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Abstract— Gas-fired power plants are connection points 
between gas and electricity networks which are growing in 
installation due to their high efficiency rates and 
flexibilities. The main purpose of this paper is to adjust 
integrated expansion planning of gas-electricity system. In 
integrated expansion planning it is assumed that a central 
entity such as Ministry of Energy is responsible for the 
expansion of both gas and electricity networks. Results 
of the proposed method are examined in Khorasan 
province of Iran as a realistic case study which has a high 
penetration level of gas-driven units. To demonstrate the 
effectiveness of the proposed method, results are compared with 
those of an independent expansion planning method. Also 
sensitivity to load level growth forecast is analyzed. 

Keywords— Gas; Electricity; Expansion planning; 
Integrated energy system; Optimization; Coordinated scheduling. 

NOMENCLATURE Indices and Sets 
i,j Indices of gas nodes 
m,n Indices of electricity nodes 
t index for load period (off-peak, mid load, 

and peak) d Index of days y Index of years 

gu Index of generation units ݃ݑෞ  Index of gas consuming generation units T Planning period 
GU Set of generation units ࣨ/ℬ Set of nodes/buses of gas/electricity network ࣪ℒ/࣪ℒ/࣪ℒ 

Sets of all/active/passive pipelines ࣮ Set of daily load periods ࣮ℒ Set of transmission lines 

Variables 
,

Gas
y dC Gas network operation cost in day d of year y 
Gas
iS Gas production in node i (MSCMD) 

Gas
iCr Curtailed gas in node i (MSCMD) 

Gas
ijf Gas flow through pipeline ij (MSCMD) 
Gas
iπ Gas pressure in node i (bar) 

Gas
iFC Gas consumption of gas consuming power 

plants in node i (MSCMD) 
Comp
ijS Gas consumption of compressor in pipeline ij 

(MSCMD) 

,
Elec
y dC Electricity network operation cost in day d of 

year y 

, ,
Elec
m gu tFC Fuel consumption of power plants on day d 

of year y in electricity network 

, ,
gen
m gu tp Power generation of unit gu of bus m at 

period t (MW) 

,m n tPF Power flow through transmission line mn at 
period t (MW) 

,m tθ Voltage angle of bus m at period t (rad)
Elec

mtCr Curtailed load at bus m in period t (MW) 

tOC Operation cost of electricity network 
Pipe
ijbin

/ Trans
mnbin

/ Gen
mgbin

Binary variable indicating existence of 
pipeline/transmission line/generation 

Parameters 
Gas
iλ Gas price in node i of gas network 

($/MSCMD) 
_Gas Cr

iλ Curtailed gas price in node i of gas network 
($/MSCMD) 

_Elec Cr
mtλ Curtailed electricity price in bus m of

electricity network ($/MW) 

,
Fuel
m guλ Fuel price of generation unit gu in bus m
Gas
ijc Constant defining Weymouth equation 
Gas
il Gas demand at node i (MSCMD)

Gas
ijk Constant defining compressor gas 

consumption 

, ,

,

/

/

m gu m gu

m gu

α β
γ

Cost function parameters of generation units 

,
load
m tp Power demand at bus m 

bp Power base unit (MW) 

mny Series admittance of transmission line mn 

td  Duration of t period 
Pipe
ijL Length of pipeline (km) 



Pipe
ijA Diameter of pipeline (inch) 

,
rated

m guP Power plant rated power (MW) 

Pipe
ijcost

/ trans
mncost

/ ,
Gen
m gucost

Construction cost of pipeline (k$/inch-km)/ 
transmission line (k$/km)/generation unit 
(k$/MW) 

r Interest rate 

I. INTRODUCTION 

While coal still plays a major role in electricity generation, 
new plants are mainly focused on gas-fired power plants and 
renewables. In the U.S. roughly a third power generation is 
performed by coal power plant however the industry is slowly 
contracting as plants retire and utilities replace them with 
natural gas and renewables. Also gas-fired power stations in 
combination with renewables are ideally suited to mitigate 
renewable fluctuations as they can easily be fired up in just a 
few minutes [1]-[2].  

