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Abstract— In this study, we propose a sensory stimulation 

training (SST) approach to improve the performance of a brain-

computer interface (BCI) based on somatosensory attentional 

orientation (SAO). In this BCI, subjects imagine the tactile 

sensation and maintain the attention on the corresponding hand 

as if there was a tactile stimulus on the wrist skin. Twenty BCI 

naïve subjects were recruited and randomly divided into a 

Control-Group and an SST-Group. In the Control-Group, 

subjects performed left hand and right hand SAO tasks in six 

consecutive runs (with 40 trials in each run), divided into three 

blocks with each having two runs. For the SST-Group, two runs 

included real tactile stimulation to the left or right hand (SST 

training block), between the first two (Pre-SST block) and the last 

two SAO runs (Post-SST block). Results showed that the SST-

Group had a significantly improved performance of 9.4% between 

the last block and the first block after SST training (F(2,18) =11.11, 

p=0.0007); in contrast, no significant difference was found in the 

Control-Group between the first, second and the last block (F(2,18) 

= 2.07, p=0.1546), indicating no learning effect. The tactile 

sensation-induced oscillatory dynamics were similar to those 

induced by SAO. In the SST-Group, R2 discriminative 

information was enhanced around the somatosensory cortex due 

to the real sensory stimulation as compared with that in the 

Control-Group. Since the SAO mental task is inherently an 

internal process, the proposed SST method is meant as an 

adjuvant to SAO to facilitate subjects in achieving an initial SAO-

based BCI control. 

I. INTRODUCTION 

A brain-computer interface (BCI) provides a direct interaction 

between the brain and the external environment, which would 

be particularly useful for locked-in patients [1]. Without the 

requirement of external stimuli, patients and healthy people can 

use sensory-motor rhythm (SMR) based BCIs by mentally 

performing motor imagery (MI) of their left or right hand [2]–

[5]. The MI-induced event-related desynchronization (ERD)/ 

synchronization (ERS) brain signals [6], [7] and movement 

related cortical potentials (MRCP)  [8], [9] enable direct BCI 

control without any external stimuli, and have attracted 

extensive interests [10]–[13]. Independent BCIs have a wide 

range of potential applications, such as wheelchair control [14], 

[15], helicopter navigation [16], [17], robotic arm control [18], 

and neuro-prostheses in patients suffering from a high level 

spinal cord injury [19], [20], and for motor function 

rehabilitation of stroke patients [21]–[24]. Complementary to 

motor imagery detection, we proposed a different type of SMR-

based BCI. Rather than focusing on oscillatory dynamics of 

motor-related cortical activities, we demonstrated that 

oscillatory dynamics induced by tactile stimuli delivered to 

different parts of the body allow reliable decoding of the 

subject’s intentions [25]–[27]. In this new somatosensory BCI, 

the proposed tactile selective sensation (SS) system 

significantly improves the current tactile BCI performance 

reported in the literature [28]–[31]. Further, the imagined 

sensation intentions, or sensory imagery (SI) can also be 

decoded from the spontaneous EEG rhythm. We demonstrated 

the feasibility of an independent BCI based on specific SI tasks, 

in which subjects imagined tactile stimulation coming from 

different locations of the body, and we named this as 

somatosensory attention orientation (SAO) [32]. SAO provides 

new strategies for independent BCIs, with the benefit of 

increasing BCI diversities in a stimulus-independent BCI 

framework [32], [33].  

In order to make oscillatory BCI more applicable (including 

both motor and somatosensory BCI modalities [34]), intensive 

research efforts have been conducted to further improve MI-

based BCI performance, and also to reduce the number of BCI-

illiterate users. Machine learning algorithms for detection of MI 

have been largely improved, including pre-processing by 

spatial filtering, such as the Common Spatial Pattern (CSP) 

[11], [12]. However, an approximately 5% improvement was 

reported on average across datasets when more advanced 

algorithms, such as optimized spatial-spectrum filtering based 

on mutual information, were implemented [13]. Additionally, 

some users were still unable to attain the acceptable 70% 

accuracy, even with state-of-the-art algorithms [35], [36]. 

