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Abstract—State estimation is a fundamental function in 
modern energy management system (EMS), but its results 
may be vulnerable to false data injection attacks (FDIA). 
FDIA is able to change the estimation results without being 
detected by the traditional bad data detection algorithms. 
In this paper, we propose an accurate and computational 
attractive approach for FDIA detection. We first rely on 
the low rank characteristic of the measurement matrix and 
the sparsity of the attack matrix to reformulate the FDIA 
detection as a matrix separation problem. Then, four algo-
rithms that solve for this problem are presented and com-
pared, including the traditional Augmented Lagrange 
Multipliers (ALM), double-noise-dual-problem ALM 
(DNDP-ALM), the Low Rank Matrix Factorization 
(LMaFit) and the proposed new “Go Decomposition 
(GoDec)”. Numerical simulation results show that our 
GoDec outperforms the other three alternatives and 
demonstrates a much higher computational efficiency. 
Furthermore, GoDec is shown to be able to handle meas-
urement noise and applicable for large-scale attacks.  
 

Index Terms—Cyber security, false data injection attacks, ma-
trix separation, smart grid, state estimation. 

I. INTRODUCTION 

OWER system static state estimation (SE) plays an im-
portant role in energy management systems (EMS). It 

provides accurate and reliable state estimates for various EMS 
functions, such as optimal power flow and contingency analysis 
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[1]-[5]. Typically, SE makes use of a set of redundant meas-
urements to filter out incorrect measurements and find reliable 
state estimates. After that, the normalized residual based sta-
tistical test is performed to detect bad data. The latter can be 
induced by unintentional and intentional reasons (e.g., device 
malfunctions and cyber-attacks) [6]-[10]. Among them, false 
data injection attacks (FDIA) is one of the main challenges as it 
can bypass the traditional bad data detectors [3]. 

The FDIA of power system static state estimator was initi-
ated by Liu. et al. Following that work, several other works 
have been carried out. For instance, two security indexes to 
quantify the threat of FDIA on power grid are proposed in [4]. 
Gabriela Hug et al. extended their work to AC model [5]. In 
addition, the potential financial loss caused by FDIA is inves-
tigated. Reference [6] investigates the finance benefits profited 
by attacker in an attacked market while [7] analyzes the impact 
of FDIA on real-time electric market operations. 

To secure the state estimation results, several FDIA detection 
methods have been proposed [10-22]. A new ℒ  norm detector 
softening the influences of FDIA is presented in [10]. A gen-
eralized likelihood ratio detector incorporating historical data is 
proposed in [11]. In [12], the short-term state forecasting-aided 
detection approach that checks the statistical property of the 
historical data and the received measurements is proposed. 
Machine learning–based detection approaches are proposed in 
[13]. The evaluation index using transmission line real and 
reactive power measurement residuals is presented to identify 
FDIA. Reference [14] takes the measurement residual based on 
active and reactive power flow measurements as an evaluation 
index to identify the false data. A security mechanism based on 
a multi-agent filtering scheme with a trust-based mechanism is 
proposed in [15]. Phasor measurement units (PMU) are used in 
state estimation to determine fault location and ensure the 
correctness of measurements according to [16-17]. Hence, 
reference [18] demonstrates the benefits of deploying a limited 
number of secure PMUs to defend the attack, and references 
[19-20] utilize a variant Steiner tree and a heuristic algorithm to 
determine the positions and minimum number of PMUs re-
spectively. Also, new detection approach using D-FACTS 
(Distributed Flexible AC Transmission System) is investigated 
in references [21-22] as well.  

It should be noted that the measurement matrix is typically 
low rank and the attack matrix is sparse. As a result, the FDIA 
detection problem can be transformed into a matrix separation 
problem, which has been solved by the Augmented Lagrange 
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Multipliers (ALM) and the Low Rank Matrix Factorization 
(LMaFit) approaches [23-24], respectively. As a promotion of 
the ALM method, double-noise-dual-problem ALM 
(DNDP-ALM) in reference [32] can also solve the matrix sep-
aration problem. However, the computational efficiencies of 
ALM and DNDP-ALM are not satisfactory, which limit their 
practical value. By contrast, although LMaFit has good com-
putational efficiency, it obtains quite low statistical detection 
accuracy of the FDIA. To achieve a better balance between 
computational efficiency and detection accuracy, this paper 
proposes a new Go Decomposition (GoDec) approach, which 
has the following salient features: 

 
(i) In the same condition, when there is no noise, GoDec has the 

similar computational efficiency as LMaFit while achieving 
higher accuracy of FDIA detection than the LMaFit; on the 
other hand, GoDec achieves the similar FDIA detection 
accuracy as ALM and DNDP-ALM while showing much 
higher computational efficiency. 

(ii) The proposed GoDec is able to handle FDIA detection 
problems with noise, yielding more practical separation 
results than the ALM and the LMaFit. Compared with the 
DNDP-ALM which also considers noise in detection, 
GoDec has a higher precision and faster calculation speed.  

(iii) GoDec is scalable to the large-scale attacks while ALM, 
DNDP-ALM and LMaFit have huge difficulties. 

 
It should be noted that the proposed method is based on the 

DC power flow model for illustration and comparison with 
other methods, but this method can also be extended to the AC 
power flow model.  

The rest of the paper is organized as follows. Section II 
presents the system model and explains the concept of FDIA. 
The problem of FDIA detection using matrix separation tech-
nique is formulated in Section III. Section IV displays the nu-
merical results and the comparisons among other methods. 
Finally, Section V concludes the paper.  

II. PRELIMINARIES 

A. Power System State Estimation 

Power system static state estimator normally utilizes the 
measured measurements to infer the unknown state variables. 
The estimation model that relates measurements to state varia-
bles can be expressed as 

 𝒛 𝑯𝒙 𝒆 (1) 

where 𝒛 ∈ ℝ  and 𝒙 ∈ ℝ  denote the measurements and the 
state variables, respectively; 𝒆 is the Gaussian noise with zero 
mean and covariance matrix 𝑹, and 𝑯 ∈ ℝ  is the Jacobian 
matrix.   

