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ABSTRACT 
This paper presents DARA, the Driving Awareness and 
Reflection Assistant that makes drivers aware of potentially 
dangerous practices on how they hold the steering wheel, 
and helps them reflect. DARA utilizes a hand recognition 
component and a feedback one. The first recognizes how 
drivers hold the steering wheel and classifies their actions 
through a Leap Motion controller and machine learning. 
The second is comprised by a mobile application that 
provides drivers with feedback during and after their drive. 
DARA was evaluated with three studies for its accuracy, 
relevance and utility. Our findings show that DARA was 
successful both in making holding patterns present-at-hand 
for the drivers and in assisting them to reflect. We conclude 
our paper with a discussion on the broader implication of 
our findings on in-car hand recognition and feedback 
systems.  

Author Keywords 
Driving; Hand Recognition; Machine Learning; Feedback; 
Awareness; Reflection.  

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous; 
INTRODUCTION 
Over the past decades the cars we drive everyday became 
less demanding and easier to drive. For many people now, 
driving is an established practice as the involved artifacts in 
use are, in Heideggerian terms, ready-to-hand [8]. This 
situation often allows drivers to be involved to other 
activities that are irrelevant to driving, such as manipulating 
the navigation systems, or using their mobile phones. 
Unfortunately, this inattentiveness is currently the most 
frequent reason for road accidents [17]. 

  

Dealing with inattentiveness while driving has been a focus 
of research for a number of years and the most common 
approach is to design and evaluate detection and warning 
systems.  Such systems detect when drivers engage in 
inappropriate behaviors and/or are inattentive, and provide 
warnings. For example, most modern cars provide sound 
warnings when a driver is not wearing a seatbelt. In relation 
to recognizing specific activities that could be dangerous, 
such as using a mobile phone, the most common detection 
approaches are through monitoring drivers’ eye gaze and 
face orientation using a camera [e.g. 2, 3, 7, 19], through 
posture detection using sensors and pressure pads installed 
to the driver’s seat [e.g. 21], and through hand tracking 
using depth cameras [e.g. 18, 31, 34, 35]. In relation to 
warning mechanisms, various modalities have been utilized 
such as visual [e.g. 13], audio [e.g. 5, 33], and vibration 
[e.g. 4]. The challenge though is that often such systems 
tend to be ignored by drivers [28]. 

In this paper, our aim is to go beyond warning systems, and 
explore if and how it is possible to help drivers realize that 
many of their, often unintentional, actions may lead to 
dangerous situations. This research area is even more 
important now that semi-autonomous cars are being 
introduced to the streets, as understanding when and how to 
provide feedback is very relevant. For this, we designed and 
developed the Driving Awareness and Reflection Assistant 
(DARA). DARA is system that characterizes the drivers as 
inattentive, or attentive based on the way they hold the 
steering wheel, through a machine-learning enhanced, hand 
recognition component. We chose to focus on this, inspired 
by data which shows that inattentive drivers tend to have a 
relaxed way of holding the steering wheel [17]. After 
DARA characterizes a driver as inattentive, a feedback 
component reveals to the drivers all their intentional, or 
unintentional actions that can be potentially dangerous. 
Thus, by making drivers aware, DARA helps them reflect 
on their driving practices, and hopefully improve. 

Our paper is structured as follows. First, we review the 
related work. Then we present in detail the hand recognition 
and feedback components, as well as, our findings from 
three empirical studies in relation to DARA’s, accuracy, 
relevance and utility. Finally, we discuss the broader 
implication of our findings for in-car hand recognition and 
feedback systems.   

PRE-PRINT 
 



RELATED WORK 
The National Highway Traffic Safety Administration 
(NHTSA) of the US Department of Transportation defines 
distracted driving as “any activity that diverts attention 
from driving, including talking or texting on your phone, 
eating and drinking, talking to people in your vehicle, 
fiddling with the stereo, entertainment or navigation 
system—anything that takes your attention away from the 
task of safe driving” [17]. Furthermore, according to Stutts 
et al. [25], the most common secondary activities inside a 
car that are distracting are using the phone, eating and 
drinking, grooming, reading and writing, and fumbling 
around with objects. 

These activities are characterized as secondary, because 
when performed people multitask while driving, and this 
may impact their attention to the road, as multitasking, even 
for small periods of time, may contribute to decreased 
reaction times and less control over the vehicle, exposing 
the driver, passengers, and the surrounding environment to 
unnecessary risks [22]. According to NHTSA, in 2015 
3.477 people were killed and 391.000 were injured in motor 
vehicle crashes involving distracted drivers [17]. 
Furthermore, there is a clear relation between the vast 
majority of those secondary activities and the way drivers 
hold the steering wheel; in most of them drivers will hold 
the steering wheel only with one hand. For example, 
someone will hold the steering wheel with one hand in 
order to answer a phone call, text or manipulate the 
secondary controls. 

Activity Recognition in a Car 
A number of warning systems have been developed over 
the past years in an effort to help drivers become more 
attentive. Two are the most utilized approaches: detecting 
inattention by monitoring the eyes and head orientation of 
the driver [e.g. 2, 3, 7, 19], and activity recognition through 
hand tracking [31, 34, 35]. Across all the studies that deal 
with eye and head orientation, tracking is performed using a 
camera, and then, based on the collected images, a machine 
learning algorithm asserts the level of driver’s attentiveness. 
In more detail, such systems were used to detect if drivers 
are looking at the road [1], or how tired they are [9, 11]. In 
relation to hand tracking, the authors of [31, 34, 35] 
managed to assert drivers’ activities using depth cameras.  
In most of these studies, the camera is mounted on the side 
of the vehicle and the activities performed by the driver are 
classified using machine learning. 