Subject training has an important role on BCI performance [16], 

[37]. Neurofeedback-based training has received extensive 

interest [38]–[41], establishing a framework of how to train 

subjects to gain sufficient BCI control. Nonetheless, even after 

several training sessions, some individuals still remain BCI-

illiterate as their BCI performance was below the acceptable 

level (70% accuracy for a two-state system) [35], [36]. Machine 

learning algorithms have been developed to extract subject-

specific patterns, so as to improve the performance of 

individuals. Subjective training approaches to modulate 

rhythmic activity have also been explored for this purpose [16]. 

In addition, the coadaptation of the subject and the machine 

learning has also been shown to reduce the number of poorly 

performing BCI users to some extent [42]. Recently, a new 

training approach that may facilitate MI decoding by utilizing 
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somatic stimulation for calibration and guiding subjects has 

been reported [43]. This system comprises a wrist vibration 

device, which passively produces stimulus-induced ERD/ERS 

dynamics, similar to those induced by MI. It is likely that these 

MI-improving efforts would lead to similar improvements of 

the somatosensory based BCI system, since SAO-induced 

oscillatory dynamics are highly similar to those induced by MI 

[33]. Since SS and SAO are both encoded in the somatosensory 

system, the sensory stimulation likely provides an even more 

intuitive way for users to learn a SAO-based BCI control. 

Due to the similarity among SS-induced [27], [32] and SAO-

induced oscillatory dynamics [32], [33], sensory stimulation 

would provide a novel way to train subjects to achieve an initial 

SAO-BCI control. In our recent study, we have shown that 

subject’s covert somatosensory attention can be reliably 

decoded from a BCI system calibrated with tactile sensation 

[44], indicating the high similarity in EEG from SS and SAO 

tasks. Therefore, we hypothesized that the real sensory 

stimulation would provide a sensory guidance to help the 

subject to perform SAO tasks. Therefore, we expected that there 

would be an SAO-BCI performance improvement after actual 

sensory stimulation. In the current study, we tested this 

hypothesis by using sensory stimulation training (SST) to 

improve SAO performance in healthy subjects. 

II. METHODS 

A. Subjects 

Twenty healthy BCI naïve subjects were recruited in the 

experiments (10 females, all right-handed, average age 

24.2±2.2 years). Subjects were randomly divided into two 

groups, i.e. sensory stimulation training group (SST-Group) 

and control group (Control-Group), with ten subjects in each 

group. The study was approved by the Ethics Review Board of 

the University of Waterloo, Waterloo, Canada (ORE#: 22295). 

An informed consent form was signed by all participants before 

participation. 

B. EEG Recordings and Somatosensory Stimulation 

EEG signals were recorded using a 32-channel wireless 

g.Nautilus EEG system (g.tec, Austria). The electrodes were 

placed in accordance to 10-10 system. The reference electrode 

and ground electrode were placed on the right earlobe and the 

forehead, respectively. EEG signals were digitally sampled at 

250 Hz. 

The dorsal lateral side of the wrists was mechanical 

stimulated, using linear resonant actuators (10 mm, C10-100, 

Precision Microdrives Ltd., typical normalized amplitude 1.4 

G). The actuator was set to produce a 27-Hz sine wave stimulus, 

which was modulated with a 175-Hz sine carrier wave. This 

type of stimulus in known to active both the Pacinian and 

Meissner corpuscles [45]. The optimal amplitude was adjusted 

based on individual feedback, such that they were comfortable 

with perceiving the vibration [27], [44]. 

C. Experiment Paradigm 

  The overall structure of the experimental protocols of the two 

groups were similar. Each session comprised three blocks. Each 

block included two experimental runs, with continuous EEG 

recordings. Short breaks were provided to the subject between 

two runs to avoid mental fatigue and habituation. Additional 

resting periods (5-10 min) were also provided between the 

blocks. In each run, the subject would perform 40 mental tasks. 

The differences between the two protocols are outlined below: 

1) SST-Group Protocol 

The SST-Group Protocol is illustrated in Fig. 1(1)-(3), for the 

three blocks. 

Pre-SST Block (Run 1 to Run 2): During the experiment, 

the subjects were required to limit their eye blinks, facial and 

arm movement. At the beginning of each trial (T= 0 s), a white 

fixation cross (“+”) appeared in the center of the screen. At T= 

2 s, a vibration pulse was applied to both wrists for 200 ms to 

alert the user to be ready for the task. At the 3rd second (T= 3 

s), a red cue bar pointing either to the left or right was randomly 

presented: 1) left corresponded to the SAO-L task, during 

which the subject shifted and maintained the somatosensory 

attention on the left wrist, and imagined the tactile sensation 

even when there were no tactile stimuli; 2) right corresponded 

to the SAO-R task. This cue lasted for 1.5 s and then 

disappeared. The SAO task continued for 5 s, until the fixation 

symbol disappeared (T = 8 s). This was followed by a 1.5 s 

relaxation period. Finally, to limit subject adaptation, a random 

time of 0~2 s was appended to the relaxation period. A total of 

80 trials (40 trials for each task) were performed by the subjects 

in 2 runs, in a randomized order. 