In this paper, the DC model is employed to investigate the 
impact of FDIA on the power flow on the transmission system, 
where the voltage magnitudes of all buses are supposed to be 1 
p.u.. Thus, 𝒙  only contains the bus phase angles 𝜽  and the 
measurements 𝒛  consists of the active power flows 𝑭  and 
power injections𝑷𝒊𝒏𝒋 . Define 𝒛 𝑧 , 𝑧 , ⋯ , 𝑧  and  𝜽

𝜃 , 𝜃 , ⋯ , 𝜃  , we have: 
 𝑭  𝑿 𝟏𝑺𝜽 (2) 
 𝑷𝒊𝒏𝒋 𝑩𝜽 (3) 
where 𝑩 is the bus susceptance matrix of the system; 𝑿 is the 
reactance matrix and 𝑺 is the shift factor of line measurements. 
Hence, the measurements 𝒛 and the Jacobian matrix 𝑯 can be 
expressed as: 

 𝒛 𝑭
𝑷𝒊𝒏𝒋

 (4) 

 𝑯 𝑿 𝟏𝑺
𝑩  (5) 

Suppose that the noise 𝒆 in (1) is independent, thus, the co-
variance matrix 𝑹 is a diagonal matrix. The state estimation 
problem above can be solved by weighted least square (WLS) 
estimator, yielding 

 𝜽 𝑯𝐓𝑹 𝟏𝑯 𝟏𝑯𝐓𝑹 𝟏𝒛 (6) 

Consequently, the estimated measurements 𝒛  can be ex-
pressed as: 

 𝒛 𝑯𝜽 𝑯 𝑯𝐓𝑹 𝟏𝑯 𝟏𝑯𝐓𝑹 𝟏𝒛 𝑲𝒛 (7) 

where 𝑲  𝑯 𝑯𝐓𝑹 𝟏𝑯 𝟏𝑯𝐓𝑹 𝟏. Thus, the residuals of the 
measurements are defined as: 

 𝒓 𝒛 𝒛 𝑰 𝑲 𝒆 (8) 

Since the square of the ℒ  norm ‖𝒓‖  follows the 𝜒  distri-
bution with the degree of freedom m n, 𝜒 -test can be ap-
plied on the measurement residuals 𝒓 for bad data detection. If 
‖𝒓‖ 𝜏 , then the bad data might exist, where 𝜏 is deter-
mined by a hypothesis test Pr ‖𝒓‖ 𝜏 𝛼 with a signifi-
cant level 𝛼. 

B. False Data Injection Attacks 

Traditionally, bad data can be detected using Largest Nor-
malized Residual (LNR) test. However, attack vectors con-
structed by the hacker are able to circumvent LNR test, im-
posing significant biases to the estimation results. Suppose that 
the attack vector is 𝒂, the deviation of state variables caused by 
𝒂 is denoted as 𝒄, then we have 

 𝒂 𝑯𝒄 (9) 

Thus, the measurements collected by EMS can be expressed 
as: 

 𝒛𝒂 𝒛𝟎 𝒂 𝑯 𝜽 𝒄 𝒆 𝑯𝜽𝒂 𝒆 (10) 

where 𝒛𝒂 is the malicious measurements and 𝜽𝒂 corresponds to 
the result of state estimation using 𝒛𝒂. The residual ‖𝒓‖𝟐 in this 
situation is: 
 ‖𝒓‖𝟐 ‖𝒛𝒂 𝑯𝜽𝒂‖𝟐 ‖𝒛𝟎 𝒂 𝑯 𝜽 𝒄 ‖𝟐 

 ‖𝒛𝟎 𝑯𝜽‖𝟐 (11) 

This means that the attack vector does not change the 
measurement residual and as a result it alters state variable from 
𝜽 to 𝜽 𝒄 successfully without being detected. 

In practice, [3] reveals that it is unlikely the hacker can attack 
all meters. Instead, he is limited to the access of limited re-
sources used for compromising the meters persistently. On the 
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other hand, PMUs are widely used in the power system, which 
can provide accurate voltage angles and power flows. The 
utilization of PMUs leads to the decrease of meters that the 
attacker can compromise [18]. These reasons guarantee the 
sparsity of the attack vectors, and our research is based on this 
characteristic. 

III. PROBLEM FORMULATION AND SOLUTION 

In this section, the problem formulation of FDIA detection is 
provided and the corresponding solutions are presented. 

A. Problem Formulation 

1) Basic Assumptions 
Before we describe the problem, we first establish some 

basic assumptions. Below, we will provide three main as-
sumptions and explain them respectively. 

(i) The attacker can obtain the measurement matrix 𝑯 of the 
power system. 

The power system is a typical industrial control system (ICS), 
and an attacker must obtain enough information to successfully 
invade the grid and eventually cause load loss. In state estima-
tion, the measurement matrix 𝑯 is related to the topology of the 
grid. The attacker can obtain the network topology in a variety 
of ways, and based on this, 𝑯 can be inferred. Researchers in [3] 
[23]-[25] have carried out corresponding researches on the 
basis of this assumption. Here, this assumption is only used to 
construct the attack data for simulation. It will not affect the 
modeling of the problem and solutions of detection methods. 

(ii) The attacker's resources are limited. 
Considering that the attacker's resources (personnel, at-

tackable instrumentation, financial resources, etc.) are limited, 
we assume that the attacker can only corrupt a part of the data. 
Based on this assumption, the attack matrix composed of attack 
data for a period of time must have a sparse property.  

(iii) The measurements and states change slowly in a steady 
state power system. 

The power system is a continuously changing stable system. 
Under steady working conditions, the changes of various 
measurements and states in the system are very slow. Therefore, 
the data in the power grid changes little, or they are almost 
unchanged over a period of time. Under this assumption, the 
data matrix composed of the historical measurement vectors 
and the latest measurement vector will have a low-rank char-
acteristic. 