In-Car Feedback Systems 
After detecting the level of attentiveness of a driver, the 
logical next step is to provide feedback, usually through 
warnings, whenever it is appropriate. In relation to how to 
provide feedback, three modalities have already been 
utilized to many cars we use every day [24]: visual, audio, 
and vibration. Visual feedback relies on the drivers actively 
diverting their eyes from the road to where the feedback is 
provided, and such systems have been incorporated into 
cars for years [13]. Christiansen et al. [5] researched in 

depth visual feedback systems and showed that even though 
less than 3% of all driver’s glances are above 2 seconds, 
this is enough to prove extremely dangerous while driving. 
When they also provided audio feedback [5], they managed 
to reduce the number of long glances to less than 1%, but at 
the same time they noted that audio feedback required more 
cognitive resources to process and resulted in a decrease in 
the driving performance.  

Cao et al. [4] demonstrated that vibrations are a promising 
alternative to audio feedback, since it caused less 
interference while driving. In regards to response times and 
driver’s comfort though, vibrations were inferior compared 
to audio. In a recent project by Wang et al. [33], they 
explored 3D sound cues to provide spatialized feedback to 
represent the state outside the vehicle during critical 
situations. These sound cues varied in intensity and location 
based on the criticality of the situation. Their results 
showed a significant increase in drivers’ understanding and 
response time. At the same time though an important aspect 
of all in-car feedback systems is their timeliness. Research 
has shown that feedback provided in static intervals not 
only tends to be ignored, but also is deemed annoying by 
drivers, even during critical situations [28].  

Finally, another important aspect of feedback systems is 
how much trust drivers have in them. For this reason, some 
researchers moved away from simple warnings, and the 
notion of personal assistants has been explored within the 
automotive context [15]. Their findings are similar with 
ones from other relevant domains, such as human-robot 
interaction. In this research domain, it was demonstrated 
that human-like and animal-like assistants not only are 
favored by the users [20], but are also more effective [16].  

DARA: THE HAND RECOGNITION COMPONENT 
Inspired by related work, we designed and evaluated the 
Driving Awareness and Reflection Assistant (DARA). 
DARA’s aim is to make the drivers aware of intentional or 
unintentional actions that can distract them while driving, 
and to help them reflect on their driving practices, in order 
to become better drivers. To achieve this purpose, DARA 
utilizes a hand recognition component, which identifies 
those potentially dangerous actions, and a feedback 
component, which informs the drivers during and after their 
drive. We used hand recognition as the way to identify 
inattentiveness inspired by related work as most distracting 
activities inside a car require from a driver to hold the 
steering wheel with one hand, or with no hands at all.  

DARA’s hand recognition component utilizes a simple 
scenario. A recognition system tracks the driver’s hands 
and through machine learning, it classifies the driver’s 
actions. When these actions may be distracting, the driver is 
characterized as inattentive. In order to identify the position 
of driver’s hands, DARA utilizes a Leap Motion controller 
[14]. The Leap Motion controller was preferred from other 
motion recognition sensors due to its accuracy, small size, 
operating distance, large detection angle, and low level of 



intrusiveness. To properly capture all the hand gestures of a 
driver, we experimented with different placements, namely 
next to the gearstick, on the dashboard, on the door, and on 
the cabin ceiling, just above the steering wheel, pointing 
downwards (Figure 1). Test results showed that the most 
efficient and least intrusive placement for the Leap Motion 
controller was the last one. 

 
Figure 1. DARA’s placement on the cabin ceiling. 

The Leap Motion controller provides a constant stream of 
data regarding the driver’s hands (Figure 3A). The data are 
extracted from the captured frames by its built-in infrared 
camera. Each frame contains a large number of variables 
about the direction and position of each arm, hand, and 
finger of the driver (Figure 2). Two were the main 
challenges in order to have an efficient hand recognition 
component for DARA: 1) to reduce the necessary number 
of Leap Motion variables for classifying driver’s actions, 
and 2) to select an appropriate machine learning algorithm 
and identify the best possible values and kernel 
configurations.  

 
Figure 2. Driver’s hands as captured by DARA.  

In order to address both challenges, we created an artificial 
driving setup in our usability laboratory, using a learning 
driving game on a large 50in screen, combined with a 
steering wheel, pedals, a car seat and a gear shift. After 
repeatedly using the setup, we concluded that the needed 
variables for our case were: 1) hand center and direction (x, 
y, and z), 2) hand pitch, roll, and yaw, 3) palm normalized 
(x, y, and z), 4) grab and pinch strength, and 5) finger 
direction (x, y, z) and stabilized tip position. All these 
values are doubles, ranging from -1.0 to 1.0, where grab 
and pinch range from 0 to 1.0.  

