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Abstract  

 

The widely-used Reynolds equation to simulate fluid lubrication in hip implants by Goenka and Booker has 

velocity terms accounting just for the rotational motion of the femoral head. The present study, therefore, 

hypothesizes that modifying velocity terms being used in Reynolds equation, which capture both translation 

and rotation of the femoral head, can affect resultant fluid pressure, fluid-film thickness and friction force. 

To assess such hypothesis, a computational model of a hip implant based on multibody dynamics 

methodology and Reynold equation is developed. It is illustrated that modifying velocities can cause friction 

forces to increase, significantly, compared to Goenker and Booker’s. Moreover, the minimum film thickness 

and maximum fluid pressure undergo notable decreases during the swing and stance phases, respectively.  

 

Keywords: Multibody dynamics; Reynolds equation; hydrodynamic lubrication; Total hip replacement 

 

1. Introduction 

 

Friction opposes relative motion of bearing surfaces of a hip implant, sliding against each other. It leads to 

energy loss and bearing surfaces undergo material loss due to wear occurrence, which can eventually lead to 

failure of hip implants [1-2]. A remedy to facilitate such relative motion and prevent surfaces to damage is to 

add lubricant to the joint. As the synovial capsule is preserved in total hip replacement, hip arthroplasty 

works under lubrication condition [3]. The fluid-film lubrication is built due to the convergence of a film in 

both space and time, which are associated with so-called wedge-film action and squeeze-film action, 

respectively [4-6]. Such film actions are function of the velocities of bearing surfaces and bearing 

geometries.  
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Nomenclature 

 
 

 
  

c Clearance size Q1 and Q2 The points on the head and 

cup surfaces, respectively 

D Non-dimensional hydrodynamic 

parameter 
𝑅𝑐  The radius of the cup 

𝐞 = (𝒆𝒙, 𝒆𝒚, 𝒆𝒛)  The eccentricity vector in Cartesian 

coordinate system 
𝑡  Time (s) 

𝑒 = ‖𝐞‖  The size of eccentricity vector Uϴ and Uφ The tangential velocity 

components at Q1 

�̇�  The time rate of the size of the 

eccentricity vector 
𝐕𝑂𝑏

  The velocity vector of the 

head center 

𝐞𝑟𝑒
, 𝐞𝜃𝑒

 and 𝐞𝜑𝑒
 The local orthogonal unit vectors at 

the head center  
𝐕𝑄1

  The velocity vector at point Q1 

𝐞𝑟, 𝐞𝜃, 𝐞𝜑 The local orthogonal unit vectors 𝐕𝑄1
𝑛   Normal velocity vector at the 

point Q1 

𝐅  The force vector 𝐕𝑄1
𝑡

= (𝑉𝑄1,𝑥
𝑡 , 𝑉𝑄1,𝑦

𝑡 , 𝑉𝑄1,𝑧
𝑡 ) 

Tangential velocity vector at 

the point Q1 

𝐟 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)  Physiological force vector and its 

components 
𝐕𝑄1/𝑂𝑏

  The velocity vector of point 

Q1 with respect to the head 

center 

𝐟𝜇 = (𝑓𝑥
𝜇
, 𝑓𝑦

𝜇
, 𝑓𝑧

𝜇
)  Friction force vector yn The state variable of the 

system at time tn 

𝐟𝐿 = (𝑓𝑥
𝐿 , 𝑓𝑦

𝐿 , 𝑓𝑧
𝐿)  Resultant fluid force vector   

ℎ  Fluid-film thickness β The cup angle  

hmin Minimum film thickness 𝜃 and 𝜑  Azimuthal and polar angles 

𝐌  The mass matrix of the system 𝜃𝑒  and 𝜑𝑒 Azimuthal and polar angles of 

the eccentricity vector 

Ob and Oc Centers of the femoral head and 

cup, respectively 
∆𝜃 and ∆𝜑  Element size in azimuthal and 

polar directions 

P Fluid pressure 𝛀 = (𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧)  Angular velocity vector 

𝑃𝑖
𝑛 , 𝑖 = 1…6  The pressure profile at time tn and 

the ith increment calculation in the 

Cash-Karp method 

μ Lubricant viscosity  

�̈�  The acceleration vector 𝜏𝜃 and 𝜏𝜑 Shear stresses 

q The size of time step 𝛁  Del (nabla) in the spherical 

coordinate system 

 

Analysis of lubricated hip implants was pioneered by Goenka and Booker in 1980 [7], where a finite 

element model to explore hydrodynamic lubrication was developed, followed by Ai and Chen (1996) while 

solving Reynolds equation using the finite difference method [7-8]. A couple of years later, Jin and Dowson 

(1999) performed a hydrodynamic analysis of hip arthroplasties under three-dimensional loadings and 

motion, taking both entraining and squeeze film into account [9]. Jin and his colleagues made use of a 

general film thickness equation already developed by Hamrock and Dowson to evaluate the factors 

influencing film thickness, e.g. clearance size. Hamrock and Dowson equation accounts for the pressure-

dependent property of the lubricant and elastic deformation of joint components, obtained for the fluid 

lubrication of a ball on a plane [10]. In the next decade, the study of elastohydrodynamic lubrication in hip 

prostheses became very demanding as it was found out that elastic deformation of hip components contribute 



 

 

to fluid-film lubrication significantly. Jin and his colleagues, Jagatia and Jalali-Vahid, published two papers 

on this topic while one of them concentrated on just entraining motion and another squeeze-film motion [11-

