of the
LCMV and APES filters are considered through derivations of
the used performance measures. In Section VI, experimental
results on synthetic and real speech signals are shown and
discussed, and the presented work is concluded in Section VII.

II. FRAMEWORK

We are here considering the problem of recovering a desired
signal, s(n), from an observed signal, x(n), with the desired
signal buried in additive noise, i.e.,

x(n) = s(n) + v(n), (1)

for discrete time indices n = 0, ..., N − 1. The desired signal
and noise are assumed to be zero mean signals and mutually
uncorrelated. Further, we assume that the desired signal is
quasi periodic which is a reasonable assumption for voiced
speech. Often, voiced speech is described by a harmonic model
[18], [24], [25], but here we are using a harmonic chirp model
which makes the model capable of handling non-stationary
speech.

The signal is built up by a set of harmonically related
sinusoids as in the normal harmonic model where the sinusoid
with the lowest frequency is the fundamental and the other
sinusoids have frequencies given by an integer multiple of
the fundamental. In the harmonic model, the speech signal
is assumed stationary in short segments which is rarely the
case. Instead the fundamental frequency is varying slowly over
time which can be modelled by using a harmonic linear chirp
model. In a linear chirp signal the instantaneous frequency of
the l’th harmonic, ωl(n), is not stationary but varies linearly
with time,

ωl(n) = l(ω0 + kn), (2)

where ω0 = f0/fs2π, with fs the sampling frequency, is the
normalised fundamental frequency and k is the fundamental
chirp rate. The instantaneous phase, θl(n), of the sinusoids are
given by the integral of the instantaneous frequency as

θl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (3)

and, thereby, this leads to the harmonic chirp model for a
voiced speech signal, s(n):

s(n) =

L∑
l=1

Al cos (θl(n)) (4)

=

L∑
l=1

Al cos

(
l

(
ω0n+

k

2
n2
)
+ φl

)
. (5)

where L is the number of harmonics, Al > 0 is the amplitude
and φl is the initial phase of the l’th harmonic, respectively.
A special case of the harmonic chirp model for k = 0 is then
the traditional harmonic model:

s(n) =

L∑
l=1

Al cos (lω0n+ φl) (6)

In the speech enhancement process later, it is instructive to
make the relationship between the time dependent part of the
instantaneous phase, l(ω0n+k/2n

2), and the initial phase, φl
multiplicative instead of additive. This either leads to the real
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signal model [16]:

s(n) =

L∑
l=1

a cos

(
l

(
ω0n+

k

2
n2
))

−b sin
(
l

(
ω0n+

k

2
n2
))

, (7)

where a = Al cos(φl) and b = Al sin(φl), or, by using Eulers
formula, to the complex signal model:

s(n) =

L∑
l=1

αle
jl(ω0n+k/2n

2) + α∗l e
−jl(ω0n+k/2n

2)

=

L∑
l=1

αlz
l(n) + α∗l z

−l(n), (8)

where

z(n) = e−j(ω0n+k/2n
2) (9)

and αl = Al

2 e
jφ. Since (7) and (8) are two ways of describing

the same signal, it is possible to design optimal filters based
on both, but the complex model in (8) gives a more intuitive
and simple notation, and, therefore, we will use this model in
the following instead of the real model in (7) [16].

Defining a subvector of samples

s(n) = [s(n) s(n− 1) . . . s(n−M + 1)]T (10)

where M ≤ N and (·)T denotes the transpose, the signal
model can be written as

s(n) = Za, (11)

where Z is a matrix constructed from a set of L modified
Fourier vectors matching the harmonics of the signal,

Z = [z(1) z(−1) z(2) z(−2) . . . z(L) z(−L)], (12)

with

z(l) =


e−jl(ω0n+k/2n

2)

e−jl(ω0(n+1)+k/2(n+1)2)

...
e−jl(ω0(n+M−1)+k/2(n+M−1)2)

 =


z(n)l

z(n+ 1)l

...
z(n+M − 1)l

 .
(13)

The vector a contains the complex amplitudes of the harmon-
ics, a = [α1 α

∗
1 α2 α

∗
2 . . . αL α

∗
L]
T , where {·}∗ denotes the

complex conjugate.
The observed signal vector, x(n), is then given by

x(n) = s(n) + v(n), (14)

where x(n) and v(n) are defined in a similar way to s(n) in
(10). Due to the assumption of zero mean uncorrelated signals,
the variance of the observed signal is given by the sum of the
variances of the desired signal and noise, σ2

x = σ2
s+σ

2
v , where

the variance of a signal g(n) is defined by σ2
g = E{g2(n)}

with E{·} denoting statistical expectation. The level of the
desired signal relative to the noise in the observed signal is
described by the input signal-to-noise ratio (SNR):

iSNR =
σ2
s

σ2
v

. (15)