All three assumptions are closely related to the actual situa-
tion. Assumption (i) shows that it is feasible to construct the 
attack vector using the method provided in Section II-B. As-
sumption (ii) and (iii) indicate that the matrix formed by the 
attack data has a sparse property, and the matrix formed by the 
measurements has a low rank property. All these assumptions 
laid the foundation for subsequent research. 
2) Basic Methodology of FDIA Detection 

In the presence of FDIA, the attacked measurement at EMS 
includes a measurement component and an attack component 
as follows: 

 𝒁𝒂 𝒁𝟎 𝑨 (12) 

where 𝒁𝒂 𝒛 , 𝒛 , ⋯ , 𝒛  ∈ ℝ denotes the measurement 
attacked at time 𝒕 ; 𝒁𝟎 𝒛 , 𝒛 , ⋯ , 𝒛  ∈ ℝ   and 𝑨
𝒂 , 𝒂 , ⋯ , 𝒂  ∈ ℝ  denote the measurement component 

and the attack component, respectively; 𝒛  and 𝒂  denote the 
measurement and the attack at time 𝑗, respectively.  

Based on the assumptions given in the previous part, we can 
find that 𝒁𝟎 is a low rank matrix and 𝑨 is a sparse matrix. This 
is because most of state variables change gradually (i.e. the 
intrinsic low-dimensional nature of power grid states) and most 
of attacks only affect a limited number of measurements (i.e. 
the sparse nature of FDI attacks). Matrix separation is a tech-
nique which is used for separating a matrix consisting of a low 
rank matrix and a sparse matrix [26]. In detection problem, 𝒁𝒂 
can be regarded as the original matrix, and 𝒁𝟎 and 𝑨 can be 
regarded as its low-rank components and sparse components, 
respectively. Thus, the FDIA detection problem can be viewed 
as a matrix separation problem and expressed as follows:  

 min
𝒁𝟎,𝑨

rank 𝒁𝟎 ‖𝑨‖ ,    𝑠. 𝑡.    𝒁𝒂 𝒁𝟎 𝑨 (13) 

where rank 𝒁𝟎  means the rank of 𝒁𝟎  and ‖𝑨‖𝟎  means the 
number of the nonzero entries of 𝑨.  

So far, we have transformed the FDIA detection problem 
into a matrix separation problem. In order to facilitate the 
reader to understand our detection process, we have drawn a 
flowchart as follows. 

Historical 
measurement vectors

The measurement vector 
za obtained by the meters

Matrix separation algorithm
(ALM，LMaFit or GoDec)

Attacker forms the false 
data vector a 

The system produces real 
measurement data z0

Form the measurement 
matrix Za

Obtain the attack matrix A
Obtain the measurement 

matrix Z0

False data detection

a is injected in z0

The process of fake 
data detection

The process of false 
data injection attacks

 
Fig. 1.  The process of FDIA and FDIA detection 

This flowchart describes the process of FDI attacks and the 
process of detecting FDIA. When the attacker attacks the sys-
tem, the attack data 𝒂 is injected into the normal measurement 
data 𝒛 . At this point, the data collected by the meter is 𝒛𝒂. 

When the system begins to detect the attack, it combines the 
current measurements with the historical measurements to form 
the measurement matrix 𝒁𝒂 . After that, matrix separation is 
performed on 𝒁𝒂 . If the separated 𝑨 matrix is not an empty 
matrix, then the location of the attack and the magnitude of the 
attack can be determined based on the location of the non-zero 
elements in 𝑨. 

The most important section of the entire detection process is 
the matrix separation operation. The low-rank and sparse ma-
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trix separation problem above characterize the low rank prop-
erty of the measurement matrix and the sparse property of the 
attack matrix. However, this optimization problem is generally 
non-deterministic polynomial-time hard and difficult to get a 
global optimum [29]. To address that, three approaches in-
cluding the ALM-based methods, the LMaFit and the proposed 
GoDec are presented and discussed.  

B. ALM-based Solution 

The ALM method to solve the matrix separation problem 
was first proposed by Lin. et al. This method is widely used in 
the engineering field and is constantly being developed by 
many other researchers.  

Below, we will introduce the ALM-based solution in two 
parts. First, the traditional ALM method is introduced. Sec-
ondly, we introduce the latest method named DNDP-ALM 
developed from that traditional ALM method. In section IV, we 
tested these two methods and compared their performances. 
1) Traditional ALM method 

In this approach, the matrix separation problem (13) is re-
formulated as a convex optimization problem (14), in which 
rank 𝒁𝟎  and ‖𝑨‖𝟎  are replaced by their convex relaxa-
tion ‖𝒁𝟎‖∗ and ‖𝑨‖ , respectively [26]. 

 min
𝒁𝟎,𝑨

‖𝒁𝟎‖∗ 𝜆‖𝑨‖ ,    𝑠. 𝑡.    𝒁𝒂 𝒁𝟎 𝑨 (14) 

where ‖ ∙ ‖∗ represents the nuclear norm defined as the sum of 
all singular values of the matrix and ‖ ∙ ‖  represents the ℒ  
norm defined as the sum of absolute values of all entries of the 
matrix; 𝜆 is a positive weighting factor, which is usually set to 

1 max 𝑚, 𝑡⁄  with 𝒁𝒂 dimensions 𝑚 and 𝑡. 
To solve the problem (14), ALM can be used and the aug-

mented Lagrange function can be written as: 

𝐿 𝒁𝟎, 𝑨, 𝒀, 𝜇 ‖𝒁𝟎‖∗ 𝜆‖𝑨‖ 〈𝒀, 𝒁𝒂 𝒁𝟎 𝑨〉  
 ‖𝒁𝒂 𝒁𝟎 𝑨‖   (15) 

where 𝒀 is the Lagrange multiplier; 𝜇 is a positive scalar, and 
⟨ ∙ | ∙ ⟩ is the inner product.  

Mathematically, ALM requires singular value decomposi-
tion (SVD), which may limit its computing speed and scalabil-
ity.  Interestingly, both Exact ALM (EALM) [23] and Inexact 
ALM (IALM) [27] algorithms have been used for the FDIA 
detection. Generally, IALM has a higher computational effi-
ciency than EALM as it reduces the number of SVD as well as 
the time of SVD computation. The IALM algorithm is briefly 
depicted in TABLE I, where 𝒮 𝑥  is defined in (16).   