12]. The elastic deformation of hip components was treated by means of the column method for polyethylene 

cup and the displacement coefficients matrix acquired using finite element method. Elastohydrodynamic 

lubrication of hip prostheses for different materials, loading and motion, transient and steady-state modes, 

Newtonian and non-Newtonian lubricant were studied in details so far [13-20]. However, these studies 

neglected dynamics and determined magnitude and location of minimum film thickness using a static 

equilibrium relation between forces generated due to fluid pressure and physiological loadings. Fluid flow in 

artificial hip joints is formulated using Reynolds equation presented by Goenka and Booker [7], in a 

spherical coordinate system. They also provided the velocity terms of the journal in both radial and 

azimuthal directions. However, those velocities do not account for the translational motion of the femoral 

head, but just rotational motion. According to the definition of velocities of corresponding points, each fixed 

to one of bearing surfaces, [21], such velocities result from rigid body motion, including both translational 

and rotational motions of joint components. Moreover, it is well-known that the femoral head freely moves 

inside the cup, resulting in six-degrees of freedom (DOF) that corresponds to 3D translations and rotations. 

Regarding Reynolds equation, one can argue that small variations in the velocities could significantly 

contribute to fluid pressure and minimum film thickness, as important tribological parameters.  

Therefore, the present study hypothesizes that modifying the velocity terms used in Reynolds equation, 

which address both translation and rotation of the femoral head, can affect fluid pressure, fluid-film thickness 

and friction force. To do so, the Reynolds equation reported by Goenka and Booker are modified such that 

3D velocities of the femoral head, representing both rotational and translational motions are included. A 

multibody dynamics model is constructed, accounting for the dynamics of the femoral head subjected to the 

normal walking condition and fluid flow is formulated using Reynolds equation. The acetabular cup is 

assumed stationary while the femoral head is free to move. Both hip components are considered rigid and the 

squeeze-film action is neglected for the sake of brevity and simplicity. The finite difference method is 

utilized to discretize the governing equation of lubricant and the Gauss-Seidel relaxation scheme is used to 

solve discretized equations while the multi-grid method reduces computational time. Fluid-structure 

interaction between the femoral head and fluid lubrication is taken into account making use of a partitioned 

method. Finally, results obtained by Reynolds equation reported by Goenka and Booker are compared to 

those acquired by the modified one by the present study.   

 

2. Mathematical modeling  

 

A malfunctioned natural joint is replaced by a hip prosthesis to relieve pain and restore hip joint function to 

carry imposed loaded and provide normal human mobility. As the synovial capsule is preserved in total hip 



 

 

replacement, the hip implant works under lubrication condition [3]. Moreover, such an artificial human joint 

is a clearance joint due to a difference between the radii of its bearing components [22]. Hence, this is a 

mechanical system with six degrees of freedom (DOF). The mathematical formulation of hip joint motion, 

therefore, is to take care of the femoral head motion as well as fluid-film lubrication generated due to 

rotational and translational relative motion under three-dimensional physiological loadings measured in vivo. 

Relative rotational movement drags fluid into the fluid-film domain resulting in fluid forces that separate the 

contacting bodies.  

 

2.1. Multi-body dynamics formulation 

 

In this section, a dynamic model of a hip implant based on the multibody dynamics methodology is set up. 

The acetabular cup is assumed to be stationary while the femoral head can freely move inside the cup 

domain [23]. There are no constraints imposed to the system, but the femoral head motion is controlled by 

the geometry of the articulating bodies, fluid pressure and actuators, e.g. physiological forces and motion. 

The mass of the femoral head is incorporated into the model [24]. According to in vivo physiological 

loadings and motion reported by Bergmann et al., three-dimensional loadings are applied at the center of the 

head and the angular motions of the femoral head are assigned to be those reported in vivo [25-26]. 

Therefore, degrees of freedom of the system is reduced to three, which correspond to the translational motion 

of the femoral head. The governing equations of motion are written using Newton’s second law for 

multibody rigid dynamics given by [27-28] 

 

𝐌�̈� = 𝐅 (1) 

 

in which M is the mass matrix of the system. �̈� represents the acceleration vector while the term on the right 

side denotes the force vector applied on the system. In order to compute the movement of the system, one 

therefore needs to determine the force vector, F. The forces consist of physiological loadings and those due 

to gravitational acceleration and fluid-film lubrication, which are considered in the next section.  

 

2.2. Computational fluid dynamics and Modified velocity terms  

 

The Navier-Stokes equations consist of three equations of motion, containing four unknowns, namely 

pressure and three velocity components. One more equation, enabling us to determine unknowns, is the 

equation of continuity provided by the principle of mass conservation. The classical Reynolds theory of fluid 

lubrication simplified the Navier-Stokes equations based on physical observations of fluid lubrication flow. 



 

 

The lubricant film is assumed to be very thin with negligible curvature and the fluid inertia and body forces 

were neglected [4, 21].  

