
Visualisation Tool for Convolutional Neural
Networks

Project written by:

Name: Signature:

Aron MAROSSY

September 7, 2018

Title:
Visualisation Tool for Convo-
lutional Neural Networks

Theme:
Master Thesis

Project period:
June - September 2018

Project group:
Group 4.6

Members:
Aron Marossy

Supervisor:
Per Lynggaard

No. of Pages: 62

Total no. of pages: 70

Finished: September 7, 2018

Aalborg University Copenhagen
A. C Meyers Vænge 15

2450 København SV
Secretary: Maiken Keller

Telephone (+45) 9940 2471
mks@staff.aau.dk

Abstract:

The purpose of this thesis is to develop a so-
lution for visualising convolutional neural net-
works. A proposed system has been devel-
oped, which gives insight into the workings of
a neural network with the means of visualis-
ing its architecture and showing how it be-
haves with specific cases of input data. This
has been achieved through a Python applica-
tion which is running locally, with an interface
available through a web browser.
The tool works by the user specifying where
the neural network is located on their com-
puter and then providing the dataset on which
the network is to be executed.
It is also an aspect of this thesis to provide
insight into how to improve the performance
of the neural network, which is done by de-
tecting typical problems in the network and
by suggesting possible solutions to them.

When uploading this document to Digital Exam each group member confirms that all have participated equally in
the project work and that they collectively are responsible for the content of the project report. Furthermore each
group member is liable for that there is no plagiarism in the report.

ii

Contents
1 Introduction 1

1.1 Limitations . 2

1.2 Problem Formulation . 3

1.3 Methodology . 3

1.4 Expected Outcome . 4

1.5 Challenges . 5

2 State of the Art 7
2.1 Principles of Neural Networks . 7

2.2 Principles of Convolutional Networks . 12

2.3 Theories for Visualizasing Convolutional Neural Networks 22

2.4 Existing Software Solutions for Visualizasing and Understanding Convolutional
Neural Networks . 25

2.5 Visualising the filters learned by a Convolutional Network 29

2.6 Possible Problems causing Neural Networks to function suboptimally 32

3 Analysis 34
3.1 Categories of Visualisation Techniques for Neural Networks 34

3.2 Representing the Layers and Nodes of the Network 38

3.3 Visualising Node and Layer Parameters of the Network 39

3.4 Performance Analysis of Neural Networks . 40

3.5 Giving Insight into Possible Problems causing Neural Networks to function sub-
optimally . 40

3.6 Visiualisational Tool Scenarios . 41

3.7 Requirements . 44

4 Design 50
4.1 Menu Layout . 50

4.2 Conceptual Designs . 51

4.3 Choices for Development . 56

5 Implementation 57
5.1 Executing the Neural Network . 57

5.2 Hosting the Website Locally . 59

iii

6 Conclusion 61

6.1 Future perspectives . 62

iv

1| Introduction
Neural Networks are becoming more and more accessible and popular, with out of the box soft-
ware solutions being widely used for creating them. These programs, such as Torch, Tenserflow
or Keras let anyone with minimal programming skills and a large enough dataset to create neu-
ral networks for a multitude of purposes, after a few minute long installation and configuration
process. These software, however accessible they might be, still hold a large barrier to entry
as they only provide limited feedback and analysis tools for the neural networks outputted - at
least at the time of writing of this thesis.

This issue can be traced back to the origin of these software solutions, as they were originally
intended for experts and enthusiasts, and because of this for most of the tools only a command
line interface is available, coming without a proper graphical interface and with only minimal
feedback to the users, as shown on Figure 1.1 with one of the most popular software, which
provides ony minimal information about the training process and the resulting network.

Figure 1.1: A neural network being trained for recognising digits with a commonly used
over-the-shelf program called Keras. The software outputs the neural network as a matrix and

gives no other feedback than the neural network’s k-fold performance [1].

Such a spartan command line based interface could be "good enough" for experts, but as more
and more researchers from a broad spectrum of sciences are starting to use neural networks, a
more self explanatory and educative framework is due.

This issue is further complicated by the nature of neural networks, as they have originally been
invented to solve complex non-linear problems, which are difficult to model and give feedback on.
Because of this, the network can learn unusual or unexpected things about the dataset, which

1

might not originally have been the intention. As such, a neural network might be preforming well
on a given set of data, but may show strange behaviour when presented with new measurements.
This was the case in the 1980s, when the Pentagon in the United States ordered a new software
from a research institution for identifying camouflaged tanks on images. The researchers have
taken 200 pictures, half of which with tanks and the other half with just trees and sceneries.
Then they trained a convolutional neural network on half of this dataset with 50 pictures of
tanks and the rest without, and the resulting neural network was able to correctly identify the
remaining images with high accuracy. This network was then sent to the Pentagon, who later
determined the network was not performing better than random chance [2].

As it turned out, the researches have taken the pictures with tanks on them on sunny days
and the pictures with scenery on cloudy days, and all the neural network did was learn how to
classify pictures based on this property [2]. Because the neural networks built by algorithms
are just matrices by themselves, not too descriptive to humans, it could be challenging to gain
insight into the inner working of such a network.

This issue with the tanks could have been prevented with a software solution meant for analysing
the output of the network, which may have provided insight for example what parts of image
was the neural network taking into account for identifying the pictures. Such a solution might
also educate people on the workings of neural networks, as the lack of such insights might leave
some researchers treating neural networks as a mysterious black box.

This thesis aims to propose a tool to solve such problems by analysing already existing tools and
methods for understanding convolutional neural networks and to lower the barrier to entry for
people getting started with neural networks. This will be done by proposing a solution on how
to make the behaviour of neural networks more transparent for researchers and people working
in the industry.

1.1 Limitations

To limit the scope of this thesis, some limitations have been set, as the field of neural networks
is rather big and quickly evolving each year. This thesis will only be focusing on convolutional
neural networks, as image recognition tasks (also referred to as "computer vision") are one of
the most common tasks at the time of writing of this thesis, as the amount of images and videos
generated over the Internet steadily grows each year, not to mention novel uses such as self
driving cars, uses for medical diagnosis and intelligent factory assembly lines.

As for keeping technical complexity from getting out of hand, this thesis will only take instance
in feed-forward neural networks and static, non-changing neural network architectures.

2

When discussing how to improve networks, this thesis does not intend to delve into the topic
on how to train neural networks in a more efficient or faster way. So when discussing on how to
improve on a model, this is done with the aim of getting a better classification performance, not
the training speed itself. However the training speed might be an important topic to discuss as
well, it is out of scope for this thesis, and will only be mentioned an additional note at times.

1.2 Problem Formulation

To specify the aim of this project and to narrow down its scope, the following problem formu-
lation has been created, with three additional subquestions;

How to design a tool for visualising and understanding the behaviour of convolu-
tional neural networks?

The sub-questions are listed below. These are to ensure that the problem formulation is to be
fully answered in the conclusion of this thesis. They also help to further narrow down and focus
the research areas of this thesis.

• How to tell if there is an issue with the network’s performance, and how to educate users
about this?

• How to make neural networks more accessible to people just getting started with them?

• How to provide understanding for the input image in relation to the activations of the
neural network?

1.3 Methodology

This paper was written following an agile methodology, to provide a framework for the research
and development process. This framework is illustrated on Figure 1.2.

3

Figure 1.2: The agile methodology used for this project [3].

In the case of this thesis, after a short initial planning phase some basic initial requirements have
been formulated. Based on these initial requirements, a more in-depth analysis took place, after
which a mock up design has been created, which was a basis for an initial prototype. The project
has gone through a number of these iterative cycles, resulting in the final product discussed in
the conclusion.

There has also been some overlapping when work was done on the State of the Art, Analysis
and Design chapters, as the analysis of certain technologies raised the need to investigate more
into certain fields. This approach was in line with the general ideology of agile methodologies,
and has been proven very useful in writing a nicely rounded thesis.

The research methodology used throughout this thesis is abductive, as it starts from the point
of view of the currently existing but incomplete tools and theories, with the aim of trying to find
a solution to them. It is not the intention of this thesis to find a be-all-end-all solution to the
problem of visualising neural networks, such as discussed in the limitations in Chapter 1.1.

1.4 Expected Outcome

This thesis is to create a prototype for an application to analyse convolutional neural networks
by first laying down the requirements based on an analysis of state of the art solutions and
industry practices. It is not the intent of this thesis to thoroughly delve into the mathematical
principles of each disciples of neural networks, although such principles will be discussed only
to the extent necessary for the implementation of each part.

4

1.5 Challenges

Throughout the writing of this thesis there were some challenges which made the work on this
thesis at times unusually difficult, and the aim of this section is to take a short mention of them.

1.5.1 Terminology

The terminology used for neural networks is fairly unstandardised, with many of the terms being
used interchangeably. For example, the term for cost function is often referred to as objective
function or loss [4], even though it is one of the most commonly used terms when discussing
neural networks. This thesis will aim to stick for one set of terminology for the most part,
but it may refer to other terminology when referring to research papers or documentation of
applications, but in these cases clarification is done shortly afterwards.

1.5.2 Rapidly changing area

There are many sources and publications, with some of them being valid and used for years,
and some of them going obsolete relatively quickly. During the writing of this thesis, at times
it has been a challenge to see, for example if a paper was referenced in publications from a
few years ago, but published in the 80s was still relevant, or has been superseded by newer
developments in the field. For example [5] from 1989 is widely referenced, but its contents are
very outdated. It has also been at times challenging having to decide how relevant some of the
newer publications are, as the field of neural networks is being quite actively researched, and
the amount of publications being released every year is quite high [6].

1.5.3 Rabbit hole of references

Another challenge when writing about neural networks is the rather long chains of references
between papers. Papers often seem to be building on works that has came before, which in turn
also builds on other findings and papers, and because of this, the author of this paper sometimes
found himself wanting to investigate one paper and ending up by going through more than ten
of them to understand a mechanism or a finer point a paper was aiming to make [7].

1.5.4 No documentation for software

Most of the software being discussed in the State of the Art chapter of this report is open
source, with contributors from all over the world. The problem with such software is that the

5

contributors do not always write documentation for their additions, and this seems to be the
case here as well. Most of the programs discussed have missing or not up to date documentation,
which makes it difficult to discuss them or - in some cases - even using them can be challenging.

6

2| State of the Art
The aim of this chapter is to present the technologies and existing solutions related to the
visualisation of convolutional neural networks, which serves as a basis for future chapters to
build upon. This is done by first examining some core principles of such networks and then
delving into the already existing solutions related to the problem area.

2.1 Principles of Neural Networks

This section aims to establish some terminology and principles of neural networks to be used
later on in this chapter and for the rest of this thesis. Since all forms of more specialised neural
networks, such as convolutional networks for image recognition - as is the main focus of this thesis
- or long short-term memory networks for speech recognition are built on the same foundations,
but with added specific characteristics, the principles and workings of standard "vanilla" neural
networks are discussed beforehand.