 𝒮 𝑥 sgn 𝑥 max |𝑥| 𝜏, 0  (16) 

TABLE I      FLOWCHART OF INEXACT ALM METHOD 

Algorithm 1 Inexact ALM 

Input: 𝒁𝒂 ∈ ℝ ;  𝜆 1/ max 𝑚, 𝑡 ;  
Initialize: 𝒀 0; 𝒁𝟎 0; 𝑨 0; 𝜇 0;  𝛼 0; 
𝑘 0;   

while not converge do 
//solve 𝒁𝟎 arg min

𝒁𝟎
𝐿 𝒁𝟎, 𝑨 , 𝜇 , 𝒀  

𝑼, 𝑺, 𝑽 svd 𝒁𝒂 𝑨 𝜇 𝒀   

  //obtain 𝑼, 𝑺, 𝑽  
  𝒁𝟎  𝑼𝒮 𝑺 𝑽  

  //solve 𝑨 arg min
𝒁𝟎

𝐿 𝒁𝟎 , 𝑨, 𝜇 , 𝒀  

  𝑨 𝒮 𝒁𝒂 𝒁𝟎 𝜇 𝒀  

  𝒀 𝒀 𝜇 𝒁𝒂 𝒁𝟎 𝑨  
  𝜇 𝛼𝜇  
  𝑘 𝑘 1 
end while 
Return: 𝒁𝟎 ; 𝑨 ;  

Output: 𝒁𝟎 ; 𝑨 ; 
2) Improved ALM-based Solution 

Due to the high accuracy of traditional ALM method, it is 
widely used in various fields. But considering that traditional 
ALM is based on equation (12), it does not take measurement 
noise into account, which limits its scope of use. DNDP-ALM 
proposed in 2017 [32] improved the original optimization 
problem and incorporated noise into the constraints.  

DNDP-ALM is an improvement on the original method, and 
there is not much difference in the solution process. Here, we 
briefly introduce this method and give the specific process of 
solving matrix separation problem.  

The optimization problem that DNDP-ALM needs to solve is 
developed from equation (14). Here, we define the measure-
ment noise matrix as 𝑵. Thus, the following convex optimiza-
tion problem can be represented as: 

 min
𝒁𝟎,𝑨

‖𝒁𝟎‖∗ 𝜆‖𝑨‖ 𝛽‖𝑵‖ , 𝑠. 𝑡. 𝒁𝒂 𝒁𝟎 𝑨 𝑵

 (17) 

where 𝛽 is a positive weighting factor, and ‖ ∙ ‖  denotes the 
Frobenius norm of matrix 𝑵. Problem (17) can also be solved 
by ALM. The augmented Lagrange function can be written as:  

𝐿 𝒁𝟎, 𝑨, 𝒀, 𝜇 ‖𝒁𝟎‖∗ 𝜆‖𝑨‖ 𝛽‖𝑵‖   
 〈𝒀, 𝒁𝒂 𝒁𝟎 𝑨 𝑵〉 ‖𝒁𝒂 𝒁𝟎 𝑨 𝑵‖  (18) 

DNDP modifies the objective function and constraints of the 
original optimization problem, so that the new method can take 
the noise into consideration. The flowchart of DNDP-ALM is 
provided in TABLE II. 

TABLE II      FLOWCHART OF DNDP-ALM METHOD 

Algorithm 2 DNDP-ALM 

Input: 𝒁𝒂 ∈ ℝ ;  𝜆 1/ max 𝑚, 𝑡 ;  
Initialize: 𝒀 0; 𝒁𝟎 0; 𝑨 0; 𝑵 0; 
 𝛼 0;   𝛽 0; 𝜇 0;  𝑘 0;   

while 𝒁𝟎, 𝑨 , 𝑵 not converge do 
𝒁𝟎 𝒁𝟎 , 𝑨 𝑨 , 𝑵 𝑵 , 𝑗 0 

while 𝒁𝟎 , 𝑨 , 𝑵 not converge do 

𝑼, 𝑺, 𝑽 svd 𝒁𝒂– 𝑨 – 𝑵 𝜇 𝒀   

   𝒁𝟎
    𝑼𝒮 𝑺 𝑽  

   𝑨 𝒮 𝒁𝒂– 𝒁𝟎
   – 𝑵 𝜇 𝒀  

   𝑴, 𝒁, 𝑵 svd 𝒁𝒂 𝜇 𝒀  
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   𝑵 𝒁𝒂 𝜇 𝒀 𝑴𝒮 𝒁 𝑵  

   𝑗 𝑗 1 
  end while 
  𝒀 𝒀 𝜇 𝒁𝒂– 𝒁𝟎 – 𝑨 – 𝑵  
  𝜇 𝛼𝜇  
  𝑘 𝑘 1 
end while 
Return: 𝒁𝟎 ; 𝑨 ; 

Output: 𝒁𝟎 ; 𝑨 ; 

C. LMaFit-based Solution 

For the LMaFit approach, the matrix separation problem (13) 
is converted into the following optimization problem: 

 min
𝐔,𝐕,𝒁𝟎

‖𝒁𝒂 𝒁𝟎‖ ,     𝑠. 𝑡.     𝑼𝑽 𝒁𝟎 𝟎 (19) 

where 𝒁𝟎 is represented by a product of  𝐔 ∈ ℝ  and  𝐕 ∈
ℝ , and 𝑟 represents the initial rank estimate [28].  

This problem can be solved with ALM as well. The aug-
mented Lagrange function is expressed as:  

𝐿 𝑼, 𝑽, 𝒁𝟎, 𝒀, 𝜇 ‖ 𝓟𝛀 𝒁𝒂 𝒁𝟎 ‖ 〈𝒀, 𝑼𝑽 𝒁𝟎〉  
 ‖𝑼𝑽 𝒁𝟎‖   (20) 

Here, the general idea is to factorize the measurement matrix 
𝒁𝟎 into the product of two low-rank matrices, instead of min-
imizing the nuclear norm of  𝒁𝟎. In such a way, SVD is avoided, 
and the speed and scalability of the algorithms is improved. The 
flowchart of LMaFit is presented in TABLE III. 