In order to power up the Leap Motion controller, and 
collect and process its data, a cable connection with a 
laptop was utilized (Figure 3B). Every 0.25 seconds a data 
sample from the Leap Motion controller is sent to the laptop 
and it is filtered (Figure 3C). Thus, only the relevant, above 
mentioned variables are fed to a Support Vector Machine 
(SVM) algorithm (Figure 3D). We opted for SVM because 
it is a supervised learning algorithm that performs well in 
cases with a high number of variables and large training 
data [27, 30]. For the classifier, we utilized the Java version 
of LIBSVM [6], a freely available library (Figure 3E). In 
order to configure the algorithm, we used as dataset, with 
samples from sessions that took place inside the usability 
laboratory, as well as, from interactions in a stationary car. 
The dataset was then split into training data (75%) and 
testing data (25%), and we repeatedly tweaked the 
algorithm’s values and kernel configurations until there was 
no impact on its accuracy. During this process, we 
discovered that a linear kernel with cost set of 10 provided 
the best results, while the remaining values were kept close 
to the default ones [6] (Probability=1, Gamma=1, NU=0.5, 
Cost=10, SVM type=Linear, Kernel type=Linear, Cache 
size=20000kb, Epsilon=0.001).  

 
Figure 3. DARA’s hand recognition component. 

If the confidence level of the classifier is above 70%, then 
the hand gestures are classified and the driver is 
characterized as either attentive or inattentive (Figure 3F). 
The way DARA makes this characterization is based on 
related work. According to NHTSA, the ideal position to 
hold a steering wheel is a two-handed symmetric 
positioning around 9 and 3 o’clock, because it gives the 
most control over the vehicle and it allows for the airbag to 
deploy without injuring the driver’s arms. Unfortunately, 
though, as observational studies show [7, 19], very few 
drivers apply the recommended positions, even when they 
are fully attentive on the road. According to Jonsson [12] 
the most commonly observed hand position is with one 
hand around 10 o’clock and one around 2 o’clock. 
Furthermore, most drivers believe they are really in control 
of their car when they have both hands on the top part of 
the steering wheel [29].  

Inspired by these, if the drivers do not have their hands on 
their steering wheel at all, if they do not have at least one 
hand on the upper part of the steering wheel, or if they 
manipulate the secondary controls of the car, they are 
characterized by DARA as inattentive (Figure 3G). 
Otherwise, they are characterized as attentive.  



STUDY 1: EVALUATING DARA’S ACCURACY 
The next step in our process was to evaluate the accuracy of 
DARA’s hand recognition component. 

Setup 
Participants 
13 participants (4 female, 9 male) aged from 20-82 
(M=37.1, SD=19.0) participated in the accuracy study using 
one small size car (car A) and a medium one (car B), both 
with manual transmission. They were all recruited through 
social networks and all had a valid driving license. 

Process 
4 participants used both cars. 8 sessions were performed in 
car A, and 9 in car B. The study was designed to last for 5 
minutes, and it was conducted in a parking lot, where the 
car remained stationary. The participants were asked to 
perform a specific set of hand gestures: 1) hands on the 
steering wheel, 2) resting the hand, 3) using secondary 
controls, and 4) using the gear stick. 

Apparatus and Data Collection 
The Leap Motion controller was placed on the cabin ceiling 
of the car (Figure 1) and was connected to a laptop. 
Furthermore, each car was equipped with a video camera 
pointing towards the driver’s seat, ensuring that all hand 
gestures were recorded.  

Findings 
Accuracy 
The collected dataset amounted for 9707 samples for car A, 
and 11084 samples for the car B. These samples were then 
compared to the video recordings. When the algorithm 
reported the same hand gesture as the video, the sample was 
characterized as accurate, otherwise as inaccurate.  

The overall accuracy for the algorithm was on average 
83.74% for the left hand and 87.45% for the right hand, 
indicating good results. In relation to specific gestures, 
having both hands on the steering wheel reached an average 
accuracy of 84.40% for the left hand, and 93.70% for the 
right hand. Resting the hands achieved the lowest accuracy 
throughout the entire test: 56.47% for the right hand, and 
74.42% for the left one. DARA was also accurate in 
determining if the driver was manipulating the secondary 
controls with an average of 77.91% for the right hand. 
Finally, detecting the right hand on the gear stick proved to 
be very accurate, with an average value of 83.95% despite 
the gear stick being positioned close to the secondary 
controls and the hand gestures being similar. 

Driver Variation 
If we focus on the accuracy results from individual drivers, 
we will observe that in all hand gestures except resting the 
hand, DARA performed in a similar manner. For example, 
for detecting both hands on the steering wheel the accuracy 
varied between 86.54% and 99.72% among the drivers. 
This was not the case for resting the arm, where the 
accuracy varied between 4.04% and 99.9%. The reason for 

these large variations in accuracy is that many drivers adopt 
different ways of resting their hand. For example, drivers 
might rest their right hand by placing it on their lap, by 
holding the handbrake, or by placing it on an armrest. These 
results indicate that there are some hand gestures that are 
difficult to be classified from a machine learning algorithm 
without a large amount of training data. 

Car Variation 
Another interesting finding was the fact that the interior 
design of a car affected DARA’s accuracy. Two are the 
main reasons for that: a) each car utilizes different 
modalities for the drivers to interact with the controls (e.g. 
buttons, switches, rotary controls, etc.), and b) each car 
requires from the drivers to place their hands on a different 
position to perform a specific action (e.g. the air-
conditioning controls may be placed on different locations 
within a car).  

External parameters 
Finally, we identified three external parameters that had a 
negative impact on DARA’s accuracy. The first one is the 
type of clothes the driver is wearing. Heavy clothes, such as 
winter jackets, do tend to negatively affect hand 
recognition. The same is the case in relation to light, as 
during sunny days the infrared camera of the Leap Motion 
controller might often not work effectively. Finally, there 
were some cases where the controller detected the left hand 
of the passenger instead of the driver’s right hand. All three 
parameters were experimentally controlled in the following 
studies.  