The "network" part of the neural network comes from the fact that they consist of intercon-
nected neurons. This setup is inspired by biology, as each neuron activating (or firing) in the
network cascades down to other neurons which are connected to it, such as in biological brains
as illustrated on the following Figure 2.1;

Figure 2.1: An example of a feed forward neural network [8].

As shown on Figure 2.1, all neural networks can be divided to three separate parts, an input
layer with the inputs to the network (such as the training data), a hidden layer which does the
"logic" of the neural network, and an output layer which usually outputs a number of values
between 0 and 1, which corresponds to how likely the network classifies the current input to fall
into a given category.

7

Each neuron has an activation, which is a number between 0 and 1. In the input layer, this
activation changes based on the input data, and in the case of the later neurons in the network
it is based on what input from the neurons in the layers before them. This input is influenced by
the connections between the neurons, which are called weights, which hold a rational number.
Each neuron gets an input value, which is the sum of the values of its connected neurons from
the earlier layer, multiplied by their weight, as expressed the following equation;

x = w1a1 + w2a2 + w3a3 + ...+ wnan

This value is then tresholded with the use of an activation function, which then can be used as
a part of an input for another neuron later down the network.

2.1.1 Activation functions

Each neuron’s activation after the input layer depends on their input value plotted to its acti-
vation function. Specific types of activation functions will be discussed later on in this chapter,
but their working principle is that they act as a normaliser, by making sure the activation of a
neuron is in a given threshold, most commonly between -1 and 1 or 0 and 1. For example, a
historically commonly used activation function is the sigmoid function, which is shown on the
following Figure 2.2;

Figure 2.2: The sigmoid activation function and its formula [9]

The sigmoid function "squishes" the activation between 0 and 1, with the output of the neuron
being 0 if the input is very small and 1 if the activation is very large, other values being
in between. Which activation function is to be used by a specific neural network is chosen
before training the network, and the use of each specific activation function has its upsides and

8

downsides, which will be discussed in a later section of this chapter.

Additionally, a bias can be added to a neuron to make its activation more or less likely. This
bias is trained alongside with the network, and is added to the sum before it is passed to the
activation function.

2.1.2 Initialising

To set up a network, first an architecture is chosen which specifies a number of layers and a
number of neurons for each of those layers. For each of these neurons an activation function is
chosen, which is usually the same for every neuron in the network. This chapter is to go into
detail in the effects of different architectures and activation functions later on.

Once a blank architecture is set up, the network is initialised by assigning a random value for
every weight and bias in the network, with the intention of changing them later by modifying
them to improve performance over time. After the initialisation, the resulting neural network
will be effectively classifying the inputs randomly, and it will have to be fine tuned by the use of
the training data, but to rate its performance a function for measuring how far off the network
is from performing optimally is needed.

2.1.3 Cost Function

The cost function is meant to measure how well each iteration of the neural network is per-
forming, with a higher cost meaning a worse performance of the network. A common way of
calculating cost is by the use of the square of differences, where for each output of the network
the output is substituted from the expected output, squared (which also avoids negative values),
and these values are then summed together. This function could be thought of as a plot, where
each weight corresponds to an axis, with the cost function plotted over them, where the resulting
plot represents the cost function for each possible value for the weights. In reality, this is not
really feasible, as this plot would have as many dimensions plus one as many weights are in the
network, and it can be difficult to visualise a plot of anything above three dimensions. But for
a simplified example, the cost function of a neural network with two weights could look like the
function shown on Figure 2.3.

9

Figure 2.3: The possible cost function of an over simplified neural network with only two weights
is a non-convex surface [10].

The goal when training and tweaking neural networks is to find a set of weights which leads to
a neural network with the lowest possible cost function. It is important to note that the cost
function of a high dimensional space can be extremely complex, and because of this finding the
most optimal - or the lowest - point of it might not be feasible. Because of this a technique
called gradient descent is often used for finding a local minima on this cost function.

2.1.4 Gradient Descent

Since the weights of the network are randomly initialised at the beginning, each neural network
can be thought of as starting at a random point on its n dimensional cost function. It might
not be straightforward to visualise this, but this n dimensional function also has a downward
slope, and by using multi variable calculus, this slope can be determined on it. By adjusting the
weights appropriately in the way that the network’s cost function moves in the direction of the
steepest descent, the network will perform more and more optimally over time. The gradient
descent algorithm can be implemented in a number of ways, but these implementations should
only effect the training speed of the network and not its performance [11], and as written in the
problem formualtion in Chapter 1.2, this thesis only takes instance in the performance and
behaviour of neural networks, so quickening the training process is out of scope of this thesis.

10

2.1.5 Backpropogation

Backpropogation is the process of updating the weights and biases of the neural network through-
out the training process to find a local minima of the cost function. As of the problem formualtion
in Chapter 1.2, this thesis takes account in already trained network and its properties, back-
propogation will not be discussed in detail, but if the reader is interested reading more about it
[4] and [12] are discussing it thoroughly.

2.1.6 Training Process and Overfitting

Throughout the training of the network, it is possible to overtrain it by not stopping the training
process early enough. This will cause the network to perform well on the training dataset, as
the network basically memorises each training example, but will cause worse performance on
new instances it has not seen before [4]. This phenomena is shown on Figure 2.4.

Figure 2.4: If the neural network is trained for too long it loses its ability to generalise and starts
to overfit based on the training data. Because of this, there is an ideal time range when the

taining should be stopped [13].

This is the reason when training neural networks a slice of the data set is kept separately from
the training data, and is not used in the training of the network at all. The true performance
of the network can only be measured with such test data, otherwise the neural network could
simply overfit to this as well.

11

2.2 Principles of Convolutional Networks

As discussed in the limitations in Chapter 1.1, this thesis focuses on convolutional neural
networks, so the aim of this section is to set the terminology for convolutional networks for the
rest of this thesis.

Convolutional Networks or ConvNets are a specific type of neural networks used in the field of
image recognition. They build upon the same working principles as the regular neural networks,
and are also made of neurons with learnable weights and biases, but are structured according
to some specific rules. This is because for a convolutional neural network each pixel of a colored
input image corresponds to three input vectors. So in the case of the commonly used CIFAR-10
dataset, each of the images are 32x32 pixels in size, which results in a 3x32x32 image due to the
RGB colour channels each being a separate input vector. So even in the case of such a small
picture, the network has 3072 input vectors, which requires for a special architecture which
supports down sampling and other specialised steps, as discussed later.

Figure 2.5: Convolutional networks follow the same principle as regular neural network, with the
pixels of the picture being the input, the network learning more general and high level principles

in its earlier layers, getting more and more specialised in the deeper layers, and returning a
classification in the output layer [14].

12

For this reason, ConvNets use a technique called kerneling for reducing the amount of inputs to
its first hidden layer. This is done by an n by n kernel (often 5 by 5 in practice [4]) and mapping
that to a single neuron, as shown on Figure 2.6.

Figure 2.6: Mapping a part of the input picture with a 5 by 5 kernel to the first hidden layer,
significantly reducing the amount of input being fed to the network [4].

Because of this, each filter is characterized by two properties; kernel size (25 in case of the
example on Figure 2.6) and stride, the amount the kernel is moved after each sampling to
the right or to a new row. The stride is often 1 or 2, as moving the filter by more is usually
causes too big drops in the performance of the convolutional network generated [4], but as it is
a hyperparameter this can be set to any value, which is to be discussed later on in this chapter.

2.2.0.1 CNN architectures

As opposed to plain neural networks, convolutional neural networks use specialised architec-
tures for optimizing and enhancing performance. These architectures have historically been
created for an annual competition called the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), which have been held every year since 2010 [15]. Each of these architectures
is very well documented by their original authors, and have been benchmarked by numerous
people since their inception. In [16] it is shown that each of the main CNN architectures have
a well observable difference in their classification accuracy, as it is also shown on Figure 2.7

13

Figure 2.7: Validation accuracies of CNN architectures on the Imagenet dataset [16].

It has also been benchmarked how these architectures compare in the size of the network out-
putted in relation to the classification accuracy, as it is shown on Figure 2.8

Figure 2.8: Chart showing the operations required for a single forward pass with the network (on
the x-axis) in comparison to the classification accuracy of each model (y-axis). The size of each

disk is proportional to the size of the neural net produced [16].

As listed on Figure 2.7 and Figure 2.8, there are a number of commonly used CNNs for image
classifying tasks. The following sections of this thesis will discuss the two most commonly used
ones of these, in line with sub-question one of the problem formulation listed in Chapter 1.2.

14

2.2.0.2 AlexNet

AlexNet was the first large scale neural network architecture that performed really well on
the earlier mentioned ILSVRC competition, outperforming all non-deep learning based models,
and starting the revolution of modern convolutional neural networks in 2012 [17]. AlexNet’s
architecture is shown on the following Figure 2.9;

Figure 2.9: Architecture of the AlexNet, starting with a convolutional layer, leading to a pooling
layer, leading to normalisation, then leading to another convolutional, normalisation and then a
number of convolutional layers, finishing with a pooling layer and then three fully connected

layers. The picture in the original paper is missing its top part, and is cited as such in academic
sources as well [17].

Even though AlexNet has been outperformed since its inception in 2012, as shown on Figure
2.7, it is still widely popular as it is a very well documented and understood network, with its
original paper having been cited over 27.000 times as of the writing of this thesis, half of these
citations being from the past two years [18]. This, and the architecture’s precalence in online
tutorials shows that this architecture is still popular, and is still widely used.

2.2.0.3 GoogLeNet

GoogLeNet is a very deep neural net compared to the previous winners of the ILSVRC com-
petition, which won the challenge in 2015 with its 22 hidden layers [19]. It has been designed
to be very efficient with the use of so called "inception" modules, which applies parallel filter-
ing operations to the same input, taking advantage of how GPUs can compute many similar
calculations in parallel at a time, with one of these inception modules being shown on Figure
2.10.

15

Figure 2.10: An inception module of the GoogleNet, where three seperate convolutions and one
pooling is parallelized in a single module. Notice how a 3x3 convolution is preceded by a 1x1
"bottleneck" convolution, and the 3x3 pooling is followed by an additional 1x1 "bottleneck"

convolution to reduce the dimensionality of the output filter [19].

The full GoogLeNet architecture is shown on Figure 2.11, showing how nine of the earlier
mentioned inception modules connect with each other.

16

Figure 2.11: The full GoogLeNet architecture. The image has been modified from [19] to fit
better on this page.

17

The GoogLeNet model starts out with a convolutional, a pooling and a normalisation layer,
followed by two more convolutional, a normalisation and a pooling layer, after which nine in-
ception modules follow. Then the output of the last one is pooled, which is fed to a final, fully
connected layer.