SST Training Block (Run 3 to Run 4): During this block, 

 
Figure 1. Graphic Illustration of the experimental paradigm in SST-Group 

(1-3) and Control-Group (4-6). (1) Block one of SST-Group protocol had 

two runs, during which subjects performed left and right hand SAO tasks. 

(2) Block two of SST-Group protocol had two runs, during which subjects 

performed the real sensation tasks when left or right hand wrist was tactile 

stimulated; (3) Block three of SST-Group protocol had two runs, during 

which subjects performed left and right hand SAO tasks the same as in 

block one. (4), (5) and (6) Control-Group protocol, subjects only performed 

left and right hand SAO tasks in all six runs. 
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the timing of the trial and the cues the subject received were the 

same as for block one. The difference was the task to be 

performed. When the red cue bar was either presented to the left 

or the right side, the tasks to be performed were: 1) SS-L task, 

in which the subject should focus on the sensation when the left 

wrist was stimulated; 2) SS-R task, in which the subject should 

focus on the sensation when the right wrist was stimulated. In 

each trial, the tactile sensation continued for 5 s, until the 

fixation symbol disappeared. A total of 80 trials (40 trials for 

each task) were performed by the subjects in 2 runs, in a 

randomized order. 

Post-SST Block (Run 5 to Run 6): Block three was identical 

to Block one. 

2) Control-Group Protocol 

The experimental protocol of the Control-Group is illustrated 

in Fig. 1 (4)-(6). The three blocks were identical to Block One 

of the SST-Group, in which the subjects were asked to perform 

either SAO-L or SAO-R tasks. Therefore, 120 trials for SAO-L 

and SAO-R (240 trials in total) were performed in six runs 

(three blocks). 

D. Algorithms and Performance Evaluation 

The Common Spatial Pattern (CSP) algorithm was adopted to 

enhance the feature discrimination among the investigated tasks 

[46], [47]. The log-variances of the first and last three CSP 

components were chosen as feature vectors, and linear 

discriminative analysis (LDA) for classification. The analyzed 

frequency bands were [27]: alpha-beta [8 26] Hz (αβ), beta [13 

26] Hz (β), alpha [8 13] Hz (α), lower beta [13 20] Hz (β-), 

upper beta [20 26] Hz (β+), lower alpha [8 10] Hz (α-), upper 

alpha [10 13] Hz (α+), and eta [10 16] Hz (η). Before the CSP 

spatial filtering, a fourth-order Butterworth filter was applied to 

the raw EEG signals. A  10-fold cross-validation on data from 

every subject was used to evaluate the offline BCI performance, 

and for selection of subject-specific frequency bands. 

EEG signals from 1 to 4 s with respect to the appearance of 

the red cue bar were segmented. In the SST-Group, the data of 

the first block were extracted for the evaluation of the pre-SST 

SAO performance; the data of the last block were extracted for 

the evaluation of the post-SST SAO performance; the data of 

the second block were also extracted to evaluate performance 

of the stimulus-induced oscillatory pattern (SST-induced EEG 

dynamics). Correspondingly, in the Control-Group the data of 

the first, second, and last block were extracted for performance 

evaluation. 

E. Calculation of EEG Dynamics and Time-Frequency 

Decomposition 

ERD (ERS) is defined as the percentage of power decrease 

(increase) in a defined frequency band with respect to a 

reference interval (e.g. resting state before the task) [48]. The 

[8 26] Hz (αβ) frequency band was adopted in this study for 

EEG filtering prior to the ERD/ERS calculation. The reference 

interval was chosen from 1.2 s to 2.0 s prior to the appearance 

of the red cue bar. 

The area formed by C3 and C4 ERD/ERS curves between 1 

and 4 s (after the appearance of the red cue bar) represents the 

hemisphere difference (HD) as induced by the task, i.e. the area 

enclosed by the curve of C4-C3 and between 1 to 4 s was 

defined as HD index. The HD difference (HDD) between the 

left and right task was further used for comparison between 

different blocks. 

