Aalborg Universitet AALBORG

UNIVERSITY

Scheduling unmanned aerial vehicle and automated guided vehicle operations in an
indoor manufacturing environment using differential evolution-fused particle swarm
optimization

Khosiawan, Yohanes; Khalfay, Amy; Nielsen, Izabela Ewa

Published in:
International Journal of Advanced Robotic Systems

DOl (link to publication from Publisher):
10.1177/1729881417754145

Creative Commons License
CCBY 4.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Khosiawan, Y., Khalfay, A., & Nielsen, I. E. (2018). Scheduling unmanned aerial vehicle and automated guided
vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm
optimization. International Journal of Advanced Robotic Systems, 15(1), 1-15.
https://doi.org/10.1177/1729881417754145

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

https://doi.org/10.1177/1729881417754145
https://vbn.aau.dk/en/publications/bcde6eec-e638-4719-a176-14aa5aa2710e
https://doi.org/10.1177/1729881417754145

Take down policy

If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 16, 2025

W) Check for updates

INTERNATIONAL JOURNAL OF

Research Article ADVANCED ROBOTIC SYSTEMS

International Journal of Advanced
Robotic Systems

January-February 2018: 1-15

© The Author(s) 2018

DOI: 10.1177/1729881417754145
journals.sagepub.com/home/arx

©SAGE

Scheduling unmanned aerial vehicle and
automated guided vehicle operations in
an indoor manufacturing environment
using differential evolution-fused
particle swarm optimization

Yohanes Khosiawan', Amy Khalfay2 and lzabela Nielsen'

Abstract

Intelligent manufacturing technologies have been pursued by the industries to establish an autonomous indoor manu-
facturing environment. It means that tasks, which are comprised in the desired manufacturing activities, shall be performed
with exceptional human interventions. This entails the employment of automated resources (i.e. machines) and agents (i.e.
robots) on the shop floor. Such an implementation requires a planning system which controls the actions of the agents and
their interactions with the resources to accomplish a given set of tasks. A scheduling system which plans the task
executions by scheduling the available unmanned aerial vehicles and automated guided vehicles is investigated in this study.
The primary objective of the study is to optimize the schedule in a cost-efficient manner. This includes the minimization of
makespan and total battery consumption; the priority is given to the schedule with the better makespan. A metaheuristic-
based methodology called differential evolution-fused particle swarm optimization is proposed, whose performance is
benchmarked with several data sets. Each data set possesses different weights upon characteristics such as geographical
scale, number of predecessors, and number of tasks. Differential evolution-fused particle swarm optimization is compared
against differential evolution and particle swarm optimization throughout the conducted numerical simulations. It is shown
that differential evolution-fused particle swarm optimization is effective to tackle the addressed problem, in terms of
objective values and computation time.

Keywords
Unmanned aerial vehicle, automated guided vehicle, scheduling, metaheuristic, DE and PSO hybrid

Date received: 28 August 2017; accepted: |19 December 2017

Topic: Special Issue—Robot Path Planning Design and Implementation in Manufacturing, Healthcare and Service Systems
Topic Editor: Nak-Young Chong
Associate Editor: Hamed Fazlollahtabar

Introduction
' Department of Materials and Production, Aalborg University, Aalborg,

Intelligent manufacturing environment has been an emer-
ging topic in regard to the rise of Industry 4.0 concept
across various domains.' > It creates a smart factory, where
automation of the manufacturing operations is the key
factor. This automation enables the minimization of
human-labor interventions on tedious, time-consuming,
and sometimes hazardous jobs. Machines (resources) and

Denmark
2School of Computing, Mathematics and Digital Technology, Manchester
Metropolitan University, Manchester, UK

Corresponding author:

Yohanes Khosiawan, Department of Materials and Production, Aalborg
University, Fibigerstreede 16, Aalborg 9220, North Jutland, Denmark.
Email: yok@mp.aau.dk

@ ® Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:yok@mp.aau.dk
https://doi.org/10.1177/1729881417754145
http://journals.sagepub.com/home/arx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881417754145&domain=pdf&date_stamp=2018-01-22

International Journal of Advanced Robotic Systems

robots (agents) can autonomously perform the given tasks
in an efficient manner. This could mean the optimization in
terms of time, energy consumption, or other objectives.

A pilot study by Khosiawan et al.* on the task schedul-
ing system for unmanned aerial vehicle (UAV) operations
in indoor environment has opened the gate toward the
executions of material handling and visual inspection by
UAVs. Task automation by employing UAVs gives a
remarkable value in terms of time efficiency and capability.
A UAV has more freedom in gathering images from vari-
ous angles for an inspection task. On the other hand, a
heavy material handling task is suitable for an automated
guided vehicle (AGV) to perform. This becomes the moti-
vation of the collaborative operations among UAVs and
AGVs to perform multiple tasks in an indoor manufactur-
ing environment, which is addressed in this article.

In the past, gradient-based optimization methods
were used, and they only guarantee convergence toward
local optima.’ Furthermore, non-convex problems can-
not be solved easily by those methods. In contrast, meta-
heuristic algorithms can explore regions in the search
space at an affordable computation time, and does not
tend to get trapped at a local optimum due to inbuilt
escape mechanisms.

Particle swarm optimization (PSO) and differential
evolution (DE) are two prominent metaheuristic algo-
rithms which are popularly used by researchers in vari-
ous optimization fields. Nilakantan et al.® implemented
both approaches and found that DE could improve the
energy efficiency of the robotic assembly lines in the
manufacturing environment. A comprehensive study by
Price et al.” shows that DE usually gives the best result
with a longer computation time compared to PSO. Sup-
ported with a priori studies by Khosiawan et al.** there
is a room of improvement for the explorative character-
istic in the body of PSO framework. This is aligned with
the reported works in the existing literatures. In this
study, an approach of fusing DE’s explorative character-
istic into PSO is proposed, and this gives birth to DE-
fused PSO (DEFPSO).

In regard to the addressed problem, DEFPSO is com-
pared against DE and PSO in three aspects: makespan of
the produced schedule, total battery consumption of the
produced schedule, and the computation time. Correspond-
ingly, the benchmark is done by using task data sets (which
comprise tasks for UAVs and AGVs) with different
weights on the following characteristics: geographical
scale, number of predecessors, and number of tasks. These
data sets are generated by the authors based on test flights
at the laboratory and a field study of an indoor industry site.
The investigation is remarked with a satisfactory perfor-
mance of DE in terms of the pursued objectives: makespan
and total battery consumption (of the optimized schedule),
and the respective computational time.

The main contributions of this study are described as
follows:

(1) This study developed a mathematical formulation
of the addressed problem of collaborative UAV—
AGYV operations in an indoor manufacturing
environment.

This study developed a DEFPSO which is mea-
sured as a methodology which generally outper-
forms DE and PSO. The measured characteristics
are the solution’s makespan and total battery con-
sumption, together with its computation time.

(i)

The content of the article is organized as follows. The
“Literature review” section describes the literature on
metaheuristic-based approaches toward optimization
problems, focusing on scheduling. The “Problem
definition” section outlines the formal description of the
problem, accompanied with the representative mathemat-
ical formulation. In The “Methodology” section, the pro-
posed approach with heuristic and metaheuristic
algorithms are described in detail. The “Numerical
simulations” section presents the results and analysis of
the benchmark of DE, PSO, and DEFPSO upon different
data sets. A summary of the conducted study is then pro-
vided in the “Conclusion” section.

