

Aalborg Universitet

Statistical and exact schedulability analysis of hierarchical scheduling systems

Boudjadar, Abdeldjalil; David, Alexandre; Kim, Jin Hyun; Larsen, Kim G.; Mikučionis, Marius;
Nyman, Ulrik; Skou, Arne
Published in:
Science of Computer Programming

DOI (link to publication from Publisher):
10.1016/j.scico.2016.05.008

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Boudjadar, A., David, A., Kim, J. H., Larsen, K. G., Mikučionis, M., Nyman, U., & Skou, A. (2016). Statistical and
exact schedulability analysis of hierarchical scheduling systems. Science of Computer Programming, 127, 103-
130. https://doi.org/10.1016/j.scico.2016.05.008

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://doi.org/10.1016/j.scico.2016.05.008
https://vbn.aau.dk/en/publications/fdfd3fcb-8cca-49db-938d-eb93e9339a6f
https://doi.org/10.1016/j.scico.2016.05.008

Statistical and Exact Schedulability Analysis
of Hierarchical Scheduling SystemsI

Abdeldjalil Boudjadar

Computer Science, Aalborg University, Denmark

Alexandre David

Computer Science, Aalborg University, Denmark

Jin Hyun Kim

Computer Science, Aalborg University, Denmark

Kim G. Larsen

Computer Science, Aalborg University, Denmark

Marius Mikučionis

Computer Science, Aalborg University, Denmark

Ulrik Nyman

Computer Science, Aalborg University, Denmark

Arne Skou

Computer Science, Aalborg University, Denmark

Abstract

This paper contains two contributions: 1) A development methodology involving
two techniques to enhance the resource utilization and 2) a new generic multi-
core resource model for hierarchical scheduling systems.

As the first contribution, we propose a two-stage development methodology
relying on the adjustment of timing attributes in the detailed models during the
design stage. We use a lightweight method (statistical model checking) for design
exploration, easily assuring high confidence in the correctness of the models.

IThe research presented in this paper has been partially supported by EU Artemis Projects
CRAFTERS and MBAT.

Email addresses: jalil@cs.aau.dk (Abdeldjalil Boudjadar), adavid@cs.aau.dk
(Alexandre David), jin@cs.aau.dk (Jin Hyun Kim), kgl@cs.aau.dk (Kim G. Larsen),
marius@cs.aau.dk (Marius Mikučionis), ulrik@cs.aau.dk (Ulrik Nyman), ask@cs.aau.dk
(Arne Skou)

Preprint submitted to Elsevier 20th November 2018

Once a satisfactory design has been found, it can be proved schedulable using
the computation costly method (symbolic model checking). In order to analyze
a hierarchical scheduling system compositionally, we introduce the notion of a
stochastic supplier modeling the supply of resources from each component to
its child components in the hierarchy. We specifically investigate two different
techniques to widen the set of provably schedulable systems: 1) a new supplier
model; 2) restricting the potential task offsets. We also provide a way to estimate
the minimum resource supply (budget) that a component is required to provide.
In contrast to analytical methods, we prove non-schedulable cases via concrete
counterexamples. By having richer and more detailed scheduling models this
framework, has the potential to prove the schedulability of more systems.

As the second contribution, we introduce a generic resource model for multi-
core hierarchical scheduling systems, and show how it can be instantiated for
classical resource models: Periodic Resource Models (PRM) and Explicit Dead-
line Periodic (EDP) resource models. The generic multi-core resource model is
presented in the context of a compositional model-based approach for schedulab-
ility analysis of hierarchical scheduling systems. The multi-core framework
presented in this paper is an extension of the single-core framework used for
the analysis in the rest of the paper.

Keywords: Hierarchical Scheduling Systems, Schedulability Analysis,
Resource utilization, Embedded Systems, Uppaal, Model Checking, Statistical
Model Checking, Hybrid Automata, Stopwatch Automata.

1. Introduction

In a hierarchical scheduling systems a number of individual components are
integrated into a single system running on one execution platform. Embedded
hierarchical scheduling systems have reached a maturity level that enables their
actual application on automotive and space systems [34, 19]. A class of analy-
tical methods have been developed for hierarchical scheduling systems [41, 39].
Due to the rigorous nature of analytical methods, they are easy to apply once
proven correct. On the other hand proving the correctness of an analytical
method is in itself a research endeavor. They also suffer from the abstractness
of the models; they do not deal with any detail of the system behavior and thus
grossly overestimate the amount of needed resources. Model-based methodolo-
gies for schedulability analysis [14, 11, 19] allow the modeling of detailed and
complicated behavior of individual tasks, relative to analytical methods. Due to
the complexity and size of the systems, it is not feasible to analyze the complete
system in one model. This leads us to adopt a compositional structure for our
models and the applied analysis.

As part of the compositional description of a hierarchical scheduling system
the resource supply from parent to child component in the hierarchy is des-
cribed using separate resource models. Our resource model is specified in the
form of a transition system, where in contrast to classical resource models we

2

have several supply states. To each supplying state we assign a specific supply
pattern, thus enabling the description of much more complex supply scenarios.
Unlike previous approaches our method enables the description of supply pat-
terns handling multi-core aspects related to typed resources. Typed resources
can be used to describe, among others, the types of CPU cores on homogeneous
and heterogeneous execution platforms. As an example, two different supply
states could specify the supply of respectively 2 and 4 computation cores to the
child component. The resource supply could be preemptive and/or urgent in
order to model the specific behavior of the execution environment. Our generic
resource model can easily be instantiated for classical single-core resource mo-
dels for hierarchical scheduling systems, such as the Periodic Resource Models
(PRM) [42] and Explicit Deadline Periodic (EDP) [24] resource models.

Profiting from the technological advances in model checking, we provide a
model-based methodology for the schedulability analysis of hierarchical schedu-
ling systems. We model tasks, resources, schedulers and suppliers as Stopwatch
Automata (SWA) [15]. The models can be quickly analyzed using statistical
methods (Uppaal SMC), which provide guarantees with a selected statistical
margin. Once a satisfying model design has been found, the model can be
analyzed using symbolic model checking (Uppaal). Our approach aims at in-
creasing resource utilization by: 1) providing a new supplier model where the
supply of resources is delayed as much as possible according to task requests,
2) adjusting task offsets relative to the component period. Our methodology
also has the advantage that it is possible to update the system models such
that they fit a specific system. With a dedicated modeling tool it could even
be manageable for the system engineers to update the models in order to have
a more realistic analysis of the system. In this way, they can utilize detailed
knowledge of the system that they are working with; something that cannot be
achieved with a classical analytical approach.

An example of a hierarchical scheduling system is depicted in Fig. 1. It
includes two top level components Controls and Display and Nav.Ctrl scheduled
according to the Earliest Deadline First (EDF) policy. Each component is cha-
racterized by timing requirements consisting of period and execution time (e.g.
(10, 6) for Nav. Ctrl). The attributes of tasks are similar to the ones of compon-
ents. Task deadlines are the same as the task periods.

According to the CARTS tool [39], the hierarchical scheduling system of
Fig. 1 is not schedulable. However using the specific approaches shown in this
paper, this system can be shown to be schedulable using different offset para-
meters and/or a new resource supplier model.

Symbolic model checking offers absolute certainty that the verified properties
are correct with regards to the model. However, it suffers from state space
explosion and undecidability of certain properties (for a given specification),
thus some models might not be feasible to check and others will take a long
time to verify. Statistical model checking provides high confidence but not
absolute certainty, and the results are obtained much faster than with symbolic
model checking.

This paper is an extension of the conference paper [12], where we presented

3

Avionics

System

Steering

T2(80,6)

Nav. Ctrl

(10, 6)

Controls and Display

(20, 10)

MPD Status Disp.

T10(1000,2)

Navigation

(20, 6)

Radar Ctrl

(20, 2)

EDF

EDF

Flight Data

T1(55,8)

HUD Display

T7(52,6)

MPD HUD Display

T8(52,6)

MPD Tactical Disp.

T9(52,8)

RM

EDF

Radar Tracking

T3(80,2)

Target Sweetening

T4 (40,2)

RM

Figure 1: A hierarchical scheduling systems.

a methodology for compositional schedulability analysis for hierarchical schedu-
ling systems, together with two techniques to enhance the resource utilization.
Like the conference version we keep using the same methodology, as described
in Section 2, to validate the schedulability of hierarchical scheduling systems,
however in this paper we have more rich and expressive models that enable to
capture more features in terms of resource supply patterns. We also introduce
a new generic resource model for describing multi-core systems.

Besides to the introduction of the theoretical basis underlying our model-
based framework, the new contribution of this paper includes:

• Revised Uppaal models which vastly improve the size of scheduling sys-
tems that can be handled with symbolic model checking.

• New generic resource model for multi-core hierarchical scheduling systems
that can be instantiated for any periodic resource model.

To bridge the gap between these new contributions, the new generic resource
model will be used as a component supplier at different levels of the hierarchy;
though it can be used as a supplier for the system level (root). Accordingly,
since we do not assume dependency between tasks/components, more than one
child entity (for example Navigation and Radar Ctrl) can run in parallel when

4

the supplier of their parent component (Nav.Ctrl) is supplying resource with a
parallel pattern. We show how the behavior of such a multi-core resource is
captured in Uppaal, and how to derive an instantiation of this new model
for 2 classical resource models: Periodic Resource Model (PRM) and Explicit
Deadline Periodic (EDP) resource model. Thereafter, we study the impact of
the new resource model, in particular the parallel supply pattern simulating
multi-core platforms, on the system schedulability and scalability.

As described in Section 2, the general methodology, in both [12] and this
paper, consists of using a low cost statistical method for the design exploration;
and a costly but absolute certain symbolic model checking method for the final
verification. When the design space exploration is performed using statistical
model checking, one can determine optimal system parameters that could be
impossible to find using classical analytical methods. Our framework is realized
using an extension of Timed Automata (TA) called Stopwatch Automata (SWA)
which enables the description and analysis of detailed task behavior and resource
supply patterns, something which cannot be achieved using classical analytical
methods [42, 25, 24, 43, 3, 14].

Using our framework more systems can be proven to be schedulable, since we
are enhancing the resource utilization using the two techniques; 1) synchronous
periodic resource model and 2) offset manipulation.

Similarly to [11], we use the notion of a stochastic supplier model in order
to enable compositional analysis, such that the schedulability of each compon-
ent can be analyzed separately. We evaluate our methodology by comparing
our results to the ones obtained using the state of the art tool CARTS [39].
Our verification results are consistent with the results obtained from CARTS.
When checking the schedulability of a system, our tools can prove the non-
schedulability by means of a counterexample.

The rest of this paper is organized as follows: Section 2 highlights the prob-
lem that we are solving and differentiates between the different aspects of our
proposed solution. Section 3 describes related work. Section 4 presents the
formal basis underlying our model-based framework. Section 5 provides high
level conceptual models of our framework. In Section 6, we give a new generic re-
source model for multi-core hierarchical scheduling systems. Section 7 presents
our modeling and analysis of hierarchical scheduling systems with respect to
both classical and new resource models using Uppaal and Uppaal SMC. Sec-
tion 8 describes two techniques to improve resource utilization as well as an
evaluation of the scalability. Section 9 compares our results with a state of the
art tool and discusses the scalability and performance of our analysis methods.
Section 10 concludes the paper.

2. Methodology and Challenges

The purpose of this section is to describe the methodological contribution
that this paper shares with the conference version [12] and the motivation behind
this methodology.

5

Statistical Model Checking (stochasticity)

S(P1) S(P2) . . . S(Pn)

Symbolic Model Checking

Classical analysis
methods

? ? ?

Y/N

- Statistical M.C: Light weight and very expressive.
- Symbolic M.C: Very expressive and costly.
- Classical analysis: Light weight and weak expressive.

Figure 2: Classes of systems that different methods can prove schedulable.

This paper presents a general methodology, which could be instantiated
using any modeling formalism supporting both a lightweight statistical analysis
and a more costly formal verification. In this paper, the methodology is instan-
tiated as a specific approach using Stopwatch Automata (SWA) together with
the verification suite Uppaal SMC and Uppaal. Once the methodology has
been instantiated with a specific model and associated tools we say that we have
specific approach.

The paper also presents two concrete techniques for enhancing the resource
utilization, which are described in Section 8. These concrete techniques will not
be discussed further in this section.