In the literature there are some papers that study gas-
electricity expansion context. Proposed model in [2] provides 
a leader-follower approach to perform the expansion planning 
of the integrated gas-electricity network. In this paper 
electricity network makes decision as the leader and gas 
network is the follower who tracks the decisions. In [3] a 
robust model proposes an centralized electricity and natural 
gas planning with the grid resilience considered as a set of 
constraints. However this model does not consider 
compressors in gas network. An iterative process between gas 
and electricity networks in a combined market is illustrated in 
[4]. Proposed model in [5] simultaneously minimizes the total 
cost of gas and electricity networks operational and expansion 
costs. Additionally it allocates the planned power generating 
units. The work presented in [6] introduces a multi-area, 
multi-stage model that integrates the long-term expansion 
planning of gas and electricity infrastructures. A model that 
integrates electricity distribution and natural gas networks is 
presented in [7]. In [8], the expansion of gas-fired power 
plants, transmission lines and gas pipelines has been carried 
out with the aim of increasing social welfare. In this model, 
the adaption cost to new conditions has been used to deal with 
uncertainties such as gas and electricity market prices. The 
work presented in [9] provides a model for the expansion of 
generation, transmission and pipelines in large-scale systems. 
Proposed method incorporates a three-level framework to 
solve and coordinate the transmission, generation and gas 
network expansion problem by using genetic algorithm. A 
carbon oriented model of gas-electricity expansion problem is 
introduced in [10] that considers profit-to-cost maximization 
objective function with a market scheme as price scenarios. 
Co-optimization planning problem in [11] provides a system 
with optimal size, location, installation time of new electricity 
and natural gas resources based on electricity network 
constraints, natural gas fuel supply availability and reliability 
criterion. The work presented in [12] uses a two-stage 
stochastic optimization framework to represent uncertainty in 

natural gas and electricity demand growth. Expansion 
planning of gas and electricity networks with bi-directional 
energy conversion is also formulated in [13] by a bi-level 
problem. A planning model for gas and electricity networks 
considering a joint N-1 security and probabilistic reliability is 
presented in [14].   

In this paper an integrated approach to co-expansion 
planning of gas-electricity planning problem is introduced. 
Coordinated expansion planning of gas-electricity system is 
accomplished using an integrated objective function. The 
expansion planning problem is formulated as a co-optimization 
problem from the viewpoint of the independent system 
operator (ISO), where both transmission and generation 
expansion opportunities are optimized in electricity network 
and new pipelines are allocated in gas network. Generation 
expansion determines the size and location of new units and 
transmission expansion ensures a feasible power delivery. On 
the other hand the electricity network gas consumption 
treatment is included in pipeline expansion decisions to ensure 
a feasible operation of gas network. Results are examined in a 
realistic case study to demonstrate the effects of proposed 
integrated method. 

In the following sections firstly gas and electricity networks 
operation are modeled. After that the proposed integrated 
expansion planning approach is described and results are 
examined in Khorasan province of Iran as a real world case 
study which has a high penetration level of gas consuming 
units. 

II. OPERATION PROBLEM FORMULATION

A. Gas operation  model

The main objective of gas network operator is to supply the
loads with a minimum cost. Hence, the objective function of 
gas network is to minimize cost of operation and load 
curtailment. It is subjected to the Weymouth equations [15] and 
some other technical constraints of gas network. So operation 
model of gas network for one day could be written as: 

_Gas Gas Gas Gas Gas Cr
i i i i

i i

Min C S Crλ λ= +  .ݏ (1)  ൫݊݃݅ݏ .ݐ ݂ீ௦൯ ݂ீ ௦ଶ= ீ௦ଶܥ ቀߨீ ௦ଶ − ீߨ ௦ଶቁ 	݆݅ ࣪ℒ (2) 
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(7) 
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ீܥܨ (11) ௦ = ܥܨ,௨ෞ ,௧ா௧,௨ෞ  ݉ℬ, ݅ࣨ 
 

(12) 

In which, constraints (2)-(3) are Weymouth equations of gas 
network which relates the gas flow to the pressure difference 
in passive and active (i.e., pipelines with compressor) 
pipelines respectively [15]. Constraint (4) bounds pressure in 
different nodes. Constraint (5) denotes limitation of gas flow 
in passive pipelines (i.e., pipelines without compressor). Gas 
flow in active pipelines is limited by (6). Constraint (7) 
indicates supply bounds in different nodes. Constraint (8) 
determines bounds on curtailed gas demand at each node. 
Node flow balance is defined by (9). Compressor uses energy 
to boost pressure and this energy is estimated as a loss in gas 
network. Linearized equation for gas consumption of 
compressors is given in constraint (10) [16]. Pressure ratio in 
active pipelines is restricted by (11). Constraint (12) is the 
coupling factor which relates gas and electricity networks 
through fuel consumption of gas fired power plants. 