TABLE III     FLOWCHART OF LOW RANK MATRIX FITTING 

Algorithm 3 Low-rank Matrix Fitting 
Input: 𝒁𝒂 ∈ ℝ ; initial rank estimation 𝑟; 
Initialize: 𝑼 ∈ ℝ ;  𝑽 ∈ ℝ ; 𝒁𝟎 𝑼 ∗ 𝑽; 𝒀 0;  
𝜇 0; 𝛼 0; 𝑘 0;  

while not converge do 
𝑼 𝒁𝟎 𝜇 𝒀 𝑽 𝑽𝑽 𝟏;  

𝑽 𝑼 𝑼 𝟏𝑼 𝒁𝟎 𝜇 𝒀 ;  

𝒁𝟎 𝑆 𝑼 𝑽 𝒁𝒂 𝜇 𝒀 ;  

  𝒀 𝒀 𝒖 𝑼 𝑽 𝒁𝟎 ;  
  𝜇 𝛼𝜇 ;  
  𝑘 𝑘 1; 
  possibly re-estimate 𝑟, and adjust sizes of the iterates 
end while 
Return: 𝒁𝟎 ;  

Output: 𝒁𝟎 ; 𝒁𝒂 𝒁𝟎 ; 

D. Proposed GoDec Solution 

In the ALM algorithm, the SVD at each iteration is laborious 
for high-dimensional matrices. While for LMaFit algorithm, 
SVD is replaced by low-rank matrix factorization, yielding 
better computational efficiency than ALM However, both 
ALM and LMaFit don’t take the measurement noise into ac-
count, yielding biased state estimation results. In addition, the 
convergence of LMaFit is not guaranteed due to the 

non-convex nature of the LMaFit problem. Furthermore, both 
ALM and LMaFit are not able to handle large-scale attacks. 

To address these problems, a new algorithm called “Go 
Decomposition” (GoDec) is proposed in this paper. The general 
idea is to replace the SVD with Bilateral Random Projections 
(BRP). In addition, the measurement noise is considered in 
GoDec, which is ignored by both ALM and LMaFit. 

The error of BRP based approximation approaches to the 
error of SVD approximation under general conditions, but the 
computing burden of BRP is much less than SVD. 

First, the attacked measurement is represented as: 

 𝒁𝒂 𝒁𝟎 𝑨 𝑵, rank 𝒁𝟎 𝑟, card 𝑨 𝑝 (21) 

where card  ∙  means the number of nonzero entries in the 
matrix.  

The matrix separation problem is transformed into the fol-
lowing optimization problem: 

min
𝒁𝟎,𝑨

‖𝒁𝒂 𝒁𝟎 𝑨‖   s. t. rank 𝒁𝟎 𝑟, card 𝑨 𝑝 (22) 

The measurements 𝒁𝟎 and the attack matrix 𝑨 can be sepa-
rated by alternatively solving the following two sub-problems 
until convergence. Note that the two sub-problems have 
non-convex constraints, while their global solutions 𝒁𝟎  and 
𝑨  can be guaranteed [29]. 

 𝒁𝟎 arg min
𝒁𝟎

𝒁𝒂 𝒁𝟎 𝑨  (23) 

 𝑨 arg min
 𝑨

𝒁𝒂 𝒁𝟎 𝑨  (24) 

Second, BRP is used to replace SVD for low-rank approxi-
mation to reduce time cost [30], In original GoDec algorithms, 
the main computation task is to update 𝒁𝟎 .  

For the sub-problem (23), we mainly work on the low-rank 
approximation with BRP. Let 𝒁𝟎 𝒁𝟎 𝑵 and 𝒁𝟎 ∈ ℝ .  

 𝒁𝟎 𝒁𝒂 𝑨 𝒁𝒂 𝑨 𝒁𝒂 𝑨 (25) 

where 𝑞 is a positive parameter.  
Then, the BRP of 𝒁𝟎 is:  

 𝒀𝟏 𝒁𝟎𝑺𝟏, 𝒀𝟐 𝒁𝟎 𝑺𝟐 (26) 

where 𝒀𝟏 ∈ ℝ  is left random projection of 𝒁𝟎 ; 𝒀𝟐 ∈ ℝ  
is the right random projection, and 𝑟  represents the rank of 
measurement matrix. 𝑺𝟏 ∈ ℝ  is an independent Gaussian 
random matrix and 𝑺𝟐 ∈ ℝ  is a matrix updated by 𝒀𝟏as 

 𝑺𝟐 𝒀𝟏 (27) 

With BRR, the 𝑟 rank approximation of 𝒁𝟎 is 

 𝒁𝒓 𝒀𝟏 𝑺𝟐𝒀𝟏
𝟏𝒀𝟐  (28) 

In order to obtain the approximation of 𝒁𝟎 with the rank 𝑟, 
we calculate the QR decomposition of 𝒀𝟏 and 𝒀𝟐, i.e.: 

 𝒀𝟏 𝑸𝟏𝑹𝟏, 𝒀𝟐 𝑸𝟐𝑹𝟐 (29) 

Then the low-rank approximation of 𝒁𝟎 is given by: 
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 𝒁𝟎 𝒁𝒓 𝑸𝟏 𝑹𝟏 𝑺𝟐𝒀𝟏
𝟏𝑹𝟐 𝑸𝟐 (30) 

In the calculation process above, GoDec can increase 𝑞 to 
reduce the error of BRP. For the sub-problem (24), we take the 
first 𝑝 largest elements of 𝒁𝒂 𝒁𝟎 , and assign those values 
to 𝑨  in the same position: 

 𝑨 𝓟 𝒁𝒂 𝒁𝟎  (31) 

Finally, we adopt a positive scalar 𝜖 to check the conver-
gence of the algorithm shown in (32). The overall flowchart of 
GoDec is presented in TABLE IV. 

 𝒁𝒂 𝒁𝟎 𝑨 ‖𝒁𝒂‖ 𝜖 (32) 

TABLE IV    FLOWCHART OF FAST GO DECOMPOSITION 

Algorithm 4 Fast Go Decomposition 
Input: 𝒁𝒂, 𝑟, 𝑝, 𝜖, 𝑞 
Initialize: 𝒁𝟎 𝒁𝒂, 𝑨 𝟎 

while 𝒁𝒂 𝒁𝟎 𝑨 ‖𝒁𝒂‖ 𝜖, do 

  𝒁𝟎 𝒁𝒂 𝑨 𝒁𝒂 𝑨 𝒁𝒂

𝑨 ; 
  𝒀𝟏 𝒁𝟎𝑺𝟏, 𝑺𝟐 𝒀𝟏; 