 

 

Fig. 1. A schematic representation of a lubricated hip implant 

 

Implementing the aforementioned simplifications to Navier-Stokes equations, the resultant Reynolds 

equation in a spherical coordinate system can be written as follows, [7] 

 

𝛁 ∙ (
ℎ3

12𝜇
𝛁𝑃) = 𝛁 ∙ (ℎ�̅�) +

𝜕ℎ

𝜕𝑡
 

(2) 

 

where h is the fluid-film thickness at each point of the fluid domain (see Fig.1), which is identified by ϴ, φ, 

i.e. the azimuthal and polar angles of the spherical coordinate system, and c, i.e. clearance size. Fluid 

pressure is denoted by P while �̅� represents the tangential velocity vector at point Q1, which belongs to the 

ball surface, assuming the velocity of point Q2 locating on the cup surface is zero. The first term on the right-

hand side of Eq. (2) is the mathematical representation of wedge-film action while the second term, so-called 

squeeze-film action, is the relative velocity by which two bodies approach each other in the perpendicular 

direction. In the present study, the squeeze-film action is neglected to only study the effect of velocity terms 

of hydrodynamic lubrication. By substituting the velocity vector into the above equation, assuming a 

constant fluid viscosity, 𝜇, and doing some mathematical manipulation, the Reynolds equation for a spherical 

joint, like the artificial hip joint, is written by [7] 



 

 

 

1

𝑅𝑐
2 [

1

sin𝜃

𝜕

𝜕𝜑
(

ℎ3

12𝜇

𝜕𝑃

𝜕𝜑
) +

1

sin𝜃2

𝜕

𝜕𝜃
(

ℎ3

12𝜇
sin𝜃

𝜕𝑃

𝜕𝜃
)]

=
1

2𝑅𝑐sin 𝜃
[ℎ cos 𝜃 𝑈𝜃 + ℎ sin𝜃

𝜕𝑈𝜃

𝜕𝜃
+ ℎ

𝜕𝑈𝜑

𝜕𝜑
+ 𝑈𝜃 sin𝜃

𝜕ℎ

𝜕𝜃
+ 𝑈𝜑

𝜕ℎ

𝜕𝜑
 ] 

(3) 

 

Goenka and Booker, [7], reported velocity terms, 𝑈𝜃 and 𝑈𝜑, as follows: 

 

𝑈𝜃 = −𝑅𝑐𝜔
𝑥 sin𝜑 + 𝑅𝑐𝜔

𝑦 cos𝜑 (4) 

 

𝑈𝜑 = −𝑅𝑐𝜔
𝑥 cos𝜑 cos 𝜃 − 𝑅𝑐𝜔

𝑦 sin𝜑 cos 𝜃 + 𝑅𝑐𝜔
𝑧 sin𝜃 (5) 

 

However, in these velocities, the translational motion of the femoral head is neglected.  

Taking both rotation and translation in account, tangential velocity 𝐕𝑄1
𝑡  in the Cartesian coordinate system is 

derived in the present study so that the velocity terms in Eq. (3) in radial and azimuthal directions can be 

given by  

 

𝑈𝜃 = 𝐕𝑄1
𝑡 ∙ 𝐞𝜃,      𝑈𝜑 = 𝐕𝑄1

𝑡 ∙ 𝐞𝜑 (6) 

 

where 𝐕𝑄1
𝑡  represents the tangential velocity at any point, Q1, illustrated in Fig. 2. As the femoral head can 

freely move, the velocity of point Q1 consists of two terms, namely translation and rotation. The velocity is 

written with respect to the center of cup, as given by (Fig. 2) 

 

𝐕𝑄1
= 𝐕𝑂𝑏

+ 𝐕𝑄1/𝑂𝑏
 (7) 

 

where 𝐕𝑂𝑏
 stands for the velocity of the center of ball (femoral head) with respect to the cup center, which is 

  

𝐕𝑂𝑏
=

𝑑

𝑑𝑡
(𝐞) = �̇�𝐞𝑟𝑒 + 𝑒(�̇�𝑒𝐞𝜃𝑒

+ �̇�𝑒𝑠𝑖𝑛𝜃𝑒𝐞𝜑𝑒
) 

(8) 

 

e depicts the eccentricity vector owing to the translation of the femoral head, as illustrated in Fig. 2, and the 

subscript ‘e’ refers to the direction of the eccentricity vector. The rotational motion of the point Q1 with 

respect to the local coordinate system attached to the center of the head is written by  

 



 

 

𝐕𝑄1/𝑂𝑏
= 𝛀 × 𝑂𝑏𝑄1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (9) 

 

in which 𝛀 = (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧) is the angular velocity vector and the positon vector of the point Q1 in the local 

coordinate system can be given by 

 

𝑂𝑏𝑄1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑂𝑐𝑄1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐞 (10) 

 

while its position vector in the reference coordinate system attached to the cup center, 𝑂𝑐𝑄1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, is as follows:  

 

𝑂𝑐𝑄1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑅𝑐 − ℎ)𝐞𝑟 (11) 

 

in which 𝐞𝑟 is the unit vector pointing from the origin of the reference coordinate system to the point Q1 and 

Rc is the cup radius. According to the eccentricity vector and Eq. (11), Eq. (10) can be recast as 

 

𝑂𝑏𝑄1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑅𝑐 − ℎ) × (sin𝜃 cos𝜑 𝑖̂ + sin 𝜃 sin𝜑 𝑗̂ + cos 𝜃 �̂�) − ‖𝐞‖ × (sin𝜃𝑒 cos𝜑𝑒 𝑖̂

+ sin𝜃𝑒 sin𝜑𝑒 𝑗̂ + cos 𝜃𝑒 �̂�) 

(12) 

 

The normal and tangential components of the velocity, respectively, at the point Q1 can, therefore, be given 

by (see Fig. 2) 