The objective is then to recover the desired signal in the best
possible way from the observed signal. This can be done by
filtering x(n) with a filter h = [h(0) h(1) . . . h(M − 1)]T ,
where M ≤ N is the filter length and {·}T denotes the
transpose. However, because both the observed signal and
the filter are real, multiplying the observed signal with the
Hermitian transposed, {·}H , filter gives the same result as
multiplying with the transposed filter. Due to the choice of
a complex representation of the real signal, the Hermitian
notation is used throughout the paper since this gives more
intuitive interpretations of some intermediate variables such
as covariance matrices. That is,

ŝ(n) = hHx(n) = hHs(n) + hHv(n), (16)

gives an estimate, ŝ(n), of the desired signal, s(n). The
variance of the estimate is then σ2

ŝ = σ2
x,nr = σ2

s,nr + σ2
v,nr,

where σ2
x,nr is the variance of the observed signal after noise

reduction, i.e.,

σ2
x,nr = E{(hHx(n))2} = hHRxh, (17)

with Rx being the covariance matrix of the observed signal
defined as:

Rx = E{x(n)xH(n)}. (18)

Similar definitions of the variance after noise reduction and
the covariance matrix hold for the desired signal and the noise
signal. Further, using the signal model in (11), the covariance
matrix of the desired signal can be expressed as

Rs = E{s(n)sH(n)} (19)

= E
{
(Za) (Za)

H
}

(20)

= ZPZH , (21)

where

P = E{aaH}. (22)

Here, P is the covariance matrix of the amplitudes. If the
phases are independent and uniformly distributed, it reduces
to a diagonal matrix with the powers of the harmonics on the
diagonal.

If s(n) and v(n) are uncorrelated, Rx is given by the sum
of the covariance matrix of the desired signal, Rs, and the
covariance matrix of the noise, Rv ,

Rx = Rs +Rv. (23)

Like the input SNR, the output SNR is the ratio of the desired
signal to noise but now after noise reduction

oSNR(h) =
σ2
s,nr

σ2
v,nr

(24)

=
hHRsh

hHRvh
. (25)

It is desirable to have as high an output SNR as possible, but
if the filter distorts the desired signal along with removing
the noise, it might be more beneficial to make a compromise
between noise reduction and signal distortion. The signal
distortion can be described by the signal reduction factor
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which is the ratio between the variance of the desired signal
before and after noise reduction:

ξsr(h) =
σ2
s

σ2
s,nr

(26)

=
σ2
s

hHRsh
. (27)

A distortionless filter will give a signal reduction factor of one,
even though a filter can introduce distortion in sub-bands and
still have a signal reduction factor of one.

III. FILTERS

A. Traditional filters

A set of different filters can be defined by looking at the
error, e(n), between the desired signal, s(n), and the estimate
of the desired signal, ŝ(n),

e(n) = s(n)− ŝ(n) = s(n)− hHx(n)

= s(n)− hHs(n)− hHv(n). (28)

From this, the minimum mean squared error (MMSE) criterion
can be defined

J(h) = E{e(n)2} = E{(s(n)− hHx(n))2} (29)

= E
{ (
s(n)− hHs(n)− hHv(n)

)2 }
(30)

Minimisation of J(h) leads to the classical Wiener filter [15]:

hw = R−1x RsiM , (31)

where iM is the first column of the M ×M identity matrix.
Using (23), the Wiener filter can be rewritten as

hw = R−1x (Rx −Rv)iM , (32)

which is often convenient when the covariance matrices are to
be estimated.

More flexible filters can be obtained if the error signal, e(n),
is seen as composed of two parts, one expressing the signal
distortion, es(n), the other the amount of residual noise, ev(n),

es(n) = s(n)− hHs(n), (33)

ev(n) = hHv(n), (34)

with the corresponding minimum mean squared errors (MSEs)
being

Js(h) = E{es(n)2} = E{(s(n)− hHs(n))2} (35)

Jv(h) = E{ev(n)2} = E{(hHv(n))2}. (36)

These error measures make it possible to, e.g., minimise the
noise power output of the filter while constraining the amount
of signal distortion the filter introduces [26], i.e.,

min
h
Jv(h) s.t. Js(h) = βσ2

s , (37)

where β is a tuning parameter. Solving for the filter by use of
the Lagrange multiplier λ gives:

hλ =

(
Rs +

1

λ
Rv

)−1
RsiM , (38)

where λ > 0 satisfies Js(h) = βσ2
s . When λ→∞, h→ iM

which gives β → 0 and ŝ(n) = x(n). When λ = 1 the filter
reduces to the Wiener filter and λ→ 0⇒ β → 1 which means
that the difference in variance between the desired signal and
the estimated signal is equal to the variance of the desired
signal and so a large amount of signal distortion is introduced.