DARA: THE FEEDBACK COMPONENT 
After finalizing the hand recognition component, we 
designed and developed the feedback one. The feedback 
component is comprised by two parts: a) the during-drive 
feedback, where feedback is provided while driving, and b) 
the after-drive feedback, which is provided at the end of a 
trip.  

 
Figure 4. DARA’s during-drive feedback presented to the 

drivers every time the car is stopped, after driving at least 600 
meters. 

The purpose of during-drive feedback is to inform the 
drivers on how they hold the steering wheel, in order to 
make them aware of potentially dangerous driving 
practices. The during-drive feedback is presented through 
an Android application that runs on a mobile phone, which 



is mounted on the car’s dashboard, in a similar way as a 
typical GPS navigation unit (Figure 4). Figure 5 displays 
how the during-drive feedback component works. DARA’s 
hand recognition component, which runs on a laptop, 
characterizes the drivers as inattentive or attentive every 
0.25 seconds based on the hand gestures they perform 
(Figure 3G, Figure 5A). This information is then sent via 
Bluetooth from the laptop to an Android application that 
runs on a mobile phone (Figure 5B).  

 
Figure 5. DARA’s during-drive feedback component. 

Every 5 seconds, a new segment is created and locally 
stored on the mobile phone (Figure 5C). A segment 
contains:  a) the driver’s state for each 0.25-second sample 
(attentive or inattentive), and b) the start and end GPS 
locations, acquired from the mobile phone’s GPS (Figure 
5D). For each segment a score is calculated, by dividing the 
number of collected samples where a driver was attentive, 
by the total number of samples in this segment. The score 
ranges from 0 to 100.  

When the Android application detects that the car has 
stopped (Figure 5E), then an overall score is calculated by 
averaging all the segments’ scores since the previous stop. 
We decided to provide during-drive feedback in the form of 
an overall score only when the car is stopped inspired by 
related work that suggests that feedback’s success is related 
to timeliness [28], and that feedback should be provided at 
times where the driver has enough time to comprehend it 
Furthermore, the during-drive feedback is provided only if 
the car has moved more than 600 meters since the previous 
stop, in order not to overexpose drivers with feedback 
messages.  

In relation to the modalities of the presented during-drive 
feedback, we opted for a combination of audio and visual 
cues. Moreover, the audio feedback utilizes a female 
anthropomorphic voice, since they were deemed as more 
trustworthy and effective in previous studies [16, 20]. The 
overall score is presented to the drivers for 8 seconds, along 
with a message (both in audio and visual form) which 
praises, or warns them based on their attentiveness: 

• Score >= 80: “Good job on that last section”, 
• 60 <= Score < 80: “Remember to hold the steering 

wheel properly”, 
• Score < 60: “Your driving could be improved”. 

When the car reaches its final destination, the after-drive 
feedback is provided through another view in the same 
Android application. Its purpose is to help drivers reflect on 
how they hold the steering wheel by reminding them the 
actions they performed during a trip. 

 
Figure 6. DARA’s after-drive feedback provided at the end of 

a trip. 

The after-drive feedback takes a form of a map that displays 
information about the whole trip (Figure 6) and was created 
using the Google Maps API. Each 5-second segment that is 
locally stored in the mobile phone contains a start and an 
end GPS location (Figure 5D). For each of those segments 
(Figure 7A), first a score is calculated, then a color is 
assigned (Figure 7B), and based on the start and end GPS 
locations, they are placed on the map (Figure 7C). 
Depending on the score, each segment on the map is 
colorized as green, yellow, or red, giving the drivers a quick 
overview. If drivers click on a segment on the map, they are 
presented with detailed information about their hand 
gestures and actions. For example, someone would get a 
low score on a segment, if he was manipulating a lot the 
secondary controls of the car. A final blue marker, shown at 
the end of the route, summarizes the entire trip. 

 
Figure 7. DARA’s after-drive feedback component. 

STUDY 2: EVALUATING DARA’S RELEVANCE 
Our next step was to evaluate DARA’s relevance in a 
driving context. To do that, we recruited a driving 
instructor, provided him with DARA, and asked for his 
expert input. Recruiting a driving instructor also allowed us 
to observe in real-world conditions if our system was 
intrusive for the driver, since the instructor could take 
control of the car, if necessary.  



Process and Setup 
During the course of two hours, the driving instructor 
evaluated DARA with two different students, both almost 
ready for their driving exam. DARA was installed and 
calibrated for the interior of the car before starting the 
drive. DARA’s during-drive feedback component was 
installed on a mobile phone which was mounted on the 
car’s dashboard. The driving instructor was in charge of the 
route, and the small talk from a researcher that was sitting 
in the back seat of the car to make sure that everything was 
working properly, was kept to a minimum. After the driving 
session, we conducted a semi-structured interview with the 
instructor regarding his experience with DARA and we also 
used for input DARAs after-drive feedback. 