  𝒀𝟐 𝒁𝟎 𝒀𝟏 𝑸𝟐𝑹𝟐, 𝒀𝟏 𝒁𝟎𝒀𝟐 𝑸𝟏𝑹𝟏; 
  If rank 𝑺𝟐𝒀𝟏 𝑟 

    then 𝑟  rank 𝑺𝟐𝒀𝟏 , go to the first step; 
  end 

  𝒁𝟎 𝑸𝟏 𝑹𝟏 𝑺𝟐𝒀𝟏
𝟏𝑹𝟐

⁄
𝑸𝟐; 

 𝑨 𝓟 𝒁𝒂 𝒁𝟎 , Ω is the nonzero subset 

of the first 𝑝 largest entries of 𝒁𝒂 𝒁𝟎 ;   
end while 

Output: 𝒁𝟎, 𝑨, 𝒁𝒂 𝒁𝟎 
Although the derivations of all three methods are based on 

the feature that the attack matrix is sparse, some scholars ex-
pand the scope of application when the attack matrix is not 
sparse. Arvind Ganesh et al [31] analyzed the application in 
dense error correction by improved weighting parameter 𝜆 in 
(14) slightly, while the performances between ALM and 
LMaFit are compared in [28] when the matrix is not sparse. As 
a result, our proposed approach can be applied to dense error 
problem as well. In fact, in the presence of large-scale attacks 
the attack matrix can be treated as “dense error”, which can be 
handled by the proposed approach (see the results below).  

IV. NUMERICAL RESULTS 

In this section, numerical simulations are performed to 
evaluate the performances of the four approaches. Specifically, 
they are assessed from three aspects, namely, detection accu-
racy with measurement noise, computational efficiency and 
scalability for large-scale attacks. All the tests are conducted on 
the IEEE 118-bus test system. The method of performing at-
tacks can be found in [11] and [25]. In this paper, we focus on 
FDIA detection, and the attacked meters are selected randomly. 
Suppose that in a continuous time period 𝑇, EMS collected 150 
groups of measurements from different snapshots. Hence, the 

measurement matrix used for simulation is 𝒁𝒂 ∈ ℝ . 
Besides, in this part, the noise in the measurements is Gaussian 
noise. The rank estimation 𝑟 in equation (21) is set as 0.05𝑚, 
where 𝑚 is the number of matrix’s columns, and 𝑝 in equation 
(21) is fixed as 0.05𝑚𝑛, where 𝑛 is the number of matrix’s 
rows. 

A. Computational Accuracy  

The attack matrix formed by attackers contains two kinds of 
information. One is the value of false injection data, and the 
other is the location where attackers conduct injection. Below, 
we will discuss computational accuracy from both numerical 
detection accuracy and location detection accuracy separately, 
to illustrate the superiority of our algorithm. 
1) Numerical Detection Accuracy 

First of all, we will analyze the numerical detection accuracy. 
To quantify the accuracy of each approach for detecting the 
data injected by attacker, two metrics are used, including: 

(1) the relative reconstruction error 𝜹 for state variables 𝜽  

 𝜹 𝜽 𝜽 ./|𝜽| (33) 

where 𝜽 is the result of state estimation using 𝒁𝟎 from matrix 
separation, |𝜽| calculates the absolute value of all entries in 𝜽.  

(2) the mean absolute error 𝜀 for attack matrix 𝑨: 

 𝜀
∑ 𝑨 𝑨

 (34) 

where 𝑨  is the matrix recovered from the algorithm; 𝑨 is the 
attack matrix we construct, and 𝑎 and 𝑏 stand for the number of 
columns and rows of 𝑨. 

First, we make an intuitive comparison of the four algorithms 
with a series of gray scale images. The original attack matrix 
constructed with equation (9) is given in Fig. 2, and the attack 
matrices separated by the main four algorithms are shown in 
Figs. 3 (a)-(d) and Figs. 4 (a)-(d). The different gray scale in 
Figs. 2 to 4 represents the different magnitudes of attacks which 
are generated by us or separated by algorithms. The x-axis 
represents the sampling time 𝑡 and y-axis represents the meas-
urements in the measurements matrix. 

Note that the measurement matrices in Fig. 3 are without 
noise while those shown in Fig. 4 are with 5% noise (The gray 
scale image of the separated results with 10% measurement 
noise are shown in the appendix.). It is observed from Fig. 3 
that four algorithms detect and identify the FDIA with different 
accuracy: (1) ALM detects some of the FDIA but it could not 
identify the magnitudes of the false data; (2) DNDP-ALM has 
significantly improved the performance of detection attacks 
compared with ALM, but there are still some attacks that 
cannot be detected; (3) LMaFit detects most of the attacks but 
performs poorly on identifying the magnitudes; and (4) GoDec 
is able to detect the attacks and identify the magnitudes simul-
taneously. In addition, it is observed from Fig.4 that ALM and 
LMaFit are sensitive to measurement noise and produce poor 
results, which is not the case for our proposed approach. In 
addition, even considering the disturbance of noise in the 
measurements, the detection accuracy of DNDP-ALM is not as 
high as GoDec. 
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Fig. 2.  The original attack matrix constructed with equation (9) 

 

 
(a) Matrix separated by ALM (b) Matrix separated by DNDP-ALM 

 
(c) Matrix separated by LMaFit (d) Matrix separated by GoDec 
Fig. 3.  The comparison among matrices separated by different algorithms 
(the measurements aren’t disturbed by noise)  

  
(a) Matrix separated by ALM (b) Matrix separated by DNDP-ALM 

  
(c) Matrix separated by LMaFit (d) Matrix separated by GoDec 
Fig. 4.  The comparison among original attack matrix and matrices sepa-
rated by different algorithms (the measurements are disturbed by 5% noise) 

 

Next, we make use of indictors 𝜀 and 𝜹 to perform some 
quantitative analysis. Under different noise level, the mean 
absolute errors 𝜀 between the original attack matrices and the 
separated matrices are calculated and shown in TABLE V. The 
maximum relative error 𝜹𝒎𝒂𝒙 is shown in TABLE VI. We find 
from these two tables that the estimation errors of all methods 
increase with the increase of noise level. However, ALM, 
DNDP-ALM and LMaFit show higher sensitivity to noise level 
than our GoDec. For example, with 0-10% noise, ALM, 
DNDP-ALM and GoDec’s 𝜀 increase from 0.0612 to 0.1449, 
0.0610 to 0.1349 and from 0.0602 to 0.1296, respectively, 
while LMaFit's 𝜀 are all above 0.2; and with no noise, ALM, 
DNDP-ALM and GoDec’s 𝜹𝒎𝒂𝒙% are 34.85%, 28.69% and 
26.19%, respectively, while LMaFit’s 𝜹𝒎𝒂𝒙%  reaches to 
290.25%. Although DNDP-ALM can deal with 
noise-containing matrix separation problems, its performance 
at different noise levels is still inferior to GoDec. When the 
noise increases from 0 to 10%, the values of 𝜹𝒎𝒂𝒙  and 𝜀 of 
GoDec are always lower than those of DNDP-ALM, which 
illustrates that GoDec performs better in dealing with false data 
injection detection problem with noise. 