2.2.1 Hyperparameters

In machine learning hyperparameters are constants, which need their values to be predefined
before the models could be constructed. These parameters then will influence how the algorithm
will learn about the data or how the data will be processed and treated.

This section discusses the most often used hyperparameters for convolutional neural networks, as
if these are set incorrectly, they can heavily influence the performance of the resulting network,
which is one of the main topics of this thesis as written in the problem formulation in Chapter
1.2.

• Learning rate - The learning rate (or sometimes called step size) is the most important
parameter when training a neural network [20]. It influences how much the weights are
adjusted during backpropogation, and if it incorrectly set it can cause the network to
converge at a suboptimal local minima. Unfortunately there is no proper way for detecting
if an already trained network has been trained with a wrongly set learning rate, and at the
time of writing of this thesis for the most part the learning rate is found on a trial-and-error
basis, although research is being done on finding a more optimal solution [21].

• Batch size - When calculating the derivative for the gradient descent algorithm, it would
be too slow (or computationally expensive) to make the calculations for each and every
sample, especially if the training data consists of millions of examples [20]. A common
approach for addressing this issue is to calculate the gradient in batches, and the gradient
calculated from these batches can be used for the gradient descent algorithm. In practice,
a high batch size has been observed to reduce the resulting neural network’s ability to
generalise, and there have been some attempts to provide a precise answer as to why this
phenomena occurs, but it as of the writing of this thesis no conclusive evidence has been
found [22].

• Activation function - As inspired by biological neurons found in brains, each neuron of
a neural network receives inputs from its connected neurons and weights, which are then
used for producing an activation to be used as inputs for future neurons. This output
depends on the activation function, which is a mathematical formula with the goal to
normalise the output of the neuron. This activation function is specified for the neurons of
the network as a hyperparameter, and usually the entire network uses the same activation

18

function for every neuron [4]. The most commonly used activation functions, with their
respective upsides and downsides are to be discussed in the next section.

• Kernel size and Stride - Convolutional neural networks have two unique and important
hyperparameters called kernel size and stride, which are discussed in detail in Chapter
2.2. These paremeters, however are set together with the choice of architecture of the
CNN, and as such further discussing how to set them optimally is out of scope for this
thesis, as it would not lead closer to answering the problem formulation.

2.2.2 Activation Functions

As explored in Chapter 2.2.1, activation functions are a hyperparameter of neural networks,
the choice of which influences the performance of the neural network to a large degree. This
section is to explore commonly used activation functions, and their effects on the performance
of neural network, such as in line with the problem formulation in Chapter 1.2.

2.2.2.1 Sigmoid Activation Function

The sigmoid activation function is based on the mathematical formula of the sigmoid non-
linearity, expressed by the following formula;

σ(x) = 1/(1 + e−x)

This function takes any real-valued number, and "squashes" it into the range between 0 and 1,
as illustrated by the curve on Figure 2.12.

Figure 2.12: Sigmoid non-linearity function, normalizing real numbers to range between 0 and 1
[8].

19

The sigmoid activation function has seen frequent use historically for neural networks, as it is
most similar to how biological brains work, but has two major drawbacks [8]. Firstly, in case
of very high or very low inputs to the neuron, the result saturates to the 0 or 1 "tail" of the
activation function, which will kill the local gradient, and no changes will be made to that part
of the network at the time of backpropogation. The same applies when setting initial weights, if
they are too large or too small from the beginning, the neuron will get saturated and will never
change. The second downside of the sigmoid activation function is that it is not zero-centered.
This can introduce zig-zag dynamics in the gradient updates, as each neuron can turn from
positive to negative, and then vica-versa after each update [8].

2.2.2.2 Tanh Activation Function

Tanh, or the Hyperbolic Tangent function has historycally been used to fix some of the issues
with the sigmoid function [8]. Its expressed by the following equation.

tanh(x) = ea − e−a

ea + e−a

This in practice results in a very similar function to the sigmoid, with a comparative illustration
shown on Figure 2.13 shown below;

Figure 2.13: A comparison between the Tanh and the Sigmoid functions [9]

An upside of using the tanh function over the sigmoid is that the outputs are zero centered,
so the gradient can be updated more efficiently, but it still kills the gradients when the inputs
are saturated towards one end of the function [8]. It is mainly used in classification problems
between only two classes [9].

20

2.2.2.3 ReLU Activation Function

The ReLU, or Rectified Linear Unit activation function aims to fix the issues with the sigmoid
and tanh functions. A simple f(x) = cx linear function would not be a feasible activation
function for a neural network, as then it would not matter how many hidden layer would a
network have, the final activation function of the last layer would just simply be a linear function
of the input of the first layer, this the neural network would not be able to solve the complex
tasks it was intended to do [23]. To solve this issue, ReLU has been used, which has a property
of being only partially linear, as expressed by the following equation;

f(x) = max(0, x)

ReLU has been shown to be a good approximitation for any non-linear function [24], so it is a
perfect candidate for an activation function of a neural network. However, the function outputs
zero for any input smaller than or equal to zero, as illustrated by its graph shown on Figure
2.14.

Figure 2.14: The Rectified Linear Unit Activation Function [25].

The problem with this property of ReLU is that after the network has been iniatilised randomly,
half of its neurons will be dead, as small nudges to its gradient will not account to any amount
of change. Some argue that this more closely models biological neurons, as in reality not all
neurons take place in every computation, and that this sparsity might actually be beneficial [26],
but in practice there is an activation function called leaky ReLU, which performs better in most
cases for convolutional networks [27].

21

2.2.2.4 Leaky ReLU Activation Function

An improvement over the ReLU, the Leaky ReLU Activation Function introduces a small change.
When its input is smaller than zero, it still has an effect on the activation, as shown by its function
on the following equation;

f(x) = max(0.01x, x)

This results in a function which also does not have the issue of saturation as its slope stays
constant no matter how much higher or lower is the input than zero. And unlike the regular
ReLU, it does not have about half of the neurons being "dead" right after initialisation. A
comparison between ReLU and Leaky ReLU is shown on Figure 2.15 as follows;

Figure 2.15: The Rectified Linear Unit Activation Function (on the left) as compared to the
Leaky Rectified Linear Unit Activation Function (on the right) [9]

It should be mentioned that some other versions of leaky ReLU also exist, such as parametric
ReLU, which adjusts the slope when the input is smaller than zero, and exponential linear ReLU,
which replaces the smaller than zero "tail" of ReLU with an exponential function, and so on.
These additional changes do not offer that significant difference in performance, and so are out
of scope of this thesis.

2.3 Theories for Visualizasing Convolutional Neural Networks

The following chapter discusses already existing theories for visualising convoluttional neural
networks. These techniques were mainly part of academic papers exploring the area of visuali-

22

sation, and although pieces of code exist for most of the techniques discussed in this section, it is
either published on Github with the need to compile it beforehand or is just partially available.

There have been some works concerning the visualization of convolutional neural networks, most
of them focusing on the first layer of the network, where projecting the activations to the pixel
space is the most straightforward [28]. This section discusses approaches taken for more compre-
hensive visualisation techniques, as it has been shown that the first layer usually only handles
general features, which are not that significant from the perspective of the problem formula-
tion written in Chapter 1.2. It has been shown that these layers even work interchangeably
between convolutional neural networks trained to do different tasks, as it has been shown that
they always learn features similar to Gabor filters and color blobs, which do not appear to be
specific to a particular dataset or task [29].

2.3.1 Partial Occlusion Technique

One of the most cited papers about visualising neural networks is by Matthew D. Zeiler and
Rob Fergus from the New York University [30], which discusses a novel visualisation technique
for understanding what patterns from the training set activate the feature map of the network.
This is done by systematically covering up parts of an image from the training set, and then
seeing how this influances the network’s classification score for a given class. The following
image shows three of these heatmaps generated by the researchers at Stanford University for a
demo.

23

Figure 2.16: Heatmaps created with partial occlusion technique, showing which parts of the
image influenced the classification the most [31]

This technique can be used to just simply generate heatmaps as shown above, one for each class
which the network is meant to identify, or to create advanced visualisations, such as a single
picture showing the highest activations for each possible class.

2.3.2 Saliency Mapping

Saliency mapping is a technique used for convolutional neural networks to see which parts of the
image are being analyzed by the network. This is achieved by ranking each pixel’s significance
in the input image by computing the gradient of the predicted class score in respect to the pixels
in the original image [32].

24

Figure 2.17: Saliency mappings of a neural network trying to identify animals. First a saliency
map is created (black and white), then a threshold saliency map is created, where a pre-defined
algorithm separates the foreground (shown in blue) from the background (red and cyan), and

then a cropping algorithm is used to separate the animal from the rest of the image [32].

This is originally done with the intention to see which parts of the image is the network doing
computations on, but as shown on the image above it can also be used to do automatic cropping
of images. Because of this additional property, saliency mapping is often used for semantic
segmentation tasks, where the locations of objects have to be detected on images.

2.4 Existing Software Solutions for Visualizasing and Under-
standing Convolutional Neural Networks

The following section discusses already existing software solutions for visualising and under-
standing convolutional neural networks. This section focuses on tools which are visualising and
educating users about the workings of a trained neural network, as it is in line with the problem
formulation in Chapter 1.2.

25

2.4.1 Picasso

Picasso is a specialised, open-source tool for rendering visualisations for analysing convolutional
neural networks. It is written in Python and is published under the Eclipse Public License,
and lets its users to visualise neural network architectures by specifying a visualisation code
and an HTML template, and has support for convoultional networks created only in Keras and
Tenserflow [33].

Figure 2.18: A screen capture of a custom Picasso dashboard, set to do partial occlusion over the
image. On the capture, three images are shown with their corresponding heatmaps of a neural

network’s three highest class scores [33].

26

The visualisations in Picasso are possible by the combination of two things; implementing the
partial occlusion technique from Chapter 2.3.1 and saliency mapping discussed in Chapter
2.3.2. This sounds like a feature rich solution, but in practice to use Picasso one needs fairly
extensive knowledge in Python and Javascript, and its documentation is quite incomplete at
parts. For example, the documentation in its tutorial1 simply says "For more complex visual-
izations, see the examples in the visualizations module" which then just points at a hundreds of
lines long Python source code on Github.

At the time of writing of this thesis, Picasso seems like the most commonly used third party
visualisation tool for convolutional neural networks, without any real contender.

2.4.2 Visualisation built into Keras

Keras is a high-level, open source neural network framework, written in Python. It is the most
well known and widely used tool for training neural networks [34], and it has some built in tools
for visualising the neural networks it generates. It allows for a summarized view of each layers
roles and their properties, but it does not provide any further insight to the workings of the
network. One such visualisation is shown on Figure 2.19 for a convolutional network trained
with the LeNet architecture. Use this

somewhere
in Analy-
sis, men-
tion how
this is not
enough or
something

Use this
somewhere
in Analy-
sis, men-
tion how
this is not
enough or
something

1https://picasso.readthedocs.io/en/latest/visualizations.htmlconfigure-the-html-template

27

Figure 2.19: The model summary as provided in Keras with the keras.utils.vis_utils function.
This image contains information about each layer’s role, their output shape and their number of

parameters [35].
28

2.5 Visualising the filters learned by a Convolutional Network

Another approach for visualising convolutional neural networks is to show each of the filters
learned by the network. This returns somewhat meaningful information on the early layers
when the network is picking up edges and other general features, as shown on the following
figure with a network trained on Stanford University’s online demo tool at [36].

