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ABSTRACT 

Emotion is a key factor in understanding user experiences 
(UX) of interactive systems. An emerging trend within HCI 
is to apply physiological sensors for uncovering emotions. 
Previous studies rely on various sophisticated analysis 
techniques and specialized knowledge to interpret sensor 
data. While commendable for increasing accuracy at fine 
grained latencies (to detect events within seconds), this can 
be challenging for UX practitioners without specialized 
knowledge. This study contributes in two ways. Firstly by 
understanding the level of sensor accuracy in detecting UX 
related events. Secondly by applying a basic analysis 
approach where sensor data is interpreted by 21 non-
specialist participants (no previous experience in doing 
this). Their performance is compared to random guessing. 
Findings show that sensor data analyzed by non-specialists 
are significantly more accurate in capturing subjectively 
reported UX events than random guessing. An accuracy 
level of 60-80% was obtained at granularities within 3.5-11 
seconds of UX related events. 
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INTRODUCTION 
Emotion is a fundamental factor in measuring and 
understanding user experience (UX) of interactive 
technologies [2,21,59]. Emotional states of users have 
typically been elicited through subjective ratings of 
arousal/valence dimensions in, e.g. well validated  
questionnaires such as the Self-Assessment-Manikin [7]. 
An emerging alternative is to apply real time sensor data to 
measure and understand the emotional dimension of UX 

[24,60]. Data from physiological sensors indicate emotional 
states of users where e.g. Galvanic Skin Response (GSR) 
sensors in particular are proven reliable for measuring 
changes in arousal  [7,23]. UX researchers have argued that 
physiological sensors have limited applicability for practice 
due to their extensive costs, see e.g. [34]. However, sensors 
are now more commonplace in smart watches [51] and have 
also been introduced in smart fabrics [28] and therefore 
hold considerable potential as data sources to measure and 
understand UX during actual interactions with technologies. 

Based on experiences from the software development 
industry, Georges et al. argue for a need to include more 
data driven recommendations based on emotional reactions 
[24]. However, there are at least two critical challenges for 
using physiological sensors in practice: 1) data analysis 
requires specialized knowledge and 2) the level of sensor 
accuracy in detecting events of interest is currently 
unknown in HCI contexts. 

In terms of data analysis, the challenge is to identify UX 
related events in the sensor data at specific points in time. 
Such analysis is challenging [22,23,25,34], partly because 
physiological data are fluctuating within seconds [63]. 

There is also a need to study the accuracy of sensors in 
revealing UX related events during interaction. This is 
particularly relevant for formative purposes, i.e. in order to 
identify design elements leading to particular emotional 
experiences  [9,24]. Studies within psychology have found 
correlations between sensor data and external stimuli, yet, 
those studies primarily rely on presenting distinct stimuli 
such as pictures. This may not translate to the interactive 
nature of technology use in HCI contexts [20,63]. 

The contribution of this study is to demonstrate practical 
feasibility of using physiological sensors for assessing the 
emotional dimension of UX in real time. To this end no 
participants had prior knowledge in the use of physiological 
sensors and the analysis of sensor data. Within this practice 
related constraint, the following research question is 
examined: How accurate are physiological sensors in 

detecting emotional reactions related to specific UX events 

during interaction? 

Firstly, the theoretical background and how to measure 
emotions is outlined. This is followed by a walkthrough of 
related work within HCI. Next, the method, findings, 
discussion and finally conclusions are presented. 
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THEORETICAL BACKGROUND 

This section gives an overview of the theoretical 
background on defining and measuring emotions as well as 
challenges in analyzing sensor data. 

Defining Emotions 

Defining emotions is a highly debated topic within 
psychology and providing an exhaustive walkthrough is 
outside the scope of this paper. That said, the century old 
theory of William James and Karl Lange has influenced 
more recent work. James and Lange theorized that emotions 
occur as a result of bodily changes in autonomic and motor 
functions, which in turn are activated by perceived stimuli 
[30]. As an example of more recent accounts supporting 
this, Klaus Scherer’s appraisal theory consider emotions as 
adaptive responses to appraisals of environmental features 
[45]. These responses are also referred to as orienting 
responses. Emotions are considered as the result of a 
process involving physiological and cognitive components 
of which external or internal stimuli act as catalysts. Once 
the process is initiated, appraisals lead to mobilization and 
synchronization of physiological subsystems. According to 
Scherer, we respond to external or internal stimuli in 
relation to the well-being of our organism, which is done 
through appraisals that then lead to physiological reactions, 
i.e. orienting responses [45,54]. 

Describing emotions typically falls within discrete and 
dimensional models. Ekman’s set of basic emotions is an 
example of the former [18,19] whereas Lang and Russel 
consider emotions as a vector in multidimensional space of 
valence and arousal [5,37,53]. However, regardless of the 
model applied, there still exist an inherent challenge in 
eliciting emotions due to their multifaceted and ephemeral 
states [11]. This is furthermore complicated by considering 
related nuances such as mood and affect (see [17] for a 
review). The study presented in this paper is informed by 
the dimensional model of valence-arousal using subjective 
accounts and objective measures for eliciting emotional 
responses (see e.g. [43,50] for further discussions). 

Measuring Emotions 

The following provides an outline of subjective and 
objective approaches in eliciting emotions as well as a 
discussion of merits and limitations. 