Furthermore, we provide the relative error of the voltage 
angle and show more details of error distribution of the sepa-
rated results in Fig. 5. Specifically, we use relative error of state 
variables to compare the accuracy among all methods. Note 
that each column of 𝒁𝟎 corresponds to the result of state esti-
mation in a certain time. The target of state estimation is to 
obtain the accurate state of system, which can be shown by the 
error distribution of the estimated measurements. Although we 
have compared the maximum and mean error  
 

 
(a) CDF curve at 𝑡 10 with 0% noise 

 
(b) CDF curve at 𝑡 10 with 5% noise 

 
(c) CDF curve at 𝑡 10 with 10% noise 

Fig. 5.  Power state reconstruction performance of four algorithms at specific 
time instant 𝑡 10 with 0% noise, 5% noise and 10% noise. 
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TABLE V     THE MAXIMUM VALUE OF RELATIVE ERROR 𝜹 
Algorithm IALM/EALM DNDP-ALM LMaFit GoDec 

noise 0 5% 10% 0 5% 10% 0 5% 10% 0 5% 10% 
𝛿  0.3485 0.4637 0.7471 0.2869 0.3299 0.6236 2.9025 3.1941 3.4059 0.2619 0.2755 0.5651 

TABLE VI    THE MEAN ABSOLUTE ERROR 𝜀 OF ATTACK MATRICES 
Algorithm IALM/EALM DNDP-ALM LMaFit GoDec 

noise 0 5% 10% 0 5% 10% 0% 5% 10% 0 5% 10% 
𝜀 0.0612 0.0646 0.1449 0.0610 0.0675 0.1349 0.2041 0.2131 0.3277 0.0602 0.0689 0.1296 

among four methods in TABLE V and VI, it is still necessary to 
observe error distribution of system states with the purpose of 
finding out the effects of algorithms on all states. Following 
reference [23], we sort the error of separated results from large 
to small and plot their cumulative distribution functions in 
Fig.5. According to the results, we find that all algorithms have 
an ability in recovering the state variables from attacks. How-
ever, GoDec outperforms ALM, DNDP-ALM and LMaFit. The 
comparison results at other time instances are shown in the 
appendix, such as 𝑡  20, 50, 100 and 150. In summary, four 
methods can explore the low-rank and sparse components in 𝒁𝒂, 
but GoDec has the best performance. It directly constrains the 
rank range of 𝒁𝟎  and cardinality range of 𝑨 in optimization 
model as well, which leads to a higher precision of the separa-
tion results [29]. 
2) Location Detection Accuracy 

Then, we analyze the detection accuracy of the injection 
location. In order to compare the performances, two indexes 
named true positive (TP) rate and5 false alarm (FA) rate are 

defined separately, as follows: 

 TP , FA  (35) 

where 𝑛  represents the number of locations where at-
tackers inject data (i.e. the non-zero element in the attack ma-
trix), 𝑛  represents the number of successful detections of 
injected data, 𝑛  represents the number of locations with 
no attack, and 𝑛  represents the number of false report of the 
attack-free locations.  

The higher the TP of an approach, the higher the accuracy of 
the approach for detecting the location of false data injection; 
the lower the FA of a method, the less likely the method is to 
cause false positives to an attack. If FA is too high, the system 
will not be able to identify the location of the actual attack, 
which will affect the normal operation of the system. Under 
different noise level, the values of TP and FA of four ap-
proaches are provided in TABLE VII. 

 
TABLE VII     THE VALUE OF TP AND FA FOR FOUR APPROACHES 

Algorithm IALM/EALM DNDP-ALM LMaFit GoDec 
noise 0 5% 10% 0 5% 10% 0 5% 10% 0 5% 10% 
TP 94.37% 92.66% 89.43% 95.23% 93.58% 91.15% 98.36% 99.14% 98.14% 95.62% 93.97% 92.05% 
FA 2.78% 5.41% 9.17% 1.79% 3.71% 6.03% 13.88% 20.22% 23.64% 1.42% 3.01% 4.82% 

Based on the results, it can be clearly discovered that the 
ALM-based approaches (i.e. IALM and DNDP-ALM) and 
GoDec can accurately detect the locations of the false data 
injection attack at a lower FA value. Although LMaFit has a 
higher TP value, its FA value is too high. When using LMaFit, 
many locations where no false data injection occurs will also be 
detected as false data injection. Therefore, the practicality of 
LMaFit is further reduced.  

Then we compare the ALM-based approaches with GoDec. 
In the case of no measurement noise, the accuracy of the three 
algorithms is close. When noise exists, we can find that detec-
tion accuracy of GoDec is higher and the FA value is slightly 
lower than DNDP-ALM under the same noise level.  

Thus, combining the above discussion about numerical de-
tection accuracy and location detection accuracy, we can con-
clude that GoDec has a higher computational accuracy com-
pared with ALM and LMaFit, and it performs better than im-
proved approach DNDP-ALM when there is noise in the 
measurements. 

B. Computational Efficiency  

In this part, the computational efficiency of the four solutions 
are compared and analyzed. First, the four algorithms are per-
formed on a small measurement matrix (column 𝑚 100). 
Then, they are tested on a series of larger matrices (column m 
increases from 100 to 2100 with an increment 200). The col-

umn dimensions correspond to the total number of sampling 
time. The corresponding computing times are recorded and 
showed in Fig. 6.  