B. Parametric filters

The filter in (38) has no control over the distortion of the
single harmonics in a voiced speech signal. This is, however,
possible by minimisation of Jv(h) under the constraint that
the desired signal is passed undistorted, i.e.,

min
h
Jv(h) s.t. s(n)− hHs(n) = 0. (39)

Expressing the signal using the harmonic chirp model in (11),
the restriction can be rewritten as

s(n)− hHs(n) = 0⇔ (40)

iTMZa− hHZa = 0⇔ (41)

iTMZ = hHZ⇔ (42)

bH = hHZ, (43)

where bH = iTMZ is an 1×L vector containing the constraints
of each harmonic. Using the relation in (17), (39) can be
rewritten as

min
h

hHRvh s.t. hHZ = bH (44)

where the filter should be longer than the number of con-
straints, i.e., M > 2L to ensure a nontrivial solution. If the
signal is passed through the filter undistorted, the variance of
the signal before and after filtering is the same, and the output
SNR reduces to

oSNR(h) =
σ2
s

hHRvh
. (45)

Minimising hHRvh under the constraint of an undistorted
signal will, therefore, lead to a filter that maximises the output
SNR under the same constraint.

The solution to (44) is the linearly constrained minimum
variance (LCMV) filter and is given by [22]:

hLCMV = R−1v Z(ZHR−1v Z)−1b (46)

The filter reduces to the LCMV filter for harmonic signals
when k = 0. The covariance matrix of the noise signal is not
known and has to be estimated. This is not trivial, but in an
optimal situation where the signal model fits perfect, the noise
covariance matrix can be replaced by the covariance matrix of
the observed signal, Rx, [17], which is easier to estimate, i.e.,

hLCMV = R−1x Z(ZHR−1x Z)−1b (47)

Another more empirical approach taking its starting point in
the MSE is the amplitude and phase estimation (APES) filter
[18]. Here, the harmonic chirp model is also assumed and the
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expectation is approximated by an average over time, leading
to the estimated MSE:

Ja(h) =
1

N −M + 1

N−M∑
n=0

|s(n)− hHx(n)|2, (48)

=
1

N −M + 1

N−M∑
n=0

|aHw(n)− hHx(n)|2, (49)

where

w(n) =
[
z(n)1 z(n)−1 · · · z(n)L z(n)−L

]T
. (50)

Writing out the terms in the quadratic expression and solving
for the amplitudes [18] gives â = W−1Gh, and, thereby,

Ja(h) = hHRxh− hHGHW−1Gh (51)

= hH(Rx −GHW−1G)h, (52)

= hHQh (53)

with

G =
1

N −M + 1

N−M∑
n=0

w(n)xH(n), (54)

W =
1

N −M + 1

N−M∑
n=0

w(n)wH(n). (55)

and

Q = Rx −GHW−1G. (56)

As with the LCMV filter, the MSE is minimised with a
constraint that the desired signal should be passed undistorted,
leading to a similar filter [18]:

hAPES = Q−1Z(ZHQ−1Z)−1b (57)

IV. COVARIANCE MATRIX ESTIMATES

The covariance matrices used in the derived filters are not
known but have to be estimated. The covariance matrix of the
observed signal can, e.g., be estimated by use of the sample
covariance matrix estimate [22]:

R̂x =
1

N −M + 1

N−M∑
n=0

x(n)xH(n). (58)

In order to make the estimate nonsingular, it is required that
2M + 1 ≤ N . For this to give a good estimate, the signal
should be nearly stationary not only in the set of the filtered M
samples, but for all N samples. Otherwise, the N samples are
not a good representation of the signal within the M samples,
and the sample covariance matrix will not be a good estimate
of the observed signal covariance matrix. In such a case, the
filters in (46) and (47) are not identical, and it is, therefore,
necessary to find an estimate of the noise covariance matrix.

Exchanging x(n) in (54) with Za+ v(n), it can be shown
that the term GHW−1G in (56) reduces to ZPZH for large
sample sizes. This means that GHW−1G can be seen as an
estimate of the covariance matrix of the desired signal, and,
therefore, Q is an estimate of the noise covariance matrix. The
APES filter is, therefore, an estimate of the optimal LCMV

filter. These covariance matrix estimates are an implicit feature
of the APES minimisation.

The APES based noise covariance matrix estimate is ob-
tained using a signal driven approach. Alternatively, we sug-
gest taking a noise driven approach and estimate the noise
covariance matrix based on noise PSDs. This can be ad-
vantageous since several methods exist for estimating the
noise power spectral density in the frequency domain, e.g.,
based on minimum statistics [7] or MMSE [8]. The power
spectral density of a signal g(n), Sg(ω), is related to the
autocorrelation, Rg(τ), and, thereby, also to the covariance
matrix of a signal through the Fourier transform [27]

Rg(τ) =

∫ ∞
−∞

Sg(ω)e
jωτdω, (59)

where τ denotes a time lag. The autocorrelation is also defined
as

Rg(τ) = E{g(n)g(n− τ)}. (60)

In order to get a good approximation to the expectation by
taking the mean over the samples and to make the covariance
matrix full rank, the same restriction on M relative to N
applies here, 2M + 1 ≤ N .

