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Abstract
Due to the adverse temperature swings which normally occur in the power semiconductor devices during

the start-up and deceleration periods of the motor drive system, the thermal design and control, as well

as the reliability analysis of the power devices becomes crucial. In order to facilitate testing and access

the loading and lifetime performances, a novel stress emulator for power semiconductor devices based

on the mission profile of a motor drive system is proposed and designed. The control algorithm for the

stress emulator setup is introduced, and the issues concerning the Orthogonal Signal Generator (OSG) are

addressed by means of adaptive Notch filter implementation. Finally, experimental results are provided

in order to validate the effectiveness of the proposed emulation technique.

Introduction
Nowadays, motor drive systems are being widely used in various mission-critical applications such as

pump drives, fans, industrial production, mining, lift, etc., where the load changes frequently and fast. It

is well known that the overall efficiency and reliability of the motor drive system is strongly dependent

on the selected power semiconductor devices, and according to [1, 2], thermal cycling is one of the main

causes of wear-out for the power devices. As a result, in order to predict the reliability performance and

improve the design of the motor drive system, the thermal loading condition of the power devices needs

to be more accurately assessed. However, the measurement/estimation of the thermal behaviour of the

power semiconductor devices is still a challenging task, especially when considering real-field operating

conditions or mission profiles of the motor drive system [3, 4].

Therefore, in order to solve the aforementioned problem, a novel mission profile emulation system is

proposed in this paper. Based on a three-level Neutral Point Clamped (NPC) H-bridge converter, the

dynamical voltage and current stresses of the power devices can be generated from the speed and torque

profiles of the motor drive system. As a result, the actual loading profiles for the power semiconductor

devices, considering the mission profiles of the converter, are reproduced. This approach will eliminate

the need for an actual electric machine to be installed within the experimental setup and will allow for fast

and accurate assessment of the thermal loading/reliability prediction of the power devices under various

mission profiles and operating conditions.

First, a typical motor drive system is designed as a study case, and its dynamical behavior and frequency

response are analyzed. Afterwards, an overview of the emulation technique, which targets to reproduce

similar dynamics and loading behavior as for the given motor drive system is presented. Stability issues

concerning the used Orthogonal Signal Generator (OSG) and the current controller employed for the



emulation strategy are emphasized, and a preliminary solution based on adaptive Notch filter implemen-

tation is proposed. Finally, the laboratory setup is described and the emulation technique is validated by

means of experimental results.

Modeling and design of mission profile emulation technique
A typical motor drive application system is first selected as a study case. The system consists of a

Permanent Magnet Synchronous Motor (PMSM) connected to the grid through a back-to-back three-

level Neutral Point Clamped (NPC) converter, as shown in Fig. 1.

PMSM LCL Filter Transformer Grid

LOAD
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N

Fig. 1: Grid-connected motor drive system with back-to-back 3L-NPC.

The parameters of the machine are shown in Table I, while the power module choice is an IGBT module

with a rated current of 30 A and a rated voltage of 1200 V.

Table I: Motor drive parameters.

Parameter Symbol Value Unit

Output Power Pn 9200 [W ]

Nominal Voltage Vn 350 [V ]

Max. Current Imax 21.43 [A]

Nominal Torque Tn 12.55 [Nm]

Inertia J 0.011 [Kgm2]

Nominal Speed nn 7000 [rpm]

Number Pole Pairs npp 1 [-]

Supply Voltage Vll 400 [V ]

Switching Frequency fsw 16 [kHz]

The speed control of the motor is assured by means of Field Oriented Control (FOC), while the switching

sequence of the power devices is generated by a Sinusoidal Pulse Width Modulation (SPWM) technique

[5, 6]. The input torque and speed profiles of the motor drive system alongside with the torque and speed

response of the PMSM are shown in Fig. 2, while the resulting three-phase currents and voltages of the

motor under the given mission profiles are presented in Fig. 3.

From Fig. 3 it can be noticed that high current amplitude is generated by the motor during the acceleration

period in order to meet the speed and torque requirements, while during the deceleration period the

current will change its polarity and the power will flow from the machine towards the DC-link. The

current amplitude and the fact that the machine operates at low fundamental frequency within certain

periods, will lead to adverse thermal cycles which will result in a faster wear-out of the power devices [7].

Thus, it is of extreme importance that the proposed mission profile emulator setup is able to accurately

reproduce the same dynamic voltage and current loading.