Literature review

The field of automation has been continuously explored in
the area of healthcare and manufacturing facilities. """
The desired autonomous operations demand a planning
system to generate a schedule of task executions in a
cost-efficient manner.'? In such a system, numerous con-
straints according to the operational environment need to
be taken into account—in connection with the respective
objective function. As the scale of the problem increases—
in terms of the number of agents, tasks, and constraints—
the computation time grows exponentially. This entails the
employment of a scheduling methodology which is able to
search the optimum solution in the solution space whilst
balancing time efficiency.

The paradigm of such an effort is known as optimiza-
tion, and heuristic & metaheuristic algorithms have come
to researchers’ and practitioners’ rescue to tackle various
forms of optimization problem in the last two decades.’
Among others, PSO and DE are the prominent metaheur-
istic algorithms in the optimization field.

Particle swarm optimization

PSO'"? is a metaheuristic-based optimization method which
emphasizes the collaborative learning through the individ-
ual experience and social interactions among the particles
during the search. The algorithm allows particles to go
through different directions in the search space, while
enabling them to adjust the direction to some extent toward
the (global) best one so far. This behavior is enabled by the
role of local and global best particles, respectively.

Khosiawan et al.

Two major updates in the PSO procedure are velocity
and position updates, as depicted in equations (1) and (2).
Velocity updates utilize parameters learning coefficients ¢,
and ¢;, together with velocity coefficients #; and u,. They
will determine the degree of learning toward the local and
global best particles (“P! and G'). Correspondingly, the
updated velocity will be used to modify the position. This
process is done in every generation ¢ and every particle i.

VL = ey x funx (PP — P 4 ca % [u ¢ (G — PY)]

cognitive part social part

()
P = P @)

The initial swarm plays a significant role in giving good
starting points.'* The comprised initial particles are gener-
ated through intuitive heuristics, which are inspired by the
characteristics of the problem. The more distinct the initial
particles produced, the more explorative the search will
be— right from the beginning of the search.

Zhu et al."> and Mahmoudzadeh et al.'® have investi-
gated that the incorporation of PSO is efficient for the
problem of task assignment toward multiple robots. In
connection with this article, such a problem is NP-hard
natured. Deciding whether there exists a schedule where
all tasks are executed is an NP-complete problem. How-
ever, when one looks for an optimum schedule (e.g. with
the minimum makespan), it becomes an NP-hard prob-
lem—NP-hard problem is at least as hard as NP-
complete problem.

Differential evolution

Along with PSO, DE belongs to the family of swarm intel-
ligence algorithms. With the same principle of initial
swarm, the performance characteristics can be different.
While DE’s computation time may not be the fastest one,
it usually produces the best result among several other
algorithms.®’

Kromer et al.'” has applied DE to the independent tasks
scheduling problem on heterogeneous distributed environ-
ments, which is an NP-complete problem. Without any
tuning, it managed to optimize schedules to a certain
degree. The authors found that using scheduling heuristics
for generating initial population for DE delivers good
results. Moreover, Nearchou and Omirou'® employed DE
for solving NP-hard scheduling problems. The authors con-
cluded that with a slight modification of encoding scheme
within DE, the performance was found substantially super-
ior than the original form’s.

The existing works mentioned above suggested the
insights of approaching scheduling problems with meta-
heuristic algorithms, and they can be effective to tackle
different combinatorial optimization problems. Further-
more, some reported studies'®?® have performed a

3
Table I. Task type.
Task type Description Payload (g) Agent
0 Ground material delivery 201-2000 AGY
| Air material delivery 1-200 UAV
2 Visual inspection — UAV
Table 2. Example of task data set with 10 tasks.
Task Start End Task Predecessors
ID position position type Payload (Task IDs)
| el al | 58 -
2 b3 b3 2 0 |
3 c4 c4 2 0 4
4 d2 b2 | Il 7
5 d4 d4 2 0 -
6 f2 b3 | 66 7
7 al al 2 0 1;5;9
8 f0 do 0 455 9
9 b0 a0 0 1396 -
10 b3 il | 6 -

comparative evaluation of several metaheuristic algorithms
(e.g. genetic algorithm, ant colony optimization, artificial
bee colony, and PSO) on tackling different optimization
problems, which once again exhibits metaheuristics as the
major player in the game.

Metaheuristic algorithms are well known for their
adaptability, in connection with the type of the problem,
and its simplicity during implementation. Metaheuristics
are general purpose, they are not problem specific.
Their role is to guide a lower level heuristic, encom-
passing both intensification (to concentrate on high
quality areas of solution space) and diversification (to
allow the freedom to explore unvisited areas of search
space) characteristics.

Problem definition

Automation in the manufacturing environment has been a
consistently growing interest in both research and imple-
mentation. One of the technological advancements is the
usage of robot agents such as UAV and AGV on the shop
floor. In this study, the problem focuses on scheduling the
task executions by multiple UAVs and AGVs in an indoor
manufacturing environment. The types of task during the
operations are listed in Table 1.

An instance of a task data set is depicted in Table 2. It
comprises attributes such as task identifier, start position,
end position, task type, payload, and predecessor(s).

The given tasks in the data set shall be performed by the
agents (i.e. UAVs and AGVs) in an efficient way (accord-
ing to the defined objective, e.g. makespan). The execution
manner in regards to the available agents, time, and other
resources (e.g. machine at a particular position) is planned

International Journal of Advanced Robotic Systems

Schedule: {

101=[R1_TO_to_el(0-19), 1(19-66), 7(66-76), al_to_d2(76-91),

4(91-132), b2_to_b3(132-134), 2(134-144)],
901=[G1_OUT_to_b0(0-7), 9(7-46)1,
102=[R1_TO_to_d4(0-19), 5(19-29), d4_to_b3(29-35), 10(35-

81), fl to_f2(81-82), 6(82-125), b3_to_c4(125-132), 3(132-142)],
902=[WoG(0-34), G2_OUT_to_£f0(34-46), 8(46-83)]
}

Figure |. An instance of a schedule.

in a schedule. The example of a schedule representation is
depicted in Figure 1.

The objective of the optimization problem in this study
is to generate a schedule of the given tasks which optimizes
the makespan and the battery consumption, whilst balan-
cing time efficiency. The optimization process is driven by
this objective, while being bounded to the defined con-
straints (e.g. agent’s battery capacity, precedence relation-
ship between tasks, and geographical space limitation).

The integer programming formulation of the problem in
this article is described as follows.

Mathematical formulation

In this section, the mathematical formulation of the novel
problem of collaboratively scheduling UAV and AGV
operations is described. We begin with a set of UAVs
U=/{1,..u} and AGVs 4 ={1,...a}. The UAVs and
AGVs will be scheduled to complete a set of tasks
N ={1,..n}. Each UAV u and AGV a has a level of
energy which can be replenished by a recharge station
denoted as the set R = {1, ...r}. Each recharge station r has
a number of slots/maximum capacity given by r;.