Figure 2.20: An example of the filters learned by the first convolutional layer of a neural
network, trained on the CIFAR-10 dataset and ran through the visualisational demo of Stanford

University at [36].

This works fairly well on the first convolutional layer, but the output gets less and less meaningful
as it progresses to the deeper layers of the network, as shown on the following figure.

29

Figure 2.21: An example of the filters learned by the third convolutional layer of a neural
network, trained on the CIFAR-10 dataset and ran through the visualisational demo of Stanford

University at [36]. The input image is the same ship as on Figure 2.20

In the case of this visaulisation the input is less straightforward to interpret, as the image is
scaled down because of the convolutional layers in the network, and the weights learned by the
filters are not colorcodeable in a meaningful way. This is because the image being processed is
not consisting of three layers anymore (corresponding to the RGB color channels) but has the
inherited dimensionality of the filters instead summed together.

2.5.1 Neural Network Playground by Tenserflow

Neural Network Playground by Tenserflow is an open source educatory tool for getting insight
to neural networks, a screen capture of which is shown on Figure 2.22. It allows users to "play
around" by creating nodes in an ANN by defining the number of hidden layers and the number
of nodes for each layer. It also allows the user to change the input features and some properties

30

Figure 2.22: A neural network being trained on the Neural Network Playground

of the dataset, such as ratio of dataset used for k-fold validation, the noise ratio and the batch
size. It also allows for setting the following hyperparameters when training the neural network:

• Learning rate

• Activation function (with options for Relu, Tanh, Sigmoid and Linear)

• Regulasiton type

After having chosen the desired settings, the user can click a run button to begin training the
network. While the network is being trained, a counter shows real time how many epochs have
passed, while the weights and biases being learned by the network are shown live in the browser,
with a visual output of the resulting decision boundaries.

The basis for the implementation of this application is a library called "Deep playground" pub-
lished by Tensorflow under the Apache 2.0 license, and is made available on Github2.
2https://github.com/tensorflow/playground

31

2.6 Possible Problems causing Neural Networks to function sub-
optimally

One of the problems this thesis is aiming to find a solution for is to provide insight into why a
neural net is not performing optimally, as written in the problem formulation in Chapter 1.2.
This could be due to a number of reasons, with some of the most common ones being as follows:

2.6.1 Too high learning rate

Neural networks are usually trained with the use of gradient descent algorithms, which has many
implementations, as discussed in Chapter 2.1.4, but most of them has one thing in common;
they allow for a learning rate and a batch size to be specified. When training the network,
this parameter will decide how far the weights will be moved in the direction of the determined
gradient for each mini batch.

If the learning rate is set too high then the network can overshoot local minimums and if it is
set too high, then the training will not even converge [37]. If this is not the case however, the
network will finish training with inefficient weights, which will cause the network to perform
suboptimally [37].

2.6.2 Bad labels and wrong data

Another reason for a neural network to behave unexpectedly and provide incorrect results is if
the training data is wrong or if it has incorrect labels. In this case the network will still learn
something based on the training data, but when presented with real data its output will be
seemingly random, as it has been shown in [38] where the researchers shuffled the labels of the
dataset and the network still managed to correctly identify the "classes", proving that no matter
what dataset the network is presented with, it will always learn its features, even if it means
that the it is effectively memorising the dataset.

2.6.3 Too many neurons

A common issue with neural networks is overfitting, which often happens because too many
neurons have been added to the neural net. A symptom of this issue is when the network is
being trained it performs very well o the training set, but when it is measured against new data
the performance drops, such as on the following example when a network is supposed to learn
to approximate the underlying sine wave from noisy measurements [39].

32

Figure 2.23: A 1-20-1 neural network attempting to approximate the underlying sine wave. The
dotted line shows the underlying sine function, the noisy measurements are marked by +

symbols an the response of the neural network is marked as the solid line [39].

In this case, the network would perform very well on the training set, but loses accuracy with
new data because it is most likely trying to find a complicated pattern for a single case. This
is because the larger the network is, the more complex functions it can create, so the most
desirable outcome is when the network is small enough to solve problem, but is not big enough
yet to have enough power to overfit [39].

2.6.4 Not enough training data

Not enough training data will cause the network to overfit, which will lead to problems when it
comes to generalisation, as discussed in Section 2.1.6.

33

3| Analysis
This chapter aims to put into perspective the points discussed in the previous State of the Art
chapter in relation to the problem formulation of this thesis found at Chapter 1.2 and analyse
how they relate to the creation of a visulasisational tool for convolutional neural networks. This
is done by separately discussing each design principle and then creating requirements from these
findings. These requirements are then to be prioritised with the means of a MoSCoW analysis
for the final product of this project.

3.1 Categories of Visualisation Techniques for Neural Networks

In the previous State of the Art chapter, the solutions for visualising neural networks have been
categorised as theoretical approaches mainly discussed in research papers, but without a proper
implementation or being embedded in off the shelf software, or as part of a software solution
readily available to use for people working with neural nets. For the purposes of this chapter
this thesis will organise possible ways for visualisation techniques from two main perspectives;
either from the data’s point of view or from the learned neural network itself.

3.1.1 Visualising the network from the dataset’s point

As the dataset is the origin point for the creation of the neural net, the person training the
network has most likely already familiarised themselves with it, and because of this it is a good
starting point for providing insight into the learned behaviour of the neural network itself. This
can be done by showing the activations and ways of behaviour for each individual object in the
dataset, which also allows for a more visual approach by plotting this to the chosen image itself.

This data centric approach helps to see how the network performs on each class type on a case-
by-case basis. A straightforward way of showing the dataset is through a browser menu, which
allows for selecting an image which will be passed through the neural network, and then the
activations and the behaviour of the network can be shown for this specific case.

3.1.1.1 Partial Occlusion

An approach for providing insight into the workings of the neural network is by treating the
network as a black box, and only looking at the input image in relation to the output of the
network. A way of doing this is through sliding a box which is colored as the mean color

34

value of the image gradually over the picture and calculating how significant each pixel is for
the classification of the image, as discussed in Section 2.3.1. This can be used to generate a
heatmap, which will show which parts of the chosen image is the neural network "looking at"
when classifying it as whatever it is classifying as, such as the one shown on Figure 2.16.

This information from the heatmap can be especially useful in two cases. When the network is
incorrectly identifying the image as something else, then the knowledge of which parts of the
image are causing this can be a good start for an investigation. For example, if the network
would incorrectly be identifying a picture of a standing dog as a cat, and it turns out that the
network is only looking at the dog’s legs, it could be that the training dataset does not have
many pictures of standing dogs but has pictures of standing cats, so it has learned that the
presence of four straight legs means that it is a picture of a cat.

Another case when such a heatmap can be useful is when the network is identifying a picture
correctly, but for the wrong reasons. For example the case also mentioned in the introduction
of this thesis, when the Pentagon ordered a nerual network for recognising if there was a cam-
ouflaged tank on pictures or not, performed well on the dataset by recognising the pictures of
tanks, but as they later found out, all the pictures of tanks were taken in bad weather and all
the other pictures were taken in good weather [2].

Figure 3.1: Two images used for training the neural network for the Pentagon in the 1980s, on
the left an image without a tank in good weather, on the right an image with a tank with cloudy

weather [2]

In this case the network could correctly classify every single image, but for the wrong reasons.
Progressive occlusion could have been used, and then the researchers would have realised that
there would have been no significant activations for parts of the pictures with the tanks on them,
but the blue or grey sky would have been highlighted on the heatmaps.

35

3.1.1.2 Saliency Mapping

Another approach for getting a visual feedback of which pixels of the input matter in the
classification of the image by a convolutional neural network is through saliency mapping, as
discussed in the State of the Art in Section 2.3.2. The difference between saliency mapping
and progressive occlusion is that it does not treat the neural network as a black box, and instead
looks at which pixels of the image are used by the network for the classification, and because
of this it could highlight different issues than progressive occlusion. For instance, it can detect
if a given pixel is dramatically influencing the classification [33], and because of this it could be
possible to use it to see if the network is overly sensitive for an outline or a very limited part of
the image, which could be a sign of an overfitted network. As an example, two saliency maps of
two images belonging to a convolutional neural network trained to classify animals is shown on
the following Figure 3.2;

Figure 3.2: The saliency maps of two neural networks trained to classify animals [32]. The fairly
even activations on both of the pictures means that the network is using most of the pixels in the
image to recognise the animals, but in case the picture on the left it also uses the surrounding

scenery in the classification process.

3.1.1.3 Other Benefits of Data Centric Analysis of a Neural Network

Providing insight from a data centric point of view has other benefits as well, such as the tool
proposed by this thesis could be used as a way to quickly scan through the pictures used to
train or validate the network on. It would also allow for grouping the pictures by their classes,
and together with an uploaded excecutable neural network, these pictures could be sorted by
how accurately the network recognises them. This could be used to find outliers, tricky images
or even incorrectly labelled data.

36

For such a solution, a browser would have to be implemented as part of the visualisational tool,
with support for the loading and handling of large amounts of data, as neural networks are often
trained on thousands or millions of images, such as the commonly used imagenet dataset having
(at the time of writing of this thesis) about 14 million images for training [40].

3.1.2 Visualising the network from the neural network’s point

Another approach for providing insight is to look at the trained convolutional neural network in
general without a specific training example, and use techniques such as gradient ascent to show
the behaviour of the network for a specific class.

This approach is called class model visualisation, and the goal of it is to generate an image with
the highest possible for a given class. For example, the following images were generated to get
the highest possible scores for a neural network trained to recognise classes from the imagenet
dataset.

Figure 3.3: Class model visualisations for the dumbbel, kettle and dalmatian classes of the
imagenet dataset [32]

This approach is less useful for the purposes of this thesis, as using the network to generate
outputs for a specific class is a good way to gain an understanding of what the network does,
but it is not necessarily useful in terms of getting insight on the performance of the neural
network. In the case of the example above, the network may be giving a specifically high score
to cups with round bottoms and handles, but this does not mean it would not recognise a straight
sided handleless mug as a cup. Because of this, class model visualisations may be interesting,
but are not necessarily useful for understanding why a network performs as it does.