The noise covariance matrix is then estimated as:

Rv(p, q) =

{
Rv(q − p) for q ≥ p
Rv(N + q − p) for q < p

(61)

for p and q ∈ [1,M ].

V. PERFORMANCE OF PARAMETRIC FILTERS

The theoretical performance of the LCMV filter in (46) can
be found by inserting the expression for the filter in (25) and
(27). Moreover, the expression for the covariance matrix of the
desired signal introduced in (21) is used. The output power of
the desired signal can be expressed as:

hHRsh =

bH(ZHR−1v Z)ZHR−1v ZPZHR−1v Z(ZHR−1v Z)−1b

= bHPb = 1TP1 = σ2
s , (62)

where 1 is a an L×1 vector of ones. The second last equality
sign follows from the facts that b contains only unit amplitude
exponential functions and that P is a diagonal matrix. The
output power of the noise is:

hHRvh =

bH(ZHR−1v Z)ZHR−1v RvR
−1
v Z(ZHR−1v Z)−1b

= bH(ZHR−1v Z)−1b. (63)

The output SNR and signal reduction factor then becomes:

oSNR(h) =
σ2
s

bH(ZHR−1v Z)−1b
, (64)

and

ξsr(h) = 1. (65)

These expressions for output SNR and signal reduction are
made under the assumption that the noise statistics and the
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parameters of the signal are known, and that the model fits
the desired signal perfectly. Looking at the expression for the
output power of the desired signal from the filter in (62), it is
seen that a distortionless response is dependent on the model
of the signal. In order to let the signal pass undistorted through
the filter, the model has to fit the signal, and a good estimation
of the parameters is needed. The amount of distortion is
independent of the noise covariance matrix. The output power
of the noise from the filter is, on the other hand, not dependent
on the parameters of the model, it is only dependent on a good
noise covariance matrix estimate. Using the harmonic chirp
model instead of the traditional harmonic model, should for all
parametric filters decrease the amount of signal reduction since
the model fits the signal better. For the APES filter, a better
signal model will also lead to a better noise covariance matrix
estimate, and, thereby, influencing both the power output of
the desired signal and the noise.

VI. EXPERIMENTS

The simulations are separated in three parts. In the first
part, the filters based on the harmonic chirp model are tested
on synthetic signals. This is done to verify that the derived
filters work in an expected manner and to compare their
performance to filters based on the traditional harmonic model
under controlled conditions. In the second part, we turn to
simulations on real speech signals to confirm that the harmonic
chirp model describes voiced speech better than the traditional
harmonic model, and that the harmonic chirp filters perform
better than their harmonic counterparts. In the third part, the
LCMV and APES filters are compared to the Wiener filter
where the LCMV filter is combined with a PSD covariance
matrix estimate, and the Wiener filter is combined with both
an APES and a PSD covariance matrix estimate.

A. Synthetic signal

1) Setup: The LCMV and APES filters based on the
harmonic chirp model were tested on a synthetic chirp signal
made according to (5) with the same length as the segment
length, N . The signal was generated with L = 10, Al = 1∀ l,
random phase, fundamental frequency, and fundamental chirp
rate, in the intervals φl ∈ [0, 2π], f0 ∈ [150, 250] Hz,
k ∈ [0, 200] Hz2, respectively. The signal is sampled at 8 kHz
and added to white Gaussian noise with a variance calculated
to fit the desired input SNR.

The filters are evaluated as a function of the input SNR,
the segment length, N , and the filter length, M . When the
parameters are not varied they are set to: iSNR = 10 dB,
N = 230 and M = 50. Evaluating M with a fixed N makes
it possible to have more elements in the sum in (58) when
M is small compared to large, and, thereby, the statistical
stability of Rx would be greater for shorter filters. To avoid
this bias and make the conditions as similar as possible for
all filter lengths, the same number of elements are used in the
sum in (58) independent of the filter length. The fundamental
frequency and fundamental chirp rate are assumed known
when designing the filters for the synthetic signals. This
assumption is made to evaluate the filters without the influence

of the performance of a specific parameter estimation method.
The results are averaged over 1000 Monte Carlo simulations
(MCS). The filters are compared by means of the output
SNR in (25) and the signal reduction factor in (27). Using
these expressions, the output SNR and signal reduction factor
are calculated sample wise based on the N samples used to
generate the covariance matrix estimates Rs and Rv , and
afterwards they are averaged over the 1000 MCS.