The problem that we intend to solve is the following: a complex hierarchical
system is being developed for a safety critical product. It is essential to produce
both a safe system and a system which uses as few resources as possible.

The general principle of the methodology is the following: 1) design space ex-
ploration is carried out using a lightweight simulation based evaluation method
in order to find good candidates for the task division and configuration of the
system; 2) when a good candidate for a system configuration has been found, the
same models can be reused with a different verification technique to establish
with certainty that the system is schedulable.

Fig. 2 shows a graphical conceptual representation of different sets of sys-
tems that different methods can show to be schedulable. Systems that are easily
proven schedulable using classical analytical approaches can also be proven cor-
rect using symbolic model checking. Systems that can be shown, with a high
degree of certainty, to be correct using statistical model checking (SMC) can-
not always be proven to be correct using symbolic model checking due to state
space explosion. In the same way, some complex systems that are analyzable

6

using model checking cannot be proved correct using analytical approaches [14].
An obvious example is a system having an internal sequencing of tasks due to a
dependency relation between tasks. Another trivial example is a scheduling sys-
tem with different typed resources where the schedulability analysis considers
the different resources together (simultaneously).

Our methodology consists of exploring system models with different sets of
parameters (S(Pi)) searching for a realistic configuration that optimally satisfies
the requirements. Basically, a configuration includes a set of tasks together with
their timing attributes, the scheduling algorithm of each level of the hierarchy
and a potential budget (the maximum resource amount to be provided) of each
component. The experiments we have done are performed using SMC with a
high confidence level. In that way, using SMC one can easily and interactively
obtain either a high degree of confidence that the model is correct or a counter-
example showing an error trace. When a satisfying final configuration has been
found the system can be proven to be schedulable using symbolic model check-
ing. In very rare cases an error could be found at this stage, but this is highly
unlikely due to the confidence levels obtained using SMC.

3. Related Work

In an engineering setting, it is very desirable to easily determine parameters
that will make a given system configuration schedulable and realizable. In this
paper, while we explore the schedulability analysis of hierarchical scheduling
systems by profiting from the technological advances made in the area of mo-
del checking, we propose a compositional analysis approach to determine and
increase the potential configurations making much more hierarchical scheduling
systems schedulable.

The concept of hierarchical scheduling systems was first introduced as 2
levels systems in [23], and then generalized as a real-time multi-level system by
[35]. An example of the increasing use of hierarchical scheduling systems is the
standard ARINC 653 [4] for avionics real-time operating systems. The following
sections overview the ideas that our approach relies on.

3.1. Analytical Approaches to Schedulability Analysis

Several compositional analysis techniques [42, 25, 24, 43, 3, 14] have been
proposed. Lipari et al [32] provide an analytical framework for the formal spe-
cification and Schedulability analysis of hierarchical scheduling systems. They
also present a methodology of how to compute the timing requirements of the
intermediate levels (servers) making a set of tasks feasible. The framework only
considers static priority scheduling (Fixed Priority Scheduling). We generalize
the analysis and such an estimation of the timing requirements to any scheduling
mechanism.

Davis and Burns improve their previous work [22] to analyze the schedulab-
ility of hierarchical scheduling systems where fixed priority scheduling is used
both at the global and the local levels. The authors find that harmonic tasks

7

linked to the release of their server improve schedulability. We explore tho-
roughly the formal impact of synchronicity between the release of tasks and the
start of the resource supplier, called offset manipulation, in Section. 8.

An analytical compositional framework was presented in [43] as a basis for
the schedulability analysis of hierarchical scheduling systems. Such a frame-
work relies on the abstraction and composition of system components, which
are given by periodic interfaces. The interfaces state the components timing re-
quirement without any specification of the tasks concrete behavior. The authors
of [41] extend their previous work [43] to a hierarchical scheduling framework
for multiprocessors based on cluster-based scheduling. Shin et al used analytical
methods to perform the analysis. However, in both [43] and [41], the proposed
framework is limited to a set of formulas describing an abstraction of the system
entities. The system entities are given in terms of periodic interfaces, without
any specification of the tasks behavior and interaction. CARTS (Compositional
Analysis of Real-Time Systems) [39] is a tool which implements the theory given
in [43, 41]. Compared to our approach CARTS is a mature tool that is easy to
use. On the other hand, we provide a more detailed modeling and analysis.

3.2. Model-based Approaches to Schedulability Analysis

As common traits, analytical approaches assume computations with determ-
inistic Execution Time usually coincident with the Worst Case Execution Time
(WCET), and they provide pessimistic results [14]. Recent research within
schedulability analysis gives tremendous attention to model-based approaches,
because of their expressiveness which allows for modeling more complicated be-
havior of systems, and also due to the technological advances made in the area
of model-based simulation and analysis tools. Behnam et al [6] analyze the
schedulability of hierarchical scheduling systems using the TIMES tool [3, 40],
and implement their model-based framework in VxWorks [6]. The authors con-
struct an abstract task model as well as scheduling algorithms focusing on the
component under analysis. However, the authors not only consider the timing
attributes of the component under analysis but also the timing attributes of
the other components that can preempt the execution of the current compon-
ent. Thus, the proposed approach is not fully compositional. The authors of
[14] provide a compositional framework modeled as preemptive Time Petri Nets
for the verification of hierarchical scheduling systems using the ORIS tool [37].
Carnevali et al only analyze systems using two specific scheduling algorithms
severely restricting the class of systems they can handle.

Sun et al introduce a component-based framework [44] for the analysis of
hierarchical scheduling systems encoded using hybrid automata. The authors
prove the correctness of their models and study the decidability of the reachabil-
ity (schedulability) analysis for the case of periodic tasks. Unlike our framework
where we restricted guard and update statements so that they depend only on
discrete variables, Sun et al exploit the whole expressiveness capability of the
Uppaal language. However, making guards and updates depending on conti-
nuous variables leads the analysis, using model checking, to be undecidable for

8

timed automata and pessimistically over-approximating in case of stopwatch
automata.

Bøgholm et al introduce a model-based approach for the verification of safety
critical hard real-time systems implemented in safety critical Java [9]. This work
focuses on modeling the actual behavior of the execution platform, but does not
use the concept of a hierarchical scheduling system. The concepts from this work
could be combined with the current paper as the lowest level in a compositional
approach.

The authors of [19] introduced a model-based framework using Uppaal for
the schedulability analysis of single layered scheduling systems, modeling the
concrete task behavior as a sequence of timed actions. We have been inspired
by the work in [19] but generalizing and lifting it to a compositional approach
for hierarchical scheduling systems.

3.3. Resource models for Hierarchical Scheduling Systems

Resource efficiency constitutes one of the most important factors in the per-
formance evaluation of hierarchical scheduling systems. Such resources are often
represented by either periodic [42] or explicit deadline periodic [24] resource mo-
dels. The resource models represent an interface between a component and the
rest of the system. In [31], the authors introduce the Dual Periodic Resource
Model (DPRM) and present an algorithm for computing the optimal resource
interface, reducing the overhead suffered by the classical periodic resource mo-
dels. The authors of [38] introduce a technique for improving the schedulability
of real-time scheduling systems by reducing the resource interferences between
tasks.

In this paper, we propose a model-based framework for the modeling of
hierarchical scheduling systems with a generic resource model, while we use
Uppaal and Uppaal SMC to analyze the schedulability of components in a
compositional manner. We show how such a generic resource model can be
instantiated for any classical periodic resource model. Moreover, we introduce
two novel techniques for improving the resource efficiency, and computing the
minimum resource supply of system components. In our model-based framework
we can also model the detailed behavior of specific tasks, specific arrival patterns
and potential dependencies between tasks.

4. Background

This section presents the formal basis underlying our model-based frame-
work.

4.1. Parameterized Stopwatch Automata

The modeling formalisms used in this paper range from classical timed auto-
mata to hybrid automata with algorithmic support from the various branches
of the tool Uppaal. The classical version of Uppaal offers support for efficient
symbolic verification of timed automata [1] and over-approximate verification

9

of stopwatch automata (SWA) [15]. The branch Uppaal CORA extends the
symbolic verification engine of Uppaal to support cost-optimal reachability for
priced timed automata [7, 2, 30].

Most recently the branch Uppaal SMC [20, 21] provides highly scalable
verification engine for statistical model checking (SMC) for not only the three
formalisms above but stochastic hybrid automata in general. In essence, statist-
ical model checking is based on stochastic semantics allowing for the probability
of linear time properties to be estimated (or tested) with arbitrary precision and
confidence through simulations.

Uppaal SMC thus supports the analysis of stochastic hybrid automata
(SHA) [18] that are timed automata whose clock rates can be changed to be
constants or expressions depending on other clocks, effectively defining Ordin-
ary Differential Equations (ODEs). This generalizes the model used in previous
work [20, 21] where only linear priced automata were handled. The release
Uppaal SMC 4.1.181 supports fully hybrid automata with ODEs and a few
built-in functions (such as sin, cos, log, exp and sqrt).

4.2. Hybrid Automata

Intuitively, a hybrid automaton H [27] is a finite-state automaton extended
with continuous variables that evolve according to dynamics characterizing each
discrete state (called a location). Let X be a finite set of continuous variables.
A variable valuation over X is a mapping ν : X → R, where R is the set of reals.
We write RX for the set of valuations over X. Valuations over X evolve over
time according to delay functions F : R≥0×RX → RX , where for a delay d and
valuation ν, F (d, ν) provides the new valuation after a delay of d. As is the case
for delays in timed automata, delay functions are assumed to be time additive
in the sense that F (d1, F (d2, ν)) = F (d1 + d2, ν). To allow for communication
between different hybrid automata, we assume a set of actions Σ, which is
partitioned into disjoint sets of input and output actions, i.e. Σ = Σi] Σo.

Definition 1. A Hybrid Automaton (HA) H is a tuple H = (L, `0, X,Σ, E, F,
I), where: (i) L is a finite set of locations, (ii) `0 ∈ L is an initial location,
(iii) X is a finite set of continuous variables, (iv) Σ = Σi] Σo is a finite set
of actions partitioned into inputs (Σi) and outputs (Σo), (v) E is a finite set of
edges of the form (`, g, a, φ, `′), where ` and `′ are locations, g is a predicate on
RX , action label a ∈ Σ and φ is a binary relation on RX , (vi) for each location
` ∈ L F (`) is a delay function, and (vii) I assigns an invariant predicate I(`)
to any location `.

The semantics of a HA H is a timed labeled transition system, whose states
are pairs (`, ν) ∈ L × RX with ν |= I(`), and whose transitions are either

delay transitions (`, ν)
d−→ (`, ν′) with d ∈ R≥0 and ν′ = F (d, ν), or discrete

transitions (`, ν)
a−→ (`′, ν′) if there is an edge (`, g, a, φ, `′) such that ν |= g

1www.uppaal.org.

10

and φ(ν, ν′). We write (`, ν) (`′, ν′) if there is a finite sequence of delay and
discrete transitions from (`, ν) to (`′, ν′).

In the above definition, we have deliberately left open the concrete syntax for
the delay function F as well as guards g, update predicate φ and invariant I. For
timed automata (TA) [1], the continuous variables are simple clocks x where the
delay update F (`) is given by an implicit rate x′ = 1. For stopwatch automata
(SWA), the rate in a location ` may be either x′ = 1 or x′ = 0 (the latter
to be annotated explicitly). For both TA and SWA, guards g and invariants
I are restricted to conjunctions of simple integer bounds on individual clocks,
and the update predicate are simple assignments of the form x = e, where e
is an expression only depending on the discrete part of the current state. This
restriction ensures decidability and efficiency of model checking in the case of
TA and permits efficient over-approximate analysis of SWA.

For priced timed automata (PTA) [7, 2, 30], the continuous variables are
either simple clocks as in TA or cost-variables for which the delay update is
given by an explicit rate x′ = e appearing in the invariant of `, where e again
is an expression only depending on the discrete part of the current state. PTA
guards, updates and invariants may only refer to discrete part or simple clocks
– thus the cost-variables cannot affect the behavior of the models but are simple
observers. Under these restrictions, cost-optimal (minimal or maximal) reach-
ability is decidable and may be computed exactly and efficiently using symbolic
techniques [30].