B. Electricity operation model 

Electricity network operator deals with a feasible operation 
with minimum cost. To simplify the model, DC load flow is 
used to be sure about technical constraints [17]. The objective 
function of this optimization problem comprises of two terms. 
Operation cost and value of lost load.  

_Elec Elec Elec Cr
t t t mt mt

t mt

Min C d OC d Cr λ= +  .ݏ (13)  ௧ܥܱ   .ݐ =  ,௨ி௨ߣ ,௨,௧ா,௨ܥܨ  (14) ࣮∋ݐ∀ 
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gen load Elec
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,௧ܨܲ (16) =  ×ݕ൫ߠ,௧ − ,௧൯ߠ ,࣮∋ݐ∀ 
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ߠ (17) = 0  (18) 
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(19) 

ܨܲ− ≤ ,௧ܨܲ ≤  ܨܲ
,࣮∋ݐ∀

࣮݉݊ℒ 
(20) 

, ,0 Elec load
m t m tCr p≤ ≤ ,࣮∋ݐ∀ 

݉ ℬ (21) 

In this optimization constraint (14) defines operation cost of 
generation units. Fuel consumption of generating units is 
obtained by their gross heating value using (15). Node balance 
is indicated by (16). Power flow in transmission lines is 
obtained using (17). Based on DC load flow reference bus 
angle is fixed to zero by (18). Generation units' bounds are 
defined by (19). Constraint (20) determines the power flow 
limitations in transmission lines. Curtailed load in each bus of 
electricity network is restricted by (21). 

III. COORDINATED EXPANSION PLANNING PROBLEM 

In integrated expansion planning it is assumed that a central 
entity such as Ministry of Energy (i.e., ISO) is responsible for 
the expansion of both gas and electricity networks. 
Coordinated expansion planning of gas-electricity system is 
accomplished using an integrated objective function. The main 
objective of the ISO is to supply the loads with minimum total 
cost which includes both operation and investment costs. In 
this way supplying new load could be achieved by adding new 
generation units, new transmission lines and new pipes if 
needed. New opportunities should be located in the system in a 
way to guarantee the feasible performance and operating point. 
Hence the objective function of ISO is to minimize the cost of 
expansion and net present value (NPV) of operation cost 
during the planning period. So expansion planning model of 
ISO could be written as: 
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(1), (13) ∀y∈Y, d∈D (23)

IV. RESULTS 

The test system used to apply the proposed methodology is 
the Khorasan province of Iran gas and electricity networks. All 
the formulations were implemented in GAMS software.  

The 400 KV electricity system includes 18 transmission 
lines and 15 buses in which 33 gas consuming units are 
dispatched among 7 buses. In gas network, there are 14 nodes 
that are connected together through 13 pipelines. 
Supplementary data of the proposed gas and electricity 
networks are given in [9] and [18], respectively. We suppose a 
planning period of 15 years with annual load grows of 3% in 
both gas and electricity networks. The current demand in 
electricity network is 3129 MW while a maximum generation 
of 3880 MW is available. In gas network there is a 
consumption rate of 39.133 million standard cubic meters per 



 

day (MSCMD) demanded by other parties than GFPPs such as 
residential sector. Existing pipelines, transmission lines, and 
generating units and their candidates for expansion planning 
are depicted in Fig. 1. Expansion candidates of both gas and 
electricity networks and their investment cost are given in 
Table I. 

Obtained results of gas network investment problem show 
that there is a need to increase the capacity of pipeline between 
regions A and B of Fig. 1. In this case, the investment cost is 
19 million dollar while the total cost of investment and 
operation is 37.19 billion dollar. On the other hand, in 
electricity network new power plants in F, R and B2 regions 
are needed. Also, these results indicate that the capacity of F-H 
transmission line must be increased. 