2) Compared filters: The performance of the chirp based
filters is compared to the same filter types based on the
harmonic model. This will show whether it is beneficial to
expand the traditional harmonic model based on the assump-
tion of stationary speech to a harmonic chirp model where the
fundamental frequency is assumed to change linearly within
each segment. The LCMV and APES filters derived for the
harmonic model can be obtained by setting k = 0 in the signal
model. A set of six filters are compared in the simulations:
• LCMVopt: chirp LCMV filter made according to (46)

with Rv estimated from the clean noise signal. This filter
will have the best possible performance a harmonic chirp
LCMV filter can have, but can not be made in practice
since there is no access to the clean noise signal.

• LCMVh: harmonic LCMV filter made according to (47)
with k = 0.

• LCMVc: chirp LCMV filter made according to (47).
• APESh: harmonic APES filter made according to (57)

with k = 0.
• APESc: chirp APES filter made according to (57).
• APEShc: APES filter made as a combination of the chirp

and normal harmonic model with Z based on the chirp
model whereas the estimation of Q is based on the normal
harmonic model. This filter is included to separate the
contribution from the modified Z vector and the modified
Q matrix.

3) Evaluation: The output SNR and signal reduction factor
as a function of the input SNR are shown in Fig. 1. At an
input SNR of -10 dB all filters perform equally well, but
as the input SNR is increased the difference in performance
between the filters is increased. As expected, the LCMVopt
sets an upper bound for the performance with a similar gain
in SNR at all considered levels of input SNR and no distortion
of the desired signal. The harmonic chirp APES based filter,
APESc, has similar performance to the optimal LCMV filter.
The difference between the two filters, APESh and APEShc,
is only minor. They deviate from the LCMVopt around 0 dB
input SNR and at an input SNR of 10 dB the gain in SNR is
around 3 dB less than for the optimal LCMV filter. They also
introduce some distorion of the desired signal, with APESh
distorting the desired signal slightly more than APEShc. These
two filters have the same noise covariance matrix estimate
but different versions of the Z matrix, as is also the case for
the two LCMV filters, LCMVh and LCMVc, based on the
covariance matrix of the observed signal. LCMVh and LCMVc
have the worst performance of the compared filters, but show
the same tendencies as APESh and APEShc. The difference
between the two filters is mainly a smaller signal distortion
for the chirp based filter, but here also with a slight difference
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in the output SNRs of the two filters. This shows, at least
for relatively short filter lengths of M = 50, that the major
change in performance comes from changing the covariance
matrix, from the covariance matrix of the observed signal to
the harmonic APES covariance matrix and further again to
the harmonic chirp APES covariance matrix. Changing Z has
a minor role but still has an influence, primarily with respect
to the distortion of the desired signal.
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Fig. 1: Output SNR (a) and signal reduction factor (b) as a
function of the input SNR for synthetic chirp signals.

The same relationships between the filters can be seen in
Fig. 2 where the segment length, N , is varied. The LCMVopt
has the best performance, LCMVc almost as good, LCMVh
and LCMVc have the worst performances and APESh and
APEShc have performances in between. The filters being most
influenced by the change in segment length are APESh and
APEShc. They have a drop in output SNR of around 6 dB
when the segment length is increased from 150 to 400 whereas
the LCMV filters and the chirp APES based filter only give
rise to a decrease in output SNR of 1 to 2 dB. Looking at the
signal reduction factor, again the chirp APES based filter and
the optimal LCMV filter have more or less no distortion of
the desired signal whereas the other filters distort the signal
more and more when N is increased.
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Fig. 2: Output SNR (a) and signal reduction factor (b) as
a function of the number of samples N for synthetic chirp
signals.

The filter length, M , is varied in Fig. 3. Also here, the
difference between the filters increases with increasing filter
length. Again, the optimal LCMV filter and the harmonic chirp
APES based filter perform best whereas the other filters have
a lower output SNR and more signal distortion. However, here
the output SNR for APESc starts to deviate from LCMVopt for
filter lengths above approximately 60.

As an example of the filtering, a signal with a length of
500 samples is generated. The fundamental frequency is set
to f0 = 200 Hz, the chirp rate to k = 200Hz2, the initial
phases are again random and the sampling rate is fs = 8 kHz.
The covariance matrices are based on N = 230 samples and
the filter length is M = 50. The fundamental frequency and
chirp rate are also here assumed known. The signal is added
to white Gaussian noise to give an input SNR of 10 dB. The
used filters are the APESh giving the estimated signal ŝh and
APESc giving the signal ŝc since these two filters showed the
best performance in the previous experiments. The estimates
are compared to the clean signal and the noisy signal in Fig. 4.
It is seen in the figure that the chirp filter gives a better estimate
of the clean signal than the traditional harmonic filter, and the
estimate is also closer to the clean signal than the noisy one
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Fig. 3: Output SNR (a) and signal reduction factor (b) as a
function of the filter length M for synthetic chirp signals.

is.

