
Aalborg Universitet

Scheduling unmanned aerial vehicle and automated guided vehicle operations in an
indoor manufacturing environment using differential evolution-fused particle swarm
optimization

Khosiawan, Yohanes; Khalfay, Amy; Nielsen, Izabela Ewa

Published in:
International Journal of Advanced Robotic Systems

DOI (link to publication from Publisher):
10.1177/1729881417754145

Creative Commons License
CC BY 4.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Khosiawan, Y., Khalfay, A., & Nielsen, I. E. (2018). Scheduling unmanned aerial vehicle and automated guided
vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm
optimization. International Journal of Advanced Robotic Systems, 15(1), 1-15.
https://doi.org/10.1177/1729881417754145

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

https://doi.org/10.1177/1729881417754145
https://vbn.aau.dk/en/publications/bcde6eec-e638-4719-a176-14aa5aa2710e
https://doi.org/10.1177/1729881417754145

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 16, 2025

Research Article

Scheduling unmanned aerial vehicle and
automated guided vehicle operations in
an indoor manufacturing environment
using differential evolution-fused
particle swarm optimization

Yohanes Khosiawan1, Amy Khalfay2 and Izabela Nielsen1

Abstract
Intelligent manufacturing technologies have been pursued by the industries to establish an autonomous indoor manu-
facturing environment. It means that tasks, which are comprised in the desired manufacturing activities, shall be performed
with exceptional human interventions. This entails the employment of automated resources (i.e. machines) and agents (i.e.
robots) on the shop floor. Such an implementation requires a planning system which controls the actions of the agents and
their interactions with the resources to accomplish a given set of tasks. A scheduling system which plans the task
executions by scheduling the available unmanned aerial vehicles and automated guided vehicles is investigated in this study.
The primary objective of the study is to optimize the schedule in a cost-efficient manner. This includes the minimization of
makespan and total battery consumption; the priority is given to the schedule with the better makespan. A metaheuristic-
based methodology called differential evolution-fused particle swarm optimization is proposed, whose performance is
benchmarked with several data sets. Each data set possesses different weights upon characteristics such as geographical
scale, number of predecessors, and number of tasks. Differential evolution-fused particle swarm optimization is compared
against differential evolution and particle swarm optimization throughout the conducted numerical simulations. It is shown
that differential evolution-fused particle swarm optimization is effective to tackle the addressed problem, in terms of
objective values and computation time.

Keywords
Unmanned aerial vehicle, automated guided vehicle, scheduling, metaheuristic, DE and PSO hybrid

Date received: 28 August 2017; accepted: 19 December 2017

Topic: Special Issue—Robot Path Planning Design and Implementation in Manufacturing, Healthcare and Service Systems
Topic Editor: Nak-Young Chong
Associate Editor: Hamed Fazlollahtabar

Introduction

Intelligent manufacturing environment has been an emer-

ging topic in regard to the rise of Industry 4.0 concept

across various domains.1–3 It creates a smart factory, where

automation of the manufacturing operations is the key

factor. This automation enables the minimization of

human–labor interventions on tedious, time-consuming,

and sometimes hazardous jobs. Machines (resources) and

1Department of Materials and Production, Aalborg University, Aalborg,

Denmark
2School of Computing, Mathematics and Digital Technology, Manchester

Metropolitan University, Manchester, UK

Corresponding author:

Yohanes Khosiawan, Department of Materials and Production, Aalborg

University, Fibigerstræde 16, Aalborg 9220, North Jutland, Denmark.

Email: yok@mp.aau.dk

International Journal of Advanced
Robotic Systems

January-February 2018: 1–15
ª The Author(s) 2018

DOI: 10.1177/1729881417754145
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:yok@mp.aau.dk
https://doi.org/10.1177/1729881417754145
http://journals.sagepub.com/home/arx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881417754145&domain=pdf&date_stamp=2018-01-22

robots (agents) can autonomously perform the given tasks

in an efficient manner. This could mean the optimization in

terms of time, energy consumption, or other objectives.

A pilot study by Khosiawan et al.4 on the task schedul-

ing system for unmanned aerial vehicle (UAV) operations

in indoor environment has opened the gate toward the

executions of material handling and visual inspection by

UAVs. Task automation by employing UAVs gives a

remarkable value in terms of time efficiency and capability.

A UAV has more freedom in gathering images from vari-

ous angles for an inspection task. On the other hand, a

heavy material handling task is suitable for an automated

guided vehicle (AGV) to perform. This becomes the moti-

vation of the collaborative operations among UAVs and

AGVs to perform multiple tasks in an indoor manufactur-

ing environment, which is addressed in this article.

In the past, gradient-based optimization methods

were used, and they only guarantee convergence toward

local optima.5 Furthermore, non-convex problems can-

not be solved easily by those methods. In contrast, meta-

heuristic algorithms can explore regions in the search

space at an affordable computation time, and does not

tend to get trapped at a local optimum due to inbuilt

escape mechanisms.

Particle swarm optimization (PSO) and differential

evolution (DE) are two prominent metaheuristic algo-

rithms which are popularly used by researchers in vari-

ous optimization fields. Nilakantan et al.6 implemented

both approaches and found that DE could improve the

energy efficiency of the robotic assembly lines in the

manufacturing environment. A comprehensive study by

Price et al.7 shows that DE usually gives the best result

with a longer computation time compared to PSO. Sup-

ported with a priori studies by Khosiawan et al.4,8 there

is a room of improvement for the explorative character-

istic in the body of PSO framework. This is aligned with

the reported works in the existing literatures. In this

study, an approach of fusing DE’s explorative character-

istic into PSO is proposed, and this gives birth to DE-

fused PSO (DEFPSO).

In regard to the addressed problem, DEFPSO is com-

pared against DE and PSO in three aspects: makespan of

the produced schedule, total battery consumption of the

produced schedule, and the computation time. Correspond-

ingly, the benchmark is done by using task data sets (which

comprise tasks for UAVs and AGVs) with different

weights on the following characteristics: geographical

scale, number of predecessors, and number of tasks. These

data sets are generated by the authors based on test flights

at the laboratory and a field study of an indoor industry site.

The investigation is remarked with a satisfactory perfor-

mance of DE in terms of the pursued objectives: makespan

and total battery consumption (of the optimized schedule),

and the respective computational time.

The main contributions of this study are described as

follows:

(i) This study developed a mathematical formulation

of the addressed problem of collaborative UAV–

AGV operations in an indoor manufacturing

environment.

(ii) This study developed a DEFPSO which is mea-

sured as a methodology which generally outper-

forms DE and PSO. The measured characteristics

are the solution’s makespan and total battery con-

sumption, together with its computation time.