The objective function is to minimize the makespan
of the schedule whilst serving all jobs as described in
equation (3)

Minimize T (3)

Subject to the following constraints

qu,n + Zxa,, >1 VneN (4)

uelU acA

Equation (4) illustrates that each task is executed only
once, by eithera UAV or AGV. Here, x,,, equals one if task
n is allocated to UAV u, and x,, equals one if task » is
allocated to AGV a.

Equation (5) guarantees that a recharge station com-
prises at least one recharge slot or more, where r; equals
the number of recharge slots available at r

n>1 VreR (5)

Equation (6) states that a recharge slot can only be
occupied by a UAV or AGV at any time. Here, r,, and
r. are equal to one if recharge slot » is occupied by
either u or a at time ¢

Foutra <1 Yu,eU,a€cA4 (6)

Equation (7) ensures that a UAV or AGV may wait on
ground if the recharge slot 7 is occupied. We use wy - and
Wi 4, €qual to one if at time # a UAV « or AGV a is waiting
for recharge slot

Wt,u,r + Wt,a,r S T'tu + rt,avu S U7 ac A7t € T (7)

Equation (8) shows that each task » has a begin time a,
and a duration w, which when summed equals the end time
of the task z,

VneN (8)

Zy = Ay + Wy

Equation (9) shows that each UAV or AGV can only
execute one task at a time. Letx/ , orx’ , equals one if

nn'u nn'ia

both task # and »’ are allocated to either UAV u or AGV a
Vn,n' € N,n#£n',x

/
nn' u

+x;1n,ya =1
9)

Equations (10) and (11) state that if two tasks are both
scheduled, x, , , =1 or x, ,, =1 to be completed by

UAV u or by AGV a, then both tasks are individually
allocated to u and a also

apy Z Zy! ‘ |Zn S ay

Xy = Xnu Xy —1 YneNucU (10
Xypa > Xnat+Xwa—1 VneN,acd (11)

Equations (12) and (13) show that if two tasks are sched-
uled to the same UAV or AGV, then each task belonging to
this pairing is also scheduled

Xy < Xnu Ymn €NyueU (12)
Xypa <Xna Ynn' €N,ac A (13)

Equation (14) shows that if two tasks are allocated to the
same resource; that is, g, = 1, then both tasks are allo-
cated either to UAV u or to AGV «a

Gnpw = Zx;,ﬁnlﬁu + Zx;,’n,ﬁa Vn,n' € Nyn#n' (14)

uclU acA

Equation (15) illustrates that a recharge can only happen
to UAV u before executing task » if task # is allocated to u

VneN,ueU (15)

Equation (16) states that a recharge can only happen to
AGYV a before executing task » if task » is allocated to a

VneN,ace A (16)

Yna < Xny

Yna < Xn,a

Constraints (17) and (18) ensure that the start time a,
and the finish time z, lie within the boundaries of the time
window in which the job must be completed [min, 7 max)

VneN (17)
(18)

Constraint (19) guarantees that a task » may only begin
once all of its predecessors have been completed.

Rmin < ay

Zp < Hpax VR EN

Khosiawan et al.

ay,>zy VYn€N,n €ao,

(19)

Constraints (20)—(23) describe the conditions which
trigger a recharge for each UAV and AGV. Here, b, , and
by.q denote the level of battery remaining before executing
task n, and w, is the duration of task #. In addition, c,, is
the travel time to recharge station 7 from position e, which
is the end position of task n

buy — (Wn+Cre)Xny >0 VYneEN (20)
bn,a - (Wn + Cr.e,,)xn,a Z O Va € A (21)
byy—(Zn—ay) —Cre, >0 YneNucUv,p,=1
(22)

bn’,a_(zn_an’)_cr,en >0 VneN,a EAavmn’ﬂ: 1
(23)

Constraint (24) ensures that no tasks are executed at the
same time in the same place

min(sy, Sy)

an > zyllza <ay Vn,n' €N,n#1,

max(sy, Sy)
(24)

Constraints (25) and (26) show what recharge does
to the battery level and how the battery is consumed.
Here, the battery level is equal to o minus the travel
time from the end position of task n, s, to recharge
station 7.

bn,u = (CK — Cs,,,r) Vn, n' e N, Un,n’,u =1 (25)

bna = (= cs,) Vn,n' €N, Unna =1 (26)

Constraints (27) and (28) illustrate that the battery level
before executing n is equal to the battery level before
executing ' minus the difference between the start times
of n and #»'. This is subject to the condition that either
Vawu=1o0r Vyuwa=1, which states that no recharge
occurs between the execution of these tasks

bn,u = bn’,u — (an — a,,/) Vn, n e]V7 Vn,n’,u =1 (27)

bpa =bya—(ayn—ay) Ya,n ENVywa=1 (28)

Conversely, constraints (29) and (30) describe the con-
dition where a recharge does occur between the execution
of two tasks. If a recharge occurs then either U, v, = 1 or

O 2 —an +for —fyw2M — 2M (2 —

Onw > =Gy +for — fry2M — 2M (2 —

Xnu _xn’ﬁu) + 1

Xn,a _xn’,a> + 1

U, 4 = 1. Here the variable O, = 1 only if task »n’ pre-
cedes task n, where y,, and y, , specifies a recharge before
n is executed

Unpwu 2 Onp + Ynu — 1 vn,nl eNuecU (29)

Unwa > Onw +Yna—1 Vnn' €N,a€A (30)

Constraints (31) and (32) ensure that either a recharge
happens or it does not before task » is executed

Un,n’,u + Vn,n’.u <1 \V/n,n/ eENuelU

(31)

Un,n'.a + Vn,n’,a <1 Vn,n/ €N,ac A (32)

Constraints (33) and (34) ensure that if no recharge hap-
pens before the execution of task n, then the value that
either Vv, or V, v, takes is equal to one. This value is
greater than or equal to the sum of O,,,, = 1 (if task n is
executed after another task), plusx, , =1orx,,=1(ifn is
allocated to u or a respectively), minus y,, = 0 (if a
recharge has occurred), minus 1

Vn,n’,u > On,n’ +xn,u —Vnu — 1

Vn,n' € Nyue U (33)

Vn.n’,a > O + Xna — Vna — 1 Vn, n e N,ae A (34)

Constraints (35) and (36) set the battery level of the
UAVs and AGVs at the beginning of the planning horizon
to be fully charged. Here « is the maximum level of charge,
and #, , is the travel time from position s, to the start
position of task #, s,

bpy=a—t,, YneNp,=0,x,,=1LueclU (35)

bpa=a—t,, YneNp,=0,x,,=1aecd (36)

Constraints (37) and (38) determine the start time of
the first task to be executed, which is equal to the travel
time from the starting position s, to the start position of
task n, s,

L5y 5 <a, Vne N,p, = O,X,W =lueU (37)

Sts,s, < an Vn€N,p, =0,x,,=1la €4 (38)

Operational precedence constraints are stated in equa-
tions (39) and (40). Here f,, denotes the start time of a task
that is operationally preceded by task » and £, is equal to
one if the start time of task # is less than the end time of task
n' and M is a large constant value

Vn,n' e Nue U (39)

Vn,n' € N,a € 4 (40)

International Journal of Advanced Robotic Systems

Constraint (41) illustrates that two tasks may only hap-
pen sequentially if they are scheduled to the same UAV
or AGV

Oww < quw Yn,n' €N

(41)