B. Speech signals

1) Setup: The speech signals used are the 30 sentences
included in the NOIZEUS database [28]. Three male and
three female speakers produced the 30 Harvard sentences
contained in the database. The signals are sampled at 8 kHz
and corrupted with noise from the AURORA database [29].
In the first part of this evaluation of speech signals, where
the chirp model is compared to the harmonic model, the
parameters of the speech signals are estimated from the clean
signals. This is done to be able to compare the results for
speech signals with the simulations on synthetic data where
the parameters were assumed known. In the second part, where
the LCMV and Wiener filters are compared, results based
on parameters estimated from the noisy signals are shown.
The model order and a preliminary fundamental frequency
are estimated for every 50 samples using a nonlinear least
squares (NLS) estimator [22] with the lower and upper limit
for the fundamental frequency given by 80 Hz and 400 Hz,
respectively. This is followed by a smoothing [30] and joint
estimation of the fundamental frequency and chirp parameter
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Fig. 4: Reconstructed signal using APESh and APESc filters
compared to the clean and noisy signals. The noise is white
Gaussian and the input SNR is 10 dB.

for each sample using the iterative NLS estimator described
in [20]. Since the filters are independent of one another, and
the fundamental frequency and chirp rate are estimated with
reference to the sample being estimated, Z is also defined
with reference to this sample, i.e., the time index in Z is
going from 0 to M + 1 in each filter. The filter length is
increased to M = 70 because the real speech signals in
many frames have more harmonics than the 10 used to create
the synthetic signals. Therefore, a filter with more degrees
of freedom is preferred. A good compromise between filter
length and segment length for the LCMV and APES filters
would according to [31] be N = 4M , but this would lead
to quite long segments with the given filter length and, as a
compromise, the segment length is again set to N = 230. The
voiced periods are picked out using a generalised likelihood
ratio test [32], [33]. Alternatively, the MAP criteria [22] or
other voiced/unvoiced detectors can be used [13], [14]. In
some cases where unvoiced speech is mistakenly assigned
as voiced, the filters become numerically unstable, and these
samples are, therefore, excluded from the evaluation. If the
filter is not unstable, the unvoiced speech assigned as voiced
is processed as if it was voiced speech. This is expected to give
a slight decrease in the performance since it is not possible
to obtain noise reduction without signal distortion when using
the harmonic model in periods of unvoiced speech. In the first
part, where the LCMV filters are compared, white Gaussian
noise is used and the output SNR and signal reduction factor
are calculated using (25) and (27) to facilitate the comparison
with the results for the synthetic signal. As was the case for
the synthetic signals, the performance measures are calculated
sample wise and afterwards averaged over the entire speech
signal and the NOIZEUS speech corpus. When the LCMV
and APES filters are compared to the Wiener filter, babble
noise is used, where the noisy signals are taken from the
NOIZEUS speech corpus. The noise levels in the NOIZEUS
speech corpus range from 0 dB to 15 dB. The babble noise
is chosen because it is one of the most difficult noise types
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to remove. Results are shown both when the parameters are
estimated from the clean signal and when the parameters are
estimated from the noisy signals. Since the filters are made
based on different ways to estimate the covariance matrices
the filters are here compared by means of the output SNR in
(24) and the signal reduction factor in (26). Before calculating
the variance, the voiced speech parts have been concatenated.
This way there will only be one value of the output SNR
and signal reduction factor per speech signal which is then
averaged over the speech corpus.

2) Compared filters: In the first part of the simulations with
real speech, the same filters used for the synthetic signals are
compared. In the second part, the LCMV and APES based
filters are compared to the Wiener filter. This is done for two
different choices of covariance matrices, the first one using the
APES derivation, the other using (61) based on the MMSE
criterion [8] for finding the PSD. Filters based on the PSD
using MMSE and minimum statistics perform almost equally
well, and, therefore, only one type of these filters is shown.
Further, flexible Wiener filters with two different values of λ
are included in the comparisons, leading to six filters:
• APESc: chirp APES filter made according to (57).
• LCMVMMSE: chirp LCMV filter made according to (46)

with Rv estimated from (61) using MMSE.
• Wc: Wiener filter made according to (31) with Rs esti-

mated using the APES principle as GTW−1G.
• WMMSE: Wiener filter made according to (32) with Rv

estimated from (61) using MMSE.
• Wλ=0.2: Trade-off Wiener filter made according to (38)

with λ = 0.2 and Rs estimated using the APES principle
as GTW−1G.

• Wλ=5: Trade-off Wiener filter made according to (38)
with λ = 5 and Rs estimated using the APES principle
as GTW−1G.

Note that all filters except WMMSE are in some way based
on the harmonic chirp model. The APESc through both the
modified Fourier vector Z and the covariance matrix estimate
Q. The LCMV through Z and the three Wiener filters Wc,
Wλ=0.2 and Wλ=5 through the used covariance matrix.