The EEGLAB toolbox was used to manually correct for 

artifacts in the EEG signal [49], and trials contaminated by 

artefacts such as due to swallowing and movement were 

excluded. Time-frequency decomposition was applied to each 

EEG channel. This was calculated every 200 ms with a Hanning 

tapper, convoluted with a modified sinusoid basis, in which the 

number of cycles linearly changed with frequency to achieve 

proper time and frequency resolution [50]. The R2 index [51], 

[52] was defined as the squared Pearson-correlation coefficient 

between feature and class label. Accordingly, the R2 was 

calculated in the spatio-spectral-temporal domain and was used 

to locate the component of different EEG channels for the 

classification of the corresponding mental tasks.  

 
Figure 2. BCI performance during the first, second and last block in the 

SST-Group, with two runs in each block. Note: the red bar indicates the 

performance of the first block (Pre-SST block); the blue bar the 

performance of the second block (SST training block); and the green bar  

the performance of the last block (Post-SST block); two stars indicate 

significance at p<0.01. 

 
Figure 3. BCI performance during the first, second and last block in the 

Control-Group, with two runs in each block. Note: the red bar indicates 

the performance of the first block; the blue bar the performance of the 

second block; and the green bar the performance of the last block. 
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F. Statistics 

One-way ANOVA with repeated-measures was used to 

analyze performance differences among different experimental 

blocks (with p=0.05). Whenever the main effect was found to 

be significant, Bonferroni correction based on multiple 

comparisons was used for post-hoc testing.  

III. RESULTS 

Fig. 2 illustrates the BCI performance of the first, second and 

the last block for the SST-Group. One-way ANOVA with 

repeated measures showed that there was a significant 

difference in classification accuracy among the three blocks 

(Pre-SST, SST, Post-SST; F(2,18)=11.11, p=0.0007). Post-hoc 

comparison (p=0.05) showed that the performance of the post-

SST block (78.6±9.7) was significantly greater than that of the 

pre-SST block (69.2±7.6). The classification of the SST block 

(81.7±10.9) was also significantly higher than that of the first 

block. No significant difference was found between the SST 

and post-SST block.  

Fig. 3 illustrates the BCI performance of the first, second and 

the last block for the Control-Group. No significant difference 

in classification accuracy was found among the first 

(69.1±10.0), the second (73.3±10.8) and the last block 

(69.0±9.0; F(2,18) = 2.07, p=0.1546). Moreover, the performance 

of the first Block from both groups were similar (69.0% on 

average for the Control-Group, 69.2% for the SST-Group). 

Fig. 4 shows the grand-averaged oscillatory dynamics ([8-

26] Hz) across SAO and SS tasks in different experimental 

phases for the SST-Group. At the -1s, a vibration burst resulted 

in a clear power reduction (ERD) with the same strength within 

the alpha-beta frequency for both C3 and C4 for all tasks and 

all phases (the C3 and C4 channels are shown since they 

correspond to the sensory motor regions). During the time 

between 0 s to 5 s of the trials in the SST training blocks the 

sustained stimulation applied on the left (Fig. 4 (2)) or right 

wrists (Fig. 4 (5)) produced distinctive ERD/ERS dynamics 

across the left and right somatosensory cortex, i.e. clear 

contralateral ERDs. For SS-L tasks, the ERD was more 

pronounced on the right hemisphere while for the SS-R tasks, 

the ERD was stronger on the left hemisphere. Such ERD 

patterns are also evident for the SAO tasks in both the first and 

last block. Most importantly, such ERD dynamics are more 

distinctive between SAO-L and SAO-R in the third block (post-

SST) than in the first block (pre-SST). The ERD dynamics of 

the third block was indeed similar to that included by the second 

block, in which actual stimulation was applied. In contrast, the 

ERD dynamics of the Control-group were similar among the 

three blocks (Fig. 5). Unpaired t-test did not show significant 

differences in HDD in the first block between the SST-group 

and the Control-Group. The HDD was found to be significantly 

different among the three blocks in the SST-Group (F(2,18)=4.96, 

p=0.019). No significant difference was found in the Control-

Group (F(2,18)=0.42, p=0.666). Post-hoc comparison (p=0.05) 

showed the HDD in the post-SST block was significantly higher 

than that in the pre-SST block. No significant difference was 

found between the SST and the post-SST block. 