The content of the article is organized as follows. The

“Literature review” section describes the literature on

metaheuristic-based approaches toward optimization

problems, focusing on scheduling. The “Problem

definition” section outlines the formal description of the

problem, accompanied with the representative mathemat-

ical formulation. In The “Methodology” section, the pro-

posed approach with heuristic and metaheuristic

algorithms are described in detail. The “Numerical

simulations” section presents the results and analysis of

the benchmark of DE, PSO, and DEFPSO upon different

data sets. A summary of the conducted study is then pro-

vided in the “Conclusion” section.

Literature review

The field of automation has been continuously explored in

the area of healthcare and manufacturing facilities.4,9–11

The desired autonomous operations demand a planning

system to generate a schedule of task executions in a

cost-efficient manner.12 In such a system, numerous con-

straints according to the operational environment need to

be taken into account—in connection with the respective

objective function. As the scale of the problem increases—

in terms of the number of agents, tasks, and constraints—

the computation time grows exponentially. This entails the

employment of a scheduling methodology which is able to

search the optimum solution in the solution space whilst

balancing time efficiency.

The paradigm of such an effort is known as optimiza-

tion, and heuristic & metaheuristic algorithms have come

to researchers’ and practitioners’ rescue to tackle various

forms of optimization problem in the last two decades.5

Among others, PSO and DE are the prominent metaheur-

istic algorithms in the optimization field.

Particle swarm optimization

PSO13 is a metaheuristic-based optimization method which

emphasizes the collaborative learning through the individ-

ual experience and social interactions among the particles

during the search. The algorithm allows particles to go

through different directions in the search space, while

enabling them to adjust the direction to some extent toward

the (global) best one so far. This behavior is enabled by the

role of local and global best particles, respectively.

2 International Journal of Advanced Robotic Systems

Two major updates in the PSO procedure are velocity

and position updates, as depicted in equations (1) and (2).

Velocity updates utilize parameters learning coefficients c1

and c2, together with velocity coefficients u1 and u2. They

will determine the degree of learning toward the local and

global best particles (loPt
i and Gt). Correspondingly, the

updated velocity will be used to modify the position. This

process is done in every generation t and every particle i.

vtþ1
i ¼ vt

i þ c1 � ½u1�ðloPt
i � Pt

iÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cognitive part

þ c2 � ½u2 � ðGt � Pt
iÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

social part

ð1Þ

Ptþ1
i ¼ Pt

i þ vtþ1
i ð2Þ

The initial swarm plays a significant role in giving good

starting points.14 The comprised initial particles are gener-

ated through intuitive heuristics, which are inspired by the

characteristics of the problem. The more distinct the initial

particles produced, the more explorative the search will

be— right from the beginning of the search.

Zhu et al.15 and Mahmoudzadeh et al.16 have investi-

gated that the incorporation of PSO is efficient for the

problem of task assignment toward multiple robots. In

connection with this article, such a problem is NP-hard

natured. Deciding whether there exists a schedule where

all tasks are executed is an NP-complete problem. How-

ever, when one looks for an optimum schedule (e.g. with

the minimum makespan), it becomes an NP-hard prob-

lem—NP-hard problem is at least as hard as NP-

complete problem.

Differential evolution

Along with PSO, DE belongs to the family of swarm intel-

ligence algorithms. With the same principle of initial

swarm, the performance characteristics can be different.

While DE’s computation time may not be the fastest one,

it usually produces the best result among several other

algorithms.6,7

Krömer et al.17 has applied DE to the independent tasks

scheduling problem on heterogeneous distributed environ-

ments, which is an NP-complete problem. Without any

tuning, it managed to optimize schedules to a certain

degree. The authors found that using scheduling heuristics

for generating initial population for DE delivers good

results. Moreover, Nearchou and Omirou18 employed DE

for solving NP-hard scheduling problems. The authors con-

cluded that with a slight modification of encoding scheme

within DE, the performance was found substantially super-

ior than the original form’s.

The existing works mentioned above suggested the

insights of approaching scheduling problems with meta-

heuristic algorithms, and they can be effective to tackle

different combinatorial optimization problems. Further-

more, some reported studies19,20 have performed a

comparative evaluation of several metaheuristic algorithms

(e.g. genetic algorithm, ant colony optimization, artificial

bee colony, and PSO) on tackling different optimization

problems, which once again exhibits metaheuristics as the

major player in the game.

Metaheuristic algorithms are well known for their

adaptability, in connection with the type of the problem,

and its simplicity during implementation. Metaheuristics

are general purpose, they are not problem specific.

Their role is to guide a lower level heuristic, encom-

passing both intensification (to concentrate on high

quality areas of solution space) and diversification (to

allow the freedom to explore unvisited areas of search

space) characteristics.

Problem definition

Automation in the manufacturing environment has been a

consistently growing interest in both research and imple-

mentation. One of the technological advancements is the

usage of robot agents such as UAV and AGV on the shop

floor. In this study, the problem focuses on scheduling the

task executions by multiple UAVs and AGVs in an indoor

manufacturing environment. The types of task during the

operations are listed in Table 1.

An instance of a task data set is depicted in Table 2. It

comprises attributes such as task identifier, start position,

end position, task type, payload, and predecessor(s).

The given tasks in the data set shall be performed by the

agents (i.e. UAVs and AGVs) in an efficient way (accord-

ing to the defined objective, e.g. makespan). The execution

manner in regards to the available agents, time, and other

resources (e.g. machine at a particular position) is planned

Table 1. Task type.

Task type Description Payload (g) Agent

0 Ground material delivery 201–2000 AGV
1 Air material delivery 1–200 UAV
2 Visual inspection — UAV

Table 2. Example of task data set with 10 tasks.

Task
ID

Start
position

End
position

Task
type Payload

Predecessors
(Task IDs)

1 e1 a1 1 58 -
2 b3 b3 2 0 1
3 c4 c4 2 0 4
4 d2 b2 1 11 7
5 d4 d4 2 0 -
6 f2 b3 1 66 7
7 a1 a1 2 0 1;5;9
8 f0 d0 0 455 9
9 b0 a0 0 1396 -
10 b3 f1 1 6 -

Khosiawan et al. 3

in a schedule. The example of a schedule representation is

depicted in Figure 1.

The objective of the optimization problem in this study

is to generate a schedule of the given tasks which optimizes

the makespan and the battery consumption, whilst balan-

cing time efficiency. The optimization process is driven by

this objective, while being bounded to the defined con-

straints (e.g. agent’s battery capacity, precedence relation-

ship between tasks, and geographical space limitation).

The integer programming formulation of the problem in

this article is described as follows.

Mathematical formulation

In this section, the mathematical formulation of the novel

problem of collaboratively scheduling UAV and AGV

operations is described. We begin with a set of UAVs

U ¼ f1; :::ug and AGVs A ¼ f1; :::ag. The UAVs and

AGVs will be scheduled to complete a set of tasks

N ¼ f1; :::ng. Each UAV u and AGV a has a level of

energy which can be replenished by a recharge station

denoted as the set R ¼ f1; :::rg. Each recharge station r has

a number of slots/maximum capacity given by ri.