In the most general case of a hybrid automaton (HA), the delay function F
may need to solve a set of ODEs. It is important to note that in specifying the
delay function F and the invariant I, the full syntax of Uppaal expressions –
including user-defined functions – is at the disposal. For this class of models
only simulation-based techniques are supported.

The colors used in different figures throughout this paper are the Uppaal
patterns as follows: blue statements are clocks reset and variables update; green
statements are transition guards; pink statements are location invariants; and
brown statements are location names.

Example 4.1. The various extended automata of Fig.3 model various quant-
itative aspects of a simple Switch with two modes On and Off. Fig. 3(a) is a
timed automaton model of the Switch using a clock x to enforce that the time-
separation between mode-switches is between 2 and 4 time-units. In addition an
integer variable c counts the number of times the Switch has been in location On.
Using the model checker of Uppaal it can be verified that the total time until
c becomes 3 is between 10 and 20 time-units as confirmed by the simulation in
Fig. 3(b).

Fig. 3(c) introduces a stopwatch y which is running only in location On, thus
effectively measuring the accumulated residence-time in On. Using the over-
approximate verification offered by Uppaal for stopwatch automata, it can be
concluded that within 11 time-units the Switch cannot have been in On for more
than an accumulated time of 10 time-units. This is confirmed by the simulation
in Fig. 3(d).

11

(a) Timed Automaton (b) Simulation

(c) Stopwatch Automaton (d) Simulation

(e) Priced Timed Automaton (f) Simulation

(g) Hybrid Automaton (h) Simulation

Figure 3: Timed, Stopwatch, Priced and Hybrid Automata for Switch

Fig. 3(e) is a priced timed automaton model of the Switch with a (single)
cost-variable E measuring the total accumulated energy consumption during the
behavior. Here the rate of E is 0.5 in the Off location and 1.1 in the On location.
The most energy-efficient way of having the counter variable c reaching 3 is 7.4.
This could also have been calculated using the cost-optimal scheduling algorithm
of Uppaal CORA, but Uppaal CORA can only handle integer values on the
cost rates so the values would have to be scaled up before the verification. Again
this finding is confirmed by the random simulation of Fig. 3(f).

Finally, Fig. 3(g) is a hybrid automaton model of the Switch with the conti-
nuous variable T modeling the temperature. Here the invariants in the locations
On and Off are simple linear differential equations describing the evolution of T.
Fig. 3(h) provides a random simulation of the model. For this type of model no

12

exact model checking is offered.

4.3. Stochastic Hybrid Automata

The stochastic semantics of HAs refines the non-deterministic choices that
may exist with respect to delay, output and next state. For each state s = (`, ν)
of a HA A, we shall assume that there exist probability distributions for delays,
output as well as next-state:

• the delay density function, µs over delays in R≥0, provides stochastic in-
formation for when the component will perform an output, thus

∫
µs(t)dt =

1;

• the output probability function γs assigns probabilities for resolving what
output o ∈ Σo to generate, i.e.

∑
o γs(o) = 1;

• the next-state density function ηas provides stochastic information on the
next state s′ = (`′, ν′) ∈ RX given an action a, i.e.

∫
s′
ηas (s′) = 1.

For outputs happening deterministically at an exact time point d (or determin-
istic next states s′), µs (ηas) becomes a Dirac delta function δd (δs′)

2.
In Uppaal SMC, uniform distributions are applied for states where delay is

bounded, and exponential distributions (with location-specified rates) are ap-
plied for the cases, where a component can remain indefinitely in a location.
Also, Uppaal SMC provides syntax for assigning discrete probabilities to dif-
ferent outputs as well as specifying stochastic distributions on next-states (using
the function random(b) denoting a uniform distribution on [0, b]).

Example 4.2. Under the above stochastic interpretation of timed automata, all
of the extended timed automata models of the Switch will have the delays in Off

and On being determined by a uniform distribution on the interval [2, 4]. The
various simulations illustrated are obtained using this stochastic semantics. Now
using the statistical model checking engine of Uppaal SMC, we may establish a
number of interesting performance properties. Using the timed automata model
Fig. 3(a) we find that the probability that c becomes 3 before 15 time units
is estimated to be in the confidence interval [0.419126, 0.518993] with confidence
0.95 in Fig. 3 after some 402 simulation runs. Using the priced timed automaton
model of the Switch, we may estimate the expected energy consumption before
c becomes 3 to be in the interval [11.0389 − 0.34824, 11.0389 + 0.34824] with
confidence 0.95 within 36 runs. Finally, using the hybrid automaton model, it
may be established that the probability that the temperature drops below 5 degrees
after 10 time-units is in the interval [0.104583, 0.204489].

In general a model comes as a network of HAs. For networks, the stochastic
semantics is based on the principle of independence between components under

2which should formally be treated as the limit of a sequence of delay density functions with
decreasing, non-zero support around d.

13

the assumption of input-enabledness. Repeatedly, each component decides on
its own – based on a given delay density function and output probability function
– how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be
determined by the component that has chosen to output after the shortest delay:
the output is broadcast and all other components may consequently change
state.

For more in-depth description of the semantic foundation of Uppaal SMC
we refer the reader to [18]. For concrete syntax of models and queries we refer
to the home-page of Uppaal.

4.4. Statistical Model Checking

Statistical Model Checking (SMC) is a simulation-based analysis approach
used to give a probabilistic estimate of a certain property being satisfied by a
given model. SMC [13] is a widely accepted analysis technique in many research
areas such as industrial applications in software engineering [5, 33] and systems
biology [16].

Uppaal SMC analyses a network of timed automata and a probabilistic
property specification, similar with CTL but including a probability quanti-
fier. Differently from Model Checking, SMC returns a probability regarding a
property with a specific certainty. Uppaal SMC supports five different analysis
methods: Hypothesis testing, Probability evaluation, Probability comparison, Ex-
pected value, and Simulations. Below we use N to denote a natural number, P
to denote a probability, and expr to denote an expression.

• Statistical evaluation: SMC estimates the probability of the state prop-
erty being satisfied. For instance, the following query computes a prob-
ability confidence interval where simulation time is limited up to N time
units:

Pr[<=N](<> expr) (1)

• Hypothesis testing: SMC checks if the property is satisfied within a
certain probability. For instance, the query

Pr[<=N](<> expr) >= P (2)

asks whether the probability of meeting the state property “expr” is
greater than or equal to given probability value P while checking (sim-
ulating) the system under analysis up to N time units. This type of query
yields less information than an estimated confidence interval above, but
it is more efficient as it requires fewer simulation runs.

• Statistical comparison: SMC compares the satisfaction possibilities
over two properties. For instance, the query can be in the form of

Pr[<=N_1](<> expr1) >= Pr[<=N_2](<> expr2) (3)

14

• Expected value: SMC computes the maximal or minimal value of a
certain variable while checking the system. For instance, the query

E[<=N; M](min: expr) (4)

asks what the average of the minimal values of the variable in “expr” is
when simulating the system up to N time units by M rounds.

• Simulations: SMC simulates a system multiple times and computes tra-
jectories of specified expressions over time. Query

simulate M [<=N] {expr_1, expr_2} (5)

requires Uppaal SMC to show the values of “expr_1,” and “expr_2” ex-
pressions over time when running M simulations up to N time units.

In order to estimate the probability of a property, SMC generates a number
of stochastic runs and checks the property on each of the runs. The property
is checked up to a certain confidence level (using confidence coefficient δ) and
with a certain maximum error limit (ε distance from the center). Since many
natural properties are monotone, the truth at length k of a run implies truth
on the entire run [29], therefore we only check runs up to a certain bound of a
run. In Uppaal SMC the length of runs can be specified either as a number of
discrete transitions or as a simulation time or cost bound. In our work we use
a constant time bound timeBound. The confidence level, error limit and run
length are all user parameters in our framework.

In theory, the maximum number of runs n required to achieve the needed
confidence level δ and precision ε can be derived from Hoeffding’s inequality
Pr(|p̄ − p| > ε) ≤ 2e−2nε2 [28], which says that the probability of the wrong
result (when the estimated p̄ probability differs from the real probability p by

more than ε) is no greater than 2e−2nε2 . The probability of the wrong result
is called the level of significance α = 1 − δ, and hence n ≥ −ln(α/2)/(2ε2)
runs is enough. Hoeffding’s inequality implies that the number of runs is sub-
linear in terms of confidence and quadratic in terms of precision. Moreover, the
complexity does not depend on the structure of the model, but merely on the
simulation performance. Therefore, it is not prohibitively expensive to get a very
high degree of confidence even on the models which are prohibitively difficult to
solve analytically. In practice, we can exploit the fact that our samples follow
binomial distribution and hence the probability estimation is even more efficient
by using sequential methods [26], which adapt to the actual probability value
and the confidence interval is computed by more precise methods [17].

Besides the statistical check of property satisfaction, Uppaal SMC can eval-
uate the modeled process performance by estimating the mean value of an ex-
pression over the model variables. In this case we cannot assume any distribu-
tion, hence the value estimation is based on the Central Limit Theorem which
says that the distribution of means of sufficiently large samples follows Normal
distribution, while the small sample means follow Student’s t-distribution [36].

15

Therefore the confidence interval with level δ and significance α = 1 − δ is
estimated using mean and t-distribution with standard error:

Σni xi
n
± tα/2,n−1

√
Σni x

2
i − (Σni xi)

2/n

n(n− 1)

where xi are the measured samples and tα/2,n−1 is the α/2-quantile of t-distribution
with (n− 1) degrees of freedom.

In order to estimate the mean of maximum (minimum) value over the run
of an expression V , the following syntax is used: E[time<=TimeBound; RunCount

] (max: V).
The size of the estimated interval depends on the variance of the measured

samples, therefore there is no generic way to limit the error and hence the user
has to specify the number of runs in the query (RunCount) while α is still the
level of significance and confidence level is δ = 1 − α. The confidence interval
can be made arbitrary tight by increasing the number of runs.

In this paper, we use both SMC and classical symbolic model checking tech-
niques to analyze the schedulability of hierarchical scheduling systems. The
Uppaal verification suite provides both symbolic and Statistical model check-
ing. The models which in practice can be analyzed statistically, using the Up-
paal SMC verification engine, are larger and can contain more features.

Meanwhile, SMC provides much faster responses. The speed of such res-
ponses depends entirely on the degree of certainty that one wants to obtain.
The reason is that SMC consists of running a sufficiently high number of simu-
lations of the system under analysis. The advantage of SMC resides in: 1) SMC
provides a quick response in terms of less than a minute. This is also true in
the case of non-schedulability were SMC produces counter-example witnesses;
2) SMC enables quantitative performance measurements instead of the Boolean
(true, false) evaluation that symbolic model checking techniques provide.

5. Design of Hierarchical Scheduling Systems

In this section, after introducing the formal basis of our model-based frame-
work we provide a conceptual description of our models and show the conform-
ance of our framework with the classical analytical theory for analyzing the
schedulability of hierarchical scheduling systems.

5.1. Classical compositional framework

This section provides the formal basis of our model-based compositional
analysis approach and show that our theory conforms with the formal basis
given in the compositional framework [42] for hierarchical scheduling systems.

A scheduling unit C is defined as a tuple (W,A) where W is a workload,
consisting of a set of tasks Ti = (pi, ei), and a scheduling policy A. Each task
Ti = (pi, ei) has timing attributes in the form of a period pi and an execution

16

Figure 4: Component and tasks in a compositional framework

time ei. Task deadlines are the same as periods3. The scheduling unit C (Fig. 4)
is given a collective timing requirement I(Π,Θ) called interface, where Π is a
period and Θ is a budget for the component. The collective timing require-
ment I is a representative of all timing requirements of tasks constituting the
workload W . A task that is responsible for resource supplying of resources is
called a resource model (Γ), which is request to satisfy an interface of its child
component.

A hierarchical scheduling system is organized in a parent-child relationship
in a hierarchical manner. A parent (scheduling) component has one or more
tasks, each of which is connected to a child component. A child component in
turn is also a scheduling unit and additionally given an interface I, which states
the collective timing requirement that is requested by its workload. An interface
can be viewed as a contract between a parent component and its child compon-
ent in that the amount of resource described in the interface is guaranteed by
the parent component. Tasks in a child component (resource-demanding) rely
on the execution of a task (resource-supplying) at the corresponding parent level
component in that they can execute only when that task runs. The execution
of a resource-supplying task does not necessarily synchronize with the potential
execution of tasks of the resource-demanding component. Hence, the total exe-
cution time of the parent task might not always be available to the tasks of the
corresponding resource-demanding components.