Furthermore, as different frequency band would have 

different ERD/ERS dynamics, the HDD in alpha ([8 13] Hz), 

low beta ([13 20] Hz) and high beta ([20 26] Hz) was tested in 

the SST-Group. No significant difference was found in alpha 

band (F(2,18)=0.89, p=0.428). A significant difference was 

shown in both low beta and high beta (F(2,18)=3.81, p=0.042 and 

F(2,18)=4.68, p=0.023 respectively). Post-hoc testing showed 

that the HDD of the post-SST block was significantly higher 

than that of the pre-SST block in low beta band, and the HDD 

of the SST block was significantly higher than that of the pre-

SST block in the high beta band. 

 

 
Figure 4. The time varying grand-averaged ERD/ERS curves at small-

Laplace filtered C3 and C4 channels within the alpha-beta frequency band 

[8 26] Hz in the SST-Group. ERD/ERS for the (1) SAO-L task in the first 

block, (2) SS-L task in the second block, (3) SAO-L task in the last block; 

(4) SAO-R task in the first block, (5) SS-R task in the second block and (6) 

SAO-R task in the last block. The upper and lower curves indicate 

standard error. Time 0s corresponds to the time when the cue appeared 

(3rd second from the beginning of the trial). 

 
Figure 5. The time varying grand-averaged ERD/ERS curves at small-

Laplace filtered C3 and C4 channels within the alpha-beta frequency band 

[8 26] Hz in the Control-Group. ERD/ERS for the (1) SAO-L task in the 

first block, (2) SS-L task in the second block, (3) SAO-L task in the last 

block, (4) SAO-R task in the first block, (5) SAO-R task in the second block 

and (6) SAO-R task in the last block. The upper and lower curves indicate 

standard error. Time 0s corresponds to the time when the cue appeared 

(3rd second from the beginning of the trial). 
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Fig. 6 illustrates the R2 discriminative information 

distribution across different blocks and groups. The 

discriminative information was mostly concentrated on left and 

right somatosensory cortex, which correlated with the results 

from the BCI performance analysis. For the Control-Group, no 

identifiable change was observed in the R2 values in the sensory 

cortex, across the three blocks. Conversely, for the SST-group, 

significant enhancement of R2 in the sensory cortex was 

observed from the first block to the last block. 

IV. DISCUSSION 

In the current study, a novel sensory stimulation training 

method was proposed to facilitate sensory imagery decoding for 

SAO-based BCIs. To the best of our knowledge, this is the first 

time that sensory stimulation was introduced to improve the 

performance of BCIs based on covert somatosensory intentions. 

The SST-Group showed a 9.4% significant improvement in 

BCI classification accuracy when subjects received the tactile 

stimulation intervention. In contrast, the Control-Group showed 

no significant differences (69.1% vs. 69% on average between 

the first and the third block). Moreover, the two groups showed 

similar initial SAO performance in the first block (69.1% in 

Control-Group, 69.2% in SST-Group). Therefore, the observed 

improvement in BCI performance following SST intervention 

can only be explained by the intervention, rather than by the 

learning effect due to time involved in participation. The 

proposed SST training enhanced the R2 information especially 

in the somatosensory cortex (Fig. 6), reflecting a better SAO 

performance after SST training. 

In order to exclude the effect of feedback-based training for 

improving SAO-based BCI control, no feedback was delivered 

to subjects after the mental task in both Control-Group and 

SST-Group. The only difference between the Control-Group 

and SST-Group was the second block, during which subjects in 

the Control-Group performed SAO tasks, while subjects in 

SST-Group received the real tactile stimulation. The grand-

averaged ERD/ERS dynamics showed similarity among the 

first, second and the last block in the Control-Group, and no 

signicant performance difference was found, indicating no 

learning effect over time. By contrast, the ERD/ERS dynamics 

changed substantially in the SST-Group, especially in the 

second block that exhibited a higher ERS in the ipsilateral 

hemisphere. The ERS likely relates to the suppression of the 

activity, and the results presented here indicate that following 

the SST training, the ipsilateral suppression was enhanced. The 

ERD/ERS dynamics in the third block were similar to the SST 

training block, while greatly improved as compared with the 

first block. In both the Control and the SST-Group, the 

vibration burst on both hands consistently induced ERD 

changes, which were in accordance with our previous findings 

[27], [32], with co-activation of the left and right somatosensory 

cortex. Moreover, the oscillatory dynamics induced by the 

sustained tactile stimuli further confirmed that the stimulus-

induced oscillatory dynamic may be considered a novel brain 

signal modality for tactile BCI research, which significantly 

enhanced the performance of the SAO-based BCI [27]. 