Findings 
Match between DARA and the instructor 
Overall, the perception of the instructor for the hand 
placements of his students was accurately reflected by 
DARA. When he was asked to provide a score for them, he 
gave the first one 100 (99 by DARA), since she performed 
really well by properly holding the steering wheel and by 
quickly making gear changes. The second student was 
provided a 95 (96 by DARA) as there was an incident 
where her hands were placed very low on the steering 
wheel. 
Appropriateness and relevance 
Regarding the during-drive feedback, the instructor praised 
the timeliness and precision of the message. He felt that 
providing feedback only when the car was stopped, allowed 
the drivers to receive it and process it without being 
distracted by it. Concerning how we characterized a driver 
as inattentive, he stated that DARA nicely reflected reality, 
but he also suggested that a stricter hands-on-the-wheel 
policy should also be tested. According to him, even a 
driver with both hands on the top part of the steering wheel 
should be characterized as inattentive if he does not hold it 
on a 9 and 3 o’clock position.  

In relation to the after-drive feedback, he found it relevant 
for him, his students, as well as drivers in general. He 
described it as a learning tool, which would allow him to 
have richer discussions with his students about their 
mistakes. Additionally, he believed that DARA could play 
the role of ‘virtual driving instructor’, especially for 
inexperienced, out-of-driving-school drivers. Finally, he 
also expressed his concerns that in real world conditions 
many drivers would probably turn DARA off, as he 
believed that after some time they would perceive the 
system as irrelevant and even annoying. 

STUDY 3: EVALUATING DARA’S UTILITY 
The last step in our process, was to conduct a field study, in 
order to collect data from real drivers in regards to DARA’s 
utility. For this study, DARA was used as a technology 
probe [10] in order to allow us to explore the driving 
context and better understand its impact. 

Participants 
10 drivers participated in the field study, and all were 
recruited through social networks. Following the driving 
instructor’s suggestion that DARA would be more relevant 
for inexperienced drivers, we opted mostly for them. The 
pool of participants consisted of 8 males and 2 females, 
with a mean age of 24.1 years old, and 5.45 years of actual 
driving experience on average. Furthermore, we asked the 
drivers to rate themselves on how good they believed they 
were driving with a single item that ranged from 1 to 10 on 
a Likert scale. On average, the drivers rated themselves as 
7.1. Table 1 summarizes their demographic characteristics.  

 M SD 

Age 24.1 0.74 

Actual driving experience (in years) 5.45 1.38 

Perceived driving experience (1-10) 7.1 1.10 

Table 1. Demographic characteristics of the participants. 

Setup 
Each participant was asked to drive a 20km route, resulting 
in approximately 30min of driving. The route was 
comprised both by city and rural driving parts. The reason 
for selecting such a route was based on related work. 
According to statistics [32], accidents occur 15 times more 
often on city and rural roads than on highways. The main 
reason for this is that such roads are often perceived as easy 
by drivers, thus they divert some of their attention away 
from the road. Furthermore, rural driving is perceived by 
most drivers as calmer than city driving [32]. Thus, our 
participants first drove the rural part of the route in order to 
familiarize themselves with the vehicle as well as DARA, 
and then they drove the city part of the route.  

From the 10 participants, half drove their own car for the 
field experiment, and the rest were provided a car. All cars 
had manual transmission. For each car, DARA was 
calibrated in order to accurately reflect the position of the 
steering wheel, the secondary controls and the gear shift. 
The same apparatus that was used in the previous two 
studies was also used in this one. The Leap Motion 
controller was placed on the cabin ceiling (Figure 1) and 
was connected to a laptop. For the during-drive feedback, a 
mobile phone was placed on the car’s dashboard. The same 
device was also used for the after-drive feedback.  

Procedure 
A test leader was responsible for introducing the 
participants to the route, for briefly explaining to them 
DARA’s purpose and the existence of a score that is based 
on how they hold the steering wheel. The exact mechanism 
on how the score was calculated was left ambiguous on 
purpose.  The test leader also instructed the participants to 
drive as they would normally do and to obey the traffic 
laws. The test leader sat in the passenger seat next to the 
driver and intervened only when asked, mostly for 
clarifications in relation to the route.  



Data Collection and Analysis 
Throughout the drive, the test leader observed and kept 
notes on how each participant reacted to the provided 
during-drive feedback. These notes, along with the after-
drive feedback, were used as the basis for interviews. The 
first part of the interview revolved around issues regarding 
the participants’ actions and their experience with DARA in 
general.  During the second part, the participants were 
shown the after-drive feedback which showed their route, 
along with information about their performance. The 
discussion was then focused to the segments where 
participants did not perform well, and they were asked to 
recall their actions and reflect upon them.  

Results 
Throughout the field study, the participants’ average score 
ranged from 77 to 96 (M=85.4, SD=6.6). Since the during-
drive feedback was provided only when the car was still, it 
varied in its frequency. Therefore, the participants received 
feedback between 5 and 11 times (M=7.4, SD=2.2). When 
exploring the most common gestures performed by the 
drivers, our data showed that they manipulated the 
secondary controls on average 12.89% of the time 
(SD=6.73), they held the gear stick on average 8.27% of the 
time (SD=9.33), while they rested their hands on average 
5.02% of the time (SD=4.81). What was also interesting 
were the instances where they did not hold the steering 
wheel at all (M=46.2, SD=27.82 times, or M=11.55, 
SD=6.95 seconds).  

The next step of our analysis was to compare the after-drive 
feedback maps of our 10 participants in order to observe if 
there were any road segments where they all demonstrated 
similar steering wheel holding patterns. Due to large 
variability in the traffic conditions, we did not identify any 
such patterns, except a specific small part of the route 
where the road was made out of bumpy limestone blocks 
and they all properly held the steering wheel. 