37

3.1.2.1 Visualising Activations and Weights of the network

Another way to get insight into the working of the network while taking the trained network
into account is to show each of the activations and weights learned by the network, as discussed
in Section 2.5. This approach is useful for the early layers where the dimensionality mathces
the RGB input space of the original image, such as shown on Figure 2.20, but is less intuitive
as it gets to the deeper layers, as it is shown on Figure 2.21. This is because the activation
maps produced at the hidden layers always have as many "channels" as many filters have been
applied to the previous activation from layer one before.

These activations can be visualised as as many grayscale images as many channels they have, and
that is what is happening on Figure 2.20. Seeing this however most likely does not give insight
into the workings of a neural network that would help someone in improving its performance or
to understand why its working differently, as these projections of higher dimensional activations
will just seem like random noise. Maybe with some advanced analytical function some additional
information could be extracted of them, but this is out of scope for this thesis.

The earlier filters however could be useful in theory, as they can be shown as proper colored
images, but as they are early in the network they only do very general tasks, as it has been
shown that these layers can even be transformed between different networks, which have been
trained to do completely different tasks [29]. Because of this, showing these learned attributes
does not lead to any significant insight either.

3.2 Representing the Layers and Nodes of the Network

One of the biggest issues with neural networks is that they cannot be comprehended in an
easy way when they are shown in a plain matrix form. Because of this, it is imperative that
a visualization tool starts out by plotting the neural net to some graphical abstraction. As
shown in the State of the Art chapter, there are multiple ways of doing this, such as creating a
layer-by-layer representation and displaying all nodes seperately like Tenserflow’s neural network
playground or as a summary for each layer, as shown on Figure 2.19.

However such a distant visaulisation by itself might not be as useful, as the user might already
know the details of their chosen convnet architecture, which are very well documented in their
original papers, as discussed in Chapter 2.2.0.1.

To provide a more dynamic view and in line with the problem formulation written in Chapter
1.2, on top of showing the neural network a closer view could be shown to the user by letting
them to choose one of the layers of the architecture, which could expland and show how the
network has been trained in this specific case. This way, all nodes can have their weights and

38

biases displayed in a meaningful way. An example of such a fanned out neural network is show
on the following Figure 3.4;

Figure 3.4: A neural network with all of its weights and biases displayed [41]

3.3 Visualising Node and Layer Parameters of the Network

A further way of providing insight into the workings of a convolutional neural network is by
taking each convolutional layer individually, and presenting the filters learned by them to get
a sense of what features the network has learned to look for. An approach to this is discussed
in Chapter 2.5, where it is concluded that this is not feasible for answering the problem
formulation of this thesis. However, using these layers in addition to a kind of visualisation as
the one shown on Figure 3.4, with the filters laid over the nodes a similar visualisation could
be created as the one used by the Neural Network Playground discussed in Chapter 2.5.1.
The filters would still not help to educate the user about how to increase the efficiency of the
network, but it could be argued that such an interface with the filters being shown for each node
would result in a more positive user experience.

Another possible solution is to emphasize significant weights and nodes with higher biases, as
these are more significant for the possible outputs of the neural network. These "more important"
nodes then could be color coded in a meaningful way, and shown on a map such as the one
presented on Figure 3.4.

39

3.4 Performance Analysis of Neural Networks

A way to provide performance analysis is to see how the efficiency of the neural network has
changed over time during training. From this data it can be learned if something has gone wrong
during the training period, which could cause the neural network to perform suboptimally. For
example it can be learned if the network has started to overfit because it has been running on
the same limited dataset for too long, along with other information that can be inferred, as
discussed in Chapter 2.1.6.

3.5 Giving Insight into Possible Problems causing Neural Net-
works to function suboptimally

As discussed in Chapter 2.6, there are some typical issues which could happen when training
neural networks. As discussed in the problem formulation in Chapter 1.2, one of the intentions
of this thesis is designing a tool which makes neural networks more accessible for beginners.
Because of this, a feature which detects common issues and shortly discusses possible solutions
to them could be highly useful. This section is to discuss how can insight be given into these
problems, and if there is a straightforward way to educate users about them.

3.5.1 Dead Neurons

As discussed in Chapter 2.2.1 in the State of the Art, some activation functions have a tendency
of killing or saturating neurons, which makes that part of the network not change throughout
the backpropogation, seriously hindering performance. With an attached training history, the
user of a visualisation tool can be informed with a statistic of how many of the neurons are not
performing.

This feature has been requested for the most commonly used tool used for training neural net-
works called Keras, discussed in Chapter 2.4.2, but since has only been partially implemented
and with poor documentation [42]. Other than this, at the time of writing of this thesis no other
out of the box dead neuron detector seems to exist.

3.5.2 Activation Function Detection

Another information that can be obtained from neurons is their activation function, as discussed
in Chapter 2.1.1. This can be important in terms of performance, as some activation functions
can achieve better results on certain types of tasks [4]. This could be communicated to the user
by showing a prompt telling the user about the pros and cons of other type of activation functions

40

if it is detected that a more efficient one could be used in this case.

3.5.3 Analysis of Training History

Other than looking at the neural network and its current performance, insight can also be
obtained from looking at older versions of the network during training and how the neurons have
changed, as discussed in Chapter 2.1.6. This information can be used to see if the network has
begun overfitting at some point, or if it did not converge properly on a local minima, or if has
been causing it to perform suboptimally because of other reasons originating from the training
process.

3.6 Visiualisational Tool Scenarios

To better understand what requirements the visualisational tool has to fulfill, this section is to
introduce multiple scenarios, describing users’ interactions with the system, exploring possible
cases in order to help to answer the problem formulation written in Chapter 1.2. These
scenarios are meant to describe human activities in the form of a short story to allow for the
exploration of needs and requirements to be filled by the tool discussed in this thesis. A the end
of a brainstorming process, the following scenarios have been identified;

• Scenario 1 - A researcher wants to make sure his well performing neural network is
behaving as expected

• Scenario 2 - An engineering student wants to understand why is his network performing
so poorly

• Scenario 3 - A professional developer wants to see why his network always identifies only
one of the classes as another one

• Scenario 4 - A researcher has trained a neural network which performs fairly well, but
she wants to see if her network could do better than this

• Scenario 5 - A student is learning about convolutional networks, and wants to see how
does a state of the art network work

3.6.1 Scenario 1 - A researcher wants to make sure his well performing neural
network is behaving as expected

A researcher has trained a convolutional neural network for recognising tumors based on the CT
scan of patients, which has been performing with a higher than 99% accuracy on the validation

41

dataset. However before he would publish his findings he would like to get an insight into what
is the network basing its classification decisions on, and consult with some experts in the field.
He downloads a tool from his research institution’s website, which he then installs on his private
computer. Then he follows the instructions on his institution’s website, and accesses the tools’
interface in his web browser, which is prompting him to select a path for the trained network
and its corresponding data. After having loaded the network, the researches sees some statistics
about it showing on the screen, which matches with what he was previously seen. Then he
selects a number of images belonging to positive cancer patients, and the tool highlights the
areas of the image where the network was identified signs of a tumor. The researcher then prints
a number of these images with highlighting to bring to a consultation with an expert later on.

3.6.2 Scenario 2 - An engineering student wants to understand why is his
network performing so poorly

An engineering student has trained a convolutional neural network, which has performed very
well on the training dataset, but only has slightly better results on the validation dataset than
random. He downloads the visualisational tool he has used with his class, and opens its interface
from his web browser. He selects a path for the trained network and its corresponding data, and
he also uploads the training history to the tool. The tool takes some time to process this data,
and then after displaying its regular interface, the student notices that a part of it is highlighted
in red. The visualisational tool is pointing out how the training loss has started to climb over
time, and is showing a small prompt explaining that this is usually a sign of overfitting. This
reminds the student how letting the network train too long will make the network less able to
generalise, which explains its poor performance on the validation dataset. With this information
he begins training his new network in a separate software.

3.6.3 Scenario 3 - A professional developer wants to see why his network
always identifies only one of the classes as another one

A developer working for a big international firm developed a convolutional neural network for
classifying pictures of postal stamps, but the network always classifies stamps from China as
Danish ones. He downloads a tool from a software database, installs it, and accesses its interface
from his web browser, as written in the software’s guide. He then gives a path for the network
and its dataset to the software, which then shows him a default menu. In the menu he chooses
to only see data points from the Chinese stamps, after which the program loads all 120 pictures
corresponding to the category, and it shows that most data points are classified as Danish,
with only a bit smaller scores for the Chinese classification. Then the developer chooses to see
every data point corresponding to the Danish stamps, after which the software loads all 3400

42

pictures corresponding to that category, most of them correctly being identified as stamps from
Denmark. The developer realises that the network might have this issue because there are not
enough training examples of Chinese stamps, and he begins to look for more to train a better
working version of the neural network.

3.6.4 Scenario 4 - A researcher has trained a neural network which performs
fairly well, but she wants to see if her network could do better than
this

A researcher has trained a convolutional neural network for identifying breeds of dogs, and it
is performing at about a 90% accuracy, but she has read that others managed to get better
performance on the same dataset. She downloads a tool from the website of her institution,
installs it on her laptop, and accesses its interface from her web browser, as written in the
software’s instructions. She then gives a path for the network and its dataset when the software
prompts her to do so, and the network shows her samples of her dataset in relation of the
architecture of the neural network. The software shows with a yellow marking that the selected
neural network has been trained with the GoogLeNet architecture, and the researcher clicks on
the prompt for more details. On the following page, the program shows a chart with comparisons
between convolutional neural networks for classification problems, and the researcher notices that
the GoogLeNet architecture that she used is outperformed by some other architectures on this
kind of classification tasks. Armed with this new information, she then attempts to train a new
network in a separate software.

3.6.5 Scenario 5 - A student is learning about convolutional networks, and
wants to see how does a state of the art network work

A university student has learned about convolutional neural networks using the AlexNet ar-
chitecture in one of her courses, and she would like to better understand what goes on "under
the hood" in an example, state of the art network that she downloaded from the Internet. She
installs a tool from her institution’s website, launches it and opens it from her laptop’s browser.
She then chooses the path for the network and for the dataset used by the network. On her
screen she sees a part of the dataset, how well the network is performing on it and the layout of
the neural network, which the software correctly identified as AlexNet. Then she chooses a part
of the network she would like to more closely examine, and the software zooms in on it, with the
weights and activations color coded and highlighted based on the currently selected datapoint.
Then she chooses some other images from the dataset and the coloring and highlighting of the
visualisation changes accordingly. She closes the program, satisfied after having seen the inner
workings of the neural network.

43

3.7 Requirements

To further limit the scope of the project for the upcoming design chapter, some requirements have
been set. The aim of these requirements is to specify what the proposed solution is to do, and to
set constraints on the resources and the design of the solution. These requirements are presented
grouped into functional and non-functional requirements, and then they will be prioritised with
a MoSCoW analysis described by Sommerville in [43]. This is done by scoring each requirement
with either a score of must, should, could or won’t, depending on how important they have been
found for the creation of a prototype of the solution discussed in this thesis.