Subjective Measures 

Gathering subjective accounts of emotional reactions are 
typically done through questionnaires such as the Self-
Assesment-Manikin (SAM) [5] or Emocards [16]. To date 
this is the primary method for eliciting emotional reactions 
within HCI studies, and data is typically gathered after task 
completion, cf. [2,7]. Given the ephemeral nature of 
emotions, one should be careful in letting study participants 
provide such retrospective accounts of real time 
experiences as this leads to memory biases. An example of 
such a bias is the peak-end effect, cf. [7,9,32,44]. Therefore 
it is critical that emotions are measured as close as possible 
to the point in time they occurred.  

A more recent alternative within HCI dealing with the 
peak-end effect is the Valence method proposed by 
Burmester et al. [10]. Users experience positive or negative 
emotions while interacting with a product and these are 
captured by the users marking a “+” (plus) or “-“ (minus) 
sign on an external keypad. A timestamp for each mark is 
logged and used in a follow-up retrospection phase to 
interview users about their experiences. These +/- markers 
are referred to as valence markers and thus indicate points 
in time where users experience either positive or negative 
emotions in relation to the interaction.  

Objective (psychophysiology) 

Aligned with Scherer’s appraisal theory, an emerging trend 
in HCI studies is to elicit emotions through objective data 
obtained from physiological sensors [24,60]. Several 
studies have e.g. applied heart rate (HR), galvanic skin 
response (GSR) and other sensors to gain insights on 
emotional states of participants in real-time. Orienting 
responses causing changes in electro dermal activity can be 
measured with GSR sensors, which have been shown to 
correlate well with subjective accounts of arousal across 
several independent studies in varying contexts, see e.g. 
[7,22,23,34,36]. GSR sensors are reported to be less 
sensitive to noise and less ambiguous than 
electromyography (EMG) and HR sensors [34]. 

Analyzing Physiological Data 

It is challenging to analyze data signals from physiological 
sensors [23,25,34], partly because physiological data are 
changing rapidly (within seconds) [63]. To understand 
emotional experiences related to interaction designs, it is 
important to identify orienting responses in the sensor data 
reflecting when UX related events occur. This is necessary 
to couple specific events within an interaction sequence to 
an emotional experience [9]. Orienting responses could e.g. 
be observed as fluctuations in arousal, which would show 
up as changes in the skin conductance level with varying 
magnitudes and durations (see Figure 1 for an example), cf. 
[29,38].  

 

Figure 1. Part of a GSR graph from one test user within this 

study. Y-axis represents skin conductivity, x-axis represent the 

time in seconds. 

Theoretically, the continuous and dimensional model of 
describing emotions leads to an infinite number of 
valence/arousal combinations. Fairclough also discuss the 
potential many-to-many relationship between physiological 
and psychological  manifestations, where e.g. several 
physiological signals can be associated with more 
psychological elements [20]. This level of nuance requires 



advanced data analysis in order to classify responses based 
on signals (and the fusion of several signals).  Previous 
studies suggested using machine intelligence to correlate 
signal patterns with events representing some form of 
ground truth. Such approaches have enabled researchers to 
create algorithms that classify emotions at two or three 
levels (e.g. high, neutral and low valence/arousal) with 
varying degrees of accuracy (40-90%), cf. [12,26,31]. 
However, given the individual nature of emotions, such 
precision requires that machines are trained up front and 
that a training session should be conducted for each 
individual participant in order to reach accuracy levels of 
90% as shown by Calvo et al. [12]. When the same training 
set was used across multiple participants’, Calvo and 
colleagues found that accuracy dropped to 40% [12]. Thus, 
much effort is required to obtain high accuracies even for 
relatively crude two and three level classifications. 

Another analytic issue is the latency of sensor signals in 
relation to the moment an event occur. This latency is 
explained through Scherer’s appraisal theory, in particular 
that physiological manifestations occur after appraisals of 
an event are made. Reports of latency levels vary between 
previous studies (and depends on the sensor type used). 
Forne [22] states that it is hard to link observed responses to 
particular points in time and claims that GSR sensors have 
latency times of up to 6 seconds, which is also supported by 
Park et al. [49]. Kivikangas et al. report lower latencies 
between 1-4 seconds for GSR [34], while Ward and 
Marsden operated with latencies of 10 seconds [63]. Park 
[49] and Stern et al. [58]  argue that it is challenging to 
pinpoint exact moments in time of an event leading to 
physiological reactions. They therefore suggest using signal 
averages spanning over 10 second periods. 

Given the level of nuance in classifying the level of 
valence/arousal of emotions, individual differences and 
discrepancies in signal latency, it is challenging for UX 
practitioners without specialized knowledge to analyze 
physiological data [22]. 

RELATED WORK 

The use of physiological measurements in HCI is an 
emerging trend [20,42,46,60] with a primary emphasis on 
understanding UX in digital game applications. Studies 
within the gaming domain have dealt with method 
validations, measuring social gaming experiences, adaptive 
interfaces, studying the effect of particular game features 
and events, see [20,34] for more details. Less attention is 
given to non-gaming applications in terms of measuring UX 
physiologically. 

Generally, there are two approaches to utilize physiological 
data in HCI. One is to consider averaged signals across 
entire periods of time (long-term changes in 
psychophysiological states, typically within several 
minutes). This could cover averaged signals over an entire 
interactive session or across entire tasks, which is in line 
with Park [49] and Stern et al.’s [58] recommendations 

outlined above. The alternative approach (short-term 
changes) is to identify individual orienting responses within 
seconds, i.e. discrete events. This  e.g. covers using 
physiological data signals to detect specific points in time 
where particular events occur, cf. [63]. 