The schedulability test for an HSS may be performed in a compositional way.
Basically, a parent component is checked to see whether its tasks always provide
the required amount of resources of the interface (Γ) to the child components,
and each of the associated child components is checked to see whether each of its
tasks always meets the deadline. In the classic compositional framework[42, 41],
the schedulability is checked using both the demand bound function (dbf) and

3In this paper, we use the implicit deadline that is the same as the period for a given task
unless a specific deadline di is specified for Ti.

17

the supply bound function (sbf) as follows:

∀0 < t ≤ 2 ∗ LCMW , dbfA(W, t) ≤ sbfΓ(t) (6)

where t is a time interval and LCMW is the least common multiplier of the
periods of all the tasks.

An interface I of a resource-demanding component is characterized by the
demand bound function dbfA(W, t). A resource model Γ, an instance of the
interface instantiated by a resource-supplying task, is characterized by the sup-
ply bound function sbfΓ(t). For the scheduling policies EDF (Earliest Deadline
First) and RM (Rate Monotonic), the demand bound functions are respectively
defined by:

dbfEDF (W, t) =
∑
Ti∈W

⌊
t

pi

⌋
· ei (7)

dbfRM (W, t, i) = ei +
∑

Tk∈HPW (i)

⌈
t

pk

⌉
· ek (8)

where HP (i) is a set of tasks whose priorities are higher than Ti.
As a resource model, we use Periodic Resource Model (PRM) proposed by

Shin et al. [42, 41]. The PRM assigns a required amount of resources every
specific period. It consists of two components, Π and Θ, which are a period and
a budget, respectively. It provides child tasks with the amount Θ of resources
every Π time-unit. The beginning time of its supplying resource is not prior
determined, thus does not synchronize with child tasks.

For a given time interval t, the supply bound function sbfPRM (t) of PRM
is formulated as:

sbfPRM (t) =

⌊
t− (Π−Θ)

Π

⌋
·Θ + εs (9)

εs = max

(
t− 2(Π−Θ)−Π

⌊
t− (Π−Θ)

Π

⌋
, 0

)
(10)

where εs is the amount of resources that can gained by the last resource supply
overlapped with the window of a given time interval t.

5.2. Conceptual Models of our Approach

In our model-based approach, we realize the compositional framework in
the form of SWA models. We implemented the dbf as a set of tasks together
with a scheduling algorithm, while the sbf is implemented by a supplier model
(resource model). Our supplier model (RSWA) is an implementation of the
conceptual resource model Γ. The schedule when workload can use resources
follows a scheduling algorithm, and a task is scheduled to use a resource and is
constrained by the supplier model.

18

Figure 5: Task model in SWA

Figure 6: Resource allocations of Periodic Resource Model

SWA supports stopwatches, which are clocks that can be stopped and re-
sumed without a reset. The modeling formalism allows for having different rates
of progression for stopwatches, but we only utilize the values 1 (running) and 0
(stopped). In our SWA models, the stopwatch is used to express the preemption
of a task’s execution. The execution of a task is preempted, i.e. the associated
clock stops, in two cases: when it is preempted by a higher priority task or when
any of the needed resources is not provided by the supplier.

Fig. 5 is a conceptual model of a task, which we will realize using SWA in
Section 7. The clock x stops progressing in the locations where its derivative x′

is set to 0. The clock x keeps progressing at other locations. The task starts at
the initial location Rdy and moves to Run when the two following conditions
hold: the task is scheduled to use a resource pid, (isSched(pid)) and there is
a supply of necessary resources (supply = true). The clock x measures the
execution time of the task while it is in the location Run. If either of the two
conditions is false at the location Run, the task moves back to the location Rdy.
The task stays at location Run until the stopwatch x reaches the execution time
e, and then jumps to location Done delaying until the next period. A task joins
the error location Err when its deadline d is missed (y > d). Throughout this
paper we keep the assumption that e ≤ d ≤ p.

In the following, we relate the analytical view of the supply bound function
bound to the PRM, a resource model, with the way they are implemented as a
supplier model in our approach. Fig. 6 shows the of the resource allocations of

19

Figure 7: Conceptual PRM model in SWA notation

the PRM which guarantees the resource requirement I(Π,Θ) where Π is 5 and
Θ is 2.

One can remark that our resource model supplies the whole budget non-
preemptively in one chunk, however according to [42] if one considers only worst
cases, both preemptive and non-preemptive resource models provide the same
analysis results. Thus we will use a non-preemptive supplier model (Fig. 7)
both in this conceptual description as well as in the computation models. Fig. 7
shows the conceptual model of SWA resource model. In this model, the variable
supply represents the resource allocation, which is a shared variable with the
task model. Thus the supply is only enabled for Θ time units within the period
Π. The location Rdy of RSWA corresponds to the delay Λ in PRM of Fig. 6. the
delay Λ is a delay where a new period has started but the resource allocation has
not. The location Sup corresponds to Θ where the resource is being allocated,
and Done corresponds to Σ where the resource model waits for the next period.

In order to realize a compositional approach, our resource model RSWA of
PRM does not synchronize with the execution of tasks similarly to the resource
allocation of PRM either. Thus the resource model can stay at the location Rdy
up to Π − Θ or immediately move to the location Sup. This resource model
is designed to generate all possible resource allocations including the maximum
duration of no resource allocation Ψ.

6. Generic Resource Model for Multi-core Hierarchical systems

In this section, we first characterize what traits a general resource model
concept would need in order to be able to specify any particular resource model,
namely: urgency, preemptiveness and single/multi-core supply patterns. After
introducing the different characteristics that a resource model can be specified
with, we formally define the class of potential resource models that we believe
can be instantiated for any relevant resource model.

In any hierarchical scheduling context, the behavior of the resource model
does not depend at all on the resource demanding component, i.e. child compon-
ent served by the resource model. Any resource model behaves in the way that
it supplies resource for an amount of time then stops supplying for a given time
interval. In that way, we define the behavior of any resource model by a trans-
ition system consisting of a sequence of transitions over a set of states, that may
have different supply patterns, and at least one of the states is non-supplying.

20

We use resource models to describe the interface between different levels
of the hierarchy, in such a way that the system can be analyzed composition-
ally. Accordingly, a resource model abstracts the scheduling behavior of the
parent task. It describes all potential ways in which resources can be supplied
to the level below it. For exactly this reason non-determinism is needed to
model a concrete resource model. Classical examples of a resource model that
can be instantiated from our resource model concept are Periodic Resource Mo-
del (PRM) [42] and Explicit Deadline Periodic (EDP) [24], which guarantee a
certain amount of the computation time per period.

Generally, a resource of a scheduling system is characterized by the following
properties:

• Regularity: a resource allocation may be given according to a strict
period or a loosen (quasi) period.

• Time-wise: a resource allocation may be given according to a time sched-
ule.

• Event-triggered: a resource allocation can be initiated by an event.

• Availability: the availability of resource at the moment may be interes-
ting.

• Amount: the amount of resource to be assigned within a time bound
may be interesting.

In order to make our schedulability analysis technique compositional, we add
non-determinism on the assignment of resources as follows:

• Non-deterministic preemption: The resource assignment can be pree-
mpted at any time as long as it is not accomplished according to a resource
assignment contract.

Roughly speaking, our resource model can be seen as a specialization of
timed automata. We identify four different types of locations that can be part
of a resource model. Each of these types has distinctively different semantic
interpretation.

• Non-urgent (non-deterministic) and preemptible resource sup-
ply (NP). The resource allocation can be delayed and preempted.

• Urgent (deterministic) and non-preemptible resource supply (UN).
The resource allocation must start immediately as soon as the correspon-
ding state is reached. Since urgent supply cannot delay, we assume that
it cannot be preempted.

• Non-urgent and non-preemptible supply (NN). The start of re-
source allocation can be delayed, but cannot be preempted once it begins.

• Non-supply (N). No resource is allocated.

21

In Table 1, we summarize the three supplying location types. Notice that an
urgent supply location cannot be preemptible because the whole supply must
be done without delay.

Table 1: Supplying location types in resource models.

Preemptible Non-preemptible
Urgent - UN

Non-urgent NP NN

As the resource model is quite independent from the resource demanding
(child) component, one can explore the state space and show the different be-
haviors of the resource model regardless of the scheduling system.

Given a set of resources R, a buffer B : R → N is a function that specifies the
amount of resource that a given resource model guarantees to provide at each
supply, i.e. from each supplying state. The guaranteed resource amount will be
supplied according to a supply pattern sPattern. In fact, the supply pattern
states how the different resource units, of the resource model, collaborate to
provide the whole amount of the resource guaranteed for each individual supply.
For example, if only one resource unit is used then the supply time of that unit
must be equal to the resource amount guaranteed in B. Whereas if two resource
units supply the resource in parallel, the supply time of the resource model could
be half of the resource usage time specified in B because each unit provides half
of that amount. Formally, we specify the supply patterns of each resource model
by the following grammar:

α ::= α‖α | α+α | r

whereas r ∈ R is a resource unit, that could be for example a core of a multi-core
execution platform. Resource units can be used in a strict parallel mode (α‖α)
and choice mode (α + α). Using the choice pattern, only one resource unit is
non-deterministically selected to supply the resource. The strict parallel pattern
states that the resource units are used to supply resource simultaneously. In
the individual resource pattern (r), only one individual resource unit is used to
supply the resource. The resource units could be heterogeneous in case of any
supply pattern, except for the choice pattern where we assume that both units
are homogeneous.

The resource model we are introducing is formally specified by the following:

Definition 2 (Resource model (R)). A resource model R is a tuple (L, l0,
X, I,R, locType,B, sPattern,→) where:

• L, l0, X and I are the same as for hybrid automata given in Section. 4.2,

• R is a set of resource units,

• locType : L→ {NP,UN,NN,N} gives the type of each location.

22

• B : L \ {l | locType(l) = N} → N is a buffer function that associates to
each supplying location the current amount of resource to be supplied at
that location.

• sPattern : L \ {l | locType(l) = N} → α states the supply patterns used
at each supplying location,

• →: L×G(X)×Λ×A×L is the transition relation where G(X) is the set
of guard predicates over X, Λ is a set of events and A is a set of actions.

Given a time duration x and a supply pattern α of a supplying location, we
characterize the amount of resource that minimally will be provided according
to the supply pattern α during x time units by x⊗α given recursively as follows:

x⊗ α =

 x if α ::= r
x⊗ α1 + x⊗ α2 if α ::= α1‖α2

min(x⊗ α1, x⊗ α2) if α ::= α1 + α2

So that for a time duration x, the resource amount provided by a single
resource unit r is x, whereas the amount provided by two strictly parallel units
α1‖α2 is the sum of the resource amounts provided by both units. The re-
source amount for the choice pattern α1 + α2 is given by the minimum of the
resource amounts that can be provided by both resource units over the same
time duration x.

The interface requirement (Γ) is a collective timing requirement that all
tasks in Cdemand require to be satisfied. Meanwhile, a resource model is viewed
as a specific design that satisfies a requirement. Thus, the interface requires a
resource model to supply a resource no matter how it will be allocated. For
instance, if an interface requirement adopting the parameters of PRM, (period,
executionTime), is (10,3) meaning that 3 time units of resources are required
every 10 time units by the demander component, all the resource models in
Fig. 10 satisfies this requirement.

6.1. Graphical Representation of the Generic Resource Model

Fig. 8 shows the graphical notations we use to represent the different types of
locations. Each of the locations has been distinguished by a specific shape and
provided with a label. The resource model is then obtained by linking different
locations to each other via transitions. Locations as well as transitions can be
associated with timing constraints.