Constraints (42) and (43) state that the start time of a
task preceded by # is equal to the minimum value of £, , ,
which is equal to a,y unless a, < z,

fn = f;l’,n’,u

n'eNuclU

VneN (42)

VneN (43)

!
nn'a

Jo = oin,

Constraints (44)—(46) state that if two tasks are assigned

to the same UAV u or AGV a, then the start time of task »

will be equal to the end time of task 7/, this allows for time

continuity to ensure a task # cannot begin until the task that
operationally precedes it, ', has been completed.

fnl,n’,u =a, —l—fn'fn/M +Q2=xpu—xp)M VoW ENueU

(44)

fn/,n',a =a, +fn'fn,M + (2 —Xng—Xwa)M Vnn' €Nja€Ad
(45)

Sow =1—=(an > zy) Vn,n' €N (46)

Constraints (47)—(49) state that a task can be operation-
ally preceded by at most one task, where p;

<1l VneN (47)
> Oww<1 VieN (48)
neN
Pn=2 Oww<1 VnEN (49)
n'eN

Equation (50) and (51) illustrate that there can be no self
operational precedence and no cyclic operational
precedence

Own=0 VYneN (50)

(51)

Equation (52) states that no task is completed after the
total makespan of the solution

z, <T VneN

0”;"’ + On’,n <1 vn,n/ eEN

(52)

The UAV-AGYV operations are conducted in the indoor
environment, where the map is provided as an input for the
scheduling process. A tractable yet realistic position map-
ping is used, where waypoints are connected with (one-
way) directed paths and the whole graph is fully connected.
The waypoints in the air are for the UAV operations, while
the ones on the ground are mainly for the AGV operations
(except the UAV recharge station). In this study, the trans-
mission of the command to the agent is done through a

component which verifies that the command does not yield
a geographical conflict (path collision) with the currently
being executed ones. Otherwise, the transmission is
delayed until this constraint is satisfied.

To briefly summarize equations (5)—(52), there are a set
of tasks which must be completed, some of which require
an AGV (visual inspection) and others a UAV (ground
material delivery) to satisfy each task’s demand. The objec-
tive of the problem is to service all tasks (just once) whilst
minimizing the scheduling horizon makespan.

The UAVs and AGVs have levels of charge which can
be replenished at a recharge station. At the beginning of the
planning horizon, it is assumed that each UAV and AGV
has maximum charge. The level of charge that a UAV or
AGYV has is reduced when travelling to perform tasks. Each
recharge station has a maximum number of ports, and
therefore, sometimes a UAV or AGV may have to wait
until a port becomes available in order to recharge. A
recharge must happen if the UAV or AGV does not have
enough power to serve the next task.

Each UAV or AGV may only serve a single task at a
time, and the end time of a task is equal to the beginning
time plus the task duration. In addition, a task has a time
window in which the service of a task must begin, and a set
of predecessor tasks which must be completed before the
service of a task begins. Travel time between locations of
successive tasks is also accounted for to ensure time con-
tinuity, so the beginning time of a task, is equal to the end
time of the previous task, plus the travel time between the
locations (if a recharge is not needed). There are also geo-
graphical constraints associated with the UAVs and AGVs,
such that at no time during the schedule execution are two
UAVs or AGVs situated at the same location.

Methodology

Constructive heuristic to create a schedule from
a task sequence

A constructive heuristic has been introduced in a study by
Khosiawan et al.* for creating a schedule of UAV opera-
tions from a task sequence. Given a task sequence, each
comprised task is put into the schedule sequentially in the
earliest available time manner. This constructive heuristic
has been modified in this study to be able to schedule the
tasks in cooperative UAV-AGYV operations. As depicted in
Table 1, a task needs to be executed by either a UAV or an
AGYV. The heuristic is modified to construct a schedule
with the awareness of the type of the available agents
(i.e. UAV or AGV) and the corresponding type of task
(i.e. visual inspection by UAV, light material handling by
UAYV, and heavy handling by AGV). In principle, the avail-
able agents for a particular task are filtered based on the
type of the task; for example, only UAVs will be checked
as the prospective performing agents for the air material
delivery. Furthermore, the recharge station selection is also

Khosiawan et al. 7
Table 3. Priority rules.

No Priority rule Task sequence (Task ID)

| Minimum number of cumulative predecessors I 5 9 10 2 8 7 4 6 3
2 Minimum number of immediate predecessors I 5 9 10 2 3 4 6 8 7
3 Maximum number of cumulative successors I 9 5 7 4 2 3 6 8 10
4 Maximum number of immediate successors I 7 9 4 5 2 3 6 8 10
5 Maximum task execution time I 10 6 4 9 8 2 3 5 7
6 Minimum task execution time 2 3 5 7 8 9 4 6 10 |
7 Maximum ranked positional weight 9 I 5 7 4 2 3 6 8 10
8 Minimum inverse positional weight I 5 9 10 8 2 7 4 6 3
9 Tasks with less occupied position 5 7 3 8 9 4 6 I 2 10
10 Tasks with most occupied position 2 10 I 6 4 9 8 3 7 5

conducted in a similar manner; for example, only recharge
stations on the ground will be considered for recharging
AGVs. Due to the implementation-wise nature of the mod-
ification toward the a priori algorithm, the constructive
heuristic to create a schedule from a task sequence is not
elaborated further in this article.

DE-fused PSO

The heuristic-based approach is viable for solving the prob-
lem of scheduling collaborative UAV—-AGV operations,
whose nature is NP-hard. There are heuristics for construct-
ing a solution and for exploring the solution space (search-
ing). Constructive heuristics can be used for producing initial
solutions prior to the search. Since heuristics are designed
based on intuitive rules according to the constraints at hand,
the produced solutions are good starting points for the
search. These rules are well known as the priority rules. In
this study, 10 priority rules have been utilized, which are
addressed in the study by Khosiawan and Nielsen.® The
priority rules are depicted in Table 3. A solution is repre-
sented as a sequence of tasks, which correspond to a sched-
ule. For instance, a task sequence [1, 5, 10,9,7,6,4, 8, 3, 2]
corresponds to the schedule depicted in Figure 1.

In the study by Khosiawan et al.,** PSO shows that the
algorithm exposes a room for improvements on the
explorative side. The position update during the search is
guided by the local and global best particles. The global
best particle is formed through the efforts of all particles in
the swarm, but it is postulated to be marginal. Through an
investigation in this study, DE is able to explore the search
space, where more optimum solutions lie—where PSO
generally does not reach. On the other hand, there is a
trade-off between the optimality of the solution and the
computation time which is quite significant in DE.

This trade-off is the challenging gap which this study
tries to bridge. The proposed DEFPSO is aimed to produce
a high quality near optimum solution whilst balancing time
efficiency. In the place of the local and global best parti-
cles, a random particle from the current swarm is used for
the position update. This treatment is realistic because the
initial swarm is generated based on the priority rules. These

rules employ heuristics which are believed to be sensible to
produce a good quality schedule. Furthermore, a crossover
operation with the global best particle is performed after
the position update. This allows both rapid (position) infor-
mation absorption from the global best solution and search
space exploration (i.e. through the recombinant’ particle)
simultaneously. The detailed procedure of DEFPSO is
depicted in Figure 2 and described as follows.