The objective function is to minimize the makespan

of the schedule whilst serving all jobs as described in

equation (3)

Minimize T ð3Þ

Subject to the following constraints
X
u2U

xu;n þ
X
a2A

xa;n � 1 8n 2 N ð4Þ

Equation (4) illustrates that each task is executed only

once, by either a UAV or AGV. Here, xu;n equals one if task

n is allocated to UAV u, and xa;n equals one if task n is

allocated to AGV a.

Equation (5) guarantees that a recharge station com-

prises at least one recharge slot or more, where ri equals

the number of recharge slots available at r

ri � 1 8r 2 R ð5Þ

Equation (6) states that a recharge slot can only be

occupied by a UAV or AGV at any time. Here, rt;u and

rt;a are equal to one if recharge slot r is occupied by

either u or a at time t

rt;u þ rt;a � 1 8u;2 U ; a 2 A ð6Þ

Equation (7) ensures that a UAV or AGV may wait on

ground if the recharge slot r is occupied. We use wt;u;r and

wt;a;r equal to one if at time t a UAV u or AGV a is waiting

for recharge slot r

wt;u;r þ wt;a;r � rt;u þ rt;a8u 2 U ; a 2 A; t 2 T ð7Þ

Equation (8) shows that each task n has a begin time an

and a duration wn which when summed equals the end time

of the task zn

zn ¼ an þ wn 8n 2 N ð8Þ

Equation (9) shows that each UAV or AGV can only

execute one task at a time. Let x0n;n0;u or x0n;n0;a equals one if

both task n and n0 are allocated to either UAV u or AGV a

an � zn0 jjzn � an0 8n; n0 2 N ; n 6¼ n0; x0n;n0;u þ x0n;n0;a ¼ 1

ð9Þ

Equations (10) and (11) state that if two tasks are both

scheduled, x0n;n0;u ¼ 1 or x0n;n0;a ¼ 1 to be completed by

UAV u or by AGV a, then both tasks are individually

allocated to u and a also

x0n;n0;u � xn;u þ xn0;u � 1 8n 2 N ; u 2 U ð10Þ

x0n;n0;a � xn;a þ xn0;a � 1 8n 2 N ; a 2 A ð11Þ

Equations (12) and (13) show that if two tasks are sched-

uled to the same UAV or AGV, then each task belonging to

this pairing is also scheduled

x0n;n0;u � xn;u 8n; n0 2 N ; u 2 U ð12Þ

x0n;n0;a � xn;a 8n; n0 2 N ; a 2 A ð13Þ

Equation (14) shows that if two tasks are allocated to the

same resource; that is, qn;n0 ¼ 1, then both tasks are allo-

cated either to UAV u or to AGV a

qn;n0 ¼
X
u2U

x0n;n0;u þ
X
a2A

x0n;n0;a 8n; n0 2 N ; n 6¼ n0 ð14Þ

Equation (15) illustrates that a recharge can only happen

to UAV u before executing task n if task n is allocated to u

yn;u � xn;u 8n 2 N ; u 2 U ð15Þ

Equation (16) states that a recharge can only happen to

AGV a before executing task n if task n is allocated to a

yn;a � xn;a 8n 2 N ; a 2 A ð16Þ

Constraints (17) and (18) ensure that the start time an

and the finish time zn lie within the boundaries of the time

window in which the job must be completed ½n min; n max�
n min � an 8n 2 N ð17Þ

zn � n max 8n 2 N ð18Þ

Constraint (19) guarantees that a task n may only begin

once all of its predecessors have been completed.

Figure 1. An instance of a schedule.

4 International Journal of Advanced Robotic Systems

an � zn0 8n 2 N ; n0 2 sn ð19Þ

Constraints (20)–(23) describe the conditions which

trigger a recharge for each UAV and AGV. Here, bn;u and

bn;a denote the level of battery remaining before executing

task n, and wn is the duration of task n. In addition, cr;en
is

the travel time to recharge station r from position en which

is the end position of task n

bn;u � ðwn þ cr;en
Þxn;u � 0 8n 2 N ð20Þ

bn;a � ðwn þ cr;en
Þxn;a � 0 8a 2 A ð21Þ

bn0;u � ðzn � an0 Þ � cr;en
� 0 8n 2 N ; u 2 U ; vn;n0;u ¼ 1

ð22Þ

bn0;a � ðzn � an0 Þ � cr;en
� 0 8n 2 N ; a 2 A; vn;n0;a ¼ 1

ð23Þ

Constraint (24) ensures that no tasks are executed at the

same time in the same place

an � zn0 jjzn � an0 8n; n0 2 N ; n 6¼ n0;
minðsn; sn0 Þ
maxðsn; sn0 Þ

¼ 1

ð24Þ

Constraints (25) and (26) show what recharge does

to the battery level and how the battery is consumed.

Here, the battery level is equal to a minus the travel

time from the end position of task n, sn to recharge

station r.