3) Evaluation: In Fig. 5, the output SNR and signal re-
duction factor are shown as a function of the input SNR.
The output SNR and signal reduction factor are calculated
using (25) and (27) as was also the case for the synthetic
signals. It is seen that the tendencies are the same as for the
synthetic signal. APESc does not follow the optimal LCMV
filter as closely as it did for the synthetic signal, but this is not
surprising since the synthetic signals were made according to
the harmonic chirp model, and the parameters were assumed
known. For the speech signals, the parameters are estimated,
and the model does not fit perfectly since the fundamental
frequency will not be completely linear in any considered
piece within a speech signal. Even though the performance of
the APESc filter deviates more from the optimal LCMV filter
than it did considering synthetic signals, it still has a better
performance than the other considered filters. This means that
the harmonic chirp model is better at describing the voiced
parts of a speech signal and increased performance can be

obtained by replacing the traditional harmonic filters with
chirp filters.
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Fig. 5: Output SNR (a) and signal reduction factor (b) as a
function of the input SNR, average over NOIZEUS speech
corpus added white noise. Parameters estimated from clean
speech signals.

As an example, the speech signal ’Why were you away a
year, Roy?’ uttered by a female speaker is filtered. The signal
has the advantage that it only contains voiced speech, and
the entire signal can, therefore, be filtered by the proposed
methods. The signal is sampled at 8 kHz, the segment length
is 230, the filter length is 70, and the parameters are estimated
in the same way as the previous speech signals. The noise is
white Gaussian and the input SNR is 10 dB. The spectrograms
of the filtered speech signal using APESh and APESc are
shown in Fig. 6 together with the output SNR over time. It is
seen that the output SNR of the chirp filter is larger or equal
to the output SNR of the harmonic filter. The difference is
most pronounced in the first 0.25 seconds and between 1 and
1.25 seconds where the fundamental frequency is changing
the most. Here, it is also seen in the spectrograms that the
harmonics look slightly cleaner when the chirp filter is used.
The Perceptual Evaluation of Speech Quality (PESQ) score
[34] for the speech filtered with the harmonic filter is 2.21
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Fig. 6: Spectrograms of speech signal after filtering with (a)
traditional harmonic filter and (b) harmonic chirp filter. In (c)
the output SNR over time is shown. The input SNR is 10 dB
and the noise is white Gaussian. The clean signal can be seen
in Fig. 10.

whereas the chirp filter gives a PESQ score of 2.32 and the
noisy signal gives a PESQ score of 1.57. The speech signals
related to this comparison and the comparison in Fig. 10 can
be found at http://www.create.aau.dk/smn.

The increased performance of the harmonic chirp filters

relative to the harmonic filters should of course be viewed
in light of an increased computational complexity since the
joint estimation of the fundamental frequency and chirp rate
is based on a search in a two-dimensional space. However,
[20] describes how to find the parameters iteratively which
will decrease the complexity relative to a two-dimensional grid
search, and the initial fundamental frequency estimate used in
the algorithm is only estimated for every 50 samples in this
work which seems to be sufficient for giving good estimates.

Now we turn to alternative combinations of filters and
covariance matrices. Here, the output SNR and signal reduc-
tion factor are calculated according to (24) and (26). This
ensures that no filter is favoured in the way the performance is
calculated since the covariance matrices based on the sample
covariance principle and the PSD are made in two fundamen-
tally different ways. In Fig. 7a it is seen that five of the six
filters work very similar. The Wiener filter in combination with
the PSD noise covariance matrix perform significantly worse
than the rest when it comes to output SNR. However, the PSD
covariance matrix works quite well in combination with the
LCMV filter. This filter is one of the better filters at higher
input SNRs with respect to output SNR, and it has a low level
of distortion at all input SNRs as is seen in Fig. 7b. This can
probably be explained by looking at the filters in (31) and (46).
The Wiener filter is dependent on two covariance matrices,
and the relative levels of these two matrices are, therefore,
important for the look of the filter. The LCMV based filters
are only dependent on one covariance matrix, and in some way
the denominator of the LCMV can be seen as a normalisation
which makes the filter independent of the absolute size of
the covariance matrix used. The trade-off Wiener filter with
λ = 0.2 gives a higher output SNR than the Wiener filter but
at the same time it also gives rise to a higher signal distortion.
The flexible Wiener filter with λ = 5.0 works in the opposite
way. It gives a lower output SNR, but also a lower degree
of signal distortion. In Fig. 8, the parameters are estimated
from the noisy signals whereas the voiced/unvoiced detection
is based on the clean signal. The output SNR for the signal
dependent filters is decreased a few dBs at low input SNRs
whereas it is very similar at high input SNRs. This makes
sense since the estimation of parameters is more difficult at
low SNRs than at high SNRs. The Wiener filter dependent
on the PSD has the same performance in the two situations.
In Fig. 9, also the voiced/unvoiced detection is made based
on the noisy signal. The overall performance of all filters is
slightly decreased compared to making the detection based on
the clean signal, but the tendency between the filters is very
similar. This suggests that more unvoiced periods are assigned
as voiced speech where the voiced signal model will not apply,
and thus the performance will decrease slightly.