Fig. 9 shows an example of our resource model designed as a transition
system. Such an example consists of 3 supplying states, having different supply
patterns, and 1 non-supplying locations. Basically, the example is a resource
model that provides 2 computation CPUs. The resource model starts at the
location S2, where cpu1 is available for 15 time units within 25 time units. cpu1
can be preempted at any time, but it is guaranteed that cpu1 can be usable
for 15 time units within 25 time units. The location S3 guarantees that the
two resources cpu1 and cpu2 are available for 10 time units within 15 time

23

Figure 8: Graphical representation of the typed locations

Figure 9: Example of a resource model

units, where the resources can never preempted once they are occupied by tasks
relevant to this resource model. At the location S4, there are two possibilities
for tasks: to use two resources cpu1 and cpu2 or to use one resource cpu1. The
location S4 specifies that either the two resources (cpu1 and cpu2)or the one
resource (cpu1) are available for 10 time units within 25 time units. Similar
with the location S3, the resources at the location S4 are never preempted once
they have been occupied.

6.2. Instantiation for Classical Resource Models

In this section, we show how classical resource models, PRM and EDP, can
be instantiated form our generic resource description. The Periodic Resource
Model (PRM) [42] can simply be obtained from our generic resource model by
just providing only one supplying location (NP, UN or NN) having a single
supply pattern (α ::= r) together with a non-supply location. The time spent
at the supplying location each period is constrained by the budget of the PRM,
specified as a location invariant. Examples of the instantiation for PRM are
depicted in Fig. 10(a) and Fig. 10(b).

For the Explicit Deadline Periodic (EDP) resource model [24], which is a
PRM with deadline, the invariant of the supplying location must be constrained

24

with the given deadline as depicted in Fig. 10(c). An instantiation for PRM with
an urgent non-preemptible supply is illustrated in Fig. 10(d).

(a) (b)

(c) (d)

Figure 10: Instantiation for periodic resource models PRM and EDP.

Fig. 10(a) specifies that cpu1 is available for 3 time units every 10 time
units and the assignment is possible at any time before the period of 10 time
units expires. In the same way, Fig. 10(b) specifies that the same behavior
as Fig. 10(a) but the assignment is non-preemptive once it begins. Fig. 10(c)
specifies a deadline of the resource assignment. Once the resource model begins
the assignment of cpu1, the assignment of 3 time units should be over no later
than 8 time units. Finally, Fig. 10(d) states that the assignment of the resource
must start as soon as a new period begins and it is non-preemptive.

7. Model-based Compositional Analysis Framework

Our compositional analysis framework accomplishes two primary purposes:
budget estimation and schedulability proof. The budget estimation is to guess
the minimum budget of the interface that makes a component schedulable for a
given period and a set of real-time tasks. Schedulability proof is to verify that
the component is schedulable w.r.t. the estimated budget. The compositional
framework, adopting a model-based approach as shown in Figure 11, consists
of three types of concurrent process models: resource (supplier) model, task
model, and scheduler model.

The task model together with the scheduler model constitute a general sche-
duling system model. The resource (supplier) model simulates the behavior of
the interface of a component in hierarchical scheduling systems: it stops and
resumes the running of scheduled tasks according to the availability of resources,
that can be preempted by other higher priority components. In other words, a
task in a component can stop running even though it is scheduled to use the
resource by a local scheduler because the resource is not available by intervening

25

Figure 11: Model-based compositional framework

of higher priority components. The resource supplier model stops and resumes
the running of a task according to the interface requirements. We assume that
the supplier process and task process are not synchronous so as to check the
schedulability of the task under the most pessimistic resource supply scenario
[42]. How to estimate the minimal budget of the interface and verifying the
budget for a component is described later in this section.

7.1. Scheduling System Model

In this section, we present the Uppaal models we use to describe the sche-
duling system entities: tasks, schedulers and resource models. We also provide
a way to estimate the minimum budget of each component.

7.1.1. Task Model

The task model in this paper has various execution attributes, such as best
case execution time, worst case execution time, deadline, initial offset and re-
gular offset. Thus, our framework can easily be used to describe complicated
hierarchical scheduling systems. Formally, a workload W consists of a set of
tasks {T1, T2, ..., Tn}, and individual task Ti is characterized by

• pri: Task priority.

• ioffset: The offset of the initial period of the task.

• poffset: The offset from the beginning of each period until the task re-
lease.

• bcet: Best-case execution time.

• wcet: Worst-case execution time.

• preemptable: Whether a task is preemptible.

• tid: Task identifier.

26

Figure 12: Task model

Listing 1: isSchedSuped()

bool isSchedSuped(pid_t pid, tid_arr tid) {

return (rq[pid].qmem[1]==tid && isSupply[pid]);

}

Figure 12 shows the SWA task template. It begins by waiting, non-determi-
nistically, for an amount of time up to the initial offset (ioffset). Using this
parameter, we can adjust the synchronicity of the task execution with the sup-
plier. This will be further explained in Section 8.

The clock t_et is a stopwatch that represents the execution time of a task
utilizing resources. Thus, t_et runs and resumes according to some conditions.
Using this stopwatch mechanism, we model the preemption of tasks in SWA
formalism. Meanwhile, the variable t_rt is a typical clock that keeps running
in order to keep track of the elapsed time since the task begins the job. The
stopwatch t_rspt is used to measure the worst-case response time of the task.
The behavior of the task model consists mainly in checking whether a resource
is available or not, by checking the supplier status isSupply[pid], which is done
inside the function isSchedSuped(). This function is represented by the following
description:

27

Figure 13: EDF scheduler

Notice that the function isSchedSuped(), shown in Listing 1, returns true if
the task id tid is at the first element of the queue, i.e. the task is scheduled,
and the corresponding supplier is currently active.

The execution of a task can always be suspended whenever the supplier
stops providing the task’s requested resource. The task execution can also be
preempted by another task in the same component. The location Executing

represents both Running and Ready status because the clock t_et can stop and
resume according to both conditions concerning the availability of the resource
supply and whether the task is currently scheduled or not. If the conditions hold,
the clock t_et runs in order to measure the execution time elapsed; otherwise,
the clock t_et stops but t_rt and t_rspt still are running to measure the elapsed
time since the task has began the job.

7.1.2. EDF Scheduler

The EDF scheduler is formulated as shown in Figure 13. Basically, the EDF
scheduler maintains tasks identities in its ready queue according to the ascending
order of the slack times, the remaining time of the ready tasks to invidious dead-
lines. In Figure 13, the comparison of the stack times of a newly inserted tasks
and the remaining tasks in the ready queue is operated on the recursive trans-
ition. The deadline and running time of a new ready task denoted by tmp_tid

are referred as to tstat[tmp_tid].deadline and tstat[tmp_tid].t_rt, respect-
ively. The deduction of tstat[tmp_tid].t_rt from tstat[tmp_tid].deadline is
compared with that of tstat[rp[pid].qmem[place].t_rt from tstat[rp[pid]

.qmem[place].deadline of the other ready tasks (Uppaal does not allow the
deduction between clocks, thus the deduction is expressed as the plus by the
inverse of the inequality).

28

Listing 2: Structure of resource ready queue

typedef struct {

int[0,tid_n+1] leng;

tid_arr qmem[tid_t];

} queue_t;

Figure 14: Periodic Resource Model

7.2. Resource Model

When a task is ready it inserts its id into the ready queue of a resource. A
scheduler prioritizes the tasks in the ready queue of each resource according to
a scheduling policy. The ready queue is implemented by the following structure:

The resource scheduler in our model manipulates the order of task’s ids in the
ready queue in order that the ids become in the same order task priorities that
are determined according to a scheduling policy. Whenever a task requires the
scheduler to assign a resource, the scheduler finds a position using a scheduling
algorithm where the task is to be placed.

The models used are available at:
http://people.cs.aau.dk/~ulrik/submissions/881641/SCP2014.zip. The
top level system is formed by a parallel composition of component suppliers
together with a scheduling policy. The schedulability of the top level system is
performed according to [11]. The SWA models of scheduling algorithms are not
included in the paper because their behaviors are trivial, but they are provided
in the above link.

The resource model that we use in the followings follows the Period Resource
Model (PRM) [43], which is represented by two parameters: period and budget.
The PRM model can be modeled as shown Figure 10(a) in our graphical notation
for resource models.

The authors of [43] present a framework where the resource allocation by
the supplier does not necessarily synchronize with the periods of tasks. That
is, if a workload (set of tasks) starts at time tw and the resource allocation
begins at time tr the authors assume that tw is not necessarily equal to tr. This

29

http://people.cs.aau.dk/~ulrik/submissions/881641/SCP2014.zip

assumption leads to a resource supplier model where the supply of resources is
non-deterministic within the resource period. Thus, we assume that the supply
of budget is fulfilled at any time before the resource period elapses.

Figure 14 shows the SWA template of the resource model adopting PRM.
The resource model communicates with the other templates through a shared
variable (isSuply), which is also used in the template Task to keep track of the
resource supply. A clock passTime keeps track of the time since the resource
model has begun its new resource supplying period. A clock supTime keeps the
resource-supplying time.

Our resource model is assumed to be non-preemptible, thus it supplies the
full amount of resource at once. It is consistent with the approach of the
PRM[43] that assumes the worst-case of resource supplying by resource mo-
del to pursue the safety of schedulability.

The initial location Init of the template is marked with double circles. Such
a location is also marked with a “c” indicating that it is a committed location,
this leads the supplier to move instantaneously to the next location (Supplying
). Thus, the resource model begins supplying the resource as soon as it starts,
by setting isSupply[supid] to true, and stays at location Supplying until that
the resource supplied time (supTime) becomes equal to the budget (supAtt.bud).
Then, it joins the location Done and waits for next period. The resource model
can delay the supply up to the slack time, which is the maximum amount of
time that can elapse before the supplier starts to supply resources. The slack
time is written as supAtt.prd−supAtt.bud in model and specified at location
DelayNotSupplying and as a guard on the edge leaving that location. The re-
source model at location DeviateDelay can choose to delay up to slack time or
immediately re-start the resource supply as soon as a new period begins. The
most pessimistic case of the resource supply occurs, as Ψ in Figure 6, where a
period begins the resource supply simultaneously at its beginning and the fol-
lowing period delays the supply until its slack time, i.e. the supply finishes at
the end of the period.

Figure 15: Behavior of PRM

Figure 15 shows a resource supplying pattern of our SWA PRM model. The
separation between the third and fourth periods is the most pessimistic case of
resource supplying where tasks can most possibly miss the deadline.

7.3. Automated computation of the resource budget for interface

We have automated a technique for directly estimating the supplier budget
that makes the corresponding component schedulable. Such an automation is

30

Figure 16: Modified resource model

realized by adding a plot generator template to the system and exploiting the
expressiveness of the Uppaal SMC query language, which collaborates with a
plot generator template which stores randomly selected budgets in a stopwatch
clock variable. The plot generator template helps Uppaal SMC display the ran-
dom budgets that lead the system to miss its deadline to identify the minimum
budget that leads the system to be schedulable.

Figure 16 shows the modified initial location of the Supplier template depic-
ted in Figure 14. From the initial location to the Supplying location, we add a
new commit location. On the incoming edge to the location, a temporary budget
randomly picked up from between two constants LowerBound and UpperBound ac-
cording to the uniform distribution is set to randbud, which is noticed by other
components via estBudget[supid] and BOffset[supid]. the system checks the
schedulability of a scheduling system with the random budget of randbud. The
minimal budget for a given component can be found by repeatedly checking
the schedulability with the given random budgets and discarding the random
budget values which lead the system to miss a deadline. To this end, we use the
following query:

Pr[estBudget[1] <=runTime] (<> globalTime>=runTime and error) (11)

where estBudget[1] is the budget candidate for the supplier in a given run,
randbud is a constant value that is larger than any of the potential budgets,
and globalTime is the current simulation time (clock). In the helper template,
estBudget[1] is assigned a value larger than randbud when the simulation has
executed for runTime time units. Thus, this query finds every number between
0 and the supplier’s budget for which Uppaal SMC finds a run where a task
misses its deadline before the expiry of runTime, i.e. globalTime>=runTime.

31

Figure 17: Plot generator

The above formula collaborates with a plot generator of Figure 17 for Up-
paal SMC to produce a plot that displays all the random budgets that lead the
system to miss its the deadline.

The plot generator of Figure 17 runs up to runTime, and the stopwatch clock
estBudget[supid] keeps track of estBudget[supid] which records the values of
randbud of Figure 16. Notice that the above formula and the plot generator
of Figure 17 share the stopwatch clock estBudget[supid], and its values are
displayed on the x-axis of Figure 18(a) and 18(b).

