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A Comprehensive Control System for Multi-Parallel 

Grid-Connected Inverters with LCL Filter in Weak 

Grid Condition 

Ali Akhavan, Hamid Reza Mohammadi, and Josep M. Guerrero 
 

Abstract: Active damping methods are used for resonance damping in grid-connected inverters with LCL filter. In microgrids, 

parallel grid-connected inverters are coupled due to grid impedance introducing multiple resonances. In general, such coupling effect 

is not taken into account for modeling and controller design. For single grid-connected inverter, despite good performance, the system 

tends to become instable with parallel connection of other inverters. Moreover, the grid injected current can be distorted by the grid 

voltage harmonics. In traditional control system, grid voltage is used as a feedforward signal to achieve harmonic rejection capability 

by boosting the inverter output impedance. However, this method introduces negative phase angle which could lead to control system 

instability. In this paper, the control system design for multi-parallel grid-connected inverters using active damping is clarified. 

Inverters with different characteristics are also modeled in a weak grid as a multivariable system while coupling effect with a wide 

variation of grid impedance is taken into account. An improved grid voltage feedforward method is proposed to eliminate negative 

aspects of the traditional method. The simulation results in MATLAB/SIMULINK software demonstrate the effectiveness of the 

proposed control system. 

Keywords: Multi-parallel inverters, Active damping, Coupling effect, Grid voltage feedforward method, LCL filter 
 

1. Introduction 

Grid-connected inverters are essential elements in 

converting nearly all kinds of generated power in distributed 

generation plants into a high quality AC power to be 

injected reliably into the grid [1]. The quality of grid 

injected current in grid-connected systems is a matter of 

concern [2]. Thus, a low-pass filter is used to filter out the 

switching frequency harmonics of the inverter output current. 

The LCL filter is preferred in comparison with other low-

pass filters such as L and LC because of better switching 

harmonic attenuation and reduced filter size at the same time 

[3], [4]. Nevertheless, due to resonance of the LCL filter, a 

damping method is needed to stabilize the system [5]. 

Resonance damping methods for LCL filters, including 

passive and active damping methods have been extensively 

discussed in literatures [6-9]. Power loss in passive damping 

methods is the biggest drawback. Hence, active damping is 

preferred over passive mainly damping due to its high 

efficiency and flexibility. Dual-loop active damping 

methods are widely used for resonance damping. These 

methods are based on feedback of the state variables of LCL 

filter such as capacitor current [1], [10-13], capacitor 

voltage [14], grid-side inductor current [15], [16] and 

inverter-side inductor current [17]. 

A main challenge is encountered when multi-parallel 

grid-connected inverters are coupled through grid 

impedance Zg. In Fig. 1, the voltage of Point of Common 

Coupling (PCC), Vpcc, is shared by all inverters and can be 

modified by their injected currents [18]. Therefore, all 

inverters influence each other due to grid impedance 

existence. Depending on the number of parallel inverters 

and grid impedance value, the inverters installed in a 

microgrid may not behave as expected.  It is worth nothing 

that, multi-parallel grid-connected inverters also introduce 

multiple resonances whose frequency and peak can be 

varied with variations of the grid impedance and number of 

inverters [19]. 

Furthermore, grid voltage in weak grids usually 

contains harmonic components which are created by non-

linear loads connection at other buses. The grid voltage 

harmonics can therefore greatly distort the grid-injected 

current. Hence, the inverter control system should be 

designed with harmonic rejection capability which is closely 

correlated with the inverter output impedance [10]. Recently, 

a popular approach attracting attention is employing the grid 

voltage feedforward method in the control system to 

enhance the inverter output impedance [5]. 
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Fig. 1.  Typical multi-parallel grid-connected inverters. 
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Although this method can boost considerably the inverter 

output impedance, it nevertheless introduces negative phase 

angle to the control system which could lead to instability in 

weak grids [1]. 

Many literatures regarding active damping strategies 

are published for single grid-connected inverter systems [10-

17], [20-23]. However, the coupling effect among inverters 

due to grid impedance is not considered. In [24], an optimal 

virtual flux predictive direct power control (VF-PDPC) is 

proposed for a three-phase grid-connected inverter which 

operating under unbalanced and distorted grid voltage. 

Despite good performance of the control system, only one 

inverter is considered and coupling effect among inverters in 

a microgrid containing several inverters is not addressed. In 

[18], a PV power plant contains N parallel grid-connected 

inverters has been modeled as a multivariable system. 

However, all inverters are assumed to be the same. In [25], 

the inverters with different characteristics in a microgrid are 

modeled as a multivariable system and controller design 

process is introduced praiseworthy, but the effect of grid 

voltage harmonics on the grid injected current is not 

considered. Multiple resonances in a microgrid are 

investigated in [19]. However, the control system design is 

done without considering the coupling effect among 

inverters. 

In this paper, modeling and control of three parallel 

single-phase grid-connected inverters in a weak grid 

condition is described. In the proposed scheme, the wide 

variation of grid impedance and also grid voltage harmonics 

are considered. Unlike [18], all inverters may have different 

characteristics. Also, dual-loop active damping control using 

capacitor current feedback is chosen for its simple and 

effective implementation. A simple but effective improved 

grid voltage feedforward method is proposed which 

suppress the effect of grid voltage harmonics by boosting 

the inverter output impedance, while eliminates the negative 

aspect of traditional method such as introducing negative 

phase angle to the control system in weak grids. Then, the 

system stability is investigated based on impedance-based 

stability criterion [26]. The deficiencies of traditional grid 

voltage feedforward method are: 

1. Introducing a negative phase angle to close loop 

control system. Consequently, the phase margin is 

reduced and it may be causes the system instability.  