Each requirement is numbered, which is used for reference in later chapters. For all of the
requirements, a short function is summarised, followed by a more detailed description of the
function, then a rationale is given to justify the requirement and then the MoSCoW priority of
the given requirement is shown.

3.7.1 Functional requirements

This section lists the functional requirements set for the system. These requirements are to
describe what the system should do and behave and what kind of services should it provide.

Table 3.1: Functional Requirements

Requir. Function Description Racionale Priority
FR_1 Specify the Net-

work’s location
Select where the network is lo-
cated on the computer

The network is
needed for a net-
work centric anal-
ysis discussed in
3.1.2

Must

FR_2 Specify the lo-
cation of the
Dataset

Select where the dataset is lo-
cated on the computer

The dataset is
needed for a data
centric approach
discussed in
section 3.1.1

Must

FR_3 Specify the Train-
ing History’s loca-
tion

Select where the training his-
tory is located on the com-
puter

The training his-
tory is required
for analysing it,
as discussed in
section 3.5.3

Must

44

FR_4 Execute the neu-
ral network

Run the network on one or
more instances of the training
data and show its output

This is needed for
seeing how the
network classifies
each data point as
discussed in 3.1.1

Must

FR_5 Browser for
dataset

A viewer which displays the
dataset in a grid style view

Needed for a
dataset centric
approach, as
discussed in 3.1.1

Must

FR_6 Filtering for the
dataset

A dropdown menu, filtering
the datased based on each im-
age’s real class

As the dataset
is used due to
FR_2 , which can
have many thou-
sand datapoints,
for which filter-
ing is essential to
make it manage-
able

Must

FR_7 Sorting the
dataset

Sort the dataset based on clas-
sification accuracy

It is important
to show on which
data points is the
network perform-
ing best and worst
to understand its
behaviour, as dis-
cussed in 3.1.1

Must

FR_8 Identification of
typical problems

Identify typical problems with
neural networks and show a
short description of it

Informing users if
their network is
victiom of a typi-
cal problem is im-
portant, as dis-
cussed in 3.5

Must

FR_9 Installer Installs the visualisational
tool

Needed for the so-
lution to be more
accessible, as also
discussed in the
scenarios, found
at 3.6

Must

45

FR_10 The system
should recognise
the convnet’s
architecture

Identify which type of convnet
architecture has been used
(if any) and display statistics
about it

Convnet archi-
tectures are very
well studied and
documented,
as discussed in
3.1.2.1, which can
be used to display
additional infor-
mation about it.
Also discussed in
scenario 4 found
at 3.6.4

Could

FR_11 Comparison
between other
convnet architec-
tures

Display comperative informa-
tion between the network’s
convnet architecture and
other convnets

The choice of
convnet architec-
ture significantly
influances the
network’s per-
formance, as
discussed in 3.6.5

Could

FR_12 Detect activation
function

Detect and display informa-
tion about the activation
function(s) used by the net-
work

The activation
function is one
of the most
determining char-
acteristic of a
neural network,
as discussed in
3.5.2

Should

FR_13 Show comparison
between activa-
tion functions

Show how the activation func-
tion used by the network com-
pares with other ones

The choice
of activation
function can sig-
nificantly affect
performance, so
feedback on is is
very important as
discussed in 3.5.2

Could

46

FR_14 Color code
weights and and
activations

The weights and activations
should be color coded for bet-
ter insight

Color coding the
inner workings of
the network can
help insight, as
explored in sce-
nario 3.6.5

Should

FR_15 Show dead neu-
rons

Show neurons which have died
and were not contributing
when trainign the network

Dead neurons
can hinder per-
formance, as
discussed in 3.5.1

Won’t

FR_16 Heatmaps to
show activations

Heatmaps to show which part
of the image is being pro-
cessed by the network for each
class

Heatmaps give
useful insight into
which part of
the image is the
network looking
at, as discussed
in 3.1.1.2

Must

3.7.2 Non-functional requirements

This section is to list the non-functional requirements of the solution proposed in this the-
sis. They are to describe how well the solution is to perform its functions and to set specific
constraints on it.

Table 3.2: Non-functional Requirements

Requir. Function Description Racionale Priority
NF_1 Run on an aver-

age modern lap-
top

Be able to run on a modern
laptop with 4 Gb of RAM
and with a processor with in-
tegrated graphics

The platform
should be ac-
cessible to as
many people as
possible, so it
should not have
too high system
requirements

Should

47

NF_2 Platform inde-
pendency

The system should be plat-
form independent

The platform
should be plat-
form independent
to be as widely
accessible as
possible

Should

NF_3 Show in web
browser

The interface of the system
platform be accessible from a
web browser

The state of the
art solutions dis-
cussed in chapter
2 ara all displayed
in the browser,
and this part of
them works just
fine. This is also
explored in the
scenarios at 3.6

Must

NF_4 Run from current
version of Chrome

The platform should support
Chrome version 68.0.3440

The platform
should support
the latest version
of Chrome at the
time of writing
this project, as
this is a free
browser accessi-
ble on all major
platforms, which
is needed due to
NF_2 and NF_3

Must

NF_5 Work offline The platform should work of-
fline

The platform
should work
offline, further
incrasing accesi-
bility

Must

48

NF_6 Colorblind mode Support for colorblind users If the platform
is using colors
for its functions
which are not
accessible for
colorblind people,
a feature should
be implemented
to fix this

Won’t

This chapter analysed the solutions from the State of the Art chapter and based on what has
been gathered, in conjunction with the problem formulation, five scenarios have been formulated.
This analysis together with the scenarios have been used to formulate the funcional and non-
functional requirements shown in Table 3.1 and Table 3.2, which are to be used for the
following Design chapter.

49

4| Design
This chapter is to discuss the design decisions made based on the State of the Art and Analysis
chapters, with the focus on fulfilling the requirements set in Table 3.1 and Table 3.2. For
this thesis a prototype is to be created, which is to implement the "Must" requirements of the
aforementioned tables. The requirements from these tables will be referred to by their identifiers
found in the first column of these tables respectively.

4.1 Menu Layout

Before the development of the solution could have begun, a flowchart has been created to
make it easier to visualise how the functions and flows of the application interconnect. The
following figure shows this flowchart, with each of the points on it corresponding to a menu of
the application.

Figure 4.1: Flowchart, showing how the menus of the application connect to each other

Each of these menus are to hold the following features, fulfilling their respective requirements:

• Initialisation Screen - lets the user choose the location of the dataset, the location of the
trained neural network and (optionally) the training history’s location in order to fulfill
requirements FR_1, FR_2 and FR_3. This is the first screen that is shown when
the application is launched, and when a "next" button is pressed after all the necessary
information has been given, the main menu is shown.

• Main Menu - houses as a main hub for the application, where a browser for the dataset

50

and a quick view for the neural network’s architecture can be found, fulfilling requirements
FR_5 and FR_10. The user can go back to the initialisation screen with a back button.

• Detailed view of the Neural Network - Shows a more detailed view of the neural
network’s architecture, where statistics and additional information is shown about it as
well. This section is to fulfill requirements FR_11, FR_13 and FR_15. This menu is
shown if the user clicks on the picture of the neural network in the main menu, and it is
also possible to go back to the main menu from here with a back button.

• Description of common problem - In case the system detects the neural network is
suffering from a typical issue, a colorful indicator is to be shown in the main menu. If the
user clicks on it this window is displayed, as required by FR_8.

• Analysis and Activation Maps - This window is shown when a user clicks on an
image from the dataset, providing analysis on how the network classifies it into one of the
possible classes. A visualisation is shown, along with a heatmap for each of the top classes
the network recognises the image as. At the bottom of the window the neural network is
shown, color coded with its activations for the chosen datapoint. This is done in order to
fulfill FR_14 and FR_16.

4.2 Conceptual Designs

Based on the requirements in Chapter 3.7 and the menu layout discussed previously, the
following conceptual designs have been created in preparation to the development of the software
solution. The sketches have been created with the free version of the online sketching tool
Figma1. The sketches contain only simple design elements, as to be functional and to the point.
Additional design elements and colors can always be added later on after a working prototype
has been created.

4.2.1 Installer

To make the system discussed in this thesis more accessible for non-experts, the installation
process should be streamlined as much possible, such as discussed in FR_9. Because of this,
the prototype of the solution is to be bundled in an installer for the Windows platform, which
installs all the required parts for the solution to work. This also includes a detection to see if
commonly used software such as Python and Chrome is already installed on the system (because
of requirement NF_4), and in case they are missing, their corresponding launcher is initiated.

The installation process should be as streamlined as possible to not "reinvent the wheel" and by
1Figma is available at https://www.figma.com/

51

https://www.figma.com/

this making the procedure straightforward as possible. For this, the installer should be created
with a widely used tool such as NSIS, which is the most widespread packager for open source
applications [44]. An installer created by NSIS is shown on Figure 4.2, which is also the
installer for NSIS itself.

Figure 4.2: A typical installation screen for the Windows operating system [44]

4.2.2 Initialisation Screen

This is the welcome screen of the application, where the user can specify where the neural
network, the training dataset and the training history is located on their computer, as discussed
in Chapter 4.1. A sketch of the initialisation screen is shown on Figure 4.3.

52

Figure 4.3: A sketch of the initialisation screen of the application

If the user clicks the button for choosing the location for either of the prompts, a native browser
of their operating system will be shown to them for choosing the folder containing the needed
files.

4.2.3 Main menu

The main menu is available after having given the necessary details on the initialisation screen,
as discussed in Chapter 4.1. A sketch of the main menu is shown on Figure 4.4.

Figure 4.4: A sketch of the main menu of the application. The picture used to represent the
architecture of the neural network has been taken from [45].

53

This screen is divided into two main parts, one for the browser of the dataset and one for a
summary of the neural network’s architecture. The section with the dataset contains information
about the name of the dataset, to show which one has been loaded in, and shows the size of
the dataset. On Figure 4.4 the pictures have been sorted by the Siberian_husky class of the
dataset as an example to show the solution fulfills requirement FR_7, but when the menu is
loaded for the first time is would say "Show all", displaying examples from all classes of the
dataset. Then the images of the dataset are displayed, alongside with a scrollbar if they could
not all fit on the screen.

On the bottom half of the screen a summary of the loaded neural network is shown. The software
displays the detected architecture and its corresponding image representation, and classification
accuracy of the network. If the user clicks a layer of the network, a more detailed view of it is
shown.

4.2.4 Screen Describing a Common Problem of Neural Networks

In case the system has detected that a common issue could be causing the neural network to
not perform optimally, this screen is shown, fulfilling requirement FR_8. It describes the issue
and also suggests measures in order to prevent it, such as it is shown on Figure 4.5

Figure 4.5: A sketch of the menu describing common problems with neural networks in the
application. As an example, this sketch shows a case when the neural network started overfitting.

