Test Platform for Photovoltaic Systems with Integrated Battery Energy Storage Applications

Spataru, Sergiu; Martins, João Pedro Rodrigues; Stroe, Daniel-loan; Sera, Dezso

Published in:
Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)

DOI (link to publication from Publisher):
10.1109/PVSC.2018.8548122

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract — We present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected inverter, which emulates the charge regulator and battery bank. The real-time control of the two power electronic converters is implemented in a Simulink/dSpace platform, together with the real-time simulation model of the battery pack. The input power can be provided by either a high performance PV emulator or by a physical PV array. The platform enables real-time testing of PV+BES control systems and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility is difficult to achieve with real BES systems, due to electrical safety and cost constrains of high power charge regulators and battery packs.

Index Terms – Battery Emulator, Energy storage, Photovoltaic systems, Test equipment.

I. INTRODUCTION

The total installed photovoltaic (PV) capacity is estimated to have passed 400 GWp worldwide, at the end of 2017 [1], which although significant, it represents less than two percent from the total electricity demand [2]. To accelerate and support the penetration of PV energy, requires the modernization of the electrical grid, including the deployment of new energy storage systems. Recent policies and incentives aim to increase the application of energy storage for new and existing power plants, but also at household level for increase self-consumption [3]. The prospects of combining PV and storage deployments is predicted to reach 769MW of installed power by the year 2020 [3]. In this regard, integrating PV generation with energy storage can present many opportunities: i) new grid support functions and market participation from large PV plants with active energy reserves; ii) improved self-consumption and lower-energy bill for residential users; iii) support for adoption of electric vehicles.

Integrating battery energy systems (BES) with PV systems, requires development of both lower- and higher-level control functions, such as battery management systems (BMS) and energy management systems (EMS), specific to the requirements of PV applications [4]. However, researching and testing control systems for such PV+BES systems under realistic operation conditions can be difficult to achieve in practice. First, testing and integrating different battery technologies and capacity sizes, in a PV system, is time consuming and costly. Moreover, battery packs for residential PV applications are in the kWh range [5], and can pose an electrical safety risk. In this situation, battery emulators are ideal for research and development purposes.

Previous research on battery emulators focuses mainly on automotive applications. The growing necessity of installed capacity creates a challenge for research and development of hybrid and electrical vehicles. In addition, the need for reliable tests, performed under the same operating conditions, can be compromised by such changing behavioural devices. One such proposed battery emulator [6] uses lead acid batteries connected to several DC/DC bi-directional converters. Aided by an impedance-based battery model, the system can simulate the behaviour of other battery types.

In [7] a Lithium-ion battery emulator is presented. A bi-directional DC/DC converter serves as a power stage for emulating the battery behaviour, assisted by a non-linear battery model that provides the voltage reference for the converter control.

In [8], [9] a pre-existing unidirectional controlled DC source is converted into a battery emulator capable of two-quadrant operation. The DC source is controlled via a circuit-based battery model, allowing power hardware in the loop (PHIL) testes.

In [10], [11] a battery emulator based on three interleaved step-down DC/DC converters is presented. A Model Predictive Control (MPC) based design, is applied for control of the converter. Furthermore, the battery model is based on local model network (LMN) approach and a robust impedance control is applied.

Very commonly, PV and BES systems are coupled via a DC connection, as shown in Fig. 1. They are typical in residential PV [12] and electric vehicle applications, such as the Tesla Powerwall 2 [13].

As can be observed in Fig. 1, the system consists of: i) a PV voltage boost stage responsible for the PV MPP tracking; ii) an inverter stage implementing the grid connection and DC link voltage control; iii) and a bi-directional DC/DC charge regulator of the battery pack, implementing the BMS and EMS control.
In this work, we propose to emulate the DC/DC charge regulator with a grid connected full-bridge AC/DC converter shown in Fig. 2. This converter is capable of bi-directional power flow modelling the charge and discharge of the battery.

Moreover, a battery model implemented in the dSpace controller of the full-bridge converter, simulates in real-time the static and dynamic response of the battery pack. The battery emulator is then integrated/DC coupled into a dual-stage single-phase PV inverter test system, which was previously developed [14].

This platform allows for power hardware-in-the-loop tests (PHIL) for different solar irradiance and temperature profiles, different PV module types and array sizes, as well as different battery sizes and technologies.
The P_{batt} (magenta) represents the battery pack charge/discharge power profile, where positive power values signify battery discharging. P_g (green) represents the total power transferred to the grid by the PV BES system. Whereas P_{dc} (black) represents the power transferred to and from the DC link by the battery emulator/grid converter.

In Fig. 3 (a), a control test is first performed to illustrate the impact on the grid power of the fast change in irradiance.

This serves as a comparison for Fig. 3 (b) and (c), which corresponds to the cases of Fig. 1 and Fig. 2, where a BES system is employed. It can be observed that from 9.5 to 11 seconds the reduction of 200 W/m2 in irradiance, originated a reduction in the delivered power of 167W. In addition, as no power losses are considered, the P_{pv} generated matches the grid power. However, on the same time interval of Fig. 3 (b) and Fig. 3 (c) the implemented BES systems are capable of compensating the power drop, thus they smoothen the grid power. Moreover, the two systems have a nearly identical operation, with the battery emulator – P_{dc} in Fig. 2, being capable of replicating the operation of the BES - P_{batt} in Fig. 1.