2. Ignoring the coupling effect between inverters. 

Consequently, the overall system maybe unstable 

whereas the connection of each individual inverter is 

stable. 

The suggestions in the proposed comprehensive control 

system are: 

1. Using a proportional gain in an improved grid voltage 

feedforward method which mitigates the first 

deficiency. 

2. Precise modeling and controller design for multi-

parallel grid-connected inverters (with different 

parameters) considering the coupling effect between 

inverters. In this way, the second deficiency is 

mitigated. 

This paper is organized as follows. In Section 2, 

modeling and control of a single grid-connected inverter is 

described. Norton equivalent circuit and the proposed grid 

voltage feedforward method are presented in this section. In 

Section 3, modeling and control of three parallel grid-

connected inverters with different characteristics are 

described. In Section 4, controller design process for the 

multivariable control system that is modeled in section 3 is 

described. In Section 5, the theoretical study is validated 

through numerous simulations in MATLAB/Simulink 

software. Finally, Section 6 concludes the paper. 

2. Control of a Single Grid-Connected Inverter in 
a Weak Grid 

In this section, the modeling and control of a single 

grid-connected inverter is described. Then, a simple but 

effective improved grid voltage feedforward method is 

proposed. 

 

2.1. Modeling of a Single Grid-Connected Inverter 
Fig. 2 shows the general structure of an LCL-filtered 

grid-connected inverter. The LCL filter consists of an 

inverter-side inductor L1, a grid-side inductor L2, and a filter 

capacitor C. 
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In this figure, Vdc is the input DC voltage, Vinv is the 

output voltage of the inverter bridge, i1, ig, and iC are 

inverter-side current, grid-side current and capacitor current, 

respectively. Also, Gi(s) is the current regulator and iC is fed 

back to damp the LCL filter resonance. At the PCC, the grid 

is modeled by its Thevenin equivalent circuit for simplicity, 

consisting of a voltage source Vg in series with grid 

impedance Zg. Gd(s) is the transfer function which combines 

the computational and PWM delays [18]. 
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where, Ts refers to sampling period. 

With the aforementioned model, the linearized model 

of a single grid-connected inverter with LCL filter in s-

domain can be derived as shown in Fig. 3(a). In this figure, 

KP_inner is the proportional controller in the inner loop. 

Considering Fig. 3(a), adequate controller design is quite 

complicated due to interacting loops. In order to simplify the 

design procedure, an equivalent model with decoupled 

regulating loops would be desirable. The model in Fig. 3(a) 

can be simplified by adding capacitor voltage (vC) to output 

signal of the transfer function KP_inner, and by replacing 

feedback signal iC with i1-ig as shown in Fig. 3(b). 

Using the equivalent transformations presented in [1] 

and [10], the block diagram of Fig. 3(a) can be transformed 

into Fig. 4. Gx1(s) and Gx2(s) transfer functions are given by 

 

Vdc

VSC
Z1 Z2

Z3

ig

ic

Vg

Zg

VpccVinv

i1

PWM

( )dG s ( )iG s refi_P innerK

igic

 
Fig. 2.  Configuration of a single grid-connected inverter with LCL filter. 
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Hence, according to Fig. 4, the current loop gain T(s) 

can be derived as 
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(5) 

As shown in Fig. 5, a grid-connected inverter can be 

modeled by its Norton equivalent circuit, consisting of an 

ideal current source is(s) in parallel with an admittance Yo(s). 

In Fig. 5, the grid is modeled by its Thevenin 

equivalent circuit consisting of an ideal voltage source Vg(s) 

in series with the grid impedance Zg(s). According to this 

figure, the injected grid current ig(s) can be obtained as 

( )
( ) ( )
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pcc

g s

o

v s
i s i s

Z s
  ;  

1
( )

( )
o

o

Y s
Z s

  (6) 

The Norton equivalent current source (is(s)) which is 

equal to short circuit current at PCC (Vpcc=0), can be 

obtained using Fig. 4 as 

( )
( ) ( ) ( )

1 ( )
s ref cl ref

T s
i s i s G i s

T s
   


 (7) 

where Gcl is closed-loop transfer function of control system. 

Also, Zo(s) is equal to inverter output impedance, which can 

be obtained using Fig.4 as 
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Using superposition theorem in Fig. 5, the injected grid 

current ig(s) can be obtained as (9). 
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( ) ( ) ( ) ( )

o
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 
 (9) 

Referring to (9), in order to suppress the grid current 

distortion caused by Vg (s), the magnitude of Zo(s) + Zg(s) 

should be as high as possible. 

 

2.2. Grid Voltage Feedforward Method 
As demonstrated in previous subsection, the grid 

voltage harmonic rejection capability of a grid-connected 

inverter can be achieved by increasing the magnitude of Zo(s) 

+ Zg(s). Since Zg(s) is determined by power grid, only Zo(s) 

can be shaped to achieve the high magnitude of Zo(s) + Zg(s). 