The most common tendency in HCI studies is to analyze 
physiological signals over entire periods of time, e.g. a full 
interactive session or across entire tasks rather than 
isolating signals around specific events within a session or 
task. Ward and Marsden present one of the earliest HCI 
studies exploring how GSR and heart rate is affected when 
interacting with well- and ill-designed versions of a web 
site. That study includes findings related to both long- and 
short term signal changes. Findings show that changes in 
skin conductivity over the entire interaction sequence was 
higher for participants using the ill-designed version of the 
website (indicating a higher level of arousal) compared to 
the well-designed version. Ward and Marsden also 
observed more short-term effects on skin conductivity 
related to specific events (pop-up windows). Here they 
found significant differences in conductivity changes 10 
seconds before and 10 seconds after the events. 

Wilson [64] presents a study based on measuring long term 
changes. The purpose is to examine the effect of media 
quality on the user experience within a video conferencing 
context. This is done by measuring GSR and heart rate in 
relation to varying video quality grades (5 vs. 25 fps). 
Results are reported as overall averages across entire 
interactive sessions and reveal that physiological signals 
indicate higher stress levels in lower video quality 
conditions compared to the higher video quality conditions. 

Another, and more recent study based on long term signal 
changes is presented by Yao et al. [65]. They showed 
correlations between task performance and physiological 
data obtained from GSR and heart rate data. That study is 
based on comparing data within the entirety of tasks.  

Similarly, Novak et al. [47] use GSR, heart rate and other 
sensors to study the effect of mental workload when 
performing single vs. dual-tasks on a computer. 
Physiological measurements, e.g. skin conductivity change, 
were based on averaging signals over entire task periods. 
Findings from that study show that physiological signals are 
sensitive to mental workload caused by different task types. 

While averaging long term signals is justifiable for 
summative assessment purposes, it is arguably insufficient 
for formative assessments where interaction designers need 
to identify user experiences in relation to specific design 
elements [7,9]. In sum, long term changes (over minutes) is 
the predominant approach to analyzing physiological data 
in HCI studies. There is a need to understand the extent to 
which UX practitioners can utilize physiological data to 
identify specific points of interest (short term) related to 
positive or negative user experiences. 



METHOD 

The overall procedure of this study was divided in two 
parts. The first part was a user test in which participants 
were asked to solve one task using a web application while 
gathering GSR sensor data. The second part of the study 
was the analysis of sensor data in which participants were 
asked to identify orienting responses from the GSR graphs 
gathered from the first part of the study. 

Participants 

The study is empirically based on 21 participants acting in 
different roles during the study. Initially they acted as the 
test users interacting with a web application (outlined 
below). The same participants also acted as analysts and 
were asked to interpret sensor data.  

All participants were first year students enrolled in the 
Informatics education at our university. They participated 
on a voluntary basis. Their mean age was 21 years (sd=1.6), 
all male. The profile of this education relates to the design 
of IT systems in general with an emphasis on HCI and 
systems development. At the time of the study they had just 
finished their foundational course on the topic of designing 
and evaluating user interfaces. Thus, although participants 
were students, their profiles reflected that of novice UX 
designers without specialized knowledge or experience in 
working with physiological sensors. 

Part 1: User Test 

This part of the study was conducted in a dedicated 
usability lab at the university department. Participants were 
introduced to the study as having the purpose of being a UX 
assessment of a web application (detailed below). The 
purpose of the experiment was not revealed.  

Participants wore a GSR sensor during the evaluation in 
order to capture orienting responses. The sensor was 
attached in the palms of the participants’ non-dominant 
hand before starting the task. This hand was chosen since 
GSR sensors are sensitive to physical movements, which 
cause artifacts in the data [23]. They were also asked to 
provide valence markers while interacting with the interface 
(see e.g. the section “Measuring Emotions” above). The 
markers were used as the ground truth to which the GSR 
data was compared. 

After the introduction and GSR setup, participants were 
provided with the task to be solved using the web 
application. At this point the experimenter left the test room 
and went into an adjacent control room to observe when 
participants finished. As the GSR sensor responds to 
arousal, participants had to get into a state of relaxation 
before task solving began. To this end a blank screen was 
shown for the first three minutes after which the web 
application automatically started. They had a maximum of 
10 minutes to complete the task and were asked not to think 
aloud during interaction as this could also interfere with the 
GSR data, cf. [7]. 

System and Task 

The web application Statistics Denmark (www.dst.dk) was 
used as the case system for the user test. This provides 
publicly available statistics on income- and educational 
levels, employment rates and many other statistics related 
to the Danish society. Test users were given the following 
task: 

“Your sister considers opening a communications agency 

in Vejen [Danish town]. How many communication 

agencies were there in 2015 in Vejen with one employee?” 

This task could only be solved using different advanced 
search filters in the application. 

Valence Markers as the Ground Truth 

It is typical practice within psychology to use subjectively 
reported emotional experiences as the ground truth. As an 
example, the widely applied IAPS set of pictures have been 
verified using subjective SAM ratings, see e.g. [4]. Studies 
in HCI have also used subjective ratings through 
questionnaires for this purpose, e.g. [27,39–41,59]. The 
valence method presented in [10] was used as this seems 
less obtrusive than filling in questionnaires during 
interaction. 

