Aalborg Universitet

Biomimetic aquaporin forward osmosis membrane for removal of frequently found pesticides from danish groundwater network

Nikbakht Fini, Mahdi; Madsen, Henrik Tækker; Muff, Jens

Publication date: 2018

Link to publication from Aalborg University

Citation for published version (APA): Nikbakht Fini, M., Madsen, H. T., & Muff, J. (2018). Biomimetic aquaporin forward osmosis membrane for Nikbakht Fini, M., Madsen, H. T., & Muff, J. (2018). Biomimetic aquaporin forward osmosis membrane for removal of frequently found pesticides from danish groundwater network. Abstract from Nordic Filtration Symposium, Aalborg, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

BIOMIMETIC AQUAPORIN FORWARD OSMOS/S MEMBRANE FOR REMOVAL OF FREQUENTLY FOUND PESTICIDES FROM DANISH GROUNDWATER NETWORK

MAHDI NIKBAKHT FINI, HENRIK TÆKKER MADSEN, JENS MUFF

BORG UNIVERSITET DEPARTMENT OF CHEMISTRY AND BIOSCIENCE ESBJERG SECTION OF CHEMICAL ENGINEERING

Introduction

Map of pesticide contamination

Found in 27% of active DW wells
> 0.1 μg/L in 3.6%
130 wells were closed within 1993-2009

AALBORG UNIVERSITET ESBJERG

MEM 2BIO Water teatment

Membrane separation:

- ~ 90% ultra pure water
- ~ 10% residual 'waste' water with high concentration of pollutants, carbon, minerals etc.

Biofilter:

Added specific pesticide degrader organisms to sand filters

Ellegaard-Jensen et al. 2017

Mineralization

Treated concentrate is mixed with permeate

3

Studied pesticides

1. BAM (2-6 Dichlorobenzamide)

MW: 190.028 g/mol

transformation product of Dichlobenil

2. MCPA (2-methyl-4-chlorophenoxyacetic acid)

MW: 200.62 g/mol

3. MCPP (methylchlorophenoxypropionic acid)

MW: 214.65 g/mol

In 2015, Found in 16% of sampled wells of which 9.4% was above 0.1 µg/L.

Forward Osmosis

Use of FO in MEM2BIO project

Aquaporin FO membrane

- Incorporated aquaporin proteins in the membrane
- Higher permeability compared to traditional FO membranes

34 cm²

2.3 m²

FO setups

Membrane characterization

Parameter	Value
NaCl rejection in RO (%)	99.4 ± 0.2
Pure water permeate flux (LMH)	15.2 ± 0.6
Reverse salt flux (g m ⁻² h ⁻¹)	5.6 ± 0.5 (1.7 ± 0.4 by HF)
Water permeability, A (L m ⁻² h ⁻¹ bar)	3.0 ± 0.2
Salt permeability, B (L m ⁻² h ⁻¹)	0.1 ± 0.03
Membrane structural parameter, S (µm)	305 ± 43
Contact angle (°)	28.6 ± 3.4
Zeta potential at pH=5.3 (mV)	- 21 ± 2

Pesticides rejection in pure water

17th Nordic filtration symposium

Pesticides rejection in Varde water

Time (min)

BAM

MCPA — MCPP — Permeate flux

Pesticides rejection by different setups

	BAM (%)	MCPA (%)	MCPP (%)	Pure water permeate Flux (LMH)
Hollow fiber	98.1	98.6	98.9	15.8
Flat sheet	93.3	94.7	94.9	15.2
Small FO compartment	97.2	-	-	9.4

AALBORG UNIVERSITET

ESBJERG

H. Madsen et. al., Journal of Membrane Science 476 (2015) 469-474

Future work

- Use of the other water samples from Kolding and Hvidovre.
- Use of the other draw solutes: Glucose and Sodium acetate
- Study of effect of recovery on the membrane performance.
- Production of concentrates for biological treatment using different draw solutes
- Comparison of RO and FO in terms of scaling propensity
- Combination of FO and RO as an integrated membrane process.