  

𝐕𝑄1
𝑛 = (𝐕𝑄1 ∙ 𝐞𝑟)𝐞𝑟 (13) 

 

𝐕𝑄1
𝑡 = 𝐕𝑄1 − 𝐕𝑄1

𝑛  (14) 

 



 

 

 

 

Fig. 2. A 2-D representation of the contribution of rotational and translational motions in the tangential 

velocity, 𝐕𝑄1
𝑡 , at point Q1 

 

Now that the modified version of velocities are determined, let’s return to Eq. (3) to discuss the solution of 

Reynolds equation. The first-term on the right side of the equation (3) is the mathematical representative of 

wedge-film action. Regarding the geometry of hip articulation, fluid-film thickness, h, can be written as a 

function of clearance size c, eccentricity vector 𝐞 = (𝑒𝑥 , 𝑒𝑦, 𝑒𝑧), and the location of point Q2 specified by ϴ 

and φ as follows 

 

ℎ(𝜑, 𝜃) = 𝑐 − 𝑒𝑥sin𝜃cos𝜑 − 𝑒𝑦sin𝜃sin𝜑 − 𝑒𝑧cos𝜃 (15) 

 

In order to solve numerically the fluid-flow equation, the surface of the acetabulum cup is discretized into 

𝑛 × 𝑚 elements with the size ∆𝜃 × ∆𝜑 while the thickness of each element is ℎ(𝜑, 𝜃) at any time step (ti). 

The finite-difference method is employed to discretize Eq. (3), [29]. In order to solve the discrete Reynolds 

equation, the pressure along the edge of the cup is set to be atmospheric pressure. Moreover, the Swift-

Stieber boundary condition is applied to satisfy the cavitation boundary, i.e. 
𝜕𝑃

𝜕𝜃
=

𝜕𝑃

𝜕𝜑
= 0 and the cavitation 

pressure is set to be the atmospheric pressure, [21]. It is worth noting that the atmospheric pressure is 

assumed zero as it does not affect the solution, but facilitate satisfying boundary conditions. The resultant 

discretized equations are solved using the Gauss-Seidel relaxation method along with the multi-grid method, 



 

 

[30-31]. The resultant forces due to fluid pressure that are imposed to the femoral head are computed by 

performing the following integrations over the fluid-film domain. 

 

𝑓𝑥
𝐿 = 𝑅𝑐

2 ∬𝑃(sin 𝜃)2cos𝜑𝑑𝜃𝑑𝜑 

𝑓𝑦
𝐿 = 𝑅𝑐

2 ∬𝑃(sin𝜃)2sin𝜑𝑑𝜃𝑑𝜑 

𝑓𝑧
𝐿 = 𝑅𝑐

2 ∬𝑃sin𝜃cos𝜃𝑑𝜃𝑑𝜑 

 

 

(16) 

 

2.3. Friction force due to fluid shear stresses  

 

Friction forces due to the fluid shear stresses are generated and imposed to the moving body. These forces 

contribute to the dynamics and tribology of bearing surfaces. Shear stresses are given as follows [14] 

 

𝜏𝜃 =
𝜇

𝑅𝑐

𝜕𝑢𝜃

𝜕𝜃
= 𝜇

𝑈𝜃

ℎ
+

ℎ

2𝑅𝑐

𝜕𝑃

𝜕𝜃
 

(17) 

 

𝜏𝜑 =
𝜇

𝑅𝑐𝑠𝑖𝑛𝜃

𝜕𝑢𝜑

𝜕𝜑
= 𝜇

𝑈𝜑

ℎ
+

ℎ

2𝑅𝑐𝑠𝑖𝑛𝜃

𝜕𝑃

𝜕𝜑
 

(18) 

 

The resulting friction forces are computed by performing an integration of shear stresses over the bearing 

surfaces as given by 

 

𝑓𝑥
𝜇

= −𝑅𝑐
2 ∬[𝜏𝜃sin𝜃cos𝜃cos𝜑 − 𝜏𝜑sin𝜑sin𝜃]𝑑𝜃𝑑𝜑 

𝑓𝑦
𝜇

= −𝑅𝑐
2 ∬[𝜏𝜃sin𝜃cos𝜃sin𝜑 + 𝜏𝜑cos𝜑sin𝜃]𝑑𝜃𝑑𝜑 

𝑓𝑧
𝜇

= −𝑅𝑐
2 ∬−𝜏𝜃sin𝜃sin𝜃𝑑𝜃𝑑𝜑 

 

 

(19) 

 

while integrands of above integrations are given as functions of tangential velocity, pressure variation and 

fluid-film thickness at each point, e.g. point Q1 illustrated in Fig. 1, of the domain of interest, as follows: 

 

𝜏𝜃sin𝜃cos𝜃cos𝜑 − 𝜏𝜑sin𝜑sin𝜃 = 𝜇
𝑉𝑄1,𝑥

𝑡

ℎ
sin𝜃 +

ℎ

2𝑅𝑐

𝜕𝑃

𝜕𝜃
sin𝜃cos𝜃cos𝜑 −

ℎ

2𝑅𝑐sin𝜃

𝜕𝑃

𝜕𝜑
sin𝜑sin𝜃 

(20) 

 



 

 