A timestamp was logged every time test users pressed the 
+/- keys. This was done through a simple software 
application running in the background, i.e. not visible to the 
user. The timestamps were synchronized with timestamps 
obtained from the GSR sensor data. 

Physiological Sensor 

It was opted to use a GSR sensor in this study as this type 
of sensor is widely covered within previous research and is 
less sensitive to noise than e.g. EMG or HR sensors. See the 
previous discussion on this in the “Measuring Emotions” 
section above. 

The Mindplace Thoughtstream GSR sensor was used to 
measure skin conductivity. This is registered in terms of 
resistance (kOhm) between two electrodes attached to the 
underside of the palm. 

Part 2: Analysis of Orienting Responses 

If physiological sensor data is to be applied in UX design 
and evaluation practices, the data analysis prerequisites 
must not exceed available analytic resources of 
practitioners. Therefore, the study presented in this paper is 
not based on sophisticated techniques as those outlined 
previously. For the purpose of the study, participants (now 
acting as analysts) were asked to identify orienting 
responses through visual inspection of the GSR graphs 
obtained from the first part of the study. For each graph 
participants were asked to identify points in time where the 
GSR graph, in their opinion, reflected sudden fluctuations 
in conductivity. 



 

Figure 2. Example graph showing metrics for measuring accuracy and noise. Vertical lines (grey) = GSR orienting responses, 

Circles (red) = Valence markers, Narrow horizontal lines (green) = Latency, Broad horizontal lines (blue) = Latency 

The GSR example in Figure 1 was given along with four 
timestamps to illustrate the idea. They were then asked to 
perform the analysis individually, and when done they 
submitted a list of timestamps for each test user. Thus, the 
21 participants interpreted data for each of the 21 test. 

Prior to sending the data to participants, the GSR graphs 
were smoothed by excluding large abrupt changes in skin 
conductivity levels (SCL), which can be caused by physical 
movement. Following [8], this was defined as 5 standard 
deviations larger the mean SCL occurring within 1 second. 

Metrics 

This section presents the accuracy, latency and noise 
metrics used to analyze findings. This meta-analysis was 
done by the authors of this paper. 

Accuracy 

Since participants (from now on referred to as non-
specialists) had no prior experience in using and analyzing 
GSR data, it was relevant to study how accurate they were 
in identifying orienting responses. In this study accuracy is 
based on the level of agreement between:  

1) Points in time of valence markers made during 
interaction, and  

2) Points in time of GSR orienting responses as 
identified by the non-specialists 

Figure 2 illustrates overlap between 2 valence markers (red 
circles) and 2 GSR orienting responses (grey vertical lines). 
Accuracy is defined as:  

Acc. �
Valence markers ∩ GSR orienting responses

Total no. of valence markers
 

Since the total number of valence markers in Figure 2 is 4, 
the agreement is 2/4=.5. 

Noise 

Opposite to accuracy, noise is defined as the extent of non-
overlapping points between valence markers and orienting 
responses. However, to get a sense of how many false 
positives there are registered by the sensor, noise is 
considered in relation to the number of GSR orienting 
responses.  

 

Noise is therefore defined as: 

Noise �
GSR orienting responses ∉ Valence Markers

Total no. of GSR  orienting responses
 

Using the example in Figure 2, there is a total of 7 GSR 
orienting responses of which 5 do not overlap with valence 
markers. In this case the noise is 5/7=.71. 

Latency 

Appraisal theory states that physiological sensors inherently 
introduce latencies in registering orienting responses. Such 
latencies vary from 1-10 seconds thus making it difficult to 
link observed responses to the exact point in time of an 
event [22]. However, we do know that orienting responses 
occur after a triggering event. Adding to this uncertainty is 
the use of valence markers as we do not know whether 
these conscious events occur before or after orienting 
responses. This study therefore considers latencies 
surrounding both sides of GSR orienting responses as 
illustrated in the green horizontal lines of Figure 2. 

The results section presents accuracy and noise as a 
function of latency. As an example, the accuracy in Figure 
2 is .5, but allowing for a larger latency interval would 
eventually increase overlap between GSR orienting 
responses and valence markers. Using larger latency 
intervals, as illustrated by the wider horizontal (blue) lines 
in Figure 2, would allow for overlaps between 3 valence 
markers and 3 GSR orienting responses. In that case the 
accuracy would increase from .5 to 3/4 = .75. In turn this 
would also reduce noise from .71 to 4/7 = .57. In practice 
this larger latency interval means that specific UX related 
events are not pin pointed in time as precisely as when 
restricting to lower latencies. 

Random guessing 

Finally, the study examines the level of accuracy and noise 
of non-specialists’ analyses compared to naïve (random) 
guessing of GSR orienting responses. This is relevant since, 
intuitively, interacting with a web application and doing 
search tasks would result in subtle emotional reactions 
compared to e.g. interacting with more engaging gaming 
environments. Additionally, as noted in [7], it is necessary 
to better understand the feasibility of using of physiological 
sensors in HCI contexts with subtle emotional stimuli. 



Naïve guessing provides a worst-case scenario as this is 
based on the assumption of independency between 
experienced emotions and orienting responses obtained 
through the GSR sensor. For the naïve guessing it was 
chosen to randomly generate suggested points in time for 
each permutation of non-specialist and test user GSR 
graphs. This gave 21×21=441 sets of random data. The data 
distribution of non-specialist interpretations for each 
permutation was taken into account. This was done in order 
not to overly deflate naïve performance. 