The current study was partly motivated by our previous study 

[43], in which the concept of tendon vibration to induce 

sensation with kinesthesia illusion was for the first time 

introduced to enhance MI-based BCI system. We proposed a 

stimulation assisted training paradigm, in which every illusory 

sensation trial was followed by a motor imagery trial, and we 

have shown that this provides a way to improve MI 

performance in a BCI setting. By contrast, based on the 

similarity between tactile sensation and imagined sensation, we 

have found that the sensory stimulation provided a new 

approach to further improve SAO-based BCI performance. The 

experimental protocol was different from our previous study. 

Here, instead of an alternation between SS and SAO [43], the 

subjects received only real tactile sensation during the second 

block, while during the last block subjects only performed 

imagined sensation tasks. Moreover, the stimulation types 

differed, since in our previous study illusory movement was 

induced via tendon stimulation, which required a much stronger 

mechanical stimulation that elicited several types of sensory 

receptors (Group Ia, II and Ib, likely also joint receptors). In the 

current study, the stimulus was targeted at the tactile sensation 

level.  

MI and SAO are both based on the dynamics of brain 

oscillation quantified as ERD/ERS [48], [53], which have a 

strong correlation not only with real or imagined movement [2], 

[54], [55], but also with sensory processing [56]–[59], or even 

imagined sensation [32]. Previous studies have shown that the 

combination of MI and SAO results in a significantly improved 

BCI performance [26], [33]. As for the activation of similar 

brain areas for real versus imagined movements, the current 

results confirm that brain activity patterns are also similar 

between real and imagined sensation in the contex of ERD/ERS 

dynamics [32]. One is externally induced (SS), while the other 

is internally generated (SAO). Such similarity of the EDR/ERS 

characteristics between SS and SAO provides a novel way to 

train subjects to achieve the initial control of a SAO-based BCI, 

 
Figure 6. Grand-averaged R2 discriminative information distribution 

within the alpha-beta frequency band [8 26] Hz across different runs 

period and group (R2 was averaged along the 1 to 4 s with respect to the 

appearance of the red cue bar). R2 distribution with respect to (1) the first 

block in the Control-Group, (2) the second block in the Control-Group, (3) 

the last block in the Control-Group, (4) the first block in SST-Group, (5) 

the second block in SST-Group and (6) the last block in SST-Group. The 

color bar indicates the R2 value. 
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which is independent of external stimuli. Our recent findings 

have shown that the covert SAO intention may be reliably 

decoded by a BCI system calibrated with SS [44]. The SST 

training protocol would establish a novel framework to improve 

SAO-based BCI performance, independent of specific 

algorithms used. The advanced algorithms developed for MI-

based BCIs might also work well in SAO-based BCI. Combing 

the proposed sensory stimulation training with advanced 

algorithms would potentially further improve SAO-based BCI 

performance, which will be investigated in future studies. 

In the current study, the concept of SST training was proposed 

to facilitate somatosensory BCI performance. One limitation of 

the current study is that only the short-term training effect was 

evaluated, as only two runs (80 trials) were performed in the 

last block. For a practical BCI application, the long-term 

training effect, or the performance changes across a longer time 

frame (hours or days) should be further explored. In current 

study, the statistics did not reveal a significant difference 

between the SST-Group and the Control-Group in the first 

block, although they were some noticeable differences. One of 

the reason for such differences is likely the variance among 

subjects, as exhibited in the literature and also shown in our 

previous study [34]. In the current study, we focused on the 

change (both BCI performance and ERD/ERS dynamics) after 

the SST training, and the control group was mainly used as a 

control to indicate no learning effect existed in current three-

block design. The improvement of the BCI performance may 

thus be related to the SST training and not any learning effect. 

V. CONCLUSION 

In this study, sensory stimulation training (SST) was proposed 

to improve the performance of a SAO-based BCI system. We 

demonstrated that SST training significantly improved the 

SAO-based BCI by 9.4% while no significant difference was 

found in the Control-Group. The proposed SST thus provides a 

new training framework to further improve BCI performance in 

the decoding of somatosensory attention. 
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