The 5 participants who borrowed a car for the field study 
required a few minutes to become comfortable with it, and 
they subconsciously drove more carefully. This was 
obvious both from the data collected by DARA, since all of 
them had really good scores in the beginning of the route 
(87 on average), as well as from their comments during the 
interviews. For example, when P1 was asked how he felt in 
the beginning of the route he stated: 

“Well, it’s a new car, and I drive more safely and 
carefully when in a new car.” [P1] 

Furthermore, we observed that participants who rated 
themselves high in regards to their driving experience, they 
tended to relax more while driving. This was evident by the 
fact they often held the steering wheel (only with one hand, 
or with both hands in the lower part of the steering wheel). 
This was also reflected in some of their scores, as the two 
drivers that rated themselves highest in driving experience, 
got relatively low scores (78 and 82), while the least 

experienced participant received a 95. When informed 
about this, they suggested they had enough control over the 
vehicle despite the fact they did not use the optimal hand 
positions. 

“No, I don’t think so [About losing control due to 
non-optimal hand positions], but I also guess that 
is because I normally drive with one hand.” [P4] 

Thus, we have indications that the more familiar the 
participants were with the car and/or the more experienced 
they perceived themselves, the more relaxed their driving 
style usually became. This resulted in more interactions 
with the secondary controls, more relaxed postures (such as 
falling back into their seat), and more reckless hand 
positions on the steering wheel in general. 

Experiencing DARA’s during-drive feedback 
Our decision not to explain in detail to the participants how 
their score was calculated allowed them to have a more 
explorative approach towards DARA. Two exploration 
approaches were identified. In the first one, some 
participants tried to find ways to lower their score in order 
to understand which actions were characterized by DARA 
as inappropriate:  

“I got the score of 97. After that I wanted to see if I 
could get a lower score to test the system.” [P6] 

In the second approach, participants that received really 
good scores, tried to stick to the same hand positions in 
order to keep the score as is. For example, as P7 mentions: 

“When I got the confirmation that I was doing 
something good, then I tried to do the same and 
keep that rhythm going.” [P7] 

Compared to the written message, our participants believed 
that the score gave a more precise measure of their 
performance. For example, P1 felt that the score was better, 
as the message was the same all the time for him, because 
his score was always above 80. 

“The way she talks.. she can tell you that you drive 
well but you cannot feel the difference between 95 
and 90.” [P1] 

Furthermore, P3 mentioned that the score, due to its wider 
range, provided a better understanding on how to improve 
as he could experiment with different hand positions. Thus, 
while the message felt reassuring when the driving 
performance was good, the more negative versions of the 
message lacked information on how to actually improve the 
performance. As clearly highlighted by P6: 

“If the system is related to where I have my hands 
then give feedback about where to place my 
hands.” [P6] 

While all participants liked the fact that feedback did not 
distract them, as it appeared only when the car was stopped, 
there were different approaches in relation to its frequency. 



P1, P2 and P3 asked for more feedback, and highlighted 
that particularly during long trips without any stops (for 
example in highway driving), DARA’s during-drive 
feedback would basically not appear at all: 

“If you are just driving on a highway I don’t think 
you will get the message that often, unless 
something is incorrect or very incorrect.” [P3] 

P8 moved a step further and suggested for DARA to act as 
a warning system and provide immediate feedback 
whenever the driver is not holding the steering wheel 
properly: 

“Feedback should come as soon as a driver does 
something irresponsible.” [P8] 

On the other hand, some participants were really satisfied 
with its frequency: 

“Feedback came only at appropriate amount of 
times. It was not annoying as the GPS that spams 
you. It was alright.” [P9] 

These findings suggest that drivers do have varying 
attitudes towards feedback systems and there is a need for 
any feedback system to adapt, to some extent, to the 
preferences of the driver.  

Another interesting point in our findings, is that half of our 
participants perceived the during-drive feedback as a game. 
For example, P3 mentioned that he was trying to increase 
the score to 100 throughout the session: 

“I wanted to get to 100, and see how I am 
supposed to drive, to learn what the best way of 
driving is.” [P3] 

For those 5 participants, receiving a low score was 
challenging, and they felt that DARA encouraged them to 
adopt a better driving behavior, by trying to increase their 
score: 

 “Only 91? I can do better than that!” [P1] 

Other gamification elements were also suggested as 
possible ways to extend the system, such as the possibility 
to save high scores and monitor the performance over a 
long period of time, or the possibility to compete with 
friends and family, or even unknown drivers by being 
informed about their scores. 

“I could be fun to see your score compared to the 
rest of the drivers… How well your average drive 
is and how well your best drive is. Makes it more 
fun to get a better score.” [P10] 

Such findings, are in line with related work [23, 26] that 
suggests that gamification principles are useful in 
increasing the relevance, effectiveness and engagement of 
in-car feedback systems. Furthermore, inspired by related 
work, we gave DARA an anthropomorphic voice. This 
decision has had an impact on how the participants 

experienced our system. Almost all participants stated that 
they felt ‘watched’ by the system while driving, and 
commented that this had an effect on their driving behavior. 
Some of them pointed out, that even though they did try to 
improve their score and realized the system’s value, they 
often had negative feelings about it. For example, P3 and 
P4 commented about the DARAs female voice that: 

“The lady was breathing down my neck.” [P3] 

“The feeling of being watched will cling to me for 
days.” [P4] 

Finally, many participants touched upon the social 
implications of DARA, and especially one of them, focused 
a lot on the topic. On one side, he mentioned that he would 
feel uncomfortable to receive negative feedback in front of 
other people: 

“It can be humiliating to get negative feedback 
while driving with friends.” [P3] 

On the other side, he did also stress that he trusted the 
system way more than other passengers. 