FINDINGS 

The following sections present findings in terms of overall 
descriptive statistics followed by comparisons on accuracy 
and noise levels between non-specialists’ analyses and 
random guessing. 

Number of Orienting Responses and Valence Markers 

Figure 3 (left) shows an overview of the number of GSR 
orienting responses that the non-specialists registered in 
their analyses. The mean number of orienting responses per 
test user is 15.4 (sd=9.41). 

 

Figure 3. Boxplots showing the number of GSR orienting 

responses and valence markers of the test users. 

Findings also show that the mean number of valence 
markers per test user is considerably lower than the number 
of GSR orienting responses (Figure 3 right side, µ=4.21, 
sd=2.63). An independent samples t-test (assuming unequal 
variances) shows this difference is significant (t = 9.97, df = 
24, p-value < 0.0001). 

Accuracy at Different Latency Intervals 

Figure 4 shows the level of accuracy obtained assuming 
different latency intervals. Latencies span 0-20 seconds 
before and after a point has been identified in a graph (as 
illustrated in Figure 2). The solid line is based on 
participants’ analysis, i.e. the accuracy of non-specialist 

interpretations in terms of GSR orienting responses. The 
dashed line is based on random guessing the points in time 
of orienting responses. Both graphs represent mean 
accuracies across participants and random guesses, both of 
which are functions of latency intervals. 

 

Figure 4. Accuracy as a function of latency levels. Solid line = 

Accuracy of GSR orienting responses, based on non-

specialists’ analysis, dashed line = Accuracy based on random 

guessing. 

Assuming a latency of e.g. 2 seconds reveals an accuracy of 
.18 in case of the non-specialist analysis. In comparison, 
random guessing has an accuracy less than .1. An 
independent samples t-test (equal variance assumed) reveals 
significant difference in this respect (t = -8.3266, df = 38, p-
value < 0.0001). The largest difference between accuracies 
of non-specialist and random guessing is at the 3.5 second 
latency interval, i.e. 3.5 seconds before or after a valence 
marker. At this point the accuracy of non-specialist 
interpretations is .58 and .23 in case of random guessing.  

Generally, non-specialist interpretations represent 
significantly higher accuracies than random guessing in 
latency intervals from 0-11 seconds. As shown in Figure 4, 
the two graphs begin to converge at latency intervals above 
~5 seconds, which culminate when assuming latencies of 11 
seconds and beyond. At that point there is no significant 
difference between analyst interpretations and random 
guessing (t = 7e-04, df = 38, p = .99). This applies for the 
remaining latency interval from 12-20 seconds with p 
values between .05 and .99 (pwr1-β = [0.05;0.49], µpwr=.25, 
SDpwr=.19). Assuming the coarse grained latency of 20 



seconds, non-specialist interpretations and random guessing 
both reach an accuracy level of ~1. 

Noise at Different Latency Intervals 

Figure 5 shows the level of noise obtained at different 
latency intervals. Like the accuracy graphs, noise latencies 
are presented spanning 0-20 seconds. 

 

Figure 5. Noise as a function of latency levels. Solid line = 

Noise of GSR orienting responses, based on non-specialists’ 

analysis, dashed line = Noise based on random guessing. 

Assuming 0 seconds latency, the noise level for non-
specialists’ interpretations is .98 while random guessing is 
.99. Although similar (and likely of limited practical 
impact), an independent samples t-test (equal variances 
assumed) indicate that the noise level of analyst 
interpretations is significantly lower than random guessing 
(t = 8.2537, df = 19.209, p-value 0.0001). Similar to the 
accuracy graph in Figure 4, the noise graphs start to 
converge after assuming ~5 seconds latency. In the latency 
interval from 0-12 the noise level of non-specialist 
interpretations is significantly lower than that of random 
guessing. 

When assuming 13 seconds latency, non-specialist 
interpretations and random guessing show noise levels of 
.68 and .72 respectively. At this latency interval, there is no 
longer significant differences in noise between non-
specialists and random guessing (t = 0.9378, df = 21.238, p-
value = 0.36). Thus, there are no significant differences 
when assuming latencies between 13-20 seconds with p 
values between .06-.92 (pwr1-β = [0.05;0.47], µpwr=.14, 
SDpwr=.11). 

DISCUSSION 

This section discusses findings in terms of accuracy, noise 
and outline implications for research and practice. Finally 
study limitations and pointers for future study directions are 
presented. 

It is not Complicated Obtaining High Level Accuracies 

Findings from this study are encouraging as UX analysts 
without prior experience in working with physiological 
sensors reached a significantly higher accuracy level in 
their interpretations than naïve random guessing. It was 
found that non-specialists analyzing GSR sensor data were 
able to detect close to 100% of all subjective events marked 
by the participants (valence markers). This is the case when 
allowing for a latency interval of 20 seconds, i.e. GSR 
peaks occurring 20 seconds before and after a valence 
marker. However, non-specialist interpretations are not 
significantly higher than random guessing at that coarse 
grained level of latency. 