Using grid voltage feedforward method can boost the 

inverter output impedance, praiseworthy. However, this 

method introduces negative phase angle to the control 

system which could lead to instability in weak grids [1]. The 

main idea is introducing a virtual admittance such as Yop(s) 

in Fig. 6 in order to boost the equivalent output impedance

( )oZ s . 
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o op
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o op

Z s Z s
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
; 

1
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op

Z s
Y s
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From (10), it can be seen that ( )oZ s could be 

increased infinitely if the parallel impedance Zop(s) is set to 

−Zo(s). 
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Fig. 4.  The equivalent transformation of control block diagram of the 

grid-connected inverter. 
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Fig. 5.  Equivalent circuit of grid-connected inverter. 
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Fig. 3.  (a) Block diagram of the dual-loop control strategy based on capacitor current feedback. (b) Simplified block diagram of the aforementioned dual-

loop control strategy. 
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Complete analysis about virtual admittance is done in 

[1]. The control block diagram of grid-connected inverter 

with virtual admittance is shown in Fig. 7. In this figure, the 

implementation function of the parallel admittance Gz(s) can 

be expressed as (11) [1]. 
2

1 _

_

( ) 1
( )

P inner d

z

P inner

s L C sCK G s
G s

K

 
  (11) 

2.3. Proposed Grid Voltage Feedforward Method 

As shown in (11), Gz(s) has a second-order derivative 

element which increases the noise sensitivity. Hence, the 

implementation function can be closely approximated as 

_

_

( ) 1
( ) ( )

P inner d

z z

P inner

sCK G s
G s G s

K


   (12) 

Using (12), Fig. 7 and signal flow graph (SFG), the 

shaped output impedance ( )oZ s  can be obtained as 

2
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(13) 

The main challenge in implementation of grid 

voltage feedforward method is that this method introduces 

negative phase angle to the control system which could lead 

to instability in weak grids. Typical frequency response of 

the inverter output impedance Zo(s) and the shaped output 

impedance ( )oZ s are plotted in Fig. 8. The parameters which 

are used for these plots are related to inverter1 parameters in 

Table 1 and Set II parameters in Table 2. As shown in Fig. 8, 

the shaped output impedance ( )oZ s has higher magnitude 

than inverter output impedance Zo(s) which validates the 

harmonic rejection capability of traditional grid voltage 

feedforward method. However, a deep phase lag is 

introduced as shown in phase plot of ( )oZ s . The system will 

be stable if the phase margin (PM) in the intersection point 

of Zg(s) and ( )oZ s ( fi ) to be a possitive value, i.e., PM > 0 

[1], [26]. The PM is expressed as 

PM 180 [ ( ) ( )]g i o iZ f Z f     (14) 
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Fig. 6.  Equivalent circuit of grid-connected inverter including virtual 

admittance Yop(s). 
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Fig. 7.  The equivalent transformation of control block diagram of the 
grid-connected inverter with grid voltage feedforward method. 

 
Fig. 8.  Frequency response of inverter output impedance Zo, shaped output 

impedance Z'o and proposed output impedance Zo_pro. 

 

Therefore, to improve stability-robustness, it is 

necessary to boost the phase angle of ( )oZ s to acquire 

sufficient PM. In this paper, a simple and improved grid 

voltage feedforward method is proposed which solves the 

problem of traditional method. 

According to (13) ( )oZ s is composed of two parts, i.e. 

Zo(s) and a fractional part. Zo(s) is determined by control 

system and LCL filter. Therefore, if Zo(s) is modified in 

order to enhance phase angle of ( )oZ s , then the loop gain 

will change which is not desirable. Besides, increasing the 

phase angle of ( )oZ s is limited in this method due to stability 

constraint. However, the second part of (13) can be used for 

this purpose because it is introduced due to feedforward path 

and has not significant effect on main loop gain. Referring 

(13), the second part of ( )oZ s is written as 

2 2

_

1 _

1
( ) [ ]

( ) ( )
1

( )

p

C d P inner d

L C P inner d

Z s
Z G s K G s

Z Z K G s

 



 

 (15) 

The frequency response of 
2pZ  is plotted in Fig. 9. As 

shown in this figure, it introduces a deep phase lag about -90° 

in lower frequencies. The main reason for this phase lag is 

related to fractional part in denominator of (15). The 

fractional part is given by (16). 
2
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p f
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 (16) 

The frequency response of
2_p fZ  is plotted in Fig. 10. 

As shown in this figure, the magnitude of 
2_p fZ   is very 

close to unity in lower frequencies. In fact, it is a bit greater 

than 1, which is shown in zoomed area. In lower frequencies, 

Gd can be neglected (e.g. Gd =1) and therefore,
 2_p fZ  can be 

written as (17). 
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In frequency domain,
 2_p fZ  can be written as 
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Fig. 9.  Frequency response of second part of the inverter output impedance 

(
2pZ  ): traditional method and proposed method. 
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(18) 

If
1

1
L

C



 , then the real part of

2 _ ( )p fZ j  will be 

greater than 1, (  2 _ ( ) 1p freal Z j  ). Aforementioned 

constraint is confirmed at lower frequencies in nearly all 

cases because the filter capacitor C, has a very small value 

in comparison with inverter-side inductor L1, as in our case 

study. When real part of
2_p fZ  is greater than 1 in lower 

frequencies,
2pZ   has a negative real part which causes phase 

lag. A proportional gain can be used to prevent this phase 

lag. If a proportional gain that is smaller than 1 inserted in 

the feedforward path, denominator of (15) will have a 

positive real part and phase lag will be mitigated. The 

proportional gain can be selected as 

2 _

1

( )
m

p f

G
Z j




 (19) 