𝜏𝜃sin𝜃cos𝜃sin𝜑 + 𝜏𝜑cos𝜑sin𝜃 = 𝜇
𝑉𝑄1,𝑦

𝑡

ℎ
sin𝜃 +

ℎ

2𝑅𝑐

𝜕𝑃

𝜕𝜃
sin𝜃cos𝜃sin𝜑 +

ℎ

2𝑅𝑐sin𝜃

𝜕𝑃

𝜕𝜑
cos𝜑sin𝜃 

(21) 

 

−𝜏𝜃sin𝜃sin𝜃𝑑𝜃 = 𝜇
𝑉𝑄1,𝑧

𝑡

ℎ
sin𝜃 −

ℎ

2𝑅𝑐

𝜕𝑃

𝜕𝜃
sin𝜃sin𝜃 

(22) 

 

Therefore, the external force applied to the femoral head due to both fluid lubrication and 3-D physiological 

loadings can be calculated summing the force components presented by Eqs. (16) and (19) as well as the 

physiological force vector, f, reported in Fig. 3, that can be written in a vector form as 

 

𝐅 = 𝐟 + 𝐟𝜇 + 𝐟𝐿 + 𝑚𝐠 (23) 

 

2.4. Fluid-structure interaction and the solution procedure 

 

Regarding the description of solving the Reynolds equation, Eq. (3), and boundary conditions applied to the 

fluid domain (see the last paragraph of the section 2.2.), the non-dimensional format of the discrete Reynolds 

equation is finally written in the following matrix format: 

 

𝐶1𝑃𝑖−1,𝑗 + 𝐶2𝑃𝑖,𝑗 + 𝐶3𝑃𝑖+1,𝑗 + 𝐶4𝑃𝑖,𝑗−1 + 𝐶5𝑃𝑖,𝑗+1 = 𝐶6 (24) 

 

where the coefficient matrices can be found in previous works [9]. A Gauss-Seidel relaxation scheme is used 

along with the multi-grid method, i.e. a three-level V cycle represented in Fig. 3. The Gauss-Seidel method 

computes the updated pressure at each node, 𝑃𝑖,𝑗
𝑛+1, at time tn+1 using pressure magnitudes of surrounding 

nodes at previous time step, tn, and next time step, tn+1, as can be seen from Eq. (25).  

 

𝐶2𝑃𝑖,𝑗
𝑛+1 = 𝐶6 − 𝐶1𝑃𝑖−1,𝑗

𝑛+1 − 𝐶3𝑃𝑖+1,𝑗
𝑛 − 𝐶4𝑃𝑖,𝑗−1

𝑛+1 − 𝐶5𝑃𝑖,𝑗+1
𝑛  (25) 

 

 

Fig. 3. Three-level V cycle multi-grid method 

 

Interaction between the synovial fluid and the femoral head is also dealt with and explained as follows. 

The dynamics of the hip articulation as a function of time is a result of interacting bearing structures and 



 

 

fluid lubricant, which is a multi-physics phenomenon. The present study develops a partitioned approach to 

take into account the interaction between fluid and structure (FSI). Therefore, the previously developed 

algorithms of solving each of both fluid and structure as two separate domains are used while they 

communicate each other by transferring data through their moving interface. The method to solve the 

equations of motion is a modified adaptive Runge-Kutta-Fehlberg method, i.e. RK45, which is the so-called 

Cash-Karp method. The partitioned method developed in the present study is embedded into the Cash-Karp 

method. A schematic representation of the method is depicted in Fig. 4. Using the state space representation, 

the second order equations of motion, Eq. (1), can be rewritten as a first order equations set as  

 

𝑑𝐲

𝑑𝑡
= 𝐇(𝑡, 𝑦) 

(26) 

 

where y is the state variable of the coupled system, which is given by 𝐲 = (𝐪, �̇�) in which q stands for the 

position vector of the femoral head in the Cartesian coordinate system attached to the center of the cup and �̇� 

its translational velocity vector. Therefore, y and H can be written as follows 

 

𝐲 = [𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3] (27) 

 

𝐇 = [�̇�1, �̇�2, �̇�3,
𝐹𝑥
𝑚

,
𝐹𝑦

𝑚
,
𝐹𝑧
𝑚

] 
(28) 

 

in which 𝐅 = [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧] that is calculated at each time step according to Eq. (23) and m presents the mass of 

the femoral head. Moreover, the implementation of the partitioned procedure is presented in the adaptive 

Runge-Kutta-Fehlberg method, Eq. (29), in which yn is the state variable of the system at the time tn while 

yn+1 represents the state variable of the system at next time step. At the previous time step i, the pressure 

profile is 𝑃1
𝑛 . Regarding the Runge-Kutta-Fehlberg method, after updating the external time-dependent force 

and rotational motion, the first increment, k1, based on the slope at the initial point of the time interval is 

calculated with the pressure profile 𝑃1
𝑛 . The updated pressure is computed as to be 𝑃2

𝑛 , as observed in Fig. 4-

2. The second increment is obtained at the time 𝑡𝑛 + 𝑐2∆𝑡, where ∆𝑡 represents the size of time step, updated 

state variables 𝑦𝑛 + ∆𝑡(𝑎21𝐤1) and the pressure profile 𝑃2
𝑛 . This procedure continues until all increments 

according to the Runge-Kutta orders 4 and 5 are determined. The state variables of the system at time tn+1 is 

computed for both corresponding orders, 4 and 5. An error is determined by comparing the state variables 

obtained from each order of the Runge-Kutta method. Moreover, a threshold error, i.e. 0.1 μ, is defined to 

which the previous error is compared. If the error magnitude of the adaptive Runge-Kutta method is greater 

than the threshold error, the time step is halved and the computation is redone. This process continues until 

the solution converges. It is worth noting that the size of time step, ∆𝑡, for the dynamic analysis is 1 μs.  