This screen would show the details of the currently detected problem. In the case of Figure

54

4.5 it shows an example of the neural network beginning to overfit on the training dataset as it
has been let to train for too long, with a relevant graph generated for this example with Keras
shown on the left of the image. It is also explained on the right of the screen in plain language
what could be causing the issue with the network, and a possible solution to the issue.

4.2.5 Analysis and Activation Maps Screen

The analysis and activation maps screen is shown when the user clicks on an image from the
dataset to get a better insight into how the network decided to classify it as it did, which is to
fulfill requirements FR_4 and FR_16. A sketch of the screen is shown on Figure 4.6.

Figure 4.6: A sketch of the analysis screen of the application. The activation map has been taken
from [46]

55

On the sketch of the analysis screen shown on Figure 4.6 the user has chosen an image of a
tank from the dataset, which is shown on the upper left corner of the screen. To the right of
the source image, the activation maps of the three classes are shown, which were ranked highest
by the neural network. The network correctly identifies this image as a tank, which has the
highest activation of 0.91, followed by amphibian and truck with and activation of 0.18 and 0.07
respectively. The heatmap of the image for these classes shows which part of the network has
taken into account for the classification. On the bottom of the picture the activation map of the
network is shown, with an emphasis of the convolutional layers, which would fulfill requirement
FR_14.

4.3 Choices for Development

This section is to discuss the choices that have been made for the development process. There
are two parts discussed, the background logic with Python scripts and the hosting of the website
and the connection to Python with NodeJS.

4.3.1 Python

For implementing the background logic of the prototype, Python has been chosen as the pro-
gramming language. The reason for this is that most of the open source machine learning
libraries are written in Python, along the ones discussed in Chapter 2.4 and their usage re-
duces the time and complexity of the development significantly. Another reason for the choice
of Python is that it can be included in the installer discussed in Chapter 4.2.1, which makes
the deployment of the solution easier.

4.3.2 Flask

As of requirement NF_3, the solution’s interface is to be made accessible in a web browser.
For handling the logic of hosting the pages and communicating with the background processes,
Flask has been chosen as it is open source and can handle calls to Python scrips, which makes
it an ideal choice for the development of the solution discussed in this thesis. Flask is a micro
web framework written in Python, which makes it not require any additional tools or libraries
to function, and is also platform independent, which makes it fulfill requirement NF_2 as well.

56

5| Implementation
The purpose of this chapter is to present how the requirements from Chapter 3.7 have been
implemented for a prototype. However not all of the requiriements will be implemented, only
those which have been prioritised with must throught the MoSCoW analysis in tables Table 3.1
and Table 3.2 as those have been deemed the most important requirements. This chapter covers
how the neural network is executed, how the data is loaded into the browser of the application
and how the web interface is managed.

5.1 Executing the Neural Network

As discussed in Chapter 3.1.1, the neural network has to be executed by the application to get
the information on how it classifies the image. An efficient way to do this is through the Python
deep learning library called Keras, which is open source and is well documented1 for tasks like
this. Keras can be imported to the Python script discussed in Chapter 4.3.1.

To execute the neural network and then show its results on a page hosted by Flask, first the
necessary libraries have to be imported and then the network has to be loaded. It is assumed
that before this point the network’s and the dataset’s location has been specified, as it has been
discussed in the flow of the processes in Chapter 4.1. A code snippet showing how the Flask
application and the model for Keras is set up is shown on Listing 5.1.

1 from keras.applications import InceptionV3

2 from flask import Flask

3 import io

4

5 # initialise the Flask application and the Keras model

6 app = flask.Flask(__name__)

7 model = None

8

9 def load_model():

10 # load the model of the neural network into Keras

11 model = InceptionV3(weights="imagenet")

Listing 5.1: Python code for loading the Flask application and the neural network into the memory

The code snippet shown on Listing 5.1 first imports Keras’ InceptionV3 library, as in this case
1Keras’ documentation is available at https://keras.io/

57

it is assumed that the neural network specified earlier has been trained earlier using the inception
V3 architecture, and if the network has been trained based on another architecture this part of
the code should be changed to that accordingly. Then Flask is imported as the framework of
choice for locally hosting the application’s website, as discussed in Chapter 4.3.2.

After the network has been imported and an image has been chosen from the dataset by the
user from the browser, the network is to be executed on it to rank the images by their activation
scores, such as the case shown on Figure 4.6.

1 # load the image through Flask

2 image = flask.request.files["image.jpg"].read()

3 image = image.resize(224,224)

4

5 # the input image is classified and the list of predictions is initialised

6 predictionsTemp = model.predict(image)

7 results = imagenet_utils.decode_predictions(predictionsTemp)

8 data["predictions"] = []

9

10 # the results are looped over and are added to the list of predictions

11 for (imagenetID, label, probability) in results[0]:

12 r = {"label": label, "probability": float(probability)}

13 data["predictions"].append(r)

Listing 5.2: Python code for executing the neural network to classify an image

The code snippet on Listing 5.2 loads an image to be classified by the neural network, which
in the case of the live application is to be selected by the user. Then this image is resized to
be 224 by 224 pixel in size, after which it is ready to be added to be processed by the neural
network. The image is passed to a method set up by Keras, inherited by the model variable
from the code snippet shown on Listing 5.1.

After this, the predictions are decoded with an utility called imagenet_utils from the Keras
module, which is put into an array called results. As it is more convenient to display lists in
Flask than arrays, this results array is then parsed over with a for loop, and its contents are
added to a previously initialised list called predictions, which is then ready to be shown in Flask
to the user.

58

5.2 Hosting the Website Locally

As discussed in Chapter 4.3.2, the application’s interface is to be made available to the user
through the use of the Flask framework. This chapter is to show how this is done, and will assume
that the microframework has already been deployed on the host with the installer discussed in
Chapter 4.2.

Provided that the sketches presented in Chapter 4.2 all have their corresponding HTML tem-
plates deployed on the client, they can be referred to through Flask with dynamic attributes
being passed to and from through the framework. For example, in the case of hosting the
initialisation screen shown on Figure 4.3 this is done as shown on Listing 5.3.

1 @app.route(’/’, methods=[’POST’, ’GET’])

2 def next():

3 error = "None"

4

5 # query the location of the network, the dataset and the training history

6 networkPath = request.form[’networkForm’]

7 dataPath = request.form[’dataForm’]

8 historyPath = request.form[’historyForm’]

9

10 # check if the network path and dataset path fields are filled, if they are

not, display the same page with an error message, and if they are, load

the main menu (the history field is not manditory)

11 if networkPath == "" or dataPath == "":

12 error = ’No path provided for the network or for the data.’

13 return render_template(’initialisationMenu.html’, error=error)

14 else:

15 return render_template(’mainMenu.html’, networkFolder=networkPath,

dataFolder=dataPath, historyFolder=historyPath)

Listing 5.3: Python code for the dynamic functionality of the initialisation screen

The code snippet on Listing 5.3 shows a function which is set to the index page running on
the default directory, so in the case of the application being run on the client of the user, it
would be accessible in the browser either at localhost or by going to a loopback IP address, such
as 127.0.0.1. The function declared in the code snippet is to be called when the next button
is pressed on the initialisation screen, which is to look like as the one on Figure 4.3. When
the button is pressed, the forms on the page containing the locations of the network, dataset
and the training history are queried by a request method implemented by Flask, which are then
stored in three variables. The contents of the first two of these variables are then checked, and

59

if they are not empty, the main menu is loaded with the location of the folders passed to it as
arguments. If the network’s path or the dataset’s path was not given however, the initialisation
screen is shown again with an error message.

60

6| Conclusion
The aim of this thesis was to develop a tool for visualising convolutional neural networks. Based
on this, a problem formulation was defined, which is as follows;

How to design a tool for visualising and understanding the behaviour of convolu-
tional neural networks?

To further narrow down the topic, three sub-questions were defined, which are as follows;

How to tell if there is an issue with the network’s performance, and how to educate users about
this?

Typical problems have been identified and discussed throughout this thesis, which are then built
into the prototype of the resulting solution. The solution is to check the uploaded neural network
and its training history for signs of these problems that might cause inefficiency, and then the
user is informed of possible measures that can be taken in order to improve performance.

How to make neural networks more accessible to people just getting started with them?

A number of visualisational techniques have been discussed in this thesis, which are to make
the network more understandable and less like a "black box" for the users who are just getting
started with neural networks. An easy to use prototype has been constructed, with features for
analysing the inputted image and visualising which features of the network is analysing when
making the classification. The architecture of the neural network is also shown in the prototype,
with the activations of the neural network projected to it, with the intention of making neural
network more approachable and less mysterious.

How to provide understanding for the input image in relation to the activations of the neural
network?

It has been explored both from the image’s and for the neural network’s point of view what kind
of activations take place based on the input image, and techniques such as partial occlusion,
saliency mapping, filter visualisation and class modeling has been discussed. These methods have
been compared, and it has found that the most insightful of them is the heatmap generated after
applying the partial occlusion technique, which is implemented in the prototype resulting from
this thesis.

61

6.1 Future perspectives

The tool proposed in this thesis could be further developed and integrated as a part of a software

meant for training neural networks. This way information about the network, the training

process and the dataset would already be available, so the visualisations could be shown right

away, even while the network is being trained.

Such a graphical interface would make neural networks more accessible and it could be further

improved with additional features to also show insight into the training process as well.

62

Bibliography
[1] A. Rosebrock. (2016). LeNet –

Convolutional Neural Network in
Python, [Online]. Available:
https://www.pyimagesearch.com/

2016/08/01/lenet-convolutional-

neural-network-in-python/ (visited
on 09/07/2018).

[2] N. Fraser. (1998). Neural Network
Follies, [Online]. Available: https:

//neil.fraser.name/writing/tank/

(visited on 09/07/2018).

[3] NSW Department of Education. (2018).
HSC Agile Software Development,
[Online]. Available:
http://web1.muirfield-

h.schools.nsw.edu.au/mahara/view/

view.php?id=6967 (visited on
09/07/2018).

[4] M. A. Nielsen, “Neural Networks and
Deep Learning - Chapter 1, Chapter 3,
Chapter 6”, Determination Press, 2015.

[5] G. Cybenko, “Approximation by
superpositions of a sigmoidal function”,
Mathematics of Control, Signals, and
Systems (MCSS), 1989.

[6] P. Lucidarme. (2018). How popular are
neural networks over the years?,
[Online]. Available:
https://www.lucidarme.me/popular-

neural-networks-years/ (visited on
09/07/2018).

[7] A. Prieto, B. Prieto, E. M. Ortigosa,
E. Ros, F. Pelayo, J. Ortega, and
I. Rojas, “Neural networks: An overview

of early research, current frameworks
and new challenges”, Journal of
Neurocomputing, 2016.