It should be noted that the proportional gain Gm 

should not be selected much smaller than 
2 _

1

( )p fZ j
 since 

it reduces the magnitude of inverter output impedance in 

lower frequencies. However, if in a specific case, 

2 _ ( )p fZ j  to be smaller than 1 in lower frequencies, then 

there is no need to add any proportional gain. The 

proportional gains for inverters (Gm) can be calculated using 

(19). Using parameters in Table 1 and Set II parameters in 

Table 2 the gains are calculated as Gm1 ≤ 0.988, Gm2 ≤ 0.956 

and Gm3 ≤ 0.979 for first, second and third inverters, 

respectively. Regarding calculated values, the proportional 

gain is selected Gm=0.95 for all three inverters. The 

frequency response of proposed 
2pZ  for inverter1 is also 

plotted in Fig. 9. As shown in this figure, the phase lag is 

mitigated in lower frequencies. 

According to aforementioned analysis, the proposed 

output impedance Zo_pro can be represented as 
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C d P inner d
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L C P inner d
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 (20) 

The frequency response of the proposed inverter 

output impedance Zo_pro is also shown in Fig. 8. It is clearly 

shown that the phase angle of Zo_pro is boosted in 

comparison with ( )oZ s , praiseworthy. Indeed, by boosting 

the phase angle of inverter output impedance, the system 

stability is guaranteed according to (14). It is the main 

advantage of the proposed grid voltage feedforward method 

with respect to traditional one. According to magnitude plot 

of Fig. 8, the magnitude of Zo_pro is smaller than ( )oZ s in 

frequencies below 150 Hz, especially in frequencies below 

50 Hz. It is not a big challenge because generally harmonic 

components in the grid voltage have frequencies higher than 

150 Hz (third harmonic). In fact, the proposed method 

achieves a trade-off between the stability and harmonic 

rejection capability of grid-connected inverters. With the 

proposed method, the grid-injected current harmonics 

caused by grid voltage harmonics can be effectively 

suppressed while the stability is also guaranteed under weak 

grid condition. The equivalent block diagram model of the 

system with proposed grid voltage feedforward method is 

shown in Fig. 11. 

 
 

 
 

 
Fig. 10.  Frequency response of

2_p fZ . 
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Fig. 11.   Block diagram of dual-loop control strategy based on capacitor current feedback with the proposed grid voltage feedforward method. 

 

3. Modeling and Control of Multi-Parallel Grid-
Connected Inverters 

3.1. System Description 
A set of N-parallel LCL-filtered grid-connected 

inverters is shown in Fig. 1. The dynamics of these inverters 

are coupled due to the grid impedance. The equivalent 

circuit of the N-parallel inverters of Fig. 1 is shown in Fig. 

12, where Z1i, Z2i and Z3i (i = 1…N) are inverter-side 

inductor impedance, grid-side inductor impedance and 

capacitor impedance, respectively, all for i-th inverter. 

Moreover, i1i, i2i and i3i are inverter-side current, grid-side 

current and capacitor current, respectively. The vinv-i is 

inverter output voltage and ig is grid-injected current. 

3.2. Modeling 
Multivariable control loops corresponding to three 

parallel grid-connected inverters with LCL filters that 

coupled due to the grid impedance in a microgrid are shown 

in Fig. 13. This is the Multiple Input Multiple Output 

(MIMO) version of the Single Input Single Output (SISO) 

control loop of Fig. 11. In this figure, ( )iG s is the matrix 

transfer function that contains the controllers Gi(s); ( )dG s is 

the diagonal matrix transfer function that contains the delay 

transfer function Gd(s);
_P innerK is the matrix transfer 

function of the inner loop regulators; ( )G s is the matrix 

transfer function representing the relation between inverter-

side currents (i1i ; i=1,2,3) and inverter output voltages (vinv-i; 

i=1,2,3). Due to coupling effect, this matrix transfer 

function contains diagonal and non-diagonal elements which 

will be obtained in the next subsection. 

Z11 Z21

Z31

Z12 Z22

Z32

Z1n Z2n

Z3n

i11 i21

i31

i12 i22

i32

i1n i2n

i3n

Vg

Zg

VpccVinv_1

Vinv_2

Vinv_n

ig

 
Fig. 12.  The equivalent circuit of the N-parallel inverters. 

3.3. Calculation of the Matrix Transfer Function 

Matrix transfer function ( )G s is represented in (21). 

This matrix has non-diagonal elements since each inverter 

output voltage vinv_i influences the output current of other 

inverters. The elements of the matrix transfer function ( )G s

are calculated using superposition and Thevenin equivalent 

circuit theorems. 

1

111 11 12 1

212 21 22 2

_1 1 2

( )

...

...

...... ... ... ... ...