“I would rather listen to her than other passengers 
telling me what to do.” [P3] 

These findings suggest that in-car feedback systems may 
bring drivers to awkward, or even embarrassing situations, 
and we as designers need to take into consideration the 
social aspects of driving.   

Experiencing DARA’s after-drive feedback 
Despite many participants driving very carefully, either due 
to driving a new car or due to the feeling of being watched, 
many of them realized through the after-drive feedback that 
they did unintentionally perform actions that could be 
dangerous. P8 and P10 felt surprised from how often they 
interacted with the radio. For example, P8 characterized the 
system as ‘creepy’ after realizing why some of his segments 
on the map were red, since: 

“Apparently, I touched the radio more than I 
realized.” [P8] 

Other unintentional actions that we observed during the 
study and led to the characterization of a driver as 
inattentive, were resting the right hand for too long on the 
gear stick, or using the hands to communicate with other 
passengers. When we informed P7 that this was the main 
reason she got a low score, she commented:  

“I now am more aware of my hand positions and 
how much they actually, on an average drive, 
move.” [P7] 

Through DARA, the participants realized which of their 
actions could lead to dangerous situations and they reflected 
upon them. Furthermore, when we asked them how they 
experienced DARA in general, most agreed that the 
reflections facilitated by the system could help them 
improve their driving practices, and confirmed that DARA 



would be very relevant, especially for inexperienced 
drivers. For example, P5 had a personal experience of being 
reckless as a newly educated driver, saying that: 

“At this point, I was a very irresponsible driver, 
but didn’t really know it.” [P8] 

DISCUSSION 
The main contribution of this paper is DARA, a system that 
helps drivers to reflect on how they hold the steering wheel 
by making them aware of intentional or unintentional 
gestures/actions that may be dangerous while driving.  

We do not perceive DARA as a fully functional system that 
is ready to be installed in cars. As a prototype, the 
recognition component was accurate enough, while the 
during-drive feedback informed the drivers if there was 
something wrong with the way they held the steering wheel, 
and the after-drive feedback helped them realize which 
specific actions could be potentially dangerous. All these 
sparked reflections. The value that DARA may have in a 
driving context was also stressed by the driving instructor, 
who praised its relevance, particularly for inexperienced 
drivers. As a technology probe, DARA also allowed us to 
explore and better understand the driving context. In all 
three studies, DARA’s relevance was highlighted by how 
surprised many drivers were when they realized that some 
actions could be dangerous; when the ready-to-hand 
became present-at-hand [8]. For example, many were 
surprised on how often they interacted with the car’s 
secondary controls. Of course, due to the fact we conducted 
a small field study, we cannot make general claims about 
behavioral change. In order to have results on that, we need 
to make a longitudinal study with drivers of varying 
experience and then see if DARA may have a long-term 
impact on their driving practices.  

What we deem as an important challenge for any system 
that helps users reflect, learn and improve a practice is how 
to make the involved actions present-at-hand. For this, we 
strongly recommend the two-step feedback approach we 
utilized in DARA: the during-drive and the after-drive 
feedback. The first one may provide an indication if there is 
something within a practice that needs to be improved, 
without enforcing to the users a specific behavior, and 
without interfering too much with their actions. The second 
type of feedback can make them aware of the actions that 
need to be changed, and hopefully their combination may 
lead to sustained changes.  

Furthermore, the findings from all three studies have 
broader implications, which we will discuss in the 
following subsections. 

Hand Recognition as Means to Detect In-Car Actions 
Overall, DARA demonstrated that hand recognition in a car 
context is a viable approach. Our findings from the three 
studies showed that motion sensing and machine learning 
can be utilized in order to detect potentially dangerous 
actions that may decrease driver’s safety. Even though our 

system was designed to detect a few gestures (such as 
holding the gear stick, or manipulating the secondary 
controls), these can be easily extended. For example, 
driving and using a mobile phone can be very dangerous, 
and future implementations of DARA, or other in-car hand 
recognition systems, could accurately detect this, and 
subsequently warn the drivers.  

Furthermore, our findings do also show that in order for 
hand recognition to be successful there is a need to calibrate 
the machine learning algorithms both to the internal layout 
of a car, as well as, (to some extend) to the individual 
drivers. The internal layout of the car needs to be taken into 
consideration as cars differ on where the secondary controls 
are placed. Adaptability to specific drivers may also be 
important since both in our accuracy study as well as the 
field one, we identified that some of the performed hand 
gestures from the drivers are too personal, while others are 
generic enough. For example, resting one hand while 
driving may occur in various ways (resting it on the gear 
stick, or on the door), while changing a gear is an action 
that is identical for most drivers.  

Finally, our findings showed that DARA had trouble in 
properly detecting the hands of the drivers, during 
extremely sunny days, when the drivers were wearing 
heavy clothes, and sometimes when there were passengers 
inside the car. For our empirical studies, those three 
challenges were not that important as they were 
experimentally controlled, but in real world-settings they 
need to be taken into consideration.   
Implications for In-Car Feedback Systems 
As already has been identified in related work [28], it is 
important within a car context to provide timely feedback. 
Our decision to provide feedback only when the car was 
stopped received positive comments. Both the driving 
instructor as well as the participants in our studies did not 
feel distracted when feedback was presented. They felt it 
was presented at appropriate times and it did not affect their 
driving performance. The modalities used for the feedback 
(audio and visual) were also praised as they did not feel 
intrusive, or distracting.  