bn;u ¼ ða� csn;rÞ 8n; n0 2 N ;Un;n0;u ¼ 1 ð25Þ

bn;a ¼ ða� csn;rÞ 8n; n0 2 N ;Un;n0;a ¼ 1 ð26Þ

Constraints (27) and (28) illustrate that the battery level

before executing n is equal to the battery level before

executing n0 minus the difference between the start times

of n and n0. This is subject to the condition that either

Vn;n0;u ¼ 1 or Vn;n0;a ¼ 1, which states that no recharge

occurs between the execution of these tasks

bn;u ¼ bn0;u � ðan � an0 Þ 8n; n0 2 N ;Vn;n0;u ¼ 1 ð27Þ

bn;a ¼ bn0;a � ðan � an0 Þ 8n; n0 2 N ;Vn;n0;a ¼ 1 ð28Þ

Conversely, constraints (29) and (30) describe the con-

dition where a recharge does occur between the execution

of two tasks. If a recharge occurs then either Un;n0;u ¼ 1 or

Un;n0;a ¼ 1. Here the variable On;n0 ¼ 1 only if task n0 pre-

cedes task n, where yn;u and yn;a specifies a recharge before

n is executed

Un;n0;u � On;n0 þ yn;u � 1 8n; n0 2 N ; u 2 U ð29Þ

Un;n0;a � On;n0 þ yn;a � 1 8n; n0 2 N ; a 2 A ð30Þ

Constraints (31) and (32) ensure that either a recharge

happens or it does not before task n is executed

Un;n0;u þ Vn;n0;u � 1 8n; n0 2 N ; u 2 U ð31Þ

Un;n0;a þ Vn;n0;a � 1 8n; n0 2 N ; a 2 A ð32Þ

Constraints (33) and (34) ensure that if no recharge hap-

pens before the execution of task n, then the value that

either Vn;n0;u or Vn;n0;a takes is equal to one. This value is

greater than or equal to the sum of On,n0 ¼ 1 (if task n is

executed after another task), plus xn,u¼ 1 or xn,a¼ 1 (if n is

allocated to u or a respectively), minus yn,u ¼ 0 (if a

recharge has occurred), minus 1

Vn;n0;u � On;n0 þ xn;u � yn;u � 1 8n; n0 2 N ; u 2 U ð33Þ

Vn;n0;a � On;n0 þ xn;a � yn;a � 1 8n; n0 2 N ; a 2 A ð34Þ

Constraints (35) and (36) set the battery level of the

UAVs and AGVs at the beginning of the planning horizon

to be fully charged. Here a is the maximum level of charge,

and tso;sn
is the travel time from position so to the start

position of task n, sn

bn;u ¼ a� tso;sn
8n 2 N ; pn ¼ 0; xn;u ¼ 1; u 2 U ð35Þ

bn;a ¼ a� tso;sn
8n 2 N ; pn ¼ 0; xn;u ¼ 1; a 2 A ð36Þ

Constraints (37) and (38) determine the start time of

the first task to be executed, which is equal to the travel

time from the starting position so to the start position of

task n, sn

tso;sn
� an 8n 2 N ; pn ¼ 0; xn;u ¼ 1u 2 U ð37Þ

stso;sn
� an 8n 2 N ; pn ¼ 0; xn;a ¼ 1a 2 A ð38Þ

Operational precedence constraints are stated in equa-

tions (39) and (40). Here fn denotes the start time of a task

that is operationally preceded by task n and f 00n;n0 is equal to

one if the start time of task n is less than the end time of task

n0 and M is a large constant value

On;n0 � �an þ fn0 � f 00n;n02M � 2Mð2� xn;u � xn0;uÞ þ 1 8n; n0 2 N ; u 2 U ð39Þ

On;n0 � �an þ fn0 � f 00n;n02M � 2Mð2� xn;a � xn0;aÞ þ 1 8n; n0 2 N ; a 2 A ð40Þ

Khosiawan et al. 5

Constraint (41) illustrates that two tasks may only hap-

pen sequentially if they are scheduled to the same UAV

or AGV

On;n0 � qn;n0 8n; n0 2 N ð41Þ

Constraints (42) and (43) state that the start time of a

task preceded by n is equal to the minimum value of f 0n;n0;u
which is equal to an0 unless an0 � zn

fn ¼ min
n02N ;u2U

f 0n;n0;u 8n 2 N ð42Þ

fn ¼ min
n02N ;a2A

f 0n;n0;a 8n 2 N ð43Þ

Constraints (44)–(46) state that if two tasks are assigned

to the same UAV u or AGV a, then the start time of task n

will be equal to the end time of task n0, this allows for time

continuity to ensure a task n cannot begin until the task that

operationally precedes it, n0, has been completed.

f 0n;n0;u ¼ an þ f 00n;n0M þ ð2� xn;u � xn0;uÞM 8n; n0 2 N ; u 2 U

ð44Þ

f 0n;n0;a ¼ an þ f 00n;n0M þ ð2� xn;a � xn0;aÞM 8n; n0 2 N ; a 2 A

ð45Þ

f 00n;n0 ¼ 1� ðan � zn0 Þ 8n; n0 2 N ð46Þ

Constraints (47)–(49) state that a task can be operation-

ally preceded by at most one task, where pi

pn � 1 8n 2 N ð47Þ
X
n2N

On;n0 � 1 8n0 2 N ð48Þ

pn ¼
X
n02N

On;n0 � 1 8n 2 N ð49Þ

Equation (50) and (51) illustrate that there can be no self

operational precedence and no cyclic operational

precedence

On;n ¼ 0 8n 2 N ð50Þ

On;n0 þ On0;n � 1 8n; n0 2 N ð51Þ

Equation (52) states that no task is completed after the

total makespan of the solution

zn � T 8n 2 N ð52Þ

The UAV–AGV operations are conducted in the indoor

environment, where the map is provided as an input for the

scheduling process. A tractable yet realistic position map-

ping is used, where waypoints are connected with (one-

way) directed paths and the whole graph is fully connected.

The waypoints in the air are for the UAV operations, while

the ones on the ground are mainly for the AGV operations

(except the UAV recharge station). In this study, the trans-

mission of the command to the agent is done through a

component which verifies that the command does not yield

a geographical conflict (path collision) with the currently

being executed ones. Otherwise, the transmission is

delayed until this constraint is satisfied.

To briefly summarize equations (5)–(52), there are a set

of tasks which must be completed, some of which require

an AGV (visual inspection) and others a UAV (ground

material delivery) to satisfy each task’s demand. The objec-

tive of the problem is to service all tasks (just once) whilst

minimizing the scheduling horizon makespan.

The UAVs and AGVs have levels of charge which can

be replenished at a recharge station. At the beginning of the

planning horizon, it is assumed that each UAV and AGV

has maximum charge. The level of charge that a UAV or

AGV has is reduced when travelling to perform tasks. Each

recharge station has a maximum number of ports, and

therefore, sometimes a UAV or AGV may have to wait

until a port becomes available in order to recharge. A

recharge must happen if the UAV or AGV does not have

enough power to serve the next task.

Each UAV or AGV may only serve a single task at a

time, and the end time of a task is equal to the beginning

time plus the task duration. In addition, a task has a time

window in which the service of a task must begin, and a set

of predecessor tasks which must be completed before the

service of a task begins. Travel time between locations of

successive tasks is also accounted for to ensure time con-

tinuity, so the beginning time of a task, is equal to the end

time of the previous task, plus the travel time between the

locations (if a recharge is not needed). There are also geo-

graphical constraints associated with the UAVs and AGVs,

such that at no time during the schedule execution are two

UAVs or AGVs situated at the same location.

Methodology

Constructive heuristic to create a schedule from
a task sequence

A constructive heuristic has been introduced in a study by

Khosiawan et al.4 for creating a schedule of UAV opera-

tions from a task sequence. Given a task sequence, each

comprised task is put into the schedule sequentially in the

earliest available time manner. This constructive heuristic

has been modified in this study to be able to schedule the

tasks in cooperative UAV–AGV operations. As depicted in

Table 1, a task needs to be executed by either a UAV or an

AGV. The heuristic is modified to construct a schedule

with the awareness of the type of the available agents

(i.e. UAV or AGV) and the corresponding type of task

(i.e. visual inspection by UAV, light material handling by

UAV, and heavy handling by AGV). In principle, the avail-

able agents for a particular task are filtered based on the

type of the task; for example, only UAVs will be checked

as the prospective performing agents for the air material

delivery. Furthermore, the recharge station selection is also

6 International Journal of Advanced Robotic Systems

conducted in a similar manner; for example, only recharge

stations on the ground will be considered for recharging

AGVs. Due to the implementation-wise nature of the mod-

ification toward the a priori algorithm, the constructive

heuristic to create a schedule from a task sequence is not

elaborated further in this article.