Accepting only a very fine grained latency interval, e.g. 0-3 
seconds before or after a valence marker, reveals a non-
specialist accuracy of 10-18%. While this is a significantly 
higher level of accuracy compared to random guessing, it 
still seems rather low. Findings reveal that a 3.5 second 
latency interval before and after a marked event denotes the 
point with the largest accuracy difference between non-
specialist interpretations (58%) and random guessing 
(23%). In general, considering latency intervals from 0-11 
seconds before and after valence markers showed a 
significantly higher accuracy in case of non-specialist 
interpretations over random guessing. This resonates well 
with related work where GSR sensors are reported to  have 
orienting response latencies between 1-10 seconds after an 
event occur, cf. [22,34,49,63]. 

In sum, UX analysts with no previous experiences in 
working with GSR sensors are able to capture between ~60-
80% of subjectively reported UX related events during 
interaction. They even do so within a relatively fine grained 
latency interval spanning 3.5-11 seconds before and after a 
valence marker. 

There is a High Level of “Noise” 

Although the above findings are promising, there is also a 
considerable amount of noise in the data. To illustrate this 
point, users made an average of four valence markers on 
UX related events during interaction. In comparison there 
were 15 orienting responses (GSR peaks), on average. So, 
although three of four valence markers overlapped with a 
corresponding number of orienting responses (and indicated 
a high level of accuracy), this still leaves an average of 12 
orienting responses unaccounted for.  

Allowing for a wider latency interval results in a higher 
degree of overlap between valence markers and GSR 
orienting responses. This in turn increases accuracy. Yet, 
even if the 20 second latency interval is considered and all 
valence markers overlap with a GSR responses, there is still 



a noise level of about 60% as shown in Figure 5. Regardless 
of latency granularity, these remaining responses can be 
considered false positives. Note that the valence markers 
used in this study denote points in time when test users 
become consciously aware of a UX related event occurring 
(discussed later). In relation to consciousness of events, 
Fairclough [20] notes that many events happen 
unconsciously, i.e. not explicitly prevalent by participants. 
Therefore these remaining orienting responses should not 
necessarily be dismissed as noise or false positives.  
Chances are that unconscious UX related events are indeed 
captured by the GSR sensor, which is also supported by 
Ward and Marsden in one of the early HCI studies 
examining the efficacy of physiological measures [63]. Yet, 
it is not trivial to identify such unconscious events as this 
requires inclusion of more data sources, e.g. observations 
and various types of automatically logged clickstream-like 
data. 

Dealing with such noise by including more data sources 
have previously been done using relatively sophisticated 
data analysis techniques based on machine intelligence 
classifiers. Classifiers like support vector machines or 
multilayer perceptrons are used to e.g. fuse signals from 
multiple data sources to classify emotions, see e.g. [12,61]. 
While such techniques can reduce the level of noise, they 
require a set of training data in order to match individual 
orienting response patterns. Machine intelligence allows the 
fusing of signals from multiple data sources, but is 
susceptible to the curse of dimensionality. This denotes the 
situation where the ratio of dimensions (e.g. data sources) 
to training data is so high that it results in an overly fitted 
model requiring more training data. The need for training 
data to support a model often grows exponentially with the 
number of dimensions to be included. 

Thus, having to include various contextual differences 
further complicates the use of such sophisticated analysis 
techniques. Ganglbauer et al. [23] for instance applied GSR 
to gain initial insights on using physiological sensors to 
assess UX in a mobile context. They note that physical 
movements in mobile contexts causes peaks in GSR sensor 
signals, which were unrelated to participants’ state of 
arousal. False positives caused by such movements could 
be filtered out by combining GSR data with data from e.g. 
an accelerometer, but there will be a plethora of other 
contextual dimensions to consider, hereby adding to the 
curse of dimensionality in analyzing data. 

In relation to the noise caused by the context, it is also 
important to note that previous work within 
psychophysiology is based on highly stringent settings. 
These typically allow for lengthy baseline periods, control 
of temperature and humidity, using special conductivity 
gels on sensor electrodes and skin abrasion considerations, 
see [1] for more examples. While increasing accuracies and 
keeping noise levels to a minimum is commendable, this is 
not feasible to control in UX design and evaluation 

practices. Ward and Marsden argue for a need to study the 
use of physiological sensors in HCI without these tightly 
controlled constraints [63]. The approach of including 
multiple data sources and reducing noise through machine 
intelligence is challenging in practice. Such an approach 
requires the machine to train on elaborate training sets 
based on usage patterns from a plethora of contextual 
permutations using various technologies. 

Implications for Research and Practice 

Returning to the motivation of this paper, the software 
industry calls for a need to include more data driven 
recommendations based on emotional reactions, cf. [24]. 
Currently, emotional data is primarily gathered through 
questionnaires, but capturing emotional responses in real 
time, e.g. through physiological sensors, allows for a finer 
granularity in detecting positive or negative experiences. 
This allows designers to identify points of interest during an 
interaction sequence, which potentially leads to insights 
valuable for making design changes. Analyzing data from 
physiological sensors is, however, reported to be 
challenging [23,25,34] and designers may not possess the 
competences necessary to perform such analysis [22]. 