...

n inv

invn

invn

inv nn n n nn

i G s v

vi G G G

vi G G G

vi G G G

 

    
    
     
    
    
      

 
(21) 

 

The diagonal elements are regarded as the transfer 

functions between the inverter-side current and its own 

output voltage. Accordingly, for example G11 can be 

calculated if grid voltage and all the inverter output voltages 

vinv_i are supposed to be zero except vinv_1. For this purpose, 

the auxiliary circuit of Fig. 14 is derived from Fig. 12. In 

this circuit, the output current is i11 and the only voltage 

source is vinv_1. Therefore, the diagonal element G11, is 

directly obtained as follows: 

11

11

1inv

i
G

v
  (22) 

    11 23 13 33 22 12 32 21 31

1

gZ Z Z Z Z Z Z Z Z Z


         

 

Similarly, other elements of the matrix transfer 

function ( )G s are calculated as presented in Appendix. 

4. Control System Design 

In order to determine the interaction between loops 

of a MIMO system, relative gain array (RGA) method can 

be used [27]. The RGA of a non-singular square matrix

( )G s is defined as 

(0). (0) TG G     (23) 

Where . denotes element-by-element multiplication 

and (0)G is the matrix ( )G s in the steady-state condition 

(ω=0). The RGA is a square matrix which has some unique 

properties, i.e. the sum of its rows as its columns are equal 

to 1. If diagonal elements of the RGA matrix be close to 

unity, the system is diagonally dominant. In other words, 

interaction of loops in the system is relatively low. Since in 

described control loops, only matrix transfer function ( )G s

has non-diagonal elements, therefore, the RGA of this 

matrix should be calculated. By using parameters given in  
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Fig. 13.  Multivariable control loops for three parallel grid-connected inverters with LCL filters. 
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Z31

i11

Vinv_1

Z22

Z12 Z32

Z23

Zg
Z13 Z33

 
Fig. 14.  Auxiliary circuit of the three parallel inverters provided that 

grid voltage and all inverter voltages vinv-i are zero except vinv-1. 
 

Table 1, the matrix transfer function (0)G can be calculated 

as: 

1.7757 0.3738 0.2804

(0) 0.3738 2.7103 0.4673

0.2804 0.4673 2.1495

G

  
 

  
 
     

(24) 

Therefore, the RGA matrix can be easily calculated 

as: 

(0). (0)

1.0654 0.0374 0.0280

0.0374 1.0841 0.0467

0.0280 0.0467 1.0748

TG G   

  
   
 
   

 
(25) 

According to calculated RGA matrix, diagonal 

elements are close to unity and non-diagonal elements are 

close to zero. Hence, if cut-off frequency of each main loop 

designed as high as possible, the interaction of loops can be 

neglected. It should be noted that with this assumption, the 

coupling due to the grid impedance remains because any 

diagonal elements of matrix ( )G s , for example G11, includes 

the elements of other inverters (Z12, Z22, Z13, Z23 and etc.). 

However, if in another case study, the diagonal elements of 

RGA matrix be far from unity, the pre-compensator matrix 

can be used to reduce the interactions [27]. In order to 

design the inner loop and outer loop controllers, the control 

system block diagrams of three parallel grid-connected 

inverters are shown in Fig. 15(a)-(c). In these figures G11, 

G22 and G33 are diagonal elements of ( )G s . Also, the PR 

controller as (26) is used due to its high gain at fundamental 

frequency. 

Table 1 

Parameters of the inverters and grid 

Parameters of the inverter1 

Input DC voltage, Vdc_1 360 V 

Inverter-side impedance 

Z11 (R11, L11) 

L11=330 µH 

R11=0.2 Ω 

Grid-side impedance 

Z21 (R21, L21) 

L21=330 µH 

R21=0.3 Ω 

Impedance of filter capacitor 

Z31 (R31, L31) 

C31=10 µF 

R31=0.2 Ω 

Sampling frequency 30 kHz 

Parameters of the inverter2 

Input DC voltage,Vdc_2 360 V 

Inverter-side impedance 

Z12 (R12, L12) 

L12=1 mH 

R12=0.1 Ω 

Grid-side impedance 

Z22 (R22, L22) 

L22=1 mH 

R22=0.2 Ω 

Impedance of filter capacitor 

Z32 (R32, L32) 

C32=13 µF 

R32=0.3 Ω 

Sampling frequency 30 kHz 

Parameters of the inverter3 

Input DC voltage,Vdc_3 360 V 

Inverter-side impedance 

Z13 (R13, L13) 

L13=600 µH 

R13=0.3 Ω 

Grid-side impedance 

Z23 (R23, L23) 

L23=200 µH 

R23=0.1 Ω 

Impedance of filter capacitor 

Z33 (R33, L33) 

C33=10 µF 

R33=0.2 Ω 

Sampling frequency 30 kHz 

Parameters of the grid 

Grid Voltage, Vg (RMS) 220 V 

Fundamental frequency f0 50 Hz 

Grid impedance  

Zg (Rg, Lg) 

Lg=1.3 mH 

Rg=0 Ω 
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Fig. 15.  Control system block diagram (a) Inverter1. (b) Inverter2. (c) Inverter3. 

 

2 2

0

( ) r
i p

k s
G s k

s 
 


 (26) 

where, 0 02 f    and 0f is the fundamental frequency. 

5. Simulation Results 

In this section, a single phase microgrid with three 

parallel grid-connected inverters with LCL filter is simulated 

using MATLAB/Simulink software. The simulation results 

are analyzed to validate the theoretical study in previous 

sections and different aspects of the proposed method are 

investigated. The key parameters of the inverters and grid 

are given in Table 1. 