DE-fused PSO

The heuristic-based approach is viable for solving the prob-

lem of scheduling collaborative UAV–AGV operations,

whose nature is NP-hard. There are heuristics for construct-

ing a solution and for exploring the solution space (search-

ing). Constructive heuristics can be used for producing initial

solutions prior to the search. Since heuristics are designed

based on intuitive rules according to the constraints at hand,

the produced solutions are good starting points for the

search. These rules are well known as the priority rules. In

this study, 10 priority rules have been utilized, which are

addressed in the study by Khosiawan and Nielsen.8 The

priority rules are depicted in Table 3. A solution is repre-

sented as a sequence of tasks, which correspond to a sched-

ule. For instance, a task sequence [1, 5, 10, 9, 7, 6, 4, 8, 3, 2]

corresponds to the schedule depicted in Figure 1.

In the study by Khosiawan et al.,4,8 PSO shows that the

algorithm exposes a room for improvements on the

explorative side. The position update during the search is

guided by the local and global best particles. The global

best particle is formed through the efforts of all particles in

the swarm, but it is postulated to be marginal. Through an

investigation in this study, DE is able to explore the search

space, where more optimum solutions lie—where PSO

generally does not reach. On the other hand, there is a

trade-off between the optimality of the solution and the

computation time which is quite significant in DE.

This trade-off is the challenging gap which this study

tries to bridge. The proposed DEFPSO is aimed to produce

a high quality near optimum solution whilst balancing time

efficiency. In the place of the local and global best parti-

cles, a random particle from the current swarm is used for

the position update. This treatment is realistic because the

initial swarm is generated based on the priority rules. These

rules employ heuristics which are believed to be sensible to

produce a good quality schedule. Furthermore, a crossover

operation with the global best particle is performed after

the position update. This allows both rapid (position) infor-

mation absorption from the global best solution and search

space exploration (i.e. through the recombinant7 particle)

simultaneously. The detailed procedure of DEFPSO is

depicted in Figure 2 and described as follows.

Step 1. Initialize DEFPSO parameters. They include F

(degree of velocity update), CR (possibility of crossover),

N (size of population), maximum number of iterations, and

maximum number of iterations without improvement.

Step 2. Generate initial swarm based on the given priority

rules. If the size of population exceeds the number of

unique task sequences, random mutations will be per-

formed to the existing particles and the newly formed ones

are added into the swarm. If the number of all possible

combinations of the sequence x is less than the required

size of population, then the size of population is set to x.

Step 3. If the maximum number of generations is reached,

select the global best particle as the final solution. Other-

wise, go to step 4.

Step 4. If the maximum number of generations without any

improvement is reached, select the global best particle as

the final solution. Otherwise, go to step 5.

Step 5. If every individual in the population has been evolved

in the current generation, go to step 3. Otherwise, get the

next unevolved particle, evaluate its fitness value, and

update the global best particle if a better solution is found.

Step 6. Update the position based on the current velocity.

Step 7. Crossover with the global best particle is conducted

based on the value of CR. This action is performed to

promote the generation of high quality offspring. This

allows a great step of search, while inducing a good drive

(direction) throughout the search. On the other hand, it

evens out the absence of the local best particle influence

(see step 8 for more elaboration).

Table 3. Priority rules.

No Priority rule Task sequence (Task ID)

1 Minimum number of cumulative predecessors 1 5 9 10 2 8 7 4 6 3
2 Minimum number of immediate predecessors 1 5 9 10 2 3 4 6 8 7
3 Maximum number of cumulative successors 1 9 5 7 4 2 3 6 8 10
4 Maximum number of immediate successors 1 7 9 4 5 2 3 6 8 10
5 Maximum task execution time 1 10 6 4 9 8 2 3 5 7
6 Minimum task execution time 2 3 5 7 8 9 4 6 10 1
7 Maximum ranked positional weight 9 1 5 7 4 2 3 6 8 10
8 Minimum inverse positional weight 1 5 9 10 8 2 7 4 6 3
9 Tasks with less occupied position 5 7 3 8 9 4 6 1 2 10
10 Tasks with most occupied position 2 10 1 6 4 9 8 3 7 5

Khosiawan et al. 7

Step 8. Update the velocity based on a random particle

(other than itself) from the swarm. The degree of velocity

update is affected by F. It acts similar to the role of social

learning coefficient c2 in the traditional PSO. In contrast

with the traditional PSO (and as briefly mentioned in step

7), DEFPSO does not take the distance of the local best

particle with the current one. This treatment is performed to

allow more explorative behavior during the search. After-

wards, go to step 5.

In this study, the optimization with DEFPSO is

aimed to minimize the makespan and total battery con-

sumption. The fitness evaluation will be done with

makespan as the top priority. When the makespan of

two schedules are the same, the total battery consump-

tion will be used as a tie breaker. The schedule with

less makespan and total battery consumption is pre-

ferred. The results of the numerical simulations are

shown in the following section.

Numerical simulations

The proposed methodology has been benchmarked with

12 data sets, each with different weighted characteris-

tics, that is, geographical scale (laboratory scale and

industrial scale), number of predecessors, and number

of tasks. The simulations are run on an Intel Core i7-

4910MQ processor (2.9 GHz) with 32 GB of RAM.

They involve numerous scheduling attempts in the fol-

lowing manner.

� There are two geographical scales: laboratory and

industrial scale.

� For each scale, there are three different data set

classifications based on the mean number of prede-

cessors: 0, 1, and 2.

The exact number of predecessors of a task will be nor-

mally distributed with x ¼ 0 _ 1 _ 2 and s ¼ min ð1; xÞ.
� For each mean number of predecessor, there are two

data set classifications based on the number of tasks:

50 and 100.

In the end, there are 2 � 3 � 2 ¼ 12 data sets with

different weights of the aforementioned characteris-

tics (i.e. geographical scale, number of predecessors,

and number of tasks).

� For each task data set, 20 scheduling runs are performed.

Withnumerous runson thesamedata set, the analysis results

are based on reproducible behavior of the tested algo-

rithms. In total, there are 12 � 20 ¼ 240 runs for each

algorithm. Since there are three benchmarked algo-

rithms: DE, PSO, and DEFPSO; 240 � 3 ¼ 720 runs

are performed.

Parameter values

The selected set of parameters through the simulations, in

respect to the investigated three methodologies (i.e. DE,

PSO, DEFPSO), are listed as follows.

N

N

N

Y

Y

Figure 2. Flowchart of DEFPSO algorithm. DEFPSO: differential evolution-fused particle swarm optimization.

8 International Journal of Advanced Robotic Systems

� DE

The values of F ¼ 0:8 (weighting factor which con-

trols mutation) and CR ¼ 0:5 (crossover control

parameter).

� PSO

The values of c1 ¼ 1 (cognitive learning coefficient)

and c2 ¼ 2 (social learning coefficient), while u1

and u2 are randomly (following a uniform distri-

bution) set in the range of [0, 0.5].

� DEFPSO

The values of F ¼ 0:5 (F acts similar to c2 in the

traditional PSO) and CR ¼ 0:5.