Figure 18(a) and 18(b) show the probability distributions of budgets that
Uppaal SMC produces after checking the system using the query (11). Fig-
ure 18(a) shows that for every potential budget between 25 and 46, as indicated
by Span of displayed sample [25, 46] in Figure 18(a), runs where a deadline
has been missed were found out of 214 simulations. In other words, a budget
greater than 47 can make the system schedulable. The X-axis values are the
budget candidates whereas the Y-axis data are the probabilities of component
S2 to be unschedulable under the corresponding budgets. Figure 18(b) shows
the case of using FP scheduling algorithm, where the runs missing deadlines are
shown over within [25, 47] and that indicates that 48 is the minimum budget
that might lead the system to be schedulable.

Notice that we set 25 to the lower bound of budgets below which all budgets
are assumed to lead the system to be unsatisfiable.

Given a budget, the schedulability of a component workload can be checked
using the following query:

Pr[<=runTime] (<> error) (12)

Such a query computes the probability of a component to finally (<>) reach
an error, where runTime is a simulation time and error is a global variable
indicating whether a task has missed its deadline or not.

Table 2 shows the budgets we have computed for different component con-
figurations as well the time spent when validating our results using the Uppaal
model checker.

By using the budget found via query (11) as a parameter value for component
S2 of Table 2 when checking the query (12), we can see that this indeed makes
component S2 schedulable under EDF. Figure 18(b) is the estimation results of
the same component under RM policy, showing that a supplier budget greater
than 47 can make component S2 schedulable. By using query (11), we can
obtain a very good estimate for the minimal budget. In practice, one might

32

(a) EDF

(b) RM

Figure 18: Probability distribution of supplier’s budgets that make component S2 of Table 2
non schedulable under EDF and RM

still need to check two or three values using query (12) after having applied
query (11). Once a candidate budget is strongly determined, we apply symbolic
model checking to be absolutely certain.

7.4. Schedulability Analysis Using the Generic Multicore Resource

A scheduling algorithm for multi-core systems determines multiple highest
priority tasks that can occupy cores, and a resource model determines the avail-
ability of cores over time according to a resource supply contract or plan.

Figure 9 shows a resource model that manipulates multiple processors whereas
Figure 19 provides the Uppaal template that instantiates this resource model.
Each of the locations S2 and S3 of Figure 9 is implemented by two locations:
S21 and S22, respectively S31 and S32 in Figure 19.The availability of processors
is given by variables isSupply[pid] where pid is a CPU Id. If a variable is
set to 1, the CPU corresponding to pid is available. The clock x of Figure 9

33

Table 2: Model checking performance (second). The budget inside () is for RM. I represents
an interface, p is a period, b is a budget, T is a task, and e is an execution time.

Comp.id I(p, b) T (p, e) EDF RM

C1 (100, 33 (43)))
T1(250,40)

0.59 0.04
T2(400,50)

C2 (150, 48 (48))
T1(250,40)

0.89 0.01
T2(750,50)

C3 (100, 34 (39))
T1(250,40)

7.53 0.01T2(450,50)
T2(750,35)

corresponds to the clock x in Figure 19. The clock w is the resource supplying
time at the supplying locations, which comes along with B in Figure 9.

The two locations S21 and S22, modeling the non-urgent and preemptive
location S2 of Figure 9, are toggled denoting that cpu1 is usable at location S21

but it is not usable at location S22. The availability of cpu1 is communicated
by manipulating the global variable isSupply[1]. When the CPU is available,
clock w keeps running in order to measure the elapsed time. If the location S21

is being visited for 15 time units, i.e. the clock w reaches 15 time units, the
resource model moves to location S31.

The locations S31 and S32 correspond to the location S3 of Figure 9, which is
a non-urgent and non-preemptive resource supplying state. In these locations,
10 time units of CPU resource is guaranteed to be available within an interval
of 15 time units. Particularly, the resource supply cannot be preempted once
it begins. The Uppaal resource model in Figure 19 captures a non-urgent and
non-preemptive resource supplying state in the following way: the corresponding
resource model may stay at location S31 up to 5 time units, but it can leave
at any time before the expiry of such a duration (5 time units). When it
joins S32, the resource model makes two resources cpu1 and cpu2 available by
setting isSupply[1] and isSupply[2] to 1. The resource model keeps both CPUs
available until the guaranteed resource amount is fully provided, i.e. clock w

reaches 10 time units.
As an experiment of our multi-core resource model, implemented in Fig-

ure 19, we check the schedulability of the following task set:

T1(170, 15), T2(350, 20), T3(470, 45), T4(650, 57)

To simplify, it is assumed that the resource model applies a global fixed
priority scheduling algorithm to assign tasks to the available cores. First, the
light-weight analysis, Uppaal SMC, using the query 12 returns the following
result:

(149 runs) Pr(<> ...) in [0,0.0199048] with confidence 0.95.

34

Figure 19: Uppaal template of Figure 9

This means that, with 95% confidence, there is no deadline miss within the
simulation time. To acquire 100% certainty of the schedulability property, we
apply Uppaal MC technique with the following query:

A[] not error (13)

The result returned by Uppaal MC, the following, confirms the response
issued by Uppaal SMC:

A[](not error)

Verification/kernel/elapsed time used: 30,508.266s / 10.11s / 45.216s.

...

Property is satisfied.

Therefore, scalability would not be a challenge if the SMC findings are pos-
itive, and only very few cases (feasible configurations) from these findings will
be analyzed using symbolic model checking. Further results regarding the sca-
lability are discussed in Section 8.4.

8. Enhancement of Resource Utilization

This section presents two techniques for enhancing the utilization of a re-
source: 1) introducing a new supplier model; 2) making tasks more synchronous
with their suppliers by adjusting tasks initial offset.

35

Figure 20: Synchronous Periodic Resource Model in SWA

8.1. Synchronous Periodic Resource Model

In order to increase the resource utilization by trying to avoid supplying
resource when it is not needed, i.e. no waiting task, we introduce a new supplier
model. The new supplier relies on delaying the resource supply, while no task
is requesting resource, until a task request is received. Such a delay is up to the
component slack time (period-budget).

Fig. 20 depicts the SWA template that implements our new supplier model.
Once started, the supplier joins location Rdy and keeps waiting while the slack
time is not expired. Such a constraint is implemented by the location invari-
ant curTime <= sup[supid].prd−sup[supid].budget, where prd and budget are
respectively the period and budget of the supplier. One can remark that, at
location Rdy, the stopwatch measuring the resource supply is not progressing
(supplying_time[supid]’==0). Non deterministically, the supplier moves from
location Rdy to the location Sup by either receiving a task request (guard isReq()

over the crooked edge), or once the slack time is expired (guard curTime >=sup

[supid].prd−sup[supid].budget over the vertical edge).
At location Sup, the supplier keeps supplying resource before moving to the

location Done. Such a location can be reached once the whole budget is supplied.
From location Done and once the period is expired, the supplier joins location
Rdy to start new period and resets its clocks.

Table 3 shows the gain in resource utilization obtained when applying the
new supplier model. At the first stage, using the periodic resource model PRM,
we compute the component budgets of the avionics system we mentioned earlier.
The component budgets obtained via CARTS (2nd column) and Uppaal SMC
(3rd column) are identical; (10,6) (20,6) (20,2) (20,10). By replacing PRM with
our new supplier model, we recompute the minimum budgets making the avion-
ics components schedulable using Uppaal SMC (4th column). For components
Nav.Radar Ctrl and Navigation, the budgets are decreased to 5 in each case, with a

36

Table 3: Resource utilization comparison

Analysis Tool CARTS SMC SMC & MC
Resource Model PRM PRM Synchronous PRM

Nav. Radar Ctrl (10, 6) (10, 6) (10, 5)
Navigation (20, 6) (20, 6) (20, 5)
Radar Ctrl (20, 2) (20, 2) (20, 2)

Control & Display (20, 10) (20, 10) (20, 10)

gain of 17% thanks to our new supplier model. We have checked and confirmed
such new budgets using the Uppaal symbolic model checking (MC).

In order to evaluate the effects of introducing a new supplier model, we have
made a statistical experiment using the two tasks in the component Navigation.
Fig. 21 shows the probability distributions of WCRT using two different resource
models. This shows that the average WCRT is enhanced using the new supplier
model SPRM. There is no significant difference in the actual WCRT. By using
these plots we can see how much a hierarchical system can be improved by using
different system settings. The fact that we can easily generate such plots also
shows the versatility of a model and simulation based approach.

8.2. Offset Manipulation

Our second technique consists in limiting the initial offset for the arrival of
all tasks. Explicitly including offsets in the schedulability analysis was initiated
in [45]. By limiting this initial offset to a certain percentage of the supplier
period, the given component can be schedulable with a lower budget. This is
an assumption that we are making about the system. It is the responsibility
of the system engineers to confirm that the offset that they chose actually con-
forms with the real system. Thus we are not computing optimal offsets making
the system schedulable, but investigating the impact of different offsets on the
individual component resource requirements. As shown in Figure 25, the smal-
lest supplier budget can be obtained if all tasks arrive exactly synchronously

PRM

SPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(a) Flight data

PRMSPRM

Arv. WCRT
SPRM

Arv. WCRT
PRM

(b) Steering

Figure 21: Probability distributions of WCRT of flight data and steering tasks. The queries
E[<=100000;1000](max:wcrt[1]) and E[<=100000;1000](max:wcrt[2]) are used to generate the
probability distributions using Uppaal SMC.

37

with the start of the supplier period. This could be hard to achieve in practice.
On the other hand, we think that it is indeed very possible to make the tasks
synchronized with the supplier period such that all tasks arrive within either
the first 20% or 50% of the supplier period. For these realistic values, we still
obtain significant savings in the budget that a given component needs in or-
der to be schedulable (See columns 6 to 9 of the table depicted in Figure 25).
The percentage value is a parameter that can be easily changed in our setting
when checking the schedulability. Similarly to Table 5, all statistical results in
Figure 25 are found using a confidence level of 0.95.

Another observation that we have made is that, the length of the period of
the supplier can have a great impact on the budget that a component needs in
order to be schedulable. This can be seen in Figure 25 for component S5. We
have analyzed the same component with two different supplier periods. The first
period is not a common divisor of the task periods (50000), while the second
supplier period (10000) is a common divisor of the task periods. For the first
experiment, the component can be schedulable with 30% of the complete system
resources, while in the second case it can be schedulable using only 18.8% of
the system resources (see column 4) under EDF. In fact, this observation is an
experimental result that can be found using both our approach and the CARTS
tool (see Table 5 for component S4).

8.3. Confirming Uppaal SMC results with model checking

In order to give absolute responses about the schedulability analysis per-
formed using Uppaal SMC, we have verified some of the Uppaal SMC results
by means of symbolic model checking. These are marked in Figure 25 by a gray
background color in the cells. The reason for only verifying some of our results,
but not all, is that for some of the models the verification time is as much as a
couple of days.

According to our experience, statistical model checking is a good way to deal
with the undecidability challenge of symbolic model checking in schedulability
analysis, but does not represent an alternative.

8.4. Scalability Evaluation

In order to evaluate how our approach scales we run a number of model-
checking queries on a safe task model and an unsafe one (with deadline violation)
using a varying number of tasks. The safe models use the same periodic CPU
supplier of 100ms with a period of 150ms and the task model becomes unsafe if
the supply is reduced to 90ms (using the same period). The experiment starts
with two tasks: 1) 250ms period and deadline and 80ms of execution time; 2)
750ms period and deadline and 160ms of execution time. The model with three
tasks is created by splitting the first task into two tasks with halved execution
time – this way we know that the task model can still be scheduled, because
the new task can simply be scheduled after its sister task has finished. The
four-task model is created by splitting another task and so on until we have all
models up to 6 tasks. The model is then evaluated using the following queries:

38

2 3 4 5 6

0
50

0
15

00

number of tasks

tim
e,

 s
deadlock
error
simulate
probability

2 3 4 5 6

10
00

0
30

00
0

number of tasks

m
em

or
y,

 k
b

deadlock
error
simulate
probability

2 3 4 5 6

0
50

0
15

00

number of tasks

tim
e,

 s

deadlock
error
simulate
probability

2 3 4 5 6

10
00

0
30

00
0

number of tasks
m

em
or

y,
 k

b

deadlock
error
simulate
probability

Figure 22: Uppaal performance: safe system at the top and unsafe system at the bottom.