Step I. Initialize DEFPSO parameters. They include F'
(degree of velocity update), CR (possibility of crossover),
N (size of population), maximum number of iterations, and
maximum number of iterations without improvement.

Step 2. Generate initial swarm based on the given priority
rules. If the size of population exceeds the number of
unique task sequences, random mutations will be per-
formed to the existing particles and the newly formed ones
are added into the swarm. If the number of all possible
combinations of the sequence & is less than the required
size of population, then the size of population is set to £.

Step 3. If the maximum number of generations is reached,
select the global best particle as the final solution. Other-
wise, go to step 4.

Step 4. If the maximum number of generations without any
improvement is reached, select the global best particle as
the final solution. Otherwise, go to step 5.

Step 5. If every individual in the population has been evolved
in the current generation, go to step 3. Otherwise, get the
next unevolved particle, evaluate its fitness value, and
update the global best particle if a better solution is found.

Step 6. Update the position based on the current velocity.

Step 7. Crossover with the global best particle is conducted
based on the value of CR. This action is performed to
promote the generation of high quality offspring. This
allows a great step of search, while inducing a good drive
(direction) throughout the search. On the other hand, it
evens out the absence of the local best particle influence
(see step 8 for more elaboration).

International Journal of Advanced Robotic Systems

Initialize the e maxim
velocity of all . number of

particles in " generation

the swarm reached?

7}
N

Generate)

initial swarm| | the maximu.
number of generation

ithout improvemen
reached?

START

S every individuay
the population evolved in
is generation?

A

Evaluate fitness value and
update the global best particle
as necessary

Get the next
particle in
the swarm

h 4

END

Select the global best
particle as the final solution

Update velocity based on a random
particle in the swarm — F affects the

degree of velocity update
7'y

Repair the particle to comply with the
precedence relationship

A

Crossover with the global best particle —
CR affects the possibility of crossover

A

Update position based on the current

velocity

Figure 2. Flowchart of DEFPSO algorithm. DEFPSO: differential evolution-fused particle swarm optimization.

Step 8. Update the velocity based on a random particle
(other than itself) from the swarm. The degree of velocity
update is affected by F. It acts similar to the role of social
learning coefficient ¢, in the traditional PSO. In contrast
with the traditional PSO (and as briefly mentioned in step
7), DEFPSO does not take the distance of the local best
particle with the current one. This treatment is performed to
allow more explorative behavior during the search. After-
wards, go to step 5.

In this study, the optimization with DEFPSO is
aimed to minimize the makespan and total battery con-
sumption. The fitness evaluation will be done with
makespan as the top priority. When the makespan of
two schedules are the same, the total battery consump-
tion will be used as a tie breaker. The schedule with
less makespan and total battery consumption is pre-
ferred. The results of the numerical simulations are
shown in the following section.

Numerical simulations

The proposed methodology has been benchmarked with
12 data sets, each with different weighted characteris-
tics, that is, geographical scale (laboratory scale and
industrial scale), number of predecessors, and number
of tasks. The simulations are run on an Intel Core i7-
4910MQ processor (2.9 GHz) with 32 GB of RAM.
They involve numerous scheduling attempts in the fol-
lowing manner.

e There are two geographical scales: laboratory and
industrial scale.

e For each scale, there are three different data set
classifications based on the mean number of prede-
cessors: 0, 1, and 2.

The exact number of predecessors of a task will be nor-

mally distributed withx = 0V 1 V 2and g = min (1,%).

e For each mean number of predecessor, there are two
data set classifications based on the number of tasks:
50 and 100.

In the end, there are 2 x 3 x 2 = 12 data sets with
different weights of the aforementioned characteris-
tics (i.e. geographical scale, number of predecessors,
and number of tasks).

e For each task data set, 20 scheduling runs are performed.

‘With numerous runs on the same data set, the analysis results
are based on reproducible behavior of the tested algo-
rithms. In total, there are 12 x 20 = 240 runs for each
algorithm. Since there are three benchmarked algo-
rithms: DE, PSO, and DEFPSO; 240 x 3 = 720 runs
are performed.

Parameter values

The selected set of parameters through the simulations, in
respect to the investigated three methodologies (i.e. DE,
PSO, DEFPSO), are listed as follows.

Khosiawan et al.

(a)
Mean number of predecessors
0 1 2
>
0y 0
:{ “:|‘~;",l 't \‘
600
AR
A aet A ""}“ N ‘ wn
i S
500 MM
@ ahd A Apu| "‘ E Method
§ 400 g —DE
£ 100 A pere)8 - PSO
5 e g pes e *"“,".,' A § - DEFPSO
1050 VAL e ol v z
e Py
1000 M ’\ I'\ I d =
4 Y| S
950 i
900 Jeptatny Mpan, Beos’
B ¥
1 10 201 10 201 01 20
Run index
Mean number of predecessors
0 1 2
t
600 l R . *l A
L el LA
550 Alph 4 At L W
AR Endth ! ‘\ =
500 yoUf {
A, 4
PRI
= Mf{ﬁ ? Method
g 4504w i g —DE
o =
B e Y WY e -+~ PSO
S 1300 g
s AW { % -= - DEFPSO
1200
1100 8
4
1000 W :".M A&.‘WA
A o
900{ ™ L
1 10 201 10 201 10 20
Run index

Figure 3. Makespan of schedules for laboratory scale (a) and
industrial scale (b) data sets with DE, PSO, and DEFPSO. DE:
differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

e DE

The values of F' = 0.8 (weighting factor which con-
trols mutation) and CR = 0.5 (crossover control
parameter).

e PSO

The values of ¢; = 1 (cognitive learning coefficient)
and ¢, = 2 (social learning coefficient), while u,
and u, are randomly (following a uniform distri-
bution) set in the range of [0, 0.5].

e DEFPSO

The values of F = 0.5 (F acts similar to ¢, in the
traditional PSO) and CR = 0.5.

e DE, PSO, and DEFPSO

The values of N = 40 (size of population), I = 40
(maximum number of iterations), and v = 10

(a)
Mean number of predecessors
0 1 2
2750 e
N
41 g2t i
2500 W W o
\ vy
z A S i\ Ay
g 2250 2 '.‘ TRy 2
5 2000{28s4 R £ Method
g ' AV & —DE
& 4750 s -
= R iy & ooreso
2 4 y a2 -
§ 4500 “:a ," *Qf“ .*gi‘“\A [y b A . “,‘A 7
2 Nl ¥ '
g 4250 =\ s M AL
2 I- " S
4000
f
I 10 201 10 201 10 2
Run index
Mean number of predecessors
0 1 2
2600 n
' e . $
\ i “ ‘n n 4 I
gy v e
= TANY % =rinple/t BYA
) o b4
E 2200 \,’(‘, iy MO M 8
) iy 4
5 20000 s,
5 ‘} Y # § Method
£ 1500 g —DE
& o -+~ PSO
N =0
g 5500 g - DEFPSO
o @
S
£ 5000
2 5
4500
Ay AT N
b)
4000{ ™= W o ta
i 10 207 10 201 10 20
Run index

Figure 4. Total battery consumption of schedules for laboratory
scale (a) and industrial scale (b) data sets with DE, PSO, and
DEFPSO. DE: differential evolution; PSO: particle swarm optimi-
zation; DEFPSO: DE-fused PSO.