The essence of the above discussions is two-fold:  

1) Non-specialists are able to analyze and interpret 
GSR sensor data through which they are able to 
detect ~60-80% of all valence markers made by 
test users within an interval of 3.5-11 seconds 

2) The level of sensor noise (whether considered as 
false positives or responses to unconscious events) 
at the same latency interval is ~70-80% 

This study demonstrates that it is practically feasible to use 
physiological sensors and analyze the data based on a basic 
approach of simply considering whether or not there are 
GSR peaks at particular moments in time. Furthermore, 
events where users experience UX related problems can be 
pinpointed within seconds. Given the key UX dimension of 
emotions [2,21,59], this data is foundational for 
understanding and assessing user experiences during actual 
interaction, e.g. in order to reduce the effect of memory 
biases [7]. Using physiological data also offers great 
potential of capturing experiences while users interact with 
technologies without the presence of evaluators, hereby 
increasing ecological validity. This is fully realizable as 
physiological sensors are now commonplace in smart 
watches, see e.g. [51]. 

However, qualitative insights are also needed in order for 
practitioners as well as researchers to understand 
experiences and to make informed decisions on what to 
redesign and how [3,49,55,56,62]. These insights include 
knowledge as to why orienting responses occur at particular 
moments in time [23]. To this end, Cued-Recall Debriefing 
(CRD) is one way of collecting qualitative insights based 
on physiological sensor data [9]. In CRD test users are 
asked to retrospectively comment on their experiences 



based on a series of video clips showing their interactions 
with a particular technology. These video clips are chosen 
based on timestamps obtained from orienting responses, i.e. 
when sensor data suggest that users experience emotional 
reactions. Alternative methods include the Affective Diary 
[57] and UX Curve [35], which are based on Kahneman et 
al’s  Day Reconstruction Method [33]. In using those 
methods, study participants are asked to reflect on their 
experiences at the end of the day. Methods such as the 
Affective Diary and UX Curve could be supplemented by 
physiological data, which can provide study participants 
with further reminders of particular moments with 
increased arousal that occurred during the day. Since this 
study shows that non-specialists are able to make sense of 
sensor data to an extent beyond naïve guessing, such data 
may also be interpreted by study participants and not 
necessarily UX practitioners or researchers. 

Findings are framed as having potential implications for 
assessing and understanding UX in practice and research.  
Yet, the discussion on detecting conscious and unconscious 
events is also relevant for the area of affective computing in 
which an interface is adapted to the emotional states of 
users in real time. From the application area of 
recommender systems it has been shown that transparency 
as to why recommendations are given increases user 
understanding and system acceptance [13]. This leans well 
against real time adaptations of an interaction design, which 
should occur at points in time where users are conscious 
about their experiences, i.e. the reasons for changing the 
design are transparent. Findings from this study suggest that 
such adaptations should occur within a window of 3.5 to 11 
seconds in order to capture the majority of events related to 
conscious user experiences. At least this could potentially 
be transferred to contexts similar to those of this study. 

Limitations 

This section discusses limitations of this study related to the 
experimental setting and the use of valence markers as the 
ground truth to assess accuracy and noise. 

Setting is Relatively Controlled 

This study deals with the constraint of not having highly 
specialized knowledge in working with physiological 
sensors. While this is step towards understanding the 
feasibility of using physiological sensors in practice, this 
study is still limited in relation to using sensors in 
controlled settings. 

Ward and Marsden criticized previous work in 
psychophysiology for being “observed in stringently 

controlled experimental situations using pure distinct 

stimuli, with other possible confounding sources of 

variability held constant” [63]. Findings from such studies 
do not necessarily translate well into UX practices 
occurring under less tightly controlled settings. This is why 
this study was designed for measuring GSR data during 
interaction with a real system and not to use distinct stimuli 
such as IAPS [4] or GAPED [14]. That said, test users were 

interacting with the system in a lab setting with reduced 
environmental interferences, which could otherwise have 
impacted orienting responses registered by the GSR sensor. 
This is particularly critical to consider when studying 
sensor data in relation to systems in mobile contexts, see 
e.g. Ganglbauer et al.’s study [23]. 

The system in this study is designed for use in more static 
settings, e.g. using a desktop or laptop in an office 
environment. This increases validity given that findings are 
transferred to systems aimed for use in similar contexts. 

Using Self-Reporting as the Ground Truth 

The accuracy measure used in this study is based on the 
extent of overlap between orienting responses registered by 
the GSR sensor and valence markers. The valence markers 
were based on subjective data. These subjective markers are 
based on conscious acts by the users. Fairclough argues that 
physiological sensors respond to both conscious as well as 
unconscious processes [20], and discusses several inherent 
challenges in using self-reporting of emotions: 

• Self-reports may interfere with the target behavior 

• Artifacts in the physiological data may occur as 
participants have to do physical movements 

• Physiological sensitivity is blunted by only 
studying correspondence with psychological states 
that are consciously reported 

Self-reporting may interfere with participant behavior, 
which is a general challenge when conducting controlled 
studies. See the classical work by Orne [48] and a more 
recent study within HCI [15] for more lengthy discussions 
on demand characteristics. Self-reporting in this study was 
based on the valence method presented in [10], and is 
arguably less obtrusive and straining than filling in the 
SAM questionnaire during interaction, which has been done 
in related HCI studies (e.g. [27,39–41,59]). Also, we have 
previously used the same statistics website for another 
study, cf. [6]. In that study we gave participants the same 
task but they were not required to self-report emotions 
during interaction. In terms of behavior, we see comparable 
task completion times and rates between the previous and 
current studies. Thus, it cannot be dismissed that self-
reporting influenced participant behavior. However, the 
valence method is arguably less straining than SAM. 