TABLE I: Expansion candidates and their investment costs  

Pipe. 
Cost 

(k$/inch-
km) 

Trans. 
Cost 

(k$/km) 
Gen. 

Cost 
(k$/M

W) 

A-B 40 S-Q 240 C 900 

A-L 40 K-C 240 S 900 

A-K 60 B-C 360 Q 900 

F-D 60 F-H  480 L 900 

G-J 60 R-Q 480 F 900 

  

R-T 480 I 900 

R-S 480 T 1170 

  
B 1440 

R 1080 

The cost of investment and operation in electricity network 
is 7.76 billion dollar in which investment and operation costs 
are 0.37 and 7.39 billion dollars respectively. Also studies 
indicate that while VOLL is more than 115 $⁄MWh and 1200 
$⁄MSCMD in gas and electricity networks respectively, 
investment would be a better choice.  

Results of the proposed integrated method are compared 
with results of independent method. In independent method, 
electricity system operator is responsible for electricity 

network expansion planning and gas operator is responsible 
for gas network expansion planning. They are deciding on 
expansion of their network independently. Electricity network 
expansion is done without considering gas network 
constraints. On the other hand, gas network is expanded 
assuming power plant and non-power plant loads grow 3% 
annually.  Independent gas network expansion planning shows 
that there is no need to install a new pipeline and existing 
pipelines are sufficient. Results of independent electricity 
network expansion planning intend to add new generations in 
Q, S and B2 regions. Despite the integrated method, with an 
independent method in gas network both A-B and A-K 
pipelines will be congested so new generations will cause gas 
load curtailment. Detailed results of independent expansion 
planning approach are given in Table II for gas and electricity 
networks. Candidate power plants in both integrated and 
independent methods and also congested pipelines in 
independent method are shown in Fig. 2. Obtained results 
show that, independent expansion planning of gas and 
electricity networks intends to uncoordinated expansion plans 
and leads to high amount of gas and electricity load 
curtailment that causes high NPV of total costs in gas and 
electricity networks, as it is shown in Table II.  

 
TABLE II:  Results of Gas-Electricity expansion 

Case 
 

Independent Integrated 

Electricity Gas Electricity Gas 

Investment cost(109$) 0.35 0 0.37 0.019 

Total cost(109$) 70×103 6×103 7.76 37.19 

New lines - - F-H A-B 

New generation units Q/S/B2 - F/R/B2 - 

New generation capacities 600/400/200  400/400/300  

 
Uncertainty in load level forecast is also studied in a 20% 
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Fig. 1. Khorasan Electricity (A) And Gas (B) Networks 



 

tolerance band. By varying gas and electricity loads of last 
year of planning period by ±10% and ±20% gas and electricity 
expansion plans are computed using integrated method. Table 
IV shows gas and electricity expansion plans, for increasing 
and decreasing gas and electricity loads by 10 and 20 percent. 
As Table IV shows the gas and electricity expansion plans are 
flexible against gas and electricity load change. In other 
words, if gas and electricity loads increase by 10 or 20 percent 
the base expansion plan does not change and only 
transmission line R-T is added, and if gas and electricity loads 
decrease by 10 or 20 percent new generating unit F is omitted 
from the base expansion plan. 
 

 

 

V. CONCLUSION 

In this paper an integrated approach to co-expansion 
planning of gas-electricity planning problem was introduced. 
The expansion-planning problem was formulated as a co- 
optimization problem from the viewpoint of the ISO, where in 
electricity network level, both transmission and generation 
expansion opportunities were optimized and in gas network 
level new pipelines were allocated. Generation expansion 
determined the size and location of new units and transmission 
expansion ensured a feasible power delivery. On the other hand 
the electricity network gas consumption was included in 
pipeline expansion decisions to ensure a feasible operation of 
gas network. A real case study in Iran was used to demonstrate 

the effectiveness of the model. Adequacy of gas-electricity 
network was satisfied in a period of 15 years with a minimum 
cost of operational planning. Results were compared with those 
of independent method and it was shown that coordinated 
expansion planning leads to better results. Sensitivity of the 
proposed integrated method to load forecast uncertainty was 
also analyzed in a 20% tolerance band and it was shown that 
expansion plans are flexible against load level forecast 
uncertainty.  
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