5.1. Sinusoidal Grid Voltage Condition 
In the first step, to show the necessity of considering 

the coupling effect in multi-parallel grid-connected inverters, 

two simulations with and without considering the coupling 

effect are performed in sinusoidal grid voltage condition. 

The control parameters of Set I in Table 2 are designed 

without considering the coupling effect of three inverters. In 

other words, the block diagram of Fig. 11 is used for design 

of controllers of each inverter, individually. The magnitudes 

of reference injected currents (iref) of these inverters are 20, 

30 and 40A, respectively and the corresponding phase 

angles are 0°. The bode diagrams of the total equivalent 

output impedance ( 1 2 3eq o o oZ Z Z Z ) and the grid 

impedance are shown in Fig. 16. Note that, the grid voltage 

feedforward method is not applied in this step. According to 

(14), if Zg and Zeq intersect at fi, PM must be a positive value 

to show the system stability [1], i.e. 

PM 180 [ ( ) ( )]g i eq iZ f Z f     (27) 

As shown in Fig. 16, the PM has a negative value at 

intersection point (860 Hz) which shows the connection of 

three parallel inverters is unstable. In Fig. 17(a)-(c), the 

simulation results for single grid-connected inverter are 

shown for each inverter. As shown in these figures,

Table 2 
Parameters of the controllers 

SET I 

Parameters of the controllers of inverter1 Parameters of the controllers of inverter2 Parameters of the controllers of inverter3 

Kp_inner 7.35 Kp_inner 37.2 Kp_inner 15.2 

Kp 0.72 Kp 1.29 Kp 0.65 

Kr 350 Kr 233 Kr 281 

SET II 

Parameters of the controllers of inverter1 Parameters of the controllers of inverter2 Parameters of the controllers of inverter3 

Kp_inner 5.37 Kp_inner 10.6 Kp_inner 6.24 

Kp 0.66 Kp 0.34 Kp 0.60 

Kr 318 Kr 66.7 Kr 267 
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all three inverters are stable when they are connected to the 

grid, individually. Total harmonic distortion (THD) of each 

inverter injected current is given in Table 3 (case 1). The 

simulation results for parallel connection of all three 

inverters to the grid, with previous control parameters, are 

shown in Fig. 18(a)-(c). As shown in these figures, although 

the individual connection of each inverter to the grid is 

stable, parallel connection of inverters to the grid will be 

unstable which validates the theoritical results of Fig. 16. 

The THD of each inverter injected current when all three 

inverters are paralleled is also given in Table 3 (case 2). The 

simulation results show that consideration of coupling effect 

in multi-parallel grid-connected inverters is necessary. 

In the next step, Set II control parameters listed in 

Table 2 is used for simulation. The controller parameters are 

designed with consideration of coupling effect as shown in 

Fig. 15(a)-(c). The bode diagrams of the total equivalent 

output impedance and the grid impedance are shown in Fig. 

19. As shown in this figure, PM has a positive value at the 

intersection point (700 Hz) which shows that the connection 

of three parallel inverters is stable. 

The injected currents of three inverters are shown in 

Fig. 20(a)-(c). It can be seen that, despite differences in 

inverters and their control parameters, injected currents 

track their reference values. The THD of each inverter 

injected current when all three inverters are paralleled and 

with consideration of the coupling effect is also given in 

Table 3 (case 3). Fig. 20 (d) shows the total grid-injected 

current which is exactly in phase with the PCC voltage and 

tracks the sum of reference currents thanks to PR controllers. 

 

 

 The simulation results show that consideration of 

coupling effect in multi-parallel inverters is necessary and 

also validate the proposed control system in Fig. 15. Also, 

the analytical results obtained by impedance-based stability 

criterion in Fig. 16 and Fig. 19 are validated by simulation 

results. The negative PM at intersection point leads to 

system instability as shown in Fig. 18 and on the other hand, 

positive PM leads to system stablity as shown in Fig. 20.  

 

 
Fig. 16.  Bode diagrams of the total equivalent output impedance Zeq and 

the grid impedance without considering coupling effect. 
 

 

  
(a) (a) 

  
(b) (b) 

  
(c) (c) 

Fig. 17.  Simulated waveforms for single grid-connected inverter without 

considering the coupling effect among inverters in design of controller 
parameters. (a) Injected current by inverter1 (b) Injected current by inverter2 

(c) Injected current by inverter3. 

Fig. 18.  Simulated waveforms for three parallel grid-connected inverters 

without consideration of coupling effect among inverters in design of 
controller parameters. (a) Injected current by inverter1 (b) Injected current by 

inverter2 (c) Injected current by inverter3. 
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Table 3 
The THD of each inverter injected current (sinusoidal grid voltage 

condition) 

Case study I21 I22 I23 

Case1- Single grid-connected inverter 

without considering the coupling effect 

in controller design process 

3.83% 1.65% 1.48% 

Case2- Three grid-connected inverters 

without considering the coupling effect 

in controller design process 

47.31% 34.16% 42.55% 

Case3- Three grid-connected inverters 

with considering the coupling effect in 

controller design process 

3.46% 0.82% 1.92% 

 

 

5.2. Non-Sinusoidal Grid Voltage Condition 
In order to validate the harmonic rejection capability 

of the proposed grid voltage feedforward method, two case 

studies are simulated in non-sinusoidal grid voltage 

condition: 1) without application of grid voltage 

feedforward method; 2) with application of proposed grid 

voltage feedforward method. In this case study, the grid 

voltage is distorted by third, fifth, seventh, ninth, 11th and 

13th harmonics. The magnitudes of harmonic components 

with respect to the grid fundamental voltage (220 V) are 4%, 

3%, 2%, 1.5%, 1% and 0.5%, respectively, and the 

corresponding phase angles are 0°, 90°, 0°, 270°, 90°, and 

105°.  