Based on the q-axis current control loop of the PMSM system [8], a Bode diagram of the open loop

equivalent transfer function is shown in Fig. 4, where it can be noticed that the closed loop control for
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Fig. 2: Speed and torque mission profiles of the

chosen motor drive study case.
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Fig. 3: Electrical response under given mission

profiles and operating conditions.

for the q-axis current is stable with a bandwidth of 3830 rad/s. Similarly, from the time domain step

response of the drive system, as shown in Fig. 5, it can be seen that the q-axis current has a rise time of

0.31 ms with an overshoot of 4.61%. This dynamic behaviour of the PMSM and control will be set as

the design targets for the mission profile emulation system, which will then reproduce the same dynamic

electrical/thermal stress on the power devices.
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Fig. 4: Motor drive open loop Bode diagram.
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Configuration of emulation system

A general block diagram of the mission profile emulation system is shown in Fig. 6. By manipulating

the dq reference frame equations of a PMSM [9], all the necessary parameters to assure the voltage and

current control of the power devices can be obtained, taking into account the speed and torque profiles

as inputs. Thus, based on the mechanical equation of the machine, the corresponding angle (θ) and

electromagnetic torque (Te) for the given mission profiles can be computed:



θ =
∫

ωre f · 2π
60

(1)

Te =

⎛
⎝d

(
ωre f ·2π

60

)

dt
· J
⎞
⎠+Tload (2)

where, ωre f represents the input speed mission profile, and Tload represents the torque mission profile.

By substituting the electromagnetic torque and electrical speed values into the torque and the voltage

equations of the PMSM, the q-axis reference current (i∗q) and the dq reference frame voltages can be

determined.

i∗q =
2 ·Te

3 ·ψpm ·npp
(3)

v∗d = Rsi∗d +Ld
di∗d
dt

−ωψq (4)

v∗q = Rsi∗q +Lq
di∗q
dt

+ωψd (5)

where, ψpm represents the permanent magnet flux linkage, Rs is the stator resistance, and Ls is the stator

inductance.

Finally, the α component resulting from applying the inverse Clarke transformation to the reference

d- and q-axis voltages (v∗d and v∗q) will represent the reference voltage for the test leg of the emulator

setup (Vtest). It should be noted that the reference d-axis current (i∗d) is set to 0, in order to achieve the

maximum torque per amp ratio. The resulting current reference values will represent the inputs to the

current controller, which is used in order to generate the reference voltage for the load leg of the H-bridge

inverter (Vload).
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Fig. 6: Configuration of mission profile emulator setup.

As shown in Fig. 6 the stress emulator setup consists of a load leg and test leg. The legs of the three-level

inverter are controlled independently, the PWM signals for each being determined by its correspond-

ing reference voltage. The test leg is responsible for controlling the output AC voltage of the inverter,

according to imposed modulation index and fundamental frequency requirements, while the load leg is

used in order to control the output current [10].



Issues concerning Orthogonal Signal Generator (OSG)

Due to the fact that the employed converter topology in the emulation system consists of a single-phase

H-bridge inverter, a 90o phase shifted signal needs to be generated with respect to the output current, in

order provide the necessary dq current values for the current controllers. Various methods for generating

the quadrature component of an input signal have been studied throughout the literature [11]-[13], among

which the Variable Transport Delay (T/4) and Second Order Generalized Integrator (SOGI) methods

have shown the most promising results for the given application. The block diagrams of the two signal

generating structures are shown in Fig. 7, respectively Fig. 8.
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Fig. 7: Variable transport delay structure.
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Fig. 8: SOGI structure.

The Laplace domain transfer function of the variable transport delay structure is shown in (6), where it

can be noticed that this method is frequency dependent.

GT/4(s) = e−s·( fs· ω
8π ) (6)

It is clear that although the T/4 method has a relatively simple implementation, through the use of a First-

In First-Out (FIFO) buffer, including it into the system control loop, as shown in Fig. 11a will influence

the overall dynamic behavior of the system. As it can be seen in Fig. 9, the T/4 method will result in a

significant current overshoot during the acceleration period of the motor, while during the braking period

a slow current response can be noticed. Thus, the current loading on the emulator inductive load, shown

in Fig. 10, does not meet the mission profile emulator design requirements.
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Fig. 9: d- and q-axis current for T/4 method.
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In the following the implementation of the SOGI method will be investigated. From Fig. 8 the closed-

loop transfer functions of the structure can be determined:

Hd(s) =
iα
i
(s) =

kωs
s2 + kωs+ω2

(7)

Hq(s) =
iβ
i
(s) =

kω2

s2 + kωs+ω2
(8)

where, k represents the gain of the SOGI structure.

Similarly to the previously presented OSG structure, the SOGI method is frequency dependent. Thus,

when the machine operates outside the fundamental frequency (start-up and deceleration periods) the

frequency response of the SOGI transfer function will vary as shown in Fig. 12.
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(a) Mission profile emulator with T/4 method.
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Fig. 11: Emulator q-axis current control loop.
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Fig. 12: Frequency response of SOGI.