� DE, PSO, and DEFPSO

The values of N ¼ 40 (size of population), I ¼ 40

(maximum number of iterations), and g ¼ 10

(maximum number of iterations without

improvement).

In this section, the simulations are done upon the oper-

ations of five agents (3 UAVs and 2 AGVs), while the ones

with six agents (3 UAVs and 3 AGVs) are depicted in

Appendix 1 for further reading. This study is a pilot inves-

tigation on UAV–AGV operations which is originated from

a work on UAV operations in indoor environment.21 As a

minimum working instance for multi-agent operations

(multiple UAVs and AGVs) which is dominated by UAV,

three UAVs and two AGVs are used. Furthermore, simula-

tions on three UAVs and three AGVs are also performed to

see more results.

Figure 3 depicts the makespans of the schedules gener-

ated by DE, PSO, and DEFPSO. The makespans yielded by

DEFPSO clearly outperform those from PSO and are on par

with the ones from DE. Furthermore, the proposed

DEFPSO consistently maintains its position relative to

DE and PSO regardless of the target data set.

0

(a)

(b)

1 2

50
100

1 10 201 10 201 10 20

400

500

600

900

950

1000

1050

1100

Run index

M
ak

es
pa

n
(s

) Method
DE
PSO
DEFPSO

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

1 10 20 1 10 20 1 10 20

450

500

550

600

900

1000

1100

1200

1300

Run index

M
ak

es
pa

n
(s

) Method
DE
PSO
DEFPSO

N
um

ber of tasks

Mean number of predecessors

Figure 3. Makespan of schedules for laboratory scale (a) and
industrial scale (b) data sets with DE, PSO, and DEFPSO. DE:
differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

0

(a)

(b)

1 2
50

100

2000

2250

2500

2750

3750

4000

4250

4500

4750

Run index

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

Method
DE

PSO

DEFPSO

N
um

ber of tasks
Mean number of predecessors

0 1 2

50
100

1 10 20 1 10 20 1 10 20

1 10 20 1 10 20 1 10 20

1800

2000

2200

2400

2600

4000

4500

5000

5500

Run index

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

Method
DE

PSO

DEFPSO

N
um

ber of tasks

Mean number of predecessors

Figure 4. Total battery consumption of schedules for laboratory
scale (a) and industrial scale (b) data sets with DE, PSO, and
DEFPSO. DE: differential evolution; PSO: particle swarm optimi-
zation; DEFPSO: DE-fused PSO.

Khosiawan et al. 9

From the perspective of the total battery consumption,

as the lower-priority objective (compared to makespan),

DEFPSO generally outperforms PSO and is on par with

DE. The results show DEFPSO to be even better than DE

in many runs. One can see this situation as finding a dia-

mond among other minerals and rocks. This indicates that

DEFPSO explores various areas (getting stuck in the same

area less), and allow it to find better solutions in the pro-

mising area.

With the obtained objective values depicted in Figures 3

and 4, the computation time of the three methods plays an

important role to make a remark. In Figure 5, the computa-

tion time of DEFPSO is slightly higher than PSO and sig-

nificantly lower than DE. DEFPSO’s appeal is then formed

by the high quality objective value (better than PSO and on

par with DE) that it can achieve within less time than what

DE needs. On a further discussion, the computation time

graph of DEFPSO is oscillating due to its convergence in

various high quality local optima. With the trade-off of a

significantly higher computation time, DE offers the ten-

dency to search further and get better objective values than

DEFPSO.

Analysis

To pull out a tractable numerical analysis, the quartiles of

the makespan, battery consumption, and computation time

data are shown in Figures 6 to 8.

The mean numbers of the characteristics being observed

are put into Figure 9. DE and DEFPSO are compared

toward PSO to show the better results they gained. It is

followed by calculating the gain ratio to quantify the excel-

lence of the proposed DEFPSO. The ratios show that in

terms of objective values (makespan and total battery con-

sumption), DEFPSO gains as much as 83–140% of

improvement from what DE gets against PSO. This means

that DEFPSO’s performance is nearly as good as DE’s or

even better. From the perspective of the computation time,

0

(a)

(b)

1 2

50
100

5000

10000

15000

20000

5000

10000

15000

20000

Run index

C
om

pu
ta

tio
n

tim
e

(m
s)

Method
DE

PSO

DEFPSO

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

1 10 20 1 10 20 1 10 20

1 10 20 1 10 20 1 10 20

5000

10000

15000

20000

5000

10000

15000

20000

Run index

C
om

pu
ta

tio
n

tim
e

(m
s)

Method
DE

PSO

DEFPSO
N

um
ber of tasks

Mean number of predecessors

Figure 5. Computation time of schedules for laboratory scale (a)
and industrial scale (b) data sets with DE, PSO, and DEFPSO. DE:
differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

0

(a)

(b)

1 2

50
100

400

500

600

900

950

1000

1050

1100

Method

M
ak

es
pa

n
(s

)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

450

500

550

600

900

1000

1100

1200

1300

Method

M
ak

es
pa

n
(s

)

N
um

ber of tasks

Mean number of predecessors

Figure 6. Boxplot of makespan of schedules for laboratory scale
(a) and industrial scale (b) data sets in connection with the results
in Figure 3.

10 International Journal of Advanced Robotic Systems

DEFPSO needs at most 21% of DE’s computation time,

which is on par with PSO’s (refer Figure 8). Hence,

DEFPSO is shown as an effective methodology to solve

the problem of task executions by multiple UAVs and

AGVs in indoor manufacturing environment.

In the calculated gained ratio, it is depicted that the

superiority of makespan yielded by DE and DEFPSO are

on par, it is almost as good (with a ratio a bit less than 1.0)

or even better (with a ratio of> 1:0) in regard to the various

task data sets. In addition, the gain ratio in respect to the

computation time is low (< 0:21), which signifies the addi-

tional time (against PSO’s computation time) required by

DEFPSO is not as long as DE’s. This additional time rep-

resents the trade-off of having a longer computation time to

get a higher quality near optimum solution.

Additionally, a paired t-test analysis of the proposed

method is presented in Table 4. It depicts the certainty of

superiority or inferiority of DEFPSO over each of its par-

ents: DE and PSO. With 95% confidence interval, a p value

less than 0.05 indicates that the results from DEFPSO has

statistically significantly lower makespan, battery con-

sumption or computation time than the ones from DE or

PSO. Each paired t test has the same one-sided alternative

hypothesis (Ha ¼ �o � �n > 0, where o is another algo-

rithm’s observation and n is DEFPSO’s observation) and

degrees of freedom (df¼ 239). Table 5 lists the cases in the

t test analysis in Table 4. More variations of DEFPSO

parameters are used to conduct more simulations to be used

in the statistical test. When not mentioned, the parameters

conform to the values described in the “Parameter values”

subsection.