It is observed that 1) computing times of all four algorithms 
increase with the increase of the measurement matrix dimen-
sions and 2) LMaFit and GoDec’s need less than 10s for most 
cases, which show their capabilities for real-time applications. 
This is because they avoid computational demanding SVD 
procedures. In particular, LMaFit implements the rank estima-
tion with the rank-revealing feature of QR factorization and 
GoDec factorizes the two random projections with QR de-
composition. Thus, LMaFit and GoDec have similar speeds in 
solving the problem. 

Furthermore, we find that 1) our GoDec algorithm is the 
most computational efficiency algorithms, 2) the IALM and 
DNDP-ALM algorithms have poor performances under 
high-dimensional measurement conditions. In both algorithms, 
SVD is used to solve the problem. During each iteration, SVD 
is used once in IALM, and is used twice in DNDP-ALM. In 
addition, DNDP also includes a double loop, which makes the 
time cost of solving the problem with the algorithm unac-
ceptable. Specifically, IALM spends 100+ seconds when the 
matrix’s column dimension exceeds 2000 and DNDP-ALM 
spends 1000+ seconds when the matrix’s column dimension 
exceeds 1500.  
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Fig. 6.  CPU computation time for four algorithms 

 
Considering the scan rate of SCADA measurements (typi-

cally few seconds or minutes), the detection results by IALM 
might be invalid and the EMS at the control center might have 
been attacked.  

C. Performance Analysis vs. Attack Scales 

Although the large-scale FIDA is unlike to happen in prac-
tice, it would be good to develop defense approaches that can 

work even in some extreme events, including intentional ter-
rorist cyber and physical attacks scenarios.  

 Note that [25] and [31] reveal that LMaFit becomes invalid 
when the sparse matrix dominates the low-rank one in magni-
tude. Thus, we investigate the performances of all algorithms 
when a large-scale attack appears. To analyze the influences on 
the performance of each algorithm with different scales of 
attacks, we define a mean relative error for state variables 𝜽. 

 𝛿̅ ∑ | |
 (33) 

where 𝛿  is relative error of each voltage angle, and 𝑘 is the 
number of attacked meters.  

In process of test, 𝑘 varies from 50 to 200, and increases 10 
attacked meters each time. The results are shown in Fig. 5.  

According to the Fig. 7, we see that when FDIA is in 
small-scale, ALM, DNDP-ALM and GoDec have better per-
formances than LMaFit. With the increase of attack scale, the 
accuracies of all of algorithms decrease. The error of LMaFit 
becomes unacceptable when attack scale becomes large. In this 
situation, its maximum relative error 𝛿  is 402.5%. By con-
trast, the maximum relative error 𝛿  of IALM, DNDP-ALM 
and GoDec are just 57.87%, 54.69% and 42.18%, respectively. 
We conclude that LMaFit is unable to detect false data in 
large-scale, while IALM, DNDP-ALM and GoDec can achieve 
quite reasonable performance. In summary, GoDec performs 
well no matter the attack scale is large or small. 

 

 
(a) The process of maximum relative error changing with the attack scale (b) The process of average of relative error changing with the attack scale 

Fig. 7. The maximum relative error and mean value of relative error with the increase of attack scale on IALM, LMaFit and GoDec 

V. CONCLUSION 

To detect FDIA in an efficient and computational attractive 
way, this paper proposes a new “Go Decomposition (GoDec)”. 
We use the low rank feature of the measurement matrix and the 
sparsity of the attack matrix to reformulate the FDIA detection 
as a matrix separation problem. The latter is solved by four 
algorithms, namely the traditional Augmented Lagrange Mul-
tipliers (ALM), double-noise-dual-problem ALM 
(DNDP-ALM), the Low Rank Matrix Factorization (LMaFit) 
and the proposed new “Go Decomposition (GoDec)”. We show 
that our GoDec outperforms the other three alternatives and 
demonstrates a much higher computational efficiency. Fur-

thermore, GoDec is shown to be able to handle measurement 
noise and is applicable for large-scale attacks. 
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APPENDIX 

A. Additional Gray Scale Image with 10% noise 

We only provide the gray scale images under 0% noise and 5% 
noise in Section V-A. To further illustrate the impact of noise 
on detection performance, we give the gray scale image for 
detection results with 10% measurements noise. The image is 
as follows: 

  
(a) Matrix separated by ALM (b) Matrix separated by DNDP-ALM 

  
(c) Matrix separated by LMaFit (d) Matrix separated by GoDec 

Fig. A-1.  The comparison among original attack matrix and matrices 
separated by different algorithms (the measurements are disturbed by 10% 
noise) 

B. Additional CDF curve at different time instances 

We just exhibit the error distribution at a specific time in-
stance t=10. To give more comparison to illustrate the better 
performance of our method, we give the CDF curves among 
four methods in different time instances, such as t = 20, 50, 80, 
100 and 150.The curves are as follows: 

 
(a) CDF curve at 𝑡 20 with 0% noise 
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(b) CDF curve at 𝑡 20 with 5% noise 

 
(c) CDF curve at 𝑡 20 with 10% noise 
Fig.B-1.  Power state reconstruction performance of four algorithms at specific 
time instant 𝑡 20 with 0% noise, 5% noise and 10% noise. 

 

(a) CDF curve at 𝑡 50 with 0% noise 

 
(b) CDF curve at 𝑡 50 with 5% noise 

 
(c) CDF curve at 𝑡 50 with 10% noise 
Fig. B-2.  Power state reconstruction performance of four algorithms at specific 
time instant 𝑡 50 with 0% noise, 5% noise and 10% noise. 

 
(a) CDF curve at 𝑡 100 with 0% noise 

 
(b) CDF curve at 𝑡 100 with 5% noise 

 
(c) CDF curve at 𝑡 100 with 10% noise 
Fig.B-3.  Power state reconstruction performance of three algorithms at specific 
time instant 𝑡 100 with 0% noise, 5% noise and 10% noise. 

 
(a) CDF curve at 𝑡 150 with 0% noise 

 
(b) CDF curve at 𝑡 150 with 5% noise 

 
(c) CDF curve at 𝑡 150 with 10% noise 
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Fig. B-4.  Power state reconstruction performance of four algorithms at specific 
time instant 𝑡 150 with 0% noise, 5% noise and 10% noise. 
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