[8] A. Karpathy. (2017). Stanford CS class
CS231n: Convolutional Neural Networks
for Visual Recognition - Neural
Networks Part 1: Setting up the
Architecture, [Online]. Available:
http://cs231n.github.io/neural-

networks-1/ (visited on 09/07/2018).

[9] S. Sharma. (2017). Activation functions:
Neural networks - towards data science,
[Online]. Available:
https://towardsdatascience.com/

activation-functions-neural-

networks-1cbd9f8d91d6 (visited on
09/07/2018).

[10] Y. Bengio. (2017). Deep Learning:
Theoretical Motivations, [Online].
Available: http://videolectures.net/

site/normal_dl/tag=983679/

deeplearning2015_bengio_

theoretical_motivations_01.pdf

(visited on 09/07/2018).

[11] S. Ruder, “An overview of gradient
descent optimization algorithms”,
CoRR, 2016.

[12] A. Karpathy. (2017). Stanford CS class
CS231n: Convolutional Neural Networks
for Visual Recognition -
Backpropagation, [Online]. Available:
http:

//cs231n.github.io/optimization-

2/ (visited on 09/07/2018).

[13] (2017). Over-fitting vs Complexity of
Models - StackExchange, [Online].
Available:
https://stats.stackexchange.com/

63

https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
https://neil.fraser.name/writing/tank/
https://neil.fraser.name/writing/tank/
http://web1.muirfield-h.schools.nsw.edu.au/mahara/view/view.php?id=6967
http://web1.muirfield-h.schools.nsw.edu.au/mahara/view/view.php?id=6967
http://web1.muirfield-h.schools.nsw.edu.au/mahara/view/view.php?id=6967
https://www.lucidarme.me/popular-neural-networks-years/
https://www.lucidarme.me/popular-neural-networks-years/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
http://videolectures.net/site/normal_dl/tag=983679/deeplearning2015_bengio_theoretical_motivations_01.pdf
http://videolectures.net/site/normal_dl/tag=983679/deeplearning2015_bengio_theoretical_motivations_01.pdf
http://videolectures.net/site/normal_dl/tag=983679/deeplearning2015_bengio_theoretical_motivations_01.pdf
http://videolectures.net/site/normal_dl/tag=983679/deeplearning2015_bengio_theoretical_motivations_01.pdf
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models

questions/292283/general-

question-regarding-over-fitting-

vs-complexity-of-models (visited on
09/07/2018).

[14] I. Goodfellow, Y. Bengio, and
A. Courville, Deep Learning. MIT Press,
2016,
http://www.deeplearningbook.org.

[15] Stanford Vision Lab. (2017). ImageNet
Large Scale Visual Recognition
Challenge (ILSVRC), [Online].
Available: http://www.image-

net.org/challenges/LSVRC/ (visited
on 09/07/2018).

[16] A. Canziani, A. Paszke, and
E. Culurciello, “An Analysis of Deep
Neural Network Models for Practical
Applications”, CoRR, 2016.

[17] A. Krizhevsky, I. Sutskever, and
G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural
Networks”, Curran Associates Inc.,
2012.

[18] Google Scholar. (2017). Alex
Krizhevsky’s publications, [Online].
Available:
https://scholar.google.com/

citations?user=xegzhJcAAAAJ&hl=en

(visited on 09/07/2018).

[19] C. Szegedy, W. Liu, Y. Jia,
P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going Deeper with
Convolutions”, CoRR, 2014.

[20] A. Karpathy. (2017). Stanford CS class
CS231n: Convolutional Neural Networks
for Visual Recognition - Optimization:

Stochastic Gradient Descent, [Online].
Available: http:

//cs231n.github.io/optimization-

1/ (visited on 09/07/2018).

[21] L. N. Smith, “No More Pesky Learning
Rate Guessing Games”, CoRR, 2017.

[22] N. S. Keskar, D. Mudigere, J. Nocedal,
M. Smelyanskiy, and P. T. P. Tang, “On
Large-Batch Training for Deep
Learning: Generalization Gap and Sharp
Minima”, CoRR, 2016.

[23] A. Sharma. (2017). Understanding
Activation Functions in Neural
Networks, [Online]. Available:
https://medium.com/the-theory-of-

everything/understanding-

activation-functions-in-neural-

networks-9491262884e0 (visited on
09/07/2018).

[24] J. M. Klusowski and A. R. Barron,
“Approximation by Combinations of
ReLU and Squared ReLU Ridge
Functions Controls”, 2016.

[25] D. Becker. (2018). Rectified Linear Units
(ReLU) in Deep Learning, [Online].
Available: https://www.kaggle.com/

dansbecker/rectified-linear-

units-relu-in-deep-learning

(visited on 09/07/2018).

[26] D.-C. Liu. (2017). A Practical Guide to
ReLU, [Online]. Available:
https://medium.com/tinymind/a-

practical-guide-to-relu-

b83ca804f1f7 (visited on 09/07/2018).

[27] B. Xu, N. Wang, T. Chen, and M. Li,
“Empirical Evaluation of Rectified

64

https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models
https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models
https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models
http://www.deeplearningbook.org
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
https://scholar.google.com/citations?user=xegzhJcAAAAJ&hl=en
https://scholar.google.com/citations?user=xegzhJcAAAAJ&hl=en
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

Activations in Convolutional Network”,
CoRR, 2015.

[28] D. Erhan, Y. Bengio, and A. Courville,
“Visualizing higher-layer features of a
deep network”, University of Montreal,
2009.

[29] J. Yosinski, J. Clune, Y. Bengio, and
H. Lipson, “How transferable are
features in deep neural networks?”,
CoRR, 2014.

[30] M. D. Zeiler and R. Fergus, “Visualizing
and Understanding Convolutional
Networks”, CoRR, 2013.

[31] F.-F. Li, J. Johnson, and S. Yeung.
(2017). Stanford CS class CS231n:
Convolutional Neural Networks for
Visual Recognition - Neural Networks
Part 12: Visualizing and Understanding,
[Online]. Available: http:

//cs231n.stanford.edu/slides/

2017/cs231n_2017_lecture12.pdf

(visited on 09/07/2018).

[32] K. Simonyan, A. Vedaldi, and
A. Zisserman, “Deep Inside
Convolutional Networks: Visualising
Image Classification Models and
Saliency Maps”, Visual Geometry
Group, University of Oxford, 2014.

[33] R. Henderson and R. Rothe, “Picasso: A
Modular Framework for Visualizing the
Learning Process of Neural Network
Image Classifiers”, Open Research
Software, 2017.

[34] I. den Bakker. (2017). Battle of the
Deep Learning frameworks, [Online].
Available: https:

//towardsdatascience.com/battle-

of-the-deep-learning-frameworks-

part-i-cff0e3841750 (visited on
09/07/2018).

[35] T. Amaratunga. (2017). Visualizing
Model Structures in Keras, [Online].
Available:
https://www.codesofinterest.com/

2017/02/visualizing-model-

structures-in-keras.html (visited on
09/07/2018).

[36] A. Karpathy. (2016). ConvNetJS
CIFAR-10 demo, [Online]. Available:
https://cs.stanford.edu/people/

karpathy/convnetjs/demo/cifar10.

html (visited on 09/07/2018).

[37] L. N. Smith, “Cyclical Learning Rates
for Training Neural Networks”, CoRR,
2015.

[38] C. Zhang, S. Bengio, M. Hardt,
B. Recht, and O. Vinyals,
“Understanding deep learning requires
rethinking generalization”, CoRR, 2016.

[39] (2018). Improve Neural Network
Generalization and Avoid Overfitting,
[Online]. Available:
https://www.mathworks.com/help/

nnet/ug/improve-neural-network-

generalization-and-avoid-

overfitting.html (visited on
09/07/2018).

[40] ImageNet. (2018). About ImageNet,
[Online]. Available:
http://image-net.org/about-stats

(visited on 09/07/2018).

[41] A. B. Raj, J. A. V. Selvi, K. Durairaj,
and R. Singaravelu, “Intensity Feedback
based Beam Wandering Mitigation in

65

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture12.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture12.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture12.pdf
https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750
https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750
https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750
https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750
https://www.codesofinterest.com/2017/02/visualizing-model-structures-in-keras.html
https://www.codesofinterest.com/2017/02/visualizing-model-structures-in-keras.html
https://www.codesofinterest.com/2017/02/visualizing-model-structures-in-keras.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html
https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html
http://image-net.org/about-stats

Free Space Optical Communication
using Neural Control Technique”,
EURASIP Journal on Wireless
Communications and Networking, 2014.

[42] (2017). Feature proposal: detect dead
ReLUs, [Online]. Available:
https://github.com/keras-

team/keras/issues/7057 (visited on
09/07/2018).

[43] I. Sommerville, “Software Engineering.
9th Edition. Chapter 1”, Pearson, 2011.

[44] NSIS. (2018). Nullsoft Scriptable Install
System, [Online]. Available: https:

//sourceforge.net/projects/nsis/

(visited on 09/07/2018).

[45] X. Han, Y. Zhong, and L. Zhang, “An
Efficient and Robust Integrated
Geospatial Object Detection Framework
for High Spatial Resolution Remote
Sensing Imagery”, Remote Sensing,
2017.

[46] J. Koutník, J. Schmidhuber, and
F. Gomez, “Evolving Deep
Unsupervised Convolutional Networks
for Vision-based Reinforcement
Learning”, in Proceedings of the 2014
Annual Conference on Genetic and
Evolutionary Computation, ACM, 2014.

66

https://github.com/keras-team/keras/issues/7057
https://github.com/keras-team/keras/issues/7057
https://sourceforge.net/projects/nsis/
https://sourceforge.net/projects/nsis/

	Contents
	1 Introduction
	1.1 Limitations
	1.2 Problem Formulation
	1.3 Methodology
	1.4 Expected Outcome
	1.5 Challenges

	2 State of the Art
	2.1 Principles of Neural Networks
	2.2 Principles of Convolutional Networks
	2.3 Theories for Visualizasing Convolutional Neural Networks
	2.4 Existing Software Solutions for Visualizasing and Understanding Convolutional Neural Networks
	2.5 Visualising the filters learned by a Convolutional Network
	2.6 Possible Problems causing Neural Networks to function suboptimally

	3 Analysis
	3.1 Categories of Visualisation Techniques for Neural Networks
	3.2 Representing the Layers and Nodes of the Network
	3.3 Visualising Node and Layer Parameters of the Network
	3.4 Performance Analysis of Neural Networks
	3.5 Giving Insight into Possible Problems causing Neural Networks to function suboptimally
	3.6 Visiualisational Tool Scenarios
	3.7 Requirements

	4 Design
	4.1 Menu Layout
	4.2 Conceptual Designs
	4.3 Choices for Development

	5 Implementation
	5.1 Executing the Neural Network
	5.2 Hosting the Website Locally

	6 Conclusion
	6.1 Future perspectives