Artifacts in the sensor data typically occur if participants 
move physically, which leads to unrealistic peaks in the 
GSR data. This was filtered out using a simple algorithm 
before the non-specialists analyzed the data by excluding 
abrupt changes in skin conductivity level. 

The case of blunting physiological sensitivity by 
considering conscious events only will lead to increases in 
noise. Therefore, several GSR orienting responses may not 
be false positives, but rather reflect unconscious events. But 
the extent of this is unclear. See the above discussion on 
noise for the challenges for dealing with such bluntness in 
practice. 



So, even if there are several limitations in using self-reports 
as the ground truth, this is still reported to be the best viable 
option for measuring accuracy of physiological sensors: 
“Despite these disadvantages, subjective self-reports 

represent the best available approximation of the private 

experience of the individual” [20]. 

Using Non-Specialist Study Participants 

The study compared the performance of novice UX 
designers in analyzing GSR sensor data to that of naïve 
guessing. Another relevant direction would be to also 
include expert designers having more experience in 
analyzing physiological data. However, the merit of this 
study lies in illustrating a worst case scenario. A key 
finding is that non-specialists were able to obtain 60-80% 
accuracy within time intervals of relatively few seconds. 
Arguably, experts would be better at reducing the noise 
levels in terms of filtering out insignificant peaks in e.g. 
GSR data during analysis.  

In terms of participant expertise, it would also be relevant 
to study the feasibility of including participants with even 
less expertise than those employed in the current study. For 
instance when conducting HCI studies to understand users’ 
activities outside the confinements of the laboratory. As 
noted above, physiological data may also be interpreted by 
study participants, who could apply physiological data to 
assist in daily reflections. 

Future Directions 

This study extends previous work by examining the 
feasibility of using physiological sensors to assess UX in 
practice. This was done by using a more lenient analysis 
technique of data gathered from a less restricted 
experimental setting than related work. Although fewer 
constraints were posed on the setting, this was still 
relatively controlled. Findings from this study should be 
considered as a proof-of-concept allowing for physiological 
sensor data to go further into natural settings. It is 
recommended to follow the recent trend in HCI research of 
studying UX and interaction design “in-the-wild” [52] and 
to examine sensor feasibility in such uncontrolled settings. 
Using physiological data from e.g. smart wearable sensors 
would be highly beneficial as data sources to supplement 
e.g. ethnographic methods. Using physiological data in 
conjunction with methods such as Cued-Recall Debriefing, 
the Affective Diary or UX Curve could provide researchers 
with real time data on experiences, and it could help study 
participants to better reflect on and report daily experiences. 

Physiological sensors seem to be more sensitive than 
“numb” in revealing potential UX related events during 
interaction. This study indicates that emphasizing a simple 
analysis approach enables non-specialists to identify most 
events within GSR sensor data. Thus, the prevalent 
challenge in using GSR data (and likely data from other 
sensors) is not to detect points of interest in relation to UX, 
but rather to filter away noise in the form of false positives. 
The main challenge in relation to this is deciding when 

orienting responses are indeed false positives and when 
they reflect unconscious events. 

CONCLUSION 

This study revolved around the emerging trend of using real 
time physiological sensor data to measure and understand 
emotions in relation to interactive user experiences. Related 
work suggests that UX practitioners may not possess the 
specialized knowledge required to analyze sensor data. 
Also, there is a need to understand the extent to which 
physiological sensors can detect UX related events within 
an HCI context. The following question was examined with 
an emphasis on studying non-specialists’ abilities to 
analyze sensor data: How accurate are physiological 

sensors in detecting emotional reactions related to specific 

UX events during interaction? 

A controlled study was conducted with 21 test users 
wearing a GSR sensor while interacting with a web 
application. Test users also subjectively marked when UX 
related events occurred during interaction (this was the 
ground truth). The level of accuracy with which GSR data 
could pinpoint these subjectively marked events was 
studied. To this end, the same 21 participants analyzed the 
21 GSR data sets obtained through the user tests (a total of 
441 analysis data sets). Analyses were done using a simple 
approach to support the lack of specialized knowledge in 
interpreting sensor data. Study participants had no previous 
experience in using or analyzing sensor data. 

The study demonstrates that it is feasible to let non-
specialists analyze physiological data as they uncovered 60-
80% of all UX related events on average. Furthermore, 
these events could be pinpointed within a latency interval of 
3.5 – 11 seconds. Since this study shows that non-
specialists are able to make sense of physiological data to 
an extent significantly beyond naïve guessing, sensor data 
can be used to source interactive user experiences during 
real-time use. Note that this at least seems to apply for a use 
case in which participants were asked to search for a 
specific piece of information in a web application. This may 
not represent UX related events within other types of 
systems. 

Regarding future work, the results on practical feasibility 
should be considered as a proof-of-concept allowing for 
physiological sensor data to be utilized for studying UX in 
natural settings. In this regard it would be relevant to follow 
the recent trend in HCI research of studying UX and 
interaction design “in-the-wild”. Using physiological data 
from e.g. smart wearable sensors would be highly beneficial 
data sources to complement e.g. established ethnographic 
methods. While findings on accuracy showed promise, a 
considerable amount of “noise” or false positives was also 
identified, i.e. sensor data suggested that more UX related 
events occurred than those marked by the test users. An 
avenue for future work would be to further study the noise 
and the extent to which this noise actually represents false 
positives or unconscious events related to user experiences. 
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