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Abstract

Harnessing energy from ocean waves in an economic manner remains a challenge. Recent efforts are targeted at
improving the performance of a wave energy device without resorting to reactive control. One such strategy is
to use a negative stiffness mechanism. Theoretically, negative stiffness is able not only to lengthen the resonance
period of the device, but also to broaden its resonance bandwidth, thus making it potentially capable of capturing
energy from a broader spectrum of incoming waves. This study aims to extend the application of such mechanism
to pitching wave energy devices by studying Salter-duck type devices as a specific case. We consider first a single
duck, and then two lines of multiple ducks meeting at an angle. The analysis is carried out using linear frequency-
domain models. For this purpose, equivalent linearised stiffness of the negative stiffness mechanism is derived.
Our study confirms that negative stiffness improves the power performance of pitching devices. However, it is
most effective when the pitch rotation axis is fixed. It becomes less effective when the axis is allowed to move.

1. Introduction

Harnessing energy from ocean waves in an economic manner remains a challenge. Recent efforts are targeted at
improving the performance of a wave energy device without resorting to reactive control. One such strategy is to
use a negative stiffness mechanism, which can be applied on an oscillating body by a system of springs compressed
at mean position and aligned perpendicular to the direction of motion. As long as it is in compression, the springs
exert a positive force in the direction of motion and thus the body has a negative stiffness in this direction. There
exists, however, other means to accomplish the same effect, such as using a system of magnets [1].

When introduced to a wave energy device, a negative stiffness mechanism is able to reduce the total stiffness of
the system. This is particularly beneficial for wave energy devices, which in principle have to resonate with the
waves to capture the most energy out of them [2]. With a lower stiffness, the device can have a longer resonance
period for the same mass, which means that it can be made smaller in size for a given target wave period, hence
reducing the cost of energy.

The benefits of a negative stiffness mechanism on heaving axisymmetric devices (point absorbers) have been
highlighted by Zhang et al. [3] and Todalshaug et al. [4] through numerical and experimental studies. In addition
to lengthening the resonance period, negative stiffness broadens the resonance bandwidth of the device, thus
making it capable of capturing energy from a broader spectrum of incoming waves. However, the application of
negative stiffness mechanism on devices other than point absorbers has so far been limited [5].

This study therefore aims to extend the application of negative stiffness on pitching wave energy devices. Devices
resembling the Salter duck [6] are chosen as a specific case. We first study the application of negative stiffness to
a single duck, and then to two lines of multiple ducks meeting at an angle. While a number of studies exist on a
single duck [7–14], much fewer studies on arrays of ducks have been reported [15, 16]. This study therefore also
serves to fill this gap.

Our analysis is carried out using linear frequency-domain models. For this purpose, equivalent linearised stiffness
of the spring system will be derived in section 2. The frequency-domain models of the single duck and the multiple
ducks are described in sections 3 and 4. In section 5, the anticipated benefits of the negative stiffness mechanism
are evaluated via comparison with the same models but without the negative stiffness. Section 6 concludes the
paper.
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2. Linearised stiffness of negative spring systems

2.1. Heaving body

The negative spring mechanism is described by Ramlan et al. [17] and is most easily understood by considering
the system illustrated in Fig. 1. At mean position, one end of the spring is fixed at point A and the other end
is attached to point B. The spring is compressed at this position and is aligned perpendicular to the direction of
motion, the vertical direction. As long as it is in compression, the spring therefore exerts a force with a positive
component in the direction of motion and thus has a negative restoring stiffness in this direction. This is in contrast
to a spring aligned parallel to the direction of motion, in which case it exerts a force opposing the motion and thus
has a positive restoring stiffness.

ξ

Lc

L
F

A B

B′

Figure 1. Negative spring mechanism on a heaving body.

The force F exerted by the spring in the direction of motion can be derived by observing Fig. 1. At its mean
position, the length of the compressed spring is minimum and is equal to Lc. As the body heaves by ξ , point B
moves to B′ and the spring’s length increases to L. From the figure,

L =
√

L2
c +ξ 2. (1)

The force exerted by the spring is linear along its axis, but nonlinear in the vertical direction. If we denote the
unloaded length of the spring by L0 (where L0 ≥ Lc) and the spring rate by K, the vertical force exerted by the
spring on the heaving body is then

F = K(L0−L)
ξ

L
. (2)

Substituting (1) into (2), we have

F = K

(
L0√

L2
c +ξ 2

−1

)
ξ , (3)

which is nonlinear in ξ . For small ξ , a linear approximation to (3) is

F ≈ K
(

L0

Lc
−1
)

ξ , (4)

such that the linearised negative stiffness of the spring mechanism is equal to K (1−L0/Lc) for a heaving body.