The simulation results suggest that the BES can be emulated by a full/bridge grid connected inverter, and further analysis can be performed in the hardware implementation of the test platform.

III. EXPERIMENT SETUP

The experimental procedure consists of three different tests that aim to validate and illustrate the versatility of the proposed battery emulator. The experimental test setup, shown in Fig. 4, consists of an 800W DC/DC boost converter and two back-to-back connected 2.2kW Danfoss VLT-FC302 inverters, connected to the grid through LC filters and a 1:1 transformer. One of the converters will operate in PV inverter mode, whereas the other as a battery emulator.

The control system has been implemented in Simulink and runs in real-time on the dSpace 1103 controller board. The boost converter control is implemented on a Texas Instruments TMS320F335 digital signal processor.

The PV input of the system can be connected to a 1000V/40A high bandwidth PV simulator with a linear post-processing unit, or directly to a 0.8kWp PV string. The PV inverter functionality of the PV systems has been implemented and tested previously [14].

For the first and second experimental tests, a 3.3V Li-Ion battery with 61 cells in series and a capacity per cell of 2.1Ah was considered. As for the third test, a 2V lead acid battery with 60 cells in series and a capacity per cell of 7.2 Ah, is also considered. More details about the implemented batteries can be found on Table 1.

<table>
<thead>
<tr>
<th>Table 1: Battery Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>E_0 [V]</td>
</tr>
<tr>
<td>R [Ω]</td>
</tr>
<tr>
<td>Q [Ah]</td>
</tr>
<tr>
<td>K [Ω]</td>
</tr>
<tr>
<td>A [V]</td>
</tr>
<tr>
<td>B [Ah]</td>
</tr>
</tbody>
</table>

Fig. 3. Power flow simulation of: (a) system without BES; (b) PV+BES system of Fig. 1; (c) PV+BES emulator of Fig. 2, for a changing irradiance profile.
C. Test 1: Operation of the proposed emulator for smoothing the grid power

In the first test, the performance of the battery emulator, operating for PV power smoothing, is analysed and compared with the simulation results from Fig. 3. The test is performed under the same conditions of temperature and irradiance and for the same battery model [17]. The Regatron PV simulator, shown in Fig. 4, is programmed with the same PV array parameters and irradiance profile used in the simulation, and connected to the PV+BES emulator.

As mentioned, a first test, Fig. 5 (a), is used as control to compare the system with and without BES. Looking at Fig. 5 (a) and Fig. 5 (b) it is evident the capability of the BES in smoothing the grid power. Moreover, since this is a single-phase system higher DC-link capacitance is required for its operation. This can significantly constrain the capability of the system in emulating the fast charge/discharge profile of the battery pack.

The experimental result of Fig. 5 (b), for a step irradiance dip, with a slope of ± 400 W/m²/s, prove that the proposed emulator is fast enough in compensating the power fluctuations. This further validates the applicability of the AC/DC converter in operating as a battery emulator. Also by comparing the simulation of Fig. 3 (b) and Fig. 3 (c) with the experimental results of Fig. 5 (b) a nearly identical operation is obtained.

D. Test 2: Battery Models comparison

The second test consists of a comparison of three different Li-Ion battery models: the previously used empirical model (EM) [17], the Thevenin based model (TM) [21] and a general power/efficiency model (ESM). The three battery models were subject to the same charge/discharge profile of ± 500W with a pulse width of 600 seconds for a test duration of 1500 seconds.

![Fig. 4. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator.](image)

![Fig. 5. Power flow experiment of: (a) system without BES; (b) PV+BES emulator of Fig. 2, for a changing irradiance profile.](image)
As can be observed from Fig. 6 the system can emulate the basic features of each battery model type. When comparing the dynamic behaviour, both at discharge (left) and charge (right) conditions, the superior performance of TM models is evident. Due to the presence of the RC network, the TM can predict better the dynamic voltage response of the battery, to a current excitation. Nevertheless, the simpler EM, also important for battery simulation and with simpler parameter extraction, prove to be properly emulated.

As for the SOC estimation, presented in Fig. 6, the EM model presents slower response when compared to TM and ESM based models. In fact, the difference between the EM model and the fastest response model (ESM) is about 8.6% and 5.7% for discharge and charge respectively.

IV. CONCLUSION

In this work, we proposed a test platform for safe and cost-effective-real-time implementation and testing of PV+BES applications for different battery technologies and storage sizes. The case scenario of a BES smoothing the PV oscillations was used to illustrate through simulation models and experimental implementation, that a full-bridge grid connected inverter can operate as a battery emulator for PV+BES applications. Furthermore, three battery models of different complexity and two battery technologies were tested to further illustrate the versatility of the proposed emulator.

This solution, when compared to previously presented DC/DC counterparts, allows for higher power density and reduced cost. This system also allows full freedom of customization, being possible to implement virtually all types of battery models for a variety of technologies and chemistries, something usually not possible in most commercial battery emulators.

Future research intends to better assess and understand the performance of the battery emulator when dynamic real-life mission profiles are considered.

ACKNOWLEDGEMENT

This work was supported by Aalborg University, Otto Mønsteds Fond and EUDP Denmark within the research project PV+Storge Operation and Economics in distribution systems (PVST), project nr 12551.
REFERENCES