Fig. 21(a)-(d) show the simulation results when the 

grid voltage feedforward method is not used. The THD of 

each inverter injected current and also, total grid-injected 

current are given in Table 4 (Case 1). It can be seen that the 

grid-injected current of each inverter and also, the total grid-

injected current are distorted and power quality is not 

acceptable at all. 

The simulation results for proposed grid voltage 

feedforward method are shown in Fig. 22(a)-(d). It can be 

seen that the power quality of injected currents are improved 

effectively thanks to proposed grid voltage feedforward 

method. The THD of each inverter injected current and total 

grid-injected current when the proposed grid voltage 

feedforward method is used are also given in Table 4 (case 

2). 

 
Fig. 19.  Bode diagrams of the total equivalent output impedance Zeq and 

the grid impedance with consideration of coupling effect. 

 

 

 
(a) 

(b) 

 
(c) 

 
(d) 

Fig. 20.  Simulated waveforms for three parallel grid-connected inverters 

with consideration of coupling effect among inverters in design of 

controller parameters. (a) Injected current by inverter1. (b) Injected current 

by inverter2. (c) Injected current by inverter3. (d) Total grid-injected 

current (ig) and PCC voltage (Vpcc). 

 

As expected, boosting of inverter output impedance 

using proposed method has a great impact on quality 

improvement of grid-injected current and grid voltage 

harmonic rejection capability. Simulation results validate the 

capability of the proposed grid voltage feedforward method 

in non-sinusoidal grid voltage condition which is compatible 

with analytical results of Fig. 8. 
 

5.3. Non-Sinusoidal Grid Voltage in Weak Grid 
Condition 

In the next step, a comparative study is done, which 

validates superiority of the proposed grid voltage 

feedforward method with respect to traditional one in weak 

grid condition with Lg=6mH. As said earlier, traditional grid 

voltage feedforward method introduces a deep phase lag 

which could lead to instability when grid impedance 

increases. Bode diagrams of the total equivalent output 

impedance with traditional and proposed method are shown 

in Fig. 23 with grid inductance equal to Lg=6mH. As shown 

in Fig. 23, when the traditional method is used, PM has a 

negative value at intersection point (328 Hz) which shows 

that the system is unstable. In contrast, when the proposed 

grid voltage feedforward method is used, the system has a 

positive PM. The simulation results for traditional grid  
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

  
(d) (d) 

Fig. 21.  Simulated waveforms for three parallel grid-connected inverters 

without grid voltage feedforward. (a) Injected current by inverter1. (b) Injected 

current by inverter2. (c) Injected current by inverter3. (d) Total grid-injected 
current (ig). 

Fig. 22.  Simulated waveforms for three parallel grid-connected inverters 

with grid voltage feedforward. (a) Injected current by inverter1. (b) 

Injected current by inverter2. (c) Injected current by inverter3. (d) Total 
grid-injected current (ig). 

 

voltage feedforward method are shown in Fig. 24(a)-(d). 

The harmonic components of the grid voltage are same as 

Section 5.2. i.e. the magnitudes of harmonic components 

with respect to the grid fundamental voltage (220 V) are 4%, 

3%, 2%, 1.5%, 1% and 0.5%, respectively, and the 

corresponding phase angles are 0°, 90°, 0°, 270°, 90°, and 

105°. 

 

Table 4 
The THD of each inverter injected current (non-sinusoidal 

grid voltage condition) 

Case study I21 I22 I23 Ig 

Case1- Three grid-

connected inverters 

without using grid 

voltage feedforward 

method 

19.60% 10.93% 9.44% 11.57% 

Case2- Three grid-

connected inverters 

with using proposed 

grid voltage 

feedforward method 

4.97% 2.85% 2.60% 2.86% 

 

It can be seen that the injected currents are distorted 

seriously, which is compatible with Fig. 23. As stated in 

Section 2, the traditional grid voltage feedforward method 

introduces negative phase angle to the control system which 

could lead to instability in weak grids. The introduced 

negative phase angle could affect the PM and in case of high 

grid impedance causes negative PM as shown in Fig. 23. 

The THD of each inverter injected current and total injected 

current are shown in Table 5 (Case 1). 

 

Table 5 

The THD of each inverter injected current (non-sinusoidal grid 

voltage in weak grid condition) 

Case study I21 I22 I23 Ig 

Case1- Three grid-

connected inverters 

with using traditional 

grid voltage 

feedforward method 

14.18% 6.06% 7.50% 8.39% 

Case2- Three grid-

connected inverters 

with using proposed 

grid voltage 

feedforward method 

5.59% 3.77% 4.02% 4.12% 
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Also, the simulation results for proposed grid voltage 

feedforward method are shown in Fig. 25(a)-(d). The THD 

of each inverter injected current and total injected current 

when the proposed grid voltage feedforward method is used 

are also given in Table 5 (case 2). It should be noted that the 

quality of injected currents are improved, praiseworthy. As 

shown in Fig. 23, the phase angle increment using proposed 

method, causes robust stability of the grid connected system 

against grid impedance variation. The simulation results in 

last two case studies show the effectiveness of the proposed 

grid voltage feedforward method in comparison with 

traditional one. 