 

 

 

𝐲𝑛+1 = 𝐲𝑛 + 𝑞 ∑𝑏𝑖𝐤𝑖

𝑠

𝑖=1

 

𝐤1 = 𝐇(𝑡𝑛, 𝐲𝑛) 𝑤𝑖𝑡ℎ 𝑃 = 𝑃1
𝑛  

𝐤2 = 𝐇(𝑡𝑛 + 𝑐2∆𝑡, 𝐲𝑛 + ∆𝑡(𝑎21𝐤1)) 𝑤𝑖𝑡ℎ 𝑃 = 𝑃2
𝑛  

⋮ 

𝐤𝑖 = 𝐇(𝑡𝑛 + 𝑐𝑖∆𝑡, 𝑦𝑛 + ∆𝑡(∑𝑎𝑖𝑗𝐤𝑗

𝑖−1

𝑗=1

))  𝑤𝑖𝑡ℎ 𝑃 = 𝑃𝑖
𝑛  

 

 

 

(29) 

 

 

Fig. 4. A schematic representation of a partitioned approach developed for fluid-structure interaction  

 

2.5. A demonstrative example and model validation  

 

The dynamic model developed in the previous section is used to study hydrodynamic lubrication in hip 

arthroplasty to assess the hypothesis of this study. A standard size hip implant with the cup radius 14 mm 

and the clearance size 30 μm is chosen, [24, 30]. The femoral head and the acetabular cup are assumed rigid. 

The lubricant is considered synovial fluid with a viscosity of 0.5 Pas to facilitate the numerical convergence. 

Three-dimensional physiological forces, Fig. 5, and angular motions obtained in vivo by Bergmann et al. are 

used, [25]. Moreover, the cup surface is discretized into several elements and the accuracy and convergence 

study are performed to evaluate the mesh density in order to solve the fluid equation using a finite difference 



 

 

scheme. Consequently, a mesh grid of 250×250 elements on the cup surface is constructed. The 

computational method is stable and solutions to the equations always achieve. In the next section, the 

acquired values for velocity terms are compared to those from Goenka and Booker formulation. Moreover, 

the effect of modified velocities on fluid pressure and film thickness is investigated. The initial location of 

the femoral head for both solutions is (1.4, -5.57, 29.32) μm and its initial velocity is (-0.0052, 0.0018, 

00.0006) m/s. Both models with the same initial conditions are simulated over four walking cycles to reach 

stable results. The outcomes acquired for the fourth walking cycle are used to evaluate the hypothesis of the 

present study.  

 

 

Fig. 5. Physiological adopted forces with        fz (superior-inferior (SI));         fy (anterior-posterior (AP));              

fx (medial-lateral (ML)) for the gait cycle. 

 

In order to validate the model, the contribution of the modified velocity terms is ignored and a simplified 

problem introduced in [9] is considered with Goenka and Booker terms. In this problem, a hip implant 

subjected to just one angular velocity component and the vertical load component was considered. This 

problem is equivalent to the one of a sphere rolling on a plane that was studied by Kapitza [32]. In this early 

classical analysis, it was assumed that pressure was developed by hydrodynamic action only in the 

convergent film. The analytical solution by Kapitza can be rearranged to define a non-dimensional 

hydrodynamic parameter, D given in Table 1. The same set-up as presented in [9] was arranged and acquired 

results were compared to those reported by Jin and Dowson [9]. As it can be seen in Table 1, the minimum 

fluid-film thicknesses for different non-dimensional hydrodynamic parameter, D, comply with those from [9, 

32].  

 

 



 

 

Table 1. A comparison of the developed method with previous studies for the problem presented in [9]. 

 hmin/c 

*𝐷 =
(
𝑅𝑐
𝑐

)
2
𝜔𝑍𝜇𝑅𝑐

2

𝑊𝑌   
Kapitza [32] Goenka and 

Booker [7] 

Jin and Dowson 

[9] 

Present study 

0.0083 0.001  0.0021 0.0021 

0.01 0.0054   0.056 

0.0198 0.0070  0.0072 0.0073 

0.0375 0.0213 0.010 0.0156 0.0143 

*𝑊𝑌 = 𝑓𝑧 sin 𝛽 + 𝑓𝑥 cos 𝛽 and 𝜔𝑍 = −𝜔𝑥 sin 𝛽 (𝛽 =
𝜋

4
) 

 

3. Results and discussion  

 

The velocity terms are calculated based on Eqs. (4) and (5), Goenka and Booker [7], as well as Eq. (6), the 

current study. Figs. 6a and 6b represent Uϴ-velocity profiles on the surface of the femoral head acquired with 

the modified velocity terms and the old velocities, respectively. It can be seen that Uϴ, Fig. 6a, varies with 

not only φ, but also ϴ while that obtained using Goenka and Booker velocities is just a function of φ. 