(maximum number of iterations without
improvement).

In this section, the simulations are done upon the oper-
ations of five agents (3 UAVs and 2 AGVs), while the ones
with six agents (3 UAVs and 3 AGVs) are depicted in
Appendix 1 for further reading. This study is a pilot inves-
tigation on UAV-AGYV operations which is originated from
a work on UAV operations in indoor environment.?! As a
minimum working instance for multi-agent operations
(multiple UAVs and AGVs) which is dominated by UAV,
three UAVs and two AGVs are used. Furthermore, simula-
tions on three UAVs and three AGVs are also performed to
see more results.

Figure 3 depicts the makespans of the schedules gener-
ated by DE, PSO, and DEFPSO. The makespans yielded by
DEFPSO clearly outperform those from PSO and are on par
with the ones from DE. Furthermore, the proposed
DEFPSO consistently maintains its position relative to
DE and PSO regardless of the target data set.

10 International Journal of Advanced Robotic Systems
(a) (a)
Mean number of predecessors Mean number of predecessors
0 1 2 0 1 2
20000
15000 600 H $
Y == 8
10000 00 i
z 1 L ; ==
=4] o z z
o 50004 a4y JavA[MRA p i Rl el b A £ Method 2 == £
AR, ' / \ ‘I, ctho = ——
£ Pty] L b o L P # xhw"“p & e = e = 2
= g & <3
220000 o] | & - PSO £ 100]
H ?; - DEFPSO K ﬁ §_
§ 15000 s, & 1050 i %
! gl [} Lo } [ul
Vo iR Dy A gl 1000 . =
10000 .'h,‘, LRV ”'\‘\ R R1oy! VBT E) 3
RO UGere T Ty I oay 950 .
R AR A b e N Yy \
5000 E"" ‘A'k -~ ..‘ A J“"’ ‘i A 900 *
[
= . ===
1 10 201 10 201 10 20 DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO
Run index Method
(b) (b)
Mean number of predecessors Mean number of predecessors
0 1 2 0 1 >
20000 600
15000 $
550
o
10000 3 $ $ $ 4
z 500
§ 5000 & %y.v* ‘L \’“ h; -},i? J'\. d g Method 2 = I g
=) Y Y - z
g " | YA a2y y LR B AT & e = 50 $. % E
g S --PSO % g
£ 20000 [e~ S B S S
é- g_ -= - DEFPSO g 1300 $ g
g 15000 &
3 TR | PR . 1200
\ nN= _
10000 V ?ﬂl "{ l-;‘ IR\ 'r\; ’\:‘1 ! |IJ' I "U\ F ke 1100 g
AT
R ,'u., |:A L}'“‘. Hal gy Iy L‘ '.‘i' {'\‘ 1
5000 g Pl Husdass ‘f 1000 # =
900
1 10 201 10 201 10 20 DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO
Run index
Method

Figure 5. Computation time of schedules for laboratory scale (a)
and industrial scale (b) data sets with DE, PSO, and DEFPSO. DE:
differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

From the perspective of the total battery consumption,
as the lower-priority objective (compared to makespan),
DEFPSO generally outperforms PSO and is on par with
DE. The results show DEFPSO to be even better than DE
in many runs. One can see this situation as finding a dia-
mond among other minerals and rocks. This indicates that
DEFPSO explores various areas (getting stuck in the same
area less), and allow it to find better solutions in the pro-
mising area.

With the obtained objective values depicted in Figures 3
and 4, the computation time of the three methods plays an
important role to make a remark. In Figure 5, the computa-
tion time of DEFPSO is slightly higher than PSO and sig-
nificantly lower than DE. DEFPSO’s appeal is then formed
by the high quality objective value (better than PSO and on
par with DE) that it can achieve within less time than what
DE needs. On a further discussion, the computation time
graph of DEFPSO is oscillating due to its convergence in
various high quality local optima. With the trade-off of a

Figure 6. Boxplot of makespan of schedules for laboratory scale
(2) and industrial scale (b) data sets in connection with the results
in Figure 3.

significantly higher computation time, DE offers the ten-
dency to search further and get better objective values than
DEFPSO.

Analysis

To pull out a tractable numerical analysis, the quartiles of
the makespan, battery consumption, and computation time
data are shown in Figures 6 to 8.

The mean numbers of the characteristics being observed
are put into Figure 9. DE and DEFPSO are compared
toward PSO to show the better results they gained. It is
followed by calculating the gain ratio to quantify the excel-
lence of the proposed DEFPSO. The ratios show that in
terms of objective values (makespan and total battery con-
sumption), DEFPSO gains as much as 83-140% of
improvement from what DE gets against PSO. This means
that DEFPSQO’s performance is nearly as good as DE’s or
even better. From the perspective of the computation time,

Khosiawan et al.

@

Mean number of predecessors

0 1 2

2750

S T
| = = o

4750

0S

Syse) Jo JaquinN

=

4250

Battery consumption (energy unit)

001

4000

3750 é $ =|'=

DE PSO DEFPSO DE

PSO DEFPSO DE PSO DEFPSO

Method

(b)

Mean number of predecessors

2

#éﬁ

1
2600
2400 $

2000 $ $ $

0S

1800

5500

5000 $| — $

4500 $ $ $ 1

DE PSO DEFPSO DE

Battery consumption (energy unit)
S} JO JoqUINN

001

P b

PSO DEFPSO DE
Method

4000

PSO DEFPSO

Figure 7. Boxplot of battery consumption of schedules for
laboratory scale (a) and industrial scale (b) data sets in connection
with the results in Figure 4.

DEFPSO needs at most 21% of DE’s computation time,
which is on par with PSO’s (refer Figure 8). Hence,
DEFPSO is shown as an effective methodology to solve
the problem of task executions by multiple UAVs and
AGVs in indoor manufacturing environment.

In the calculated gained ratio, it is depicted that the
superiority of makespan yielded by DE and DEFPSO are
on par, it is almost as good (with a ratio a bit less than 1.0)
or even better (with a ratio of > 1.0) in regard to the various
task data sets. In addition, the gain ratio in respect to the
computation time is low (< 0.21), which signifies the addi-
tional time (against PSO’s computation time) required by
DEFPSO is not as long as DE’s. This additional time rep-
resents the trade-off of having a longer computation time to
get a higher quality near optimum solution.

Additionally, a paired #-test analysis of the proposed
method is presented in Table 4. It depicts the certainty of
superiority or inferiority of DEFPSO over each of its par-
ents: DE and PSO. With 95% confidence interval, a p value

@

Mean number of predecessors
0 1 2

—a

10000

Ly o
.5

PSO DEFPSO DE
Method

8000

o
6000
4000 Q é
2000
5000

DE PSO DEFPSO DE

Computation time (ms)
)
S
1=3
1=3
=)
SYSE) JO JoquInN

.
il

PSO DEFPSO

(b)

Mean number of predecessors
0 1 2

g ut
.0

PSO DEFPSO

PSO DEFPSO DE
Method

7500

5000
2500

20000

0S

Computation time (ms)
SYSB) JO JoqUINN

%3
S
S
S

00T

10000

=S

DE PSO DEFPSO DE

Figure 8. Boxplot of computation time of schedules for labora-
tory scale (a) and industrial scale (b) data sets in connection with
the results in Figure 5.

less than 0.05 indicates that the results from DEFPSO has
statistically significantly lower makespan, battery con-
sumption or computation time than the ones from DE or
PSO. Each paired ¢ test has the same one-sided alternative
hypothesis (H, = pto — pn > 0, where o is another algo-
rithm’s observation and »n is DEFPSO’s observation) and
degrees of freedom (df = 239). Table 5 lists the cases in the
t test analysis in Table 4. More variations of DEFPSO
parameters are used to conduct more simulations to be used
in the statistical test. When not mentioned, the parameters
conform to the values described in the “Parameter values”
subsection.