Deadlock validates that the task model is free of deadlocks: A[] not deadlock.
All task models satisfy this query.

Error verifies that the task model is schedulable by ensuring that none of the
deadlines are violated: A[] not error. The safe models satisfy this query,
but the unsafe models yield a symbolic counter-example trace (which
might be spurious due to stop-watch over-approximation).

Simulate validates that the error can indeed be reachable by a concrete trace
by running 100 stochastic simulations until an error is found: simulate

100 [<=runTime] { error } : 1 : error. The safe models fail to produce
any trace and the unsafe models yield a concrete trace to error as a definite
proof that the system fails to fulfill its deadline.

Probability estimates the probability of a deadline violation within a time
bound: Pr[<=10000](<> error). The safe models fail to find a single trace
and hence yield that the probability is less than 1%, whereas the unsafe
models hit an error every time and hence conclude that the probability is
greater than 99%.

The time and memory consumed by the checking queries are shown in Fig. 22.
The plots show that symbolic model-checking requires exponential amount of
resources in terms of number of tasks, whereas statistical queries take fixed
amount of time and the memory consumed is proportional to the number of
tasks. Both deadlock and error checks require entire state space exploration
hence they are the most expensive ones, and the error check is slightly cheaper
as it is faster to check the variable value than analyze that the state has no
successors. The unsafe system checks are cheaper because the check terminates
earlier when it finds an error and the simulation queries are cheap in particular.

39

Table 4: Supplier and task periods and their least common multiple (LCM)

Scale Case Supplier T1 T2 T3 T4 T5 T6 LCM

L
in

ea
r

1 100 100 100 100 100 100 100 100
2 100 100 100 100 200 200 200 200
3 100 100 100 150 150 300 300 300
4 80 80 100 100 200 200 400 400
5 100 50 100 125 250 250 500 500
6 100 50 100 120 150 300 600 600

D
o
u

b
le

1 100 100 100 100 100 100 100 100
2 40 40 40 40 50 50 50 200
3 40 50 50 80 80 100 100 400
4 40 40 50 50 100 100 160 800
5 50 50 64 64 80 100 160 1600
6 50 50 64 80 100 128 160 3200

The state space size of a periodic system also depends on the size of its hyper-
period, thus the verification effort is sensitive to concrete task periods. The
system hyper-period is at least as large as the least common multiple (LCM) of
the individual task periods. The following experiment examines the verification
effort by increasing the LCM of the task periods while keeping the individual
periods in a similar range. Table 4 shows six-task system instances where LCM
is increased linearly and doubly. The task execution times are picked at random,
wheres the supplier budget is kept tight but still enough for the system to be
schedulable using earliest deadline first scheduler.

Figure 23 shows the time and memory used by Uppaal to verify instances
described in Table 4. Unsurprisingly the SMC queries (simulation and prob-
ability estimation) still take a fixed amount of effort across all instances. The
validation and schedulability (deadlock and error) checking requires a similar
amount of resources when the LCM is increased linearly and the CPU time usage
is increased at most twice when the LCM is being doubled. Thus the verifica-
tion resources are surprisingly manageable even if the LCM is being doubled.
However schedulability checking still suffers from explosion if prime numbers are
chosen as task periods (LCM becomes exponential in terms of distinct periods).
For example, it takes 26.7 hours to model-check Case 1 if periods are increased
from 100 to mere 101 (with LCM being 10100) – that is more than tenfold more
amount of time than the successful effort, whereas the LCM has increased only
by 3 times.

9. Evaluation and Comparison

In order to evaluate the correctness of our model-based approach, we com-
pare the component budgets from our estimation to the budgets obtained by
the CARTS tool [39] for the same hierarchical system configurations. The com-
parison is depicted in Table 5, where bold data state a difference between our
results and that obtained using CARTS.

40

1 2 3 4 5 6

0
10

00
30

00

case

tim
e,

 s
deadlock
error
simulate
probability

1 2 3 4 5 6

0
20

00
0

40
00

0

case

m
em

or
y,

 k
b

deadlock
error
simulate
probability

1 2 3 4 5 6

0
40

00
80

00

case

tim
e,

 s

deadlock
error
simulate
probability

1 2 3 4 5 6

0
20

00
0

40
00

0
case

m
em

or
y,

 k
b

deadlock
error
simulate
probability

Figure 23: Uppaal performance in terms of linear LCM (top) and double LCM (bottom).

Table 5: Comparison of the estimated budgets of CARTS and Uppaal SMC

Comp Task P, WCET
CARTS SMC & MC

EDF RM EDF RM

S1
T1 500, 30

100, 32.5 100, 32.5 100, 33 100, 33
T2 500, 100

S2
T1 170, 30

100, 46.67 100, 47.5 100, 47 100, 48
T2 500, 100

S3
T1 250, 40

150, 42.5 150, 42.5 150, 45 150, 45
T2 750, 50

S4

T1 80000, 6890
50000, 15082 50000, 15082 50000, 15082 50000, 15082

T2 100000, 8192
T3 200000, 2644

10000, 1880 10000, 2155.6 10000, 1875 10000, 2155
T4 1000000, 5874

All the results presented in Table 5 are obtained with a confidence 0.95.
When Uppaal SMC returns a result where the estimated probability of missing
a deadline is an interval from zero to some low value ε (e.g. [0,0.0973938]), this
means that Uppaal SMC did not find any trace in which a deadline was missed,
i.e. with 95% confidence a deadline will not be missed with the given budget
and probability distribution. If a higher confidence is needed, the confidence
value can be increased and the query can be rerun.

Table 5 shows the comparison we have done with the CARTS tool. Column
1 (Comp) contains 4 different components on which we have performed the
experiment. The workload of each component is stated on the second column
(Tasks). In fact, each of component S1, S2 and S3 is a parallel composition of 2
tasks (T1, T2), while S4 contains 4 tasks (T1,. . . , T4). The third column specifies
the period and the worst case execution time for each task. In order to perform a

41

Figure 24: Counterexample for the deadline missing of T1 in S3 with the budget 43 under
RM in Table 5

more thorough comparison, we have considered two different scheduling policies;
EDF and RM. According to the CARTS tool, the minimum budget that the
resource supplier should provide each 100 time units, for which the component
S1 is schedulable under EDF and RM, is 32.5. For the same parameters, the
minimum budget we have computed in our framework using Uppaal SMC is
33, which is very close to that obtained by CARTS. The two tools produce
almost identical results. CARTS has the advantage of being an extremely fast
method, while our approach is extremely flexible and configurable.

9.1. Uppaal SMC counterexample for one CARTS result

During the schedulability analysis of a specific component configuration, we
obtained a result from CARTS that was in conflict with our own results.

This was for the specific case (bold gray numbers) of component S3 in
Table 5. According to CARTS’s computations, the minimal necessary budget for
S3 to be schedulable under EDF and RM is 42.5. With the use of Uppaal SMC,
we first estimated the minimal budget to be 45, which has a considerable dif-
ference with the results from CARTS.

Our estimation using Uppaal SMC immediately produced a counterexample
trace showing that task (T1) can miss its deadline with a supplier budget of 43.

The counterexample is depicted in Fig. 24 in terms of a plot that was also
produced by Uppaal SMC. The bottom of the plot shows the supplier; the
dashed spikes represent the length of the supplier period and the solid line illus-
trates when the supplier is supplying. Each of the other two groups illustrates
the behavior of a task. The solid line shows when the task is executing, and
the dashed line goes up when the task is released and down when the task has
finished its computation. Approximately at time 880, Task1 is executing on
its third period but fails to complete before its deadline. In order to confirm
our findings, we also calculated the minimum supplier budget according to the
theory underlying the CARTS tool. We calculated this both using the equations
from [43] and equations from [42]. The results of such calculations confirmed

42

S
i

T
i

P
,

W
C

E
T

∆
i
n
i
t

o
f

su
p
p
li
e
r’

s
p

e
ri

o
d

∆
i
n
i
t

=
1
0
0
%

∆
i
n
i
t

=
5
0
%

∆
i
n
i
t

=
2
0
%

∆
i
n
i
t

=
0
%

E
D

F
R

M
E

D
F

R
M

E
D

F
R

M
E

D
F

R
M

1
T
1

5
0
0
,

3
0

1
0
0
,

3
3

1
0
0
,

3
3

1
0
0
,

3
3

1
0
0
,

3
3

1
0
0
,
2
9

1
0
0
,
2
9

1
0
0
,
2
6

1
0
0
,
2
6

T
2

5
0
0
,

1
0
0

(3
3
%

)
(3

3
%

)
(3

3
%

)
(3

3
%

)
(2

9
%

)
(2

9
%

)
(2

6
%

)
(2

6
%

)

2
T
1

1
7
0
,

3
0

1
0
0
,

4
7

1
0
0
,

4
8

1
0
0
,

4
7

1
0
0
,

4
8

1
0
0
,
4
3

1
0
0
,
4
5

1
0
0
,
3
9

1
0
0
,
4
5

T
2

5
0
0
,

1
0
0

(4
6

%
)

(4
8

%
)

(4
7

%
)

(4
8

%
)

(4
3

%
)

(4
5

%
)

(3
9

%
)

(4
5

%
)

3
T
1

2
5
0
,

4
0

1
5
0
,

4
8

1
5
0
,

4
8

1
5
0
,

4
5

1
5
0
,

4
5

1
5
0
,

4
5

1
5
0
,

4
5

1
5
0
,
4
1

1
5
0
,
4
1

T
2

7
5
0
,

5
0

(3
2

%
)

(3
2

%
)

(3
0

%
)

(3
0

%
)

(3
0

%
)

(3
0

%
)

(2
7

%
)

(2
7

%
)

4
T
1

1
0
0
0
0
,

1
4
0
6

5
0
0
0
,

1
4
0
6

5
0
0
0
,

1
4
0
6

5
0
0
0
,

1
4
0
7

5
0
0
0
,

1
4
0
7

5
0
0
0
,
1
2
0
4

5
0
0
0
,

1
2
0
4

5
0
0
0
,
1
0
5
7

5
0
0
0
,
1
0
5
7

T
2

4
0
0
0
0
,

2
8
2
6

(2
8

%
)

(2
8

%
)

(2
8

%
)

(2
8

%
)

(2
6

%
)

(2
8

%
)

(2
1

%
)

(2
1

%
)

5

T
1

8
0
0
0
0
,

6
8
9
0

5
0
0
0
0
,

1
5
0
8
2

5
0
0
0
0
,

1
5
0
8
2

5
0
0
0
0
,

1
5
0
8
2

5
0
0
0
0
,

1
5
0
8
2

5
0
0
0
0
,
1
2
5
3
1

5
0
0
0
0
,
1
4
9
4
8

5
0
0
0
0
,
1
2
4
0
0

5
0
0
0
0
,
1
3
2
6
1

T
2

1
0
0
0
0
0
,

8
1
9
2

(3
0

%
)

(3
0

%
)

(3
0

%
)

(3
0

%
)

(2
5

%
)

(3
0

%
)

(2
9

%
)

(2
7

%
)

T
3

2
0
0
0
0
0
,

2
6
4
4

1
0
0
0
0
,

1
8
7
5

1
0
0
0
0
,

2
1
5
5

1
0
0
0
0
,

1
8
7
5

1
0
0
0
0
,

2
1
5
5

1
0
0
0
0
,

1
8
7
5

1
0
0
0
0
,2

0
6
0

1
0
0
0
0
,1

8
7
2

1
0
0
0
0
,1

9
8
5

T
4

1
0
0
0
0
0
0
,

5
8
7
4

(1
8
.8

%
)

(2
1
.6

%
)

(1
8
.8

%
)

(2
1
.6

%
)

(1
8
.8

%
)

(2
0
.6

%
)

(1
8
.7

%
)

(1
9
.9

%
)

F
ig

u
re

2
5
:

E
n

h
a
n

ce
m

en
t

o
f

re
so

u
rc

e
u

sa
b

il
it

y
u

si
n

g
th

e
m

a
x
im

a
l
o
ff

se
t

o
f

ta
sk

’s
in

it
ia

l
p

er
io

d
.