Maximum velocities acquired for such velocity components corresponding to modified and old velocity 

terms are 0.0053 and 0.0012 m/s, respectively. In addition to maximum values, minimum speeds are -0.0099 

and -0.0060 m/s corresponding to Fig. 6a and 6b, respectively. The same scenario takes place for the case of 

Uφ-velocity component as velocity profiles, shown in Fig. 6c and 6d, reveal different trends. The 

corresponding maximum speeds are 0.0091 and 0.0060 while the minimum values are -0.0124 and -0.0084 

m/s, respectively. Therefore, it can be concluded that velocities used in the Reynolds equation should include 

both rotational and translational motions and neglecting translational term is not acceptable in calculating 

such velocities. 

 



 

 

 

Fig. 6. Surface plots of velocity terms over the fluid domain: Uϴ (m/s) obtained by (a) modified velocity 

terms and (b) old velocity terms; Uφ (m/s) acquired by (c) modified velocity terms and (d) old velocity terms. 

ϴ and φ are given in degrees.  

  



 

 

 

 Modified velocities, m/s Goenka and Booker’s velocities, m/s 

(a) 𝜑 =
𝜋

2
 

 

(b) 𝜃 =
𝜋

2
 

(c) 𝜑 =
𝜋

2
 

(d) 𝜃 =
𝜋

2
 

Fig. 7. A comparison of velocity terms at two cross sections of the cup, namely φ = 
𝜋

2
 and ϴ = 

𝜋

2
. Velocities 

are determined with angular velocities: ωx = 0.3564, ωy = 0.2348 and ωz = -0.4262 (rad/s). 

 

Moreover, velocities are obtained and plotted in Fig. 7 along two cross sections of the acetabular cup, φ =90˚ 

and ϴ=90˚. In the right-side plot of Fig. 7a, it can be seen that Uϴ gains a constant value acquired from Eq. 

(4) while that from Eq. (6) shown in the plot on the left side provides a varying curve for velocity along the 

cross section defined by φ=90˚. Uϴ and Uφ velocities in these two cross sections, observable in Fig. 7, 

demonstrate that the translational motion of the femoral head affects the tangential velocities contributing to 

the fluid lubrication. In Fig. 7d, Uφ obtained by the Goenka and Booker velocity terms is a constant value 

due to ϴ=90˚, Eq. (5), but the velocity obtained from the modified velocities depicts a variation from -6.9 to 

-4.4 mm/s. It is worth noting that these results are calculated at the first time step of the simulation, i.e. t = 0 

s, where the corresponding physiological angular velocities are as reported in the caption of Fig. 7. 

Moreover, velocity profiles illustrated in Figs. 6 and 7 are not initial conditions of the coupled system, but 

are exactly what the present article aims to address, which is the importance of considering the translational 

motion. The initial conditions applied to the equations of the coupled system are those reported in the section 



 

 

2.5., i.e. the initial position and velocity of the femoral head in the original coordinate system whose origin 

locates at the cup center.  

 

 

Fig. 8. Friction force, due to fluid shear stresses, applied to the femoral head with Goenka and Booker’s 

velocity terms (solid line) and modified velocity terms (dashed line). 

 

Friction force calculated from friction-force components obtained from Eq. (19) are reported in Fig. 8. 

According to the variation seen in velocities, Figs. 6 and 7, it can be deduced that velocity terms can affect 

friction forces since the first term on the right-hand side of Eqs. (20-22) are directly proportional to the 

velocity. In addition, one can argue that pressure and film thickness can be influenced by velocities used in 

Reynold equation. Fig. 8 represents the trend of friction forces over a full walking cycle. The velocities 

obtained by Eq. (6) are greater than those from Eqs. (4) and (5), thereby reasoning that friction forces can be 

greater than those predicted by Goenka and Booker [7]. Both trends show an overall increase of friction 

force until 18% of the gait due to increasing physiological angular velocities before a decrease is observed up 

to the half of the gait. Thereafter, friction force undergoes an increase before decaying again. The friction 

force obtained from the modified velocity terms rises at the end of the walking cycle while that of Goenka 

and Booker’s keeps decreasing. It is worth noting that friction-force values are small compared to those 

resulted from pressure itself. However, these loads contribute to friction-induced vibration and help to satisfy 

no-slip boundary conditions. Generally, the friction increases when film thickness decreases and lubrication 

regime goes from full film to either mixed lubrication or boundary lubrication. Stribeck [33] suggested a 



 

 

model known as the Stribeck model, which can convey the friction behavior of an articulation in different 

lubrication regimes. 

 

 

Fig. 9. Minimum fluid-film thickness obtained with Goenka and Booker’s velocity terms (solid line) and 

modified velocity terms (dashed line). 

 

In addition, the fluid-film thickness, hmin, is a crucial parameter in studying fluid-film lubrication in hip 

implants, from which the regime of lubrication can be determined. Regarding the Lambda number, if hmin is 

three times as big as the equivalent roughness of bearing surfaces, a full-film lubrication is generated, 

thereby keeping bearing components separated from each other [3, 34]. However, if the magnitude of 

minimum-film thickness falls below the roughness value it leads to a boundary lubrication where dry contact 

occurs and the highest friction coefficient and wear coefficient are observed, resulting in higher wear rates of 

articulating surfaces. The mixed lubrication is another possible scenario where surface asperities of two 

components contact each other. Therefore, the effect of velocity terms on minimum fluid-film thickness is 

considered and presented in Fig. 9. Both models show a similar trend, although the film thickness obtained 

from the model with old velocity terms are considerably greater than that with the modified velocities during 

the swing phase. The translation causes the tangential velocity to decrease during the swing phase, which can 

be considered a reason for such a difference observed between results. An opposite scenario can be seen 

during the stance phase where the results associated with the modified velocity terms are greater than those 

acquired from that with the Goenka and Booker velocities. Fluid-film thickness obtained here are less during 

the stance phase, but greater during the swing phase than those reported by Jin and Dowson [9] because the 



 

 

squeeze-film action is neglected in the present study as well as using different loadings and motion, and 

geometrical properties, although the viscosity taken by the present study is bigger than that in [9].   