 

5.4. Presence of Non-linear Local Load 
The quality of grid-injected current is examined in 

case of non-linear load connection. In addition to the grid 

voltage harmonic distortions, another source of current 

harmonics in a microgrid are nonlinear loads. Hence, to 

evaluate the effect of non-linear load on the quality of grid-

injected current, a thyristor bridge rectifier is connected at 

the PCC. In this case, the grid voltage is considered 

sinusoidal and the grid inductance is Lg=1.3mH. The load of 

the thyristor rectifier is an RL load (R=5Ω, L=1 mH). 

 

 
Fig. 23.  Bode diagrams of the total equivalent output impedance Zeq with 

traditional and proposed methods and also the grid impedance. 

 

 

  
(a) (a) 

  
(b) (b) 

  
(c) (c) 

  
(d) (d) 

Fig. 24.  Simulated waveforms for three parallel grid-connected inverters 
with traditional grid voltage feedforward with Lg=6mH. (a) Injected current 

by inverter1. (b) Injected current by inverter2. (c) Injected current by 

inverter3. (d) Total injected current (ig). 

Fig. 25.  Simulated waveforms for three parallel grid-connected inverters 
with proposed grid voltage feedforward with Lg=6mH. (a) Injected current by 

inverter1. (b) Injected current by inverter2. (c) Injected current by inverter3. 

(d) Total injected current (ig). 
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Also, the firing angle of the rectifier is set to 45°. Fig. 

26(a) shows the non-linear load current which its harmonic 

content is extremely high. The grid-injected current without 

using the grid voltage feedforward method is shown in Fig. 

26(b). As shown in this figure, the harmonic distortion is 

created due to non-linear load connection. The THD value 

of the grid-injected current is equal to 5.25%. Fig. 26(c) 

shows the grid-injected current with using the proposed grid 

voltage feedforward method. As shown in this figure, the 

harmonic distortion of the grid-injected current is mitigated 

and the THD value is reduced to 2.04% thanks to proposed 

grid voltage feedforward method. As shown in this case 

study, the grid voltage feedforward method can improve the 

quality of the grid-injected current even in case of non-linear 

load connection.  

 

5.5. The Impact of Grid Frequency Variation 
Finally, the impact of grid frequency variation on the 

grid-injected current with and without using the proposed 

grid voltage feedforward method is investigated in this 

subsection. The previous system contains three parallel grid-

connected inverters is simulated considering sinusoidal grid 

voltage and neglecting grid impedance to demonstrate the 

impact of grid frequency variation. Magnitudes of the 

reference currents (iref) for the invertrs are 20, 30 and 40A, 

respectively. A step change in grid frequency is occurred at 

t=0.205s from 50Hz to 49 Hz. Fig. 27(a) shows the total 

grid-injected current as well as grid voltage when the grid 

voltage feedforward method is not used. As shown in this 

figure, the total grid-injected current tracks the sum of 

reference currents but there is a bit phase shift between the 

grid voltage and grid-injected current after frequency 

variation. This leads to a bit reactive power exchange.  

 
(a) 

 
(b) 

 
(c) 

Fig. 26.  Simulated waveforms in case of nonlinear load connection. (a) 
nonlinear load current (b) grid injected current without using the proposed 

method. (c) Grid injected current with using the proposed method. 

 

 
(a) 

 
(b) 

Fig. 27.  Simulated waveforms in case of grid frequency variation.             

(a) Without using grid voltage feedforward method. (c) With using 
proposed grid voltage feedforward method. 

 

Fig. 27(b) shows the total grid-injected current as well 

as grid voltage using proposed grid voltage feedforward 

method. As shown in this figure, the total grid-injected 

current is exactly in phase with grid voltage and tracks the 

sum of reference currents in spite of frequency variation. 

Indeed, by boosting the inverter output impedance the effect 

of grid voltage is suppressed and the quality of grid-injected 

current is remained satisfactory even in case of grid 

frequency variation. 

6. Conclusion 

In this paper, an improved grid voltage feedforward 

method is proposed which enhances the grid voltage 

harmonic rejection capability in multi-parallel grid-

connected inverters. By using the proposed method, the 

negative aspects of the traditional method, that are 

introducing negative phase angle to the control system and 

ignoring coupling effect among inverters, are eliminated. 

The mathematical analysis shows that a proportional gain 

can be used to prevent phase lag in the control system and 

improve the system stability in case of grid impedance 

variation. Also, in the proposed method, the coupling effect 

among inverters is considered and the system is precisely 

modeled as a multivariable control system. The presented 

model facilitates the study of coupling effect among 

inverters with different characteristics such as LCL filters 

and rated powers. Three parallel grid-connected inverters 

are considered as a case study. Then, the control system 

design guidelines are suggested based on multivariable 

control theory with considering the proposed grid voltage 

feedforward method and coupling effect among inverters. 

Numerous simulations were performed which validate the 

effectiveness of the proposed grid voltage feedforward 

method in comparison with the traditional one in case of 

grid impedance variation. Theoretical analysis and 

simulation results confirm the validity of the model and the 

necessity to considering the coupling effect among inverters. 

Phase shift 

No Phase Shift 
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