There were though four issues that we identified as relevant 
for any in-car feedback system: frequency, richness, 
adaptability, and social dimensions. In relation to 
feedback’s frequency, although our participants did like the 
fact that feedback did not appear too often, they did express 
their concerns for long driving sessions where they would 
not receive any feedback for hours (for example while 
driving on a highway). For such scenarios, many 
participants stressed the need for the feedback mechanism 
to adapt its frequency. Furthermore, many participants also 
informed us they would prefer DARA to act as a warning 
system and inform them when they did something wrong, 
the moment they did it. This needs to be explored more 
though, as we know from related work that such systems as 
often ignored by drivers as they find them intrusive [28]. 



In relation to feedback’s richness, we had mixed results. 
Most of the participants liked the simplicity of providing 
just a score and a message. They felt that this information 
was enough for them to realize if they needed to improve 
the way they held the steering wheel, or if everything was 
fine. A few participants though stressed that they would like 
to have more information available during a drive. Instead 
of receiving only a low score, they also asked to be 
informed on the reasons why this happened (for example, to 
receive a message like ‘You spent too much time 
manipulating the radio’).  

The third aspect of feedback that was characterized as 
important from most participants and the driving instructor 
was the need for the feedback to adapt to the driver/context. 
For example, it was suggested that any feedback 
mechanism should take into consideration how much the 
driver has improved over time and adapt accordingly, 
otherwise there is a danger to be deemed annoying and be 
ignored.  In relation to better adapting to the driving 
context, we received many suggestions on how to extend 
DARA, by taking into consideration the traffic conditions, 
the weather conditions, how dangerous is the road, etc. Of 
course, in order to have concrete results on the effectiveness 
of such implementations in relation to real-time feedback 
systems, more studies need to be conducted, particularly in 
real-world settings. Nevertheless, our results do indicate 
that designers of similar to ours feedback systems, should 
take these issues into consideration. 

Finally, the social dimensions surrounding feedback 
systems, were also highlighted by some of our participants. 
In a learning-how-to-drive context a feedback system like 
DARA can be very relevant, as it may provide to the 
driving instructors anchor points, which will facilitate richer 
discussions with the students and may improve learning 
outcomes. In everyday driving contexts though, receiving 
negative feedback in the presence of other passengers can 
be intrusive, embarrassing and even annoying. For this, we 
strongly suggest to designers of real-time feedback systems 
to consider such social aspects and try to facilitate 
alternative implementations. For example, unless an 
immediate danger is detected (for example in collision 
detection systems), during-drive feedback could be turned 
off in the presence of other passengers, and only after-drive 
feedback could be provided. 

Gamification as Means to Increase Engagement 
In our effort to help drivers to reflect and improve on their 
driving practices, we partially utilized gamification through 
DARA’s provided score. Half of the participants reported to 
us during the interviews that the score was perceived as a 
game, and that very often they felt they were competing. 
This, is in line with previous research work within driving 
contexts, where, for example, gamification was utilized to 
increase engagement and warn drivers of dangerous 
situations [23], or to reduce boredom and exposure to 
potential distractions, such as phone usage [26].  

Since our minor adoption of gamification principles was 
more engaging for some of our participants, we would like 
to highlight to potential designers of feedback systems that 
they could introduce similar elements, and then evaluate 
their relevance. Examples of gamifications principles that 
could be considered and were discussed by our participants, 
was the possibility to track their progress, to compare 
scores with other drivers, and to utilize achievements.    

CONCLUSION 
In this paper, we presented DARA, the Driving Awareness 
and Reflection Assistant, which made drivers aware of how 
they hold the steering wheel as well as potentially 
dangerous actions they performed, and helped them reflect 
on them. To do so, DARA utilized a hand recognition 
component, and a feedback one that is comprised by during 
and after drive feedback.   

DARA was empirically tested in three studies for its 
accuracy, relevance and utility. As a prototype, DARA 
detected accurately enough drivers’ hand placements on the 
steering wheel and classified them into actions. As a 
technology probe, it allowed us to have detailed insights on 
the driving context. In short, the findings from all three 
empirical studies, showed that the unobtrusiveness of the 
feedback was appreciated by drivers, since it effectively 
guided them to realize that many of the actions they often 
unintentionally perform can be dangerous. Furthermore, our 
findings suggest that in similar to ours in-car feedback 
systems, four parameters need to be taken into 
consideration: feedback’s frequency, richness, adaptability, 
and social dimensions.  

As future work, we plan to extend DARA to classify more 
actions, and we want to study its long-term impact on 
driving practices, in order to understand if and how it may 
facilitate lasting behavioral change.  Finally, we want to 
introduce DARA to other relevant driving contexts. First, 
we want to deploy it within the domain of semi-
autonomous cars, where understanding how to provide 
timely feedback is extremely relevant. This is important, 
especially if we consider that there are already reports for 
accidents occurring due to mismatches between the drivers 
and the autopilots. Second, we consider extending DARA 
to professional drivers too, where it could be used both as a 
driver’s assistant, but also as a performance evaluation tool.  
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