The elastic deformation of hip components are neglected in the present study as hip components are assumed 

to be made of hard materials, although it is not a physically accepted assumption (see the paragraph after Fig. 

10). If one considers hip components made of alumina with Young’s modulus of 380 GPa, the alumina 

average roughness is 0.001 μm [3]. Therefore, the composite roughness of the couple of bearings is 0.0014 

μm. The minimum film thickness for a full gait, illustrated in Fig. 9, is 0.06 μm and the corresponding 

lambda ratio (λ) computed is  more than 40, which means the type of lubrication regime is fluid-film 

lubrication. Hence, there is no need to take asperity contacts into account. However, if hip components are 

made of CoCrMo with Young’s modulus of 230 GPa, the average roughness is 0.01-0.05 μm and the fluid 

lubrication as considered in the present study can undergo all three lubrication regimes, namely boundary 

lubrication, mixed lubrication and fluid-film lubrication, in such a roughness range somehow. Asperity 

contacts should, therefore, be taken into account. The present study, however, aims to modify velocity terms 

used in Reynolds equation rather than to investigate roughness effects on fluid lubrication and hip 

articulation.  

 

 

Fig. 10. Maximum fluid pressure obtained with Goenka and Booker’s velocity terms (solid line) and 

modified velocity terms (dashed line). 

 

The influence of velocity terms is also considered on the maximum fluid pressure and corresponding 

outcomes are presented in Fig. 9. The general trend shows that the maximum fluid pressure obtained using 



 

 

the modified velocities in Reynolds equation is less than that from Goenka and Booker during the stance 

phase while an opposite scenario is seen during the swing phase. The maximum differences between fluid 

pressures of these two models take place close to two loading peaks. At the second peak, the maximum 

pressure obtained from the old velocity terms shows a 50% increase compared to that of the modified 

velocities. The maximum fluid pressure observed in Fig. 10 is just less than 490 MPa while the minimum 

pressure is 1.5 MPa. Regarding the piezoviscosity phenomenon, the viscosity of many lubricants increases 

with pressure [35]. When surfaces in contact are sufficiently hard, the lubricant pressure may increase 

significantly, as it happens in the problem at hand. It is known that the lubricant loses its liquid character and 

becomes semi-solid under some constraints, e.g. high pressure. It has been reported by Jin and Dowson, [9], 

that it is not clear how synovial fluid may behave under excessive contact pressures. However, the elastic 

deformation of hip components helps the maximum pressure go below 60 MPa for metal-on-metal hip 

implants and 15 MPa for polyethylene hip prostheses, [12-13]. Thus, the elasticity of bearing surfaces 

constituting the hip articulation should be taken into account. It is worth mentioning that the present paper 

does not take elastic deformation of hip components into account, which will be considered in future studies 

using the modified velocity terms.  

Moreover, the governing equations of both multibody dynamics and computational fluid dynamics are 

strongly nonlinear. Such nonlinearity leads to solutions depending upon initial conditions assigned during the 

numerical set-up. In fact, the initial location of the femoral head with respect to the cup in vivo is not known 

and varies according to for example switching from one activity to another. Thus, both maximum fluid 

pressure and minimum film thickness can evolve during few first walking cycles before a stable solution is 

achieved. In the first walking cycle, a high maximum fluid pressure occurs due to the non-stable situation. 

Thereafter, the pressure decreases smoothly until it becomes invariant by walking cycle. It is worth 

mentioning that the problem does not have a unique solution under the same loadings and properties until a 

stable state is achieved after a sufficient number of walking cycles. The effect of number of walking cycles 

on hydrodynamic and elastohydrodynamic lubrication of hip prostheses as well as the stable solution will be 

reported and discussed in another paper.  

 

4. Conclusion 

 

The present study hypothesized that using modified velocity terms, accounting for both the rotational and 

translational motions of the femoral head, can affect velocity terms, resultant fluid pressure, minimum fluid-

film thickness and frictional force. The hypothesis was tested by developing a dynamic model of hip 

arthroplasty based on the multibody dynamics methodology subjected to a normal walking condition. The 

fluid flow was formulated using Reynolds equation and the finite difference method was employed to 

discretize the fluid equation. The Gauss-Seidel relaxation method and multi-grid approach were implemented 



 

 

to solve Reynolds equation. Fluid-structure interaction was considered using a partitioned method. The 

hypothesis of the current study was confirmed reporting considerable differences between modified velocity 

terms and those by Goenka and Booker. Moreover, it was shown that frictional force increased using the 

modified velocities compared to those terms excluding the translation of the femoral head. Although a 

decreasein maximum fluid pressure was observed during the stance phase, fluid pressure rises during the 

swing phase with respect to the case in which the old speed terms were employed. An opposite trend was 

also observed for the minimum film thickness. It can, therefore, be concluded that neglecting the translation 

of the femoral head when computing the velocity of any point on the head surface is not acceptable and that 

future studies should consider using the modified velocities presented in the present study. 
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