As an example, the variations of vertical force and length of spring for Lc/L0 = 2/3 are plotted in Fig. 2. When

L = L0, for which ξ/L0 =
√

1−L2
c/L2

0, the force exerted by the spring is zero. For L > L0, the spring is in tension
and therefore the force reverses in direction. The linearised force, given by (4), is shown in the figure as the dashed
line. Obviously, the linear approximation becomes less accurate as the displacement ξ gets larger.

The hydrostatic stiffness Ks of a heaving body is given by Archimedes principle and is equal to ρgSw, where ρ is
the water density, g is the acceleration due to gravity, and Sw is the water plane area of the body. It is implicitly
assumed that the body is cylindrical, i.e. it has a uniform horizontal cross section.

The total restoring force Fs is given as Ksξ −F . This Fs, normalised by Ksξ , for Ks = 3K, is plotted in Fig. 3a as
the solid line. The negative spring is seen to reduce the total restoring force such that it is less than the hydrostatic
restoring force in the region where L < L0. When L > L0, the spring is in tension and the total stiffness is greater
than the hydrostatic stiffness. The linearised total restoring force is shown as the horizontal dashed line. The
corresponding ratio of the linearised to the exact hydrostatic force is shown in Fig. 3b. Whether the linearised
version is a good approximation of the exact force depends on the magnitude of F relative to Ksξ , which in turn
depends on the Ks/K and Lc/L0 ratios. The approximation gets better with higher Ks/K and Lc/L0 ratios.
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(a) (b)

Figure 2. (a) Vertical force and (b) length of spring as functions of heave displacement.

(a) (b)

Figure 3. (a) Heave restoring force and (b) ratio of the linearised restoring force to the exact restoring force, as
functions of heave displacement.

2.2. Pitching body

A simple arrangement of the negative spring mechanism on a pitching body is illustrated in Fig. 4. One end of
the spring is fixed at point A and the other end is attached to point B. At its mean position, the length of the
compressed spring is minimum and is equal to Lc. As the body pitches by ξ about O, point B moves to B′ and the
spring’s length increases to L. From the figure,

L =

√
[Lc +R(1− cosξ )]2 +R2 sin2

ξ

=
√

L2
c +2R(Lc +R)(1− cosξ ).

(5)

If we denote the unloaded length of the spring by L0 and the spring rate by K, the moment exerted by the spring
about point O is then

M = FRcosβ = K(L0−L)Rcosβ . (6)

Noting that
Rcosβ = (Lc +R)sinγ (7)

and
Lsinγ = Rsinξ , (8)

we can rewrite (6) as

M = K(L0−L)
Lc +R

L
Rsinξ . (9)

For small ξ , cosξ ≈ 1 and sinξ ≈ ξ , and a linear approximation of (9) is obtained as

M ≈ K
(

L0

Lc
−1
)
(Lc +R)Rξ , (10)

such that the linearised negative stiffness of the mechanism is equal to K (1−L0/Lc)(Lc+R)R for a pitching body.
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Figure 4. Snap-through mechanism on a pitching body.

As an example, the variations of moment and length of spring for Lc/L0 = 2/3 are plotted in Fig. 5. When L = L0,
the force exerted by the spring is zero. For L > L0, the spring is in tension and therefore the force reverses in
direction. The linearised moment, given by (10), is shown in the figure as the straight line.

Whereas in the heaving body the spring’s length L can increase indefinitely with ξ so long as it does not break, in
the pitching body the spring’s length L cannot theoretically be greater than Lmax = Lc +2R. Also, since we know
that the spring’s moment arm is zero at ξ =±π , the moment due to the spring is bounded.

The hydrostatic restoring moment on a pitching body is a nonlinear function of the pitch displacement ξ , but for
simplicity, we assume it to be linearly proportional to ξ . The total restoring moment Ms, for Ks = 3.125KL0R, is
shown as the solid line in Fig. 6a. The linearised total restoring moment is shown as the horizontal dashed line.
The corresponding ratio of the linearised moment to the ‘exact’ moment is shown in Fig. 6b.

3. Frequency-domain model of a single duck

Consider a single duck pitching about a horizontal axis passing through point O, as shown in Fig. 7. Each half of
the vertical cross-sectional profile is defined by two circular arcs of different radii, Ra and Rf. This cross section
differs slightly from the original duck cross section proposed by Salter [6], which is made up of two arcs of
different radii and a straight line. The width of the duck is denoted by d. A right-handed Cartesian coordinate
system is used with the Z-axis pointing upward and the plane Z = 0 defining the mean free surface. The angle of
propagation β of the incident waves is measured relative to the X-axis. The incident waves propagate along the
X-axis when β = 0.

