Can the **Melbourne Scoring Scale** be used to assess postoperative pulmonary complications in high-risk patients following lung resection?

Barbara C Brocki1, Elisabeth Westerdahl2,3, Jane Andreasen1,4, Jan J Andreasen5,6

1Department of Occupational Therapy and Physiotherapy, Aalborg University Hospital, Aalborg, Denmark
2Department of Physiotherapy, Faculty of Health and Occupational Sciences, Örebro University, Örebro, Sweden
3Public Health and Epidemiology Group, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
4Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark
5Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
6Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Objectives

Postoperative pulmonary complications (PPC) are common following lung resections, but there is no consensus in the literature on the definition of a clinically relevant PPC. This study aimed to use the Melbourne Scoring Scale (MGS) to determine the frequency and predictors of PPC in patients scheduled for lung resection on suspicion of or due to cancer.

Methods

In a prospective observational design, we assessed 87 consecutive patients following lung resections in Aalborg University Hospital, Denmark. Patients were preoperatively classified as being at high PPC-risk (n = 68) or low PPC-risk (n = 19), based on the presence of one or more of the items: FEV1 or carbon monoxide diffusion capacity (DLCO) ≤ 70%, age ≥ 70 years or scheduled pneumonectomy. Data on PPC was collected daily during hospital stay and re-evaluated at discharge. Data on postoperative pulmonary complications was obtained through physician diagnosis, chest X-ray (CXR), sputum microbiology, blood tests, and spirometry.

Results

Table 1 shows demographics and surgical data. The actual frequency of PPC according to the MGS was 11% (n = 10), all cases within the predefined high-risk group suggesting that the MGS is feasible to use. Pneumonia was diagnosed in nine patients (Table 2). In a multivariate regression analysis we found that a cut-off value for FEV1 and DLCO ≤ 60% was a better predictor for higher PPC-risk (area under the ROC curve 0.851), 95% CI 2.2-56.6 and 1.1-36.8 for FEV1 and DLCO, respectively, when compared to the predefined cut-off value of ≤ 70% (Figure 1).

Conclusions

The MGS can be used to identify patients at high risk of postoperative and clinically relevant PPC after lung resections. Patients with preoperative values of FEV1 ≤ 60% or DLCO ≤ 60% are in particular at high PPC-risk. Research is needed to evaluate the effects of preventable interventions targeting patients at high-risk of developing PPC.