In cases C1-C4, DE is statistically tested against
DEFPSO variants (with different configurations). The
makespans of schedules from DEFPSO are definitely not
less than the ones from DE. The p values are quite greater
than 0.05, even though C1 has a slightly lower value than
the others. For the secondary objective, all DEFPSO var-
iants have statistically significantly lower battery

International Journal of Advanced Robotic Systems

Batter%/ Computation Gain against PSO Gain ratio of DEFPSO:DE
No Ntoa.skosf Method ayearkaegsepa(ns) ainZ::ml(j;:xZ:gy S EEERER Com C
o) (ms) Makespan | Battery tirrlxje. Makespan | Battery toinfe.
(result summary in regard to the lab. scale task datasets)
1 50 DE 498.9167 2187.417 9549.233 39.4833 79.083] -5863.95
2 50 PSO 538.4 2266.5 3685.283] - - - 0.834107 | 0.982929 | 0.012077
3 50 DEFPSO 505.4667 2188.767 3756.1 32.9333 77.733] -70.817
4 100 |DE 954.6167 4141 19158.567 58.2166 95.383| -12398.25
5 100 |PsO 1012.8333 4236.383 6760.317 - - - 1.050673 | 1.439628 | 0.210137
6 100 |DEFPSO 951.6667 4099.067 9365.65 61.1666 137.316| -2605.333]
(result summary in regard to the industrial scale task datasets)
7 50 DE 504.1 2149.4 9316.1 33.4833 75.117| -5963.033
8 50 PSO 537.5833 2224.517 3353.067 - - - 1.047286 | 1.399151 | 0.092682
9 50 DEFPSO 502.5167 2119.417 3905.733 35.0666 105.1] -552.666
10 100 |DE 1064.1667 4463.95 19066.967 41.7166 12.05 -12775.45
11 100 |PsO 1105.8833 4476 6291.517 - - - 0.925291 | 8.643154 | 0.209154
12 100 |DEFPSO 1067.2833 4371.85 8963.55 38.6 104.15[-2672.033

Figure 9. Result summary of the proposed DEFPSO in connection with DE and PSO. DE: differential evolution; PSO: particle swarm

optimization; DEFPSO: DE-fused PSO.

Table 4. p Values of one-sided paired t tests of DE or PSO against
DEFPSO with different configurations.

Observation criterion

Case Makespan Battery consumption ~Computation time
Cl 0.779 2.946e-06 1.741e-103

2 0.991 4.445e-05 1.774e-99

C3 0.999 0.026 2.554e-98

C4 0.938 1.304e-07 2.120e-107

C5 9.930e-48 3.229e-28 0.999

Cé 5.732e-41 6.244e-26 0.999

Cc7 2.472e-38 5.576e-19 0.999

Cc8 5.829e-46 1.428e-34 0.999

DE: differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

Table 5. Cases for statistical significance analysis in Table 4.

Case Description

Cl DE against DEFPSO

C2 DE against DEFPSO whose F modified to 0.8

C3 DE against DEFPSO whose F and CR modified to 0.8 and
0.3, respectively

C4 DE against DEFPSO whose F and CR modified to 0.8 and
0.8, respectively

C5 PSO against DEFPSO

C6 PSO against DEFPSO whose F modified to 0.8

C7 PSO against DEFPSO whose F and CR modified to 0.8 and
0.3, respectively

C8 PSO against DEFPSO whose F and CR modified to 0.8 and

0.8, respectively

DE: differential evolution; PSO: particle swarm optimization; DEFPSO:
DE-fused PSO.

consumption than DE. The computation time of all variants
are also significantly lower than DE. From here, the per-
formance of C1 in pursuing the objectives during the search
cannot outperform DE. It is only on par with DE as
depicted in Figure 3.

In cases C5-CS8, PSO is statistically tested against
DEFPSO variants (with different configurations). All four
cases show that DEFPSO variants have statistically signif-
icantly lower makespan and battery consumption than PSO.
In terms of computation time, all four cases statistically not
lower than PSO (with the p.value being 0.999). On a thor-
ough observation, C5 and C8 are on par, which indicates
the essence of the proportion of F and CR (mutation and
crossover rate) and the balance between them to have a
good search experience.

Based on the aforementioned statistical significance
analysis, the superiority of DEFPSO with F = 0.5 and
CR = 0.5 among others can be postulated. Furthermore,
DEFPSO has statistically significantly lower makespan and
objective compared to PSO, and statistically significantly
lower computation time compared to DE.

On the robustness of the system

In the UAV operations, there are uncertain events that may
happen during the flight or the task execution. It can expose
a delay to the originally scheduled completion time of a
task. To some extent, the exposed delay will still yield the
same schedule to achieve well optimized operations. When
the delay occurs frequently with a significant amount of
time, an efficient method of producing a fault-tolerant
schedule is required. A straightforward rescheduling is
what is within the capability of the current study. Hence,
a fault-tolerant scheduling system which focuses on the

Khosiawan et al.

13

robustness of the scheduling system is the next goal
to pursue.

Conclusion

The problem of scheduling task executions by multiple
robots is NP-hard natured, which demands the involve-
ment of heuristic and metaheuristic algorithms to get a
high quality feasible solutions whilst balancing time effi-
ciency. Researchers have been investigating prominent
metaheuristic algorithms such as DE and PSO to tackle
problems with such a nature. The quality of the solution
produced by DE is found to be usually better, while the
computation time is generally longer compared to PSO. In
this article, a mathematical formulation of the addressed
problem is developed. A metaheuristic algorithm called
DEFPSO is proposed to solve it, where the explorative
property of DE is fused into PSO, and the performance
is then benchmarked through several data sets. They have
different weighted characteristics including geographical
scale, number of predecessors, and number of tasks.
DEFPSO obtains at least 83% of improvement in terms
of objective values, and needs at most only 21% of the
computation time compared to what DE gains against
PSO. The results are also analyzed through paired ¢ test,
and DEFPSO statistically significantly outperforms DE
and PSO in terms of computation time and objective val-
ues, respectively. Future researchers in the optimization
area may conduct further studies for different optimiza-
tion fields, not only scheduling, and perform different
utilization ways of the parameters, operators, and the
overall optimization framework.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work has been partly supported by Innovation Fund Denmark
under project UAWorld, grant agreement number 9-2014-3.

References

1. Li D, Tang H, Wang S, et al. A big data enabled load-
balancing control for smart manufacturing of industry 4.0.
Cluster Computing J Networks Software Tools Appl 2017;
20(2): 1855-1864. DOI: 10.1007/s10586-017-0852-1.