At rest, the sum of forces acting on the body (the buoyancy force, the gravitational force, and the reaction force
on the axis) is zero, and the buoyancy moment about the axis of rotation is equal and opposite to the gravitational
moment about the same axis.

3.1. Fixed axis of rotation

For a duck pitching about a fixed axis of rotation, the equation of motion describing the angular displacement ξ7
about the fixed axis can be written as

[iω(I +A77)+B77 +BPTO +(C77 +CPTO)/iω]U7 = Fe,7, (11)

where I is the moment of inertia of the body about the axis of rotation, A77 and B77 are the corresponding added
inertia and radiation damping, BPTO and CPTO are the applied power take-off (PTO) damping and stiffness, C77
is the restoring stiffness, U7 = iωξ7 is the angular velocity of the body about the axis of rotation, and Fe,7 is the
excitation moment due to the incident waves.

Denoting the mass of the body by M, the submerged volume by ∀, the centre of buoyancy by B, and the centre of
gravity by G, we may express the restoring stiffness C77 as

C77 = ρg
∫

Sw
(X−XO)

2dS+ρg∀(ZB−ZO)+Mg(ZO−ZG). (12)
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(a) (b)

Figure 5. (a) Moment and (b) length of spring as functions of pitch angular displacement.

(a) (b)

Figure 6. (a) Pitch restoring moment and (b) ratio of the linearised restoring moment to the ‘exact’ restoring
moment, as functions of pitch angular displacement.

X

Z

ξ3

ξ1

O

α

γ

Ra

Rf

ξ7

P

Figure 7. Notations for a single duck (side view).

Here, the first term is the second area moment of the water plane area Sw about the axis of rotation projected on
the mean free surface. The first and second terms are the contribution due to hydrostatic pressures, while the third
is due to gravity.

The mean power P absorbed through the pitch motion is

P =
1
2

BPTO|U7|2. (13)
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3.2. Compliant axis of rotation

When the axis of rotation is allowed to move in surge ( j = 1) and heave ( j = 3), the displacement of any point
X on the body due to a motion in mode j is given as the product of the displacement amplitude ξ j and the shape
function S j, with

S j =


i for j = 1
k for j = 3
(Z−ZO)i− (X−XO)k for j = 7

, (14)

where i, j,k are the unit vectors in X-, Y -, and Z-directions. The equation of motion for the body can be written in
matrix form as

[iω(M+A)+B+BPTO +(C+CPTO)/iω]U≡ (ZPTO +Z)U = Fe, (15)

where Z is defined as the intrinsic impedance.

The elements of the mass matrix M are evaluated from

Mi j =
∫

V
ρMSi ·S jdV, (16)

where ρM is the mass density of the body and V is the volume of the body. The non-zero elements are obtained as

M11 = M33 = M (17)
M17 = M71 = M(ZG−ZO) (18)

M37 = M73 =−M(XG−XO) (19)
M77 = I. (20)

The hydrostatic part of the restoring stiffness can be evaluated from [18]

Ki j = ρg
∫

SB

n j(wi +ZDi)dS, (21)

where n j = S j ·n is the normal component of S j, wi is the z-component of Si, and Di = ∇ ·Si is the divergence of
Si. The non-zero elements are obtained as

K33 = ρgSw (22)

K37 = K73 =−ρg
∫

Sw
(X−XO)dS (23)

K71 = ρg∀ (24)

K77 = ρg
∫

Sw
(X−XO)

2dS+ρg∀(ZB−ZO). (25)

The total restoring stiffness includes the contributions due to gravity and the reaction force on the axis of rotation.
Thus, Ci j = Ki j except

C71 = 0 (26)
C77 = K77 +Mg(ZO−ZG). (27)

The mean absorbed power is

P =
1
2

U†BPTOU, (28)

where † denotes the complex conjugate transpose. The PTO damping matrix BPTO is herein assumed to be diag-
onal, that is, the PTO force applied in each mode depends on the motion of that mode only. Then, (28) equals
to

P =
1
2 ∑

j
BPTO, j j|U j|2. (29)

The reaction forces and moment on the rotation axis can be obtained from

Freact = ZU−Fe. (30)

Equation (15) can be regarded as a more general version of (11). If any of the modes j ∈ {1,3,7} is fixed, we
know that U j = 0 and only the velocities for the remaining modes are solved using (15). Thus (15) reduces to (11)
when modes j = 1,3 are fixed. In any case, however, the reaction force vector Freact must be calculated using the
full Z and Fe.
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4. Frequency-domain model of two lines of ducks meeting at an angle

Next, we shall consider wave energy absorption by two lines of ducks meeting at an angle, as shown in Fig. 8. The
system represents a platform with two arms, where N ducks are mounted on each arm and thus having a common
rotation axis. The configuration is similar to the WEPTOS [19], a wave energy device under development in
Denmark.