In cases C1–C4, DE is statistically tested against

DEFPSO variants (with different configurations). The

makespans of schedules from DEFPSO are definitely not

less than the ones from DE. The p values are quite greater

than 0.05, even though C1 has a slightly lower value than

the others. For the secondary objective, all DEFPSO var-

iants have statistically significantly lower battery

0

(a)

(b)

1 2

50
100

2000

2250

2500

2750

3750

4000

4250

4500

4750

Method

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

1800

2000

2200

2400

2600

4000

4500

5000

5500

Method

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

N
um

ber of tasks

Mean number of predecessors

Figure 7. Boxplot of battery consumption of schedules for
laboratory scale (a) and industrial scale (b) data sets in connection
with the results in Figure 4.

0

(a)

(b)

1 2

50
100

2000

4000

6000

8000

10000

5000

10000

15000

20000

Method

C
om

pu
ta

tio
n

tim
e

(m
s)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

2500

5000

7500

5000

10000

15000

20000

Method

C
om

pu
ta

tio
n

tim
e

(m
s)

N
um

ber of tasks

Mean number of predecessors

Figure 8. Boxplot of computation time of schedules for labora-
tory scale (a) and industrial scale (b) data sets in connection with
the results in Figure 5.

Khosiawan et al. 11

consumption than DE. The computation time of all variants

are also significantly lower than DE. From here, the per-

formance of C1 in pursuing the objectives during the search

cannot outperform DE. It is only on par with DE as

depicted in Figure 3.

In cases C5–C8, PSO is statistically tested against

DEFPSO variants (with different configurations). All four

cases show that DEFPSO variants have statistically signif-

icantly lower makespan and battery consumption than PSO.

In terms of computation time, all four cases statistically not

lower than PSO (with the p:value being 0.999). On a thor-

ough observation, C5 and C8 are on par, which indicates

the essence of the proportion of F and CR (mutation and

crossover rate) and the balance between them to have a

good search experience.

Based on the aforementioned statistical significance

analysis, the superiority of DEFPSO with F ¼ 0:5 and

CR ¼ 0:5 among others can be postulated. Furthermore,

DEFPSO has statistically significantly lower makespan and

objective compared to PSO, and statistically significantly

lower computation time compared to DE.

On the robustness of the system

In the UAV operations, there are uncertain events that may

happen during the flight or the task execution. It can expose

a delay to the originally scheduled completion time of a

task. To some extent, the exposed delay will still yield the

same schedule to achieve well optimized operations. When

the delay occurs frequently with a significant amount of

time, an efficient method of producing a fault-tolerant

schedule is required. A straightforward rescheduling is

what is within the capability of the current study. Hence,

a fault-tolerant scheduling system which focuses on the

No No. of
tasks Method Makespan

average (s)

Battery
consumption

average (energy
unit)

Computation
time average

(ms)

Gain against PSO Gain ratio of DEFPSO:DE

Makespan Battery Comp.
time Makespan Battery Comp.

time
(result summary in regard to the lab. scale task datasets)
1 50 DE 498.9167 2187.417 9549.233 39.4833 79.083 -5863.95

0.834107 0.982929 0.0120772 50 PSO 538.4 2266.5 3685.283 - - -
3 50 DEFPSO 505.4667 2188.767 3756.1 32.9333 77.733 -70.817
4 100 DE 954.6167 4141 19158.567 58.2166 95.383 -12398.25

1.050673 1.439628 0.2101375 100 PSO 1012.8333 4236.383 6760.317 - - -
6 100 DEFPSO 951.6667 4099.067 9365.65 61.1666 137.316 -2605.333

(result summary in regard to the industrial scale task datasets)
7 50 DE 504.1 2149.4 9316.1 33.4833 75.117 -5963.033

1.047286 1.399151 0.0926828 50 PSO 537.5833 2224.517 3353.067 - - -
9 50 DEFPSO 502.5167 2119.417 3905.733 35.0666 105.1 -552.666
10 100 DE 1064.1667 4463.95 19066.967 41.7166 12.05 -12775.45

0.925291 8.643154 0.20915411 100 PSO 1105.8833 4476 6291.517 - - -
12 100 DEFPSO 1067.2833 4371.85 8963.55 38.6 104.15 -2672.033

Figure 9. Result summary of the proposed DEFPSO in connection with DE and PSO. DE: differential evolution; PSO: particle swarm
optimization; DEFPSO: DE-fused PSO.

Table 4. p Values of one-sided paired t tests of DE or PSO against
DEFPSO with different configurations.

Case

Observation criterion

Makespan Battery consumption Computation time

C1 0.779 2.946e-06 1.741e-103
C2 0.991 4.445e-05 1.774e-99
C3 0.999 0.026 2.554e-98
C4 0.938 1.304e-07 2.120e-107
C5 9.930e-48 3.229e-28 0.999
C6 5.732e-41 6.244e-26 0.999
C7 2.472e-38 5.576e-19 0.999
C8 5.829e-46 1.428e-34 0.999

DE: differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

Table 5. Cases for statistical significance analysis in Table 4.

Case Description

C1 DE against DEFPSO
C2 DE against DEFPSO whose F modified to 0.8
C3 DE against DEFPSO whose F and CR modified to 0.8 and

0.3, respectively
C4 DE against DEFPSO whose F and CR modified to 0.8 and

0.8, respectively
C5 PSO against DEFPSO
C6 PSO against DEFPSO whose F modified to 0.8
C7 PSO against DEFPSO whose F and CR modified to 0.8 and

0.3, respectively
C8 PSO against DEFPSO whose F and CR modified to 0.8 and

0.8, respectively

DE: differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

12 International Journal of Advanced Robotic Systems

robustness of the scheduling system is the next goal

to pursue.

Conclusion

The problem of scheduling task executions by multiple

robots is NP-hard natured, which demands the involve-

ment of heuristic and metaheuristic algorithms to get a

high quality feasible solutions whilst balancing time effi-

ciency. Researchers have been investigating prominent

metaheuristic algorithms such as DE and PSO to tackle

problems with such a nature. The quality of the solution

produced by DE is found to be usually better, while the

computation time is generally longer compared to PSO. In

this article, a mathematical formulation of the addressed

problem is developed. A metaheuristic algorithm called

DEFPSO is proposed to solve it, where the explorative

property of DE is fused into PSO, and the performance

is then benchmarked through several data sets. They have

different weighted characteristics including geographical

scale, number of predecessors, and number of tasks.

DEFPSO obtains at least 83% of improvement in terms

of objective values, and needs at most only 21% of the

computation time compared to what DE gains against

PSO. The results are also analyzed through paired t test,

and DEFPSO statistically significantly outperforms DE

and PSO in terms of computation time and objective val-

ues, respectively. Future researchers in the optimization

area may conduct further studies for different optimiza-

tion fields, not only scheduling, and perform different

utilization ways of the parameters, operators, and the

overall optimization framework.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work has been partly supported by Innovation Fund Denmark

under project UAWorld, grant agreement number 9-2014-3.