As an example, the speech signal ’Why were you away a
year, Roy?’ is again filtered, now in the presence of babble
noise at an input SNR of 10 dB. The filters used for this
comparison are the APESc, LCMVMMSE, Wc and WMMSE
and the spectrograms of the resulting signals are shown in
Fig. 10 along with spectrograms of the clean and the noisy
signal. From this figure, it seems like the Wiener filter in
combination with the APES covariance matrix removes the

http://www.create.aau.dk/smn
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Fig. 7: Output SNR (a) and signal reduction factor (b) as a
function of the input SNR, averaged over NOIZEUS corpus
with babble noise. Parameters estimated from clean speech
signals. Voiced/unvoiced detection based on clean signal.

most noise between the harmonics whereas the APES filter
and the LCMV filter remove the noise slightly less, both
between the harmonics and outside the range of the speech
signal. The Wiener filter in combination with the PSD noise
covariance matrix seems to perform no noise reduction and the
harmonics are even more difficult to distinguish than in the
noisy signal. These observations are in line with the curves
of output SNR when looking at an input SNR of 10 dB
where the WMMSE performs worse than the noisy signal, the
APESc and LCMVMMSE perform almost equally well and the
Wc performs the best. The PESQ scores for the four filtered
signals are, APESc: 2.09, LCMVMMSE: 2.25, Wc: 2.18 and
WMMSE: 1.54. It is interesting to see that the LCMVMMSE
gives rise to the highest PESQ score since this was not clear
from the spectrograms, but this filter gives a lower signal
reduction factor than the APESc and Wc filters, and, therefore,
it makes good sense. The noisy signal has a PESQ score of
2.06. Comparing to the signals in white Gaussian noise in Fig.
6, the PESQ score of the filtered signals decreased whereas the
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Fig. 8: Output SNR (a) and signal reduction factor (b) as a
function of the input SNR, averaged over NOIZEUS corpus
with babble noise. Parameters estimated from noisy speech
signals. Voiced/unvoiced detection based on clean signal.

PESQ score of the noisy signal increased. This difference is
mainly due to the different noise types while the fact that the
parameters in Fig. 6 were estimated from the clean signal only
contributes slightly. Since babble noise is noise made up from
several speakers speaking at the same time, it is distributed
in the same frequency range as the speech signal. This makes
it more difficult to estimate the relevant parameters and also
more difficult to filter out the noise afterwards. However,
prewhitening of the noisy signal can help mediate this problem
[35] with the noise statistics found using one of the methods
in [36].

VII. CONCLUSION

In this paper, the non-stationarity of voiced speech is
taken into account in speech enhancement. This is done by
describing the speech by a harmonic chirp model instead of
the traditional harmonic model. The chirp used is a linear
chirp which allows the fundamental frequency to vary linearly
within each segment, and, therefore, the speech signal is not
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Fig. 10: Spectrograms of clean, noisy and filtered speech. Babble noise is mixed with speech at an input SNR of 10 dB.

assumed stationary within a segment. Versions of the linearly
constraint minimum variance (LCMV) filter and amplitude and
phase estimation (APES) filter are derived in the framework of
harmonic chirp signals. As an implicit part of the APES filter,
a noise covariance matrix estimate is derived. This makes the
APES filter an estimate of the optimal LCMV filter which
maximises the output SNR under the constraint that the desired
signal is passed undistorted. APES gives a noise covariance
matrix estimate which only assumes the noise signal to be
stationary in frames of 20-30 ms as opposed to methods
based on power spectral densities (PSDs) which primarily
update the noise statistics in periods of unvoiced speech. It
is shown through simulations on synthetic and speech signals
that the chirp filters give rise to a higher output SNR and
a lower signal distortion than their harmonic counterparts,
and, therefore, the chirp model describes voiced speech better
than the traditional harmonic model. We suggest also using
the APES noise covariance matrix estimate in other filters as,
e.g., the Wiener filter, and we compare it to a noise covariance
matrix estimate based on the PSD. The APES noise covariance
matrix estimate is shown to work well in combination with the
Wiener and trade-off Wiener filters, whereas the PSD based
noise covariance matrix estimate works well in combination
with the LCMV filter. All chirp based Wiener and LCMV

filters outperform the Wiener filter in combination with the
PSD noise covariance matrix estimate.
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[11] M. Képesi and L. Weruaga, “Adaptive chirp-based time–frequency
analysis of speech signals,” Speech Communication, vol. 48, no. 5, pp.
474–492, 2006.
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