T
h

e
ca

se
s

m
a
rk

ed
w

it
h

a
g
re

y
b

a
ck

g
ro

u
n

d
a
re

v
er

ifi
ed

u
si

n
g

sy
m

b
o
li
c

m
o
d

el
ch

ec
k
in

g
.

43

our findings in that we calculated the minimal budget to be 45. This leads us
to conclude that there must be an error in the implementation of CARTS while
the underlying theory is correct. We reported this anomaly and it has been con-
firmed by the developers of the CARTS tool that CARTS has an implementation
error.

In this paper, we apply two approaches to expand the scalability of model
checking techniques: a compositional method and statistical model checking.

A compositional approach allows narrowing down the problem of the system
size to the problem of a component size of the system. In other words, instead
of analyzing the whole system, it allows analyzing a component of the system
and composing the analysis of individual components.

Statistical model checking, a relatively light-weight model checking tech-
nique, allows us to instantly inspect a given system by using simulation-based
techniques based on the Monte-Carlo method. A scheduling system of peri-
odic tasks without considering unexpected interrupts, as we observed, have a
uniform task arrival pattern, the simulation analysis of a scheduling system can
thus guarantee the correctness of the schedulability check as long as a simulation
time encompasses the comprehensive macro-period [43]. Moreover, the resource
model PRM that we adopt in this paper assumes the worst-case supply of re-
sources for child component, thus we can produce more deterministic resource
supply patterns that might scale down the space of the system to explore.

For the above reasons, the analysis using symbolic model checking for obtai-
ning 100% certainty did not take much time. Except the last case of Figure 25,
all the verifications finished within a few milliseconds. The following is one of
the verification results for the last case in the third row of Figure 25 that we
obtained from the symbolic model checking of Uppaal.

A[] not error

Verification/kernel/elapsed time used: 0.328s / 0s / 0.326s.

Resident/virtual memory usage peaks: 9,672KB / 31,196KB.

Property is satisfied.

In most cases of Figure 25, the analysis time using the symbolic model
checking did not exceed much the above analysis time.

10. Conclusion

The problem that we are addressing in this paper is the configuration and
schedulability analysis of hierarchical scheduling systems. We have presented a
methodology that incorporates Statistical Model Checking and Symbolic Model
Checking for the statistical and exact analysis of the schedulability. The analysis
is compositional and highly configurable. We proposed a new generic resource
model for multi-core hierarchical scheduling systems, which can capture the
behavior of any classical periodic resource model. We have investigated two
specific techniques for enhancing the resource utilization: a new resource model
and offset manipulation.

44

We instantiated our approach as a framework using parameterized stopwatch
automata (SWA) and the two tools Uppaal SMC and Uppaal for the analysis.
However our methodology can be instantiated to fit any modeling formalism
that supports both statistical and exact analysis techniques. We also provided
a faster method for estimating the minimal budget of a supplier, instead of
performing a binary search of potential budgets. To validate our method, we
have compared our results to that of a state of the art tool. The results from
the two tools are almost identical.

The main contribution of the paper is that systems, which cannot be proven
schedulable using classical analytic approaches, can potentially be proven schedulable
using our approach.

A perspective of this work could be a study of the impact of the two tech-
niques, we proposed for the enhancement of resource utilization, on the systems
energy efficiency [10].

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[2] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed
automata. In Benedetto and Sangiovanni-Vincentelli [8], pages 49–62.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A
tool for schedulability analysis and code generation of real-time systems. In
K. G. Larsen and P. Niebert, editors, FORMATS, volume 2791 of LNCS,
pages 60–72, 2003.

[4] ARINC 653. Website. https://www.arinc.com/cf/store/documentlist.cfm.

[5] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay. Statistical ab-
straction and model-checking of large heterogeneous systems. International
Journal on Software Tools for Technology Transfer, 14(1):53–72, 2012.

[6] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. Bril. Towards hierarchical
scheduling in VxWorks. In OSPERT 2008, pages 63–72, 2008.

[7] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Rom-
ijn, and F. W. Vaandrager. Minimum-cost reachability for priced timed
automata. In Benedetto and Sangiovanni-Vincentelli [8], pages 147–161.

[8] M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, editors. Hybrid
Systems: Computation and Control, 4th International Workshop, HSCC
2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture
Notes in Computer Science. Springer, 2001.

[9] T. Bøgholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. G. Larsen.
Model-based schedulability analysis of safety critical hard real-time java

45

programs. In Proceedings of the 6th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems, JTRES ’08, pages 106–114,
New York, NY, USA, 2008. ACM.

[10] A. Boudjadar, A. David, J. Kim, K. Larsen, U. Nyman, and A. Skou.
Schedulability and energy efficiency for multi-core hierarchical scheduling
systems. In Proceedings of the Intl Congres on Embedded Real Time Soft-
ware and Systems ERTS2, 2014.

[11] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis, U. Ny-
man, and A. Skou. Hierarchical scheduling framework based on compos-
itional analysis using uppaal. In Proceedings of FACS 2013, lncs, pages
61–78. Springer International Publishing, 2013. LNCS Volume 8348.

[12] J. Boudjadar, A. David, J. Kim, K. Larsen, U. Nyman, M. Mikučionis,
and A. Skou. Widening the schedulability hierarchical scheduling systems.
In Proceedings of Formal Aspects of Component Software (FACS), 2014,
volume LNCS 8997, 2015.

[13] P. E. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. B. Poulsen,
A. Legay, and Z. Wang. UPPAAL-SMC: Statistical model checking for
priced timed automata. In H. Wiklicky and M. Massink, editors, QAPL,
volume 85 of EPTCS, pages 1–16, 2012.

[14] L. Carnevali, A. Pinzuti, and E. Vicario. Compositional verification for
hierarchical scheduling of real-time systems. IEEE Transactions on Soft-
ware Engineering, 39(5):638–657, 2013.

[15] F. Cassez and K. G. Larsen. The impressive power of stopwatches. In
C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in Com-
puter Science, pages 138–152. Springer, 2000.

[16] E. Clarke, J. Faeder, C. Langmead, L. Harris, S. Jha, and A. Legay. Stat-
istical model checking in biolab: Applications to the automated analysis of
t-cell receptor signaling pathway. In M. Heiner and A. Uhrmacher, editors,
Computational Methods in Systems Biology, volume 5307 of Lecture Notes
in Computer Science, pages 231–250. Springer Berlin Heidelberg, 2008.

[17] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, 26(4):404–413, 1934.

[18] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
and S. Sedwards. Statistical model checking for stochastic hybrid systems.
In E. Bartocci and L. Bortolussi, editors, HSB, volume 92 of EPTCS, pages
122–136, 2012.

[19] A. David, K. G. Larsen, A. Legay, and M. Mikučionis. Schedulability of
herschel-planck revisited using statistical model checking. In ISoLA (2),
volume 7610 of LNCS, pages 293–307. Springer, 2012.

46

[20] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. van
Vliet, and Z. Wang. Statistical model checking for networks of priced timed
automata. In U. Fahrenberg and S. Tripakis, editors, FORMATS, volume
6919 of Lecture Notes in Computer Science, pages 80–96. Springer, 2011.

[21] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time
for statistical model checking of real-time systems. In G. Gopalakrishnan
and S. Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer
Science, pages 349–355. Springer, 2011.

[22] R. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling.
In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE Interna-
tional, pages 10 pp.–398, Dec 2005.

[23] Z. Deng and J. W. s. Liu. Scheduling real-time applications in an open
environment. In in Proceedings of the 18th RTSS, pages 308–319. Society
Press, 1997.

[24] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. In Real-Time Systems Symposium, 2007. RTSS
2007. 28th IEEE International, pages 129–138, Dec 2007.

[25] A. Easwaran, M. Anand, I. Lee, L. T. X. Phan, and O. Sokolsky. Simu-
lation relations, interface complexity, and resource optimality for real-time
hierachical systems, 2009.

[26] J. Frey. Fixed-width sequential confidence intervals for a proportion. The
American Statistician, 64(3):242–249, 2010.

[27] T. Henzinger. The theory of hybrid automata. In Logic in Computer
Science, 1996. LICS ’96. Proceedings., Eleventh Annual IEEE Symposium
on, pages 278–292, Jul 1996.

[28] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[29] T. Hrault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In B. Steffen and G. Levi, editors, Verifica-
tion, Model Checking, and Abstract Interpretation, volume 2937 of Lecture
Notes in Computer Science, pages 73–84. Springer Berlin Heidelberg, 2004.

[30] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pet-
tersson, and J. Romijn. As cheap as possible: Efficient cost-optimal reach-
ability for priced timed automata. In G. Berry, H. Comon, and A. Finkel,
editors, CAV, volume 2102 of Lecture Notes in Computer Science, pages
493–505. Springer, 2001.

[31] J. Lee, L. T. X. Phan, S. Chen, O. Sokolsky, and I. Lee. Improving resource
utilization for compositional scheduling using dprm interfaces. SIGBED
Rev., 8(1):38–45, Mar. 2011.

47

[32] G. Lipari and E. Bini. A methodology for designing hierarchical scheduling
systems. J. Embedded Comput., 1(2):257–269, Apr. 2005.

[33] J. Martins, A. Platzer, and J. Leite. Statistical model checking for distrib-
uted probabilistic-control hybrid automata with smart grid applications.
In S. Qin and Z. Qiu, editors, Formal Methods and Software Engineer-
ing, volume 6991 of Lecture Notes in Computer Science, pages 131–146.
Springer Berlin Heidelberg, 2011.

[34] R. J. B. Mike Holenderski and J. J. Lukkien. An efficient hierarchical
scheduling framework for the automotive domain. In S. M. Babamir, editor,
Real-Time Systems, Architecture, Scheduling, and Application, pages 67–
94. InTech, 2012.

[35] A. K. Mok, X. A. Feng, and D. Chen. Resource partition for real-time
systems. In Proceedings of RTAS ’01, pages 75–84. IEEE Computer Society,
2001.

[36] D. C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons Edition, 2006.

[37] ORIS. Oris tool website. http://www.oris-tool.org/.

[38] L. T. X. Phan and I. Lee. Improving schedulability of fixed-priority real-
time systems using shapers. In Proceedings of RTAS ’13, pages 217–226,
Washington, DC, USA, 2013. IEEE Computer Society.

[39] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, I. Lee, and
O. Sokolsky. CARTS: a tool for compositional analysis of real-time systems.
SIGBED Rev., 8(1):62–63, Mar. 2011.

[40] M. Åsberg, T. Nolte, and P. Pettersson. Prototyping and code synthesis
of hierarchically scheduled systems using TIMES. Journal of Convergence
(Consumer Electronics), 1(1):77–86, December 2010.

[41] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for
virtual clustering of multiprocessors. In ECRTS, pages 181–190. IEEE
Computer Society, 2008.

[42] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS, pages 2–13. IEEE Computer Society, 2003.

[43] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[44] Y. Sun, G. Lipari, R. Soulat, L. Fribourg, and N. Markey. Component-
based analysis of hierarchical scheduling using linear hybrid automata. In
Embedded and Real-Time Computing Systems and Applications (RTCSA),
2014 IEEE 20th International Conference on, pages 1–10, Aug 2014.

[45] K. Tindell. Adding time-offsets to schedulability analysis. University of
York, Department of Computer Science, 1994.

48

	Introduction
	Methodology and Challenges
	Related Work
	Analytical Approaches to Schedulability Analysis
	Model-based Approaches to Schedulability Analysis
	Resource models for Hierarchical Scheduling Systems

	Background
	Parameterized Stopwatch Automata
	Hybrid Automata
	Stochastic Hybrid Automata
	Statistical Model Checking

	Design of Hierarchical Scheduling Systems
	Classical compositional framework
	Conceptual Models of our Approach

	Generic Resource Model for Multi-core Hierarchical systems
	Graphical Representation of the Generic Resource Model
	Instantiation for Classical Resource Models

	Model-based Compositional Analysis Framework
	Scheduling System Model
	Task Model
	 EDF Scheduler

	Resource Model
	Automated computation of the resource budget for interface
	Schedulability Analysis Using the Generic Multicore Resource

	Enhancement of Resource Utilization
	Synchronous Periodic Resource Model
	Offset Manipulation
	Confirming Uppaal SMC results with model checking
	Scalability Evaluation

	Evaluation and Comparison
	Uppaal SMC counterexample for one CARTS result

	Conclusion