References

1. Li D, Tang H, Wang S, et al. A big data enabled load-

balancing control for smart manufacturing of industry 4.0.

Cluster Computing J Networks Software Tools Appl 2017;

20(2): 1855–1864. DOI: 10.1007/s10586-017-0852-1.

2. Qian F, Zhong W, and Du W. Fundamental theories and key

technologies for smart and optimal manufacturing in the pro-

cess industry. Engineering 2017; 3(2): 154–160. DOI: 10.

1016/J.ENG.2017.02.011.

3. Ang JH, Goh C, Saldivar AAF, et al. Energy-efficient

through-life smart design, manufacturing and operation of

ships in an industry 4.0 environment. Energies 2017; 10(5):

610. DOI: 10.3390/en10050610.

4. Khosiawan Y, Park YS, Moon I, et al. Task scheduling sys-

tem for UAV operations in indoor environment. Artif Intell

arXiv preprint arXiv:160406223 2016.

5. Kaveh A. Advances in metaheuristic algorithms for optimal

design of structures. Switzerland: Springer International Pub-

lishing, 2017. ISBN 9783319461724.

6. Nilakantan MJ, Ponnambalam S, and Jawahar N. Design of

energy efficient RAL system using evolutionary algorithms. Eng

Comput 2016; 33(2): 580–602. DOI: 10.1108/EC-11-2014-0232.

7. Price K, Storn RM, and Lampinen JA. Differential evolution:

a practical approach to global optimization. Germany:

Springer Science & Business Media, 2006.

8. Khosiawan Y and Nielsen I. Indoor UAV scheduling with

restful task assignment algorithm. Artif Intell arXiv preprint

arXiv:170609737 2017.

9. Das GP, McGinnity TM, Coleman SA, et al. A distributed

task allocation algorithm for a multi-robot system in health-

care facilities. J Intell Rob Syst 2015; 80(1): 33–58. DOI: 10.

1007/s10846-014-0154-2.

10. Hsu PE, Hsu YL, Chang KW, et al. Mobility assistance

design of the intelligent robotic wheelchair. Int J Adv Rob

Syst 2012; 9(6): 244. DOI: 10.5772/54819.

11. Zhang R. A simulated annealing-based heuristic algorithm

for job shop scheduling to minimize lateness. Int J Adv Rob

Syst 2013; 10(4): 214. DOI: 10.5772/55956.

12. Nielsen I, Dang QV, Nielsen P, et al. Scheduling of mobile

robots with preemptive tasks. In: Distributed computing and

artificial intelligence, 11th international conference, pp.

19–27. Switzerland: Springer.

13. Poli R, Kennedy J, and Blackwell T. Particle swarm optimi-

zation. Swarm Intell 2007; 1(1): 33–57. DOI: 10.1007/

s11721-007-0002-0.

14. Kirsch U. Structural optimization: Fundamentals and appli-

cations. 1st ed. Berlin, Heidelberg: Springer-Verlag, 1993.

ISBN 978-3-540-55919-1,978-3-642-84845-2.

15. Zhu Z, Tang B, and Yuan J. Multirobot task allocation

based on an improved particle swarm optimization

approach. Int J Adv Rob Syst 2017; 14(3): 1–22. DOI: 10.

1177/1729881417710312.

16. Mahmoudzadeh, Powers DM, Sammut K, et al. Toward effi-

cient task assignment and motion planning for large scale

underwater missions. Int J Adv Rob Syst 2016; 13(5): 1–13.

DOI: 10.1177/1729881416657974.

17. Krömer P, Abraham A, Snášel V, et al. Differential evolution for

scheduling independent tasks on heterogeneous distributed envir-

onments. In: Snášel V, Szczepaniak PS, Abraham A, et al. (eds),

Advances in intelligent web mastering – 2: proceedings of the 6th

Atlantic web intelligence conference - AWIC’2009, Prague,

Czech Republic, September, 2009. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 127–134. ISBN 978-3-642-10687-

3. DOI: 10.1007/978-3-642-10687-3_12.

18. Nearchou AC and Omirou SL. Differential evolution for

sequencing and scheduling optimization. J Heurist 2006;

12(6): 395–411. DOI: 10.1007/10732-006-3750-x.

19. Odili J, Kahar MNM, Noraziah A, et al. A comparative eva-

luation of swarm intelligence techniques for solving

Khosiawan et al. 13

combinatorial optimization problems. Int J Adv Rob Syst

2017; 14(3): 1–11. DOI: 10.1177/1729881417705969.

20. Li Z, Janardhanan MN, Tang Q, et al. Co-evolutionary par-

ticle swarm optimization algorithm for two-sided robotic

assembly line balancing problem. Adv Mechanic Eng 2016;

8(9): 1–14. DOI: 10.1177/1687814016667907.

21. Khosiawan Y and Nielsen I. A system of UAV application in

indoor environment. Prod Manuf Res 2016; 4(1): 2–22.

Appendix 1

Simulation results for the operations of six agents generated by DE, PSO, and DEFPSO

Figures 1A to 1C depict the makespan, battery consumption, and computation time of the schedules from simulations with

six agents (i.e. 3 UAVs and 3 AGVs).

0

(a)

(b)

1 2

50
100

400

450

500

550

600

850

900

950

1000

1050

Method

M
ak

es
pa

n
(s

)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

440

480

520

560

800

900

1000

1100

1200

Method

M
ak

es
pa

n
(s

)

N
um

ber of tasks

Mean number of predecessors

Figure 1A. Makespan of schedules for laboratory scale (a) and
industrial scale (b) data sets with DE, PSO, and DEFPSO. DE:
differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

0

(a)

(b)

1 2

50
100

2000

2200

2400

2600

3750

4000

4250

4500

Method

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

1800

2000

2200

2400

4000

4250

4500

4750

5000

Method

B
at

te
ry

 c
on

su
m

pt
io

n
(e

ne
rg

y
un

it)

N
um

ber of tasks

Mean number of predecessors

Figure 1B. Battery consumption of schedules for laboratory
scale (a) and industrial scale (b) data sets with DE, PSO, and
DEFPSO. DE: differential evolution; PSO: particle swarm optimi-
zation; DEFPSO: DE-fused PSO.

14 International Journal of Advanced Robotic Systems

0

(a)

(b)

1 2

50
100

3000

6000

9000

5000

10000

15000

20000

Method

C
om

pu
ta

tio
n

tim
e

(m
s)

N
um

ber of tasks

Mean number of predecessors

0 1 2

50
100

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

3000

6000

9000

12000

10000

20000

Method

C
om

pu
ta

tio
n

tim
e

(m
s)

N
um

ber of tasks

Mean number of predecessors

Figure 1C. Computation time of schedules for laboratory scale
(a) and industrial scale (b) data sets with DE, PSO, and DEFPSO.
DE: differential evolution; PSO: particle swarm optimization;
DEFPSO: DE-fused PSO.

Khosiawan et al. 15