By employing the SOGI method for generating the quadrature component of measured AC current of the

emulator, and by inserting it into the current control loop, as shown in Fig. 11b, will lead to instability

during the periods of time when the motor runs outside its designed fundamental frequency.
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Fig. 13: d- and q-axis current for SOGI method.
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The impact of the SOGI structure on the stability of the system can be seen in the d- and q-axis current

response, shown in Fig. 13. From the voltage and current loading generated by the stress emulator plotted

in Fig. 14, it is clear that during the ’constant speed’ period, when the machine operates at nominal

fundamental frequency, the system is stable and meets the design requirements.

Adaptive NOTCH filter implementation
A solution for the instability caused by the SOGI structure, based on implementing an adaptive Notch

filter is described in the following. The Notch filter will generate an anti-resonance frequency of equal

amplitude to the resonance frequency of the SOGI, and thus canceling-out its impact on the system and

eliminating the frequency dependency of the current control loop.

The continuous transfer function used in order to design the Notch filter is presented in (9):

GNotch(s) =
s2 +2Dzωs+ω2

s2 +2Dpωs+ω2
(9)

All the parameters necessary for modeling the Notch filter have been analytically determined according

to [14], and therefore, will allow for accurate tuning of the Notch filter for various fundamental frequency

requirements. The frequency response of the Notch filter, together with the frequency response of the

SOGI, can be seen in Fig. 16.
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Fig. 15: q-axis current control loop with SOGI structure and Notch filter.

The Notch filter has been introduced within the system current control loop, as shown in Fig. 15, and its

impact on the system stability has been analyzed. From Fig. 17 it can be seen that the voltage and current

loading generated by the mission profile emulator meet the design requirements imposed by Fig. 3, and

that the loading of the H-bridge inverter power module reproduces the actual stress of an power module

used within a motor drive application with the given mission profiles and operating conditions.
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Although there are still some minor oscillations present within the current response of the stress emula-

tor, this issue can be solved by optimizing the adaptive Notch filter design during the low fundamental

frequency operation.

Experimental validation
In order to validate the emulation technique a dSpace-controlled 10 kW 3L-NPC H-bridge with an open

IGBT module is employed. The setup allows for the emulation of different mission profiles of various

real-life applications, among which motor drive systems. According the imposed speed and torque mis-

sion profiles, the motor drive load conditions will be emulated on the inductive load of the setup, and

inherently on the power devices. This will allow for fast accurate measurement of the ’long-term’ ther-

mal behavior of the power devices, by means of thermal measurement equipment (e.g. infrared camera,

optical thermal fibers, etc.). The mission profile emulator experimental setup is shown in Fig. 18.

dSpace Control System

330 V DC Power Supply

Open IGBT Module

3L–NPC H–Bridge

Sensors & Protection

Thermal Measurement

Fig. 18: Mission profile emulator experimental setup.

Initially, the Variable transport delay (T/4) method has been implemented, and as it can be seen from

Fig. 19, the resulting current and voltage loading of the open IGBT module resembles the obtained

simulation results. For the given OSG structure it can be concluded that it does not meet the design

requirements for accurately emulating the current and voltage stress of the power devices.

The emulation technique, together with the SOGI structure and the Notch filter have been implemented

with a dSpace Control Unit. It should be noted that the discrete implementation of both SOGI and Notch

filter has been done by using the Trapezoidal method, where the integrator (1/s) has been approximated

by:

Ts

2

1+ z−1

1− z−1
(10)

The experimental results for the proposed emulation technique, including the OSG-SOGI structure and

the adaptive Notch filter are presented in Fig. 20. It can be seen that results match the design require-

ments, and that the mission profile emulator will generate similar current and voltage loading for the

power devices as in an actual motor drive system. Additionally, this method will allow for accurate

stress emulation independent of input speed and torque mission profiles, or machine parameters.
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Fig. 19: Current and voltage loading on the open IGBT module for the T/4 method.

VAC (300V/div)
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Fig. 20: Current and voltage loading on the open IGBT module for the SOGI+Notch filter method.

Conclusion
In this paper, a mission profile emulator setup for the power electronics of motor drive applications has

been proposed. An initial motor drive system study case has been selected and its dynamic behavior has

been investigated, and thus setting the design targets for the emulation technique. A detailed description

of the emulator system and its control has been given, and the issues concerning the operation outside

the fundamental frequency of two Orthogonal Signal Generating methods (Variable transport delay and

SOGI) have been presented. A preliminary solution consisting of implementing an adaptive Notch filter

has been proposed. It has been concluded that the proposed solution is able to accurately cancel-out the

impact of the SOGI method on the stability of the system, and thus validating the emulation technique.

Finally, experimental results have been presented, which validate the effectiveness of the mission profile

emulator setup on reproducing similar voltage and current loading on the power devices, as in the motor

drive study case, according to the given mission profiles and operating conditions.
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