2. Qian F, Zhong W, and Du W. Fundamental theories and key
technologies for smart and optimal manufacturing in the pro-
cess industry. Engineering 2017; 3(2): 154-160. DOI: 10.
1016/J.ENG.2017.02.011.

3. Ang JH, Goh C, Saldivar AAF, et al. Energy-efficient
through-life smart design, manufacturing and operation of
ships in an industry 4.0 environment. Energies 2017; 10(5):
610. DOI: 10.3390/en10050610.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Khosiawan Y, Park YS, Moon I, et al. Task scheduling sys-

tem for UAV operations in indoor environment. Artif Intell
arXiv preprint arXiv:160406223 2016.

. Kaveh A. Advances in metaheuristic algorithms for optimal

design of structures. Switzerland: Springer International Pub-
lishing, 2017. ISBN 9783319461724.

. Nilakantan MJ, Ponnambalam S, and Jawahar N. Design of

energy efficient RAL system using evolutionary algorithms. Eng
Comput 2016; 33(2): 580-602. DOI: 10.1108/EC-11-2014-0232.

. Price K, Storn RM, and Lampinen JA. Differential evolution:

a practical approach to global optimization. Germany:
Springer Science & Business Media, 2006.

. Khosiawan Y and Nielsen I. Indoor UAV scheduling with

restful task assignment algorithm. Artif Intell arXiv preprint
arXiv:170609737 2017.

. Das GP, McGinnity TM, Coleman SA, et al. A distributed

task allocation algorithm for a multi-robot system in health-
care facilities. J Intell Rob Syst 2015; 80(1): 33—-58. DOI: 10.
1007/s10846-014-0154-2.

Hsu PE, Hsu YL, Chang KW, et al. Mobility assistance
design of the intelligent robotic wheelchair. Int J Adv Rob
Syst 2012; 9(6): 244. DOI: 10.5772/54819.

Zhang R. A simulated annealing-based heuristic algorithm
for job shop scheduling to minimize lateness. /nt J Adv Rob
Syst 2013; 10(4): 214. DOI: 10.5772/55956.

Nielsen I, Dang QV, Nielsen P, et al. Scheduling of mobile
robots with preemptive tasks. In: Distributed computing and
artificial intelligence, 11th international conference, pp.
19-27. Switzerland: Springer.

Poli R, Kennedy J, and Blackwell T. Particle swarm optimi-
zation. Swarm Intell 2007; 1(1): 33-57. DOI: 10.1007/
s11721-007-0002-0.

Kirsch U. Structural optimization: Fundamentals and appli-
cations. 1st ed. Berlin, Heidelberg: Springer-Verlag, 1993.
ISBN 978-3-540-55919-1,978-3-642-84845-2.

Zhu Z, Tang B, and Yuan J. Multirobot task allocation
based on an improved particle swarm optimization
approach. Int J Adv Rob Syst 2017; 14(3): 1-22. DOI: 10.
1177/1729881417710312.

Mahmoudzadeh, Powers DM, Sammut K, et al. Toward effi-
cient task assignment and motion planning for large scale
underwater missions. /nt J Adv Rob Syst 2016; 13(5): 1-13.
DOI: 10.1177/1729881416657974.

Krémer P, Abraham A, Snasel V, et al. Differential evolution for
scheduling independent tasks on heterogeneous distributed envir-
onments. In: Snasel V, Szczepaniak PS, Abraham A, et al. (eds),
Advances in intelligent web mastering — 2: proceedings of the 6th
Atlantic web intelligence conference - AWIC’2009, Prague,
Czech Republic, September, 2009. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 127-134. ISBN 978-3-642-10687-
3. DOI: 10.1007/978-3-642-10687-3_12.

Nearchou AC and Omirou SL. Differential evolution for
sequencing and scheduling optimization. J Heurist 2006;
12(6): 395-411. DOI: 10.1007/10732-006-3750-x.

Qdili J, Kahar MNM, Noraziah A, et al. A comparative eva-
luation of swarm intelligence techniques for solving

14 International Journal of Advanced Robotic Systems

combinatorial optimization problems. Int J Adv Rob Syst assembly line balancing problem. Adv Mechanic Eng 2016;
2017; 14(3): 1-11. DOI: 10.1177/1729881417705969. 8(9): 1-14. DOI: 10.1177/1687814016667907.

20. Li Z, Janardhanan MN, Tang Q, et al. Co-evolutionary par- 21. Khosiawan Y and Nielsen 1. A system of UAV application in
ticle swarm optimization algorithm for two-sided robotic indoor environment. Prod Manuf Res 2016; 4(1): 2-22.

Appendix |
Simulation results for the operations of six agents generated by DE, PSO, and DEFPSO

Figures 1A to 1C depict the makespan, battery consumption, and computation time of the schedules from simulations with
six agents (i.e. 3 UAVs and 3 AGVs).

a a
() Mean number of predecessors () Mean number of predecessors
1 2
0 1 2 2600 0
600 = I:l
550 = ﬁ 2400 ; $ il
500 $ ol Z 200 $ 3
450 & ! ﬁ
_ ! 2 R R S —— >
2 == g 5 =
2 400 - == £ 5 == $ g
o el E=} S
5 S, 5 . o
Z 1050 = E 5
g z £ 4500 . $ 1 &
3
100 £ w50 $ i 1
— - - z = =
930 % 9 4000 3
. $
900 = — ﬁ 3750 $ = ¥
850
DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO
Method Method
(b) , (®)
Mean number of predecessors Mean number of predecessors
0 1 2 0 T 2
560
2400
.
520 .
. 22
$] © E - l#l 2
. E
480 % $ # . & 2000
— 2] z
> . £ 5 $
3 . = ol T $ 5
g 440 g g 1800 g
71200 ° = °
3 H 5 £ : =6
= Z Z 5000 g
1100 @ g . =
2 4750 2
£ ——
1000 S & 4500 2 g
900 . 4250 $ $ $
= $ = 4000 . $ —_ =F—
800

DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO
Method Method

Figure | A. Makespan of schedules for laboratory scale (a) and Figure IB. Battery consumption of schedules for laboratory
industrial scale (b) data sets with DE, PSO, and DEFPSO. DE: scale (a) and industrial scale (b) data sets with DE, PSO, and
differential evolution; PSO: particle swarm optimization; DEFPSO: DEFPSO. DE: differential evolution; PSO: particle swarm optimi-
DE-fused PSO. zation; DEFPSO: DE-fused PSO.

Khosiawan et al.

Method

(a)
Mean number of predecessors
0 1 2
. s
p— ——
9000
. |
6000 5 =
£
g 300 E :
=
g
g . 2
g —
£ 20000
o] .
15000 . -
b=
L] <)
10000 l;l L 5
5000 =t =
DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO
Method
(b) Mean number of predecessors
12000 L . L 2
== é
9000
)
6000 . =
E
g 3000 I;l
=
g
Z .
]
£ él
S 20000{ e -
=
3|
10000 E
—_— ———
DE PSO DEFPSO DE PSO DEFPSO DE PSO DEFPSO

SS®) JO JoquInN

SYS©) JO JoqunN

Figure 1C. Computation time of schedules for laboratory scale
(2) and industrial scale (b) data sets with DE, PSO, and DEFPSO.

DE: differential evolution; PSO: particle swarm optimization;
DEFPSO: DE-fused PSO.