X

Y

1

N

d

N + 1

n

2N

xn

yn

a

θn

Figure 8. Notations for two lines of ducks meeting at an angle (plan view).

A right-handed Cartesian coordinate system is defined such that the system at rest is symmetrical about Y = 0 and
the fluid domain occupies Z ≤ 0. The coordinate system of duck n is defined such that the yn-axis coincides with
the axis of rotation, the duck is symmetrical about yn = 0, and the zn-axis points upwards.

The system has in general 6+ 2N degrees of freedom, six being the rigid body modes of the whole system and
2N being the independent rotations of each duck about its axis. However, we assume that the system is always
symmetrical with respect to the incident wave direction, i.e. the incident wave propagates along the X-axis.
In addition, we assume that ducks n and N + n, n = 1, . . . ,N have the same PTO impedance. Because of this
symmetry, the degrees of freedom reduce to 3+N. We reserve the index j = 1, . . . ,6 for the conventional rigid
body modes of the whole system. Thus, j = 1,3,5 denote the surge, heave, and pitch of the whole system as
a single body. In addition, j = 7, . . . ,N + 6 denote the additional N modes describing the motion of the ducks
relative to the platform.

The displacement of any point X on the system due to a motion in mode j is given as the product ξ jS j. The shape
functions S j for j = 1,3,5 are given as

S j =


i for j = 1
k for j = 3
Zi−Xk for j = 5

(31)

for all X in the body.

The displacement of a point xn on duck n due to a unit rotation about its axis is given in its own coordinate system
as

Spn = znin− xnkn. (32)

Denoting XOn as the origin of the duck coordinate system (measured in the global coordinate system) and θn as
the angle of the yn-axis relative to the Y -axis, we have the following relations between the duck’s and the global
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coordinates and unit vectors:

xn = (X−XOn)cosθn +(Y −YOn)sinθn (33)
zn = Z−ZOn (34)
in = icosθn + jsinθn (35)

kn = k, (36)

which, upon substitution into (32), yield

Spn = (Z−ZOn)cosθn i+(Z−ZOn)sinθn j− [(X−XOn)cosθn +(Y −YOn)sinθn]k (37)

in terms of the global coordinates and unit vectors. Due to symmetry, θN+n =−θn.

The modes j = 6+ n for n = 1, . . . ,N are defined as positive rotations of equal magnitude of duck n and N + n
about their respective axes. In terms of shape functions,

S j| j=6+n,n=1,...,N =


Spn for X ∈ Dn

SpN+n for X ∈ DN+n

0 elsewhere
, (38)

where Dn is the region occupied by duck n.

The equation of motion for the system can be written in matrix form as (15) and once the angular velocities of the
ducks are solved for, the mean absorbed power can be obtained from (28), bearing in mind that since there are in
total 2N ducks, the values of BPTO, j j and CPTO, j j for j = 7, . . . ,N +6 have to be twice the values applied on each
duck.

Having defined the shape functions S j, we can evaluate the elements of the mass matrix M from (16). The non-zero
elements are

M11 = M33 = M (39)
M15 = M51 = MZG (40)

M35 = M53 =−MXG (41)
M55 = I (42)

M1 j = M j1 = 2MDznG cosθn (43)
M3 j = M j3 =−2MDxnG (44)

M5 j = M j5 = 2
∫

Dn

ρM(Zzn cosθn +Xxn)dV ≡ 2IY Dn (45)

M j j = 2ID (46)

for j = 6+n,n = 1, . . . ,N, and where M is the total mass of the system, I is the moment of inertia of the system
about the Y -axis, MD is the mass of a single duck, ID is the moment of inertia of a single duck about its axis of
rotation, and IY Dn is as defined. Also, XG is the centre of gravity of the whole system and xnG is the centre of
gravity of duck n in its coordinate system.

The hydrostatic part of the restoring stiffness can be evaluated from (21). The non-zero elements are

K33 = ρgSw (47)

K35 = K53 =−ρg
∫

Sw
XdS (48)

K51 = ρg∀ (49)

K55 = ρg
∫

Sw
X2dS+ρg∀ZB (50)

K3 j = K j3 =−2ρg
∫

Swn

xndS (51)

K j1 = 2ρg∀n cosθn (52)

K5 j = 2ρg
∫

Swn

XxndS+2ρg∀nznB cosθn (53)

K j5 = 2ρg
∫

Swn

XxndS+2ρg∀nZBn cosθn (54)

K j j = 2ρg
∫

Swn

x2
ndS+2ρg∀nznB, (55)
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Table 1. Parameters of the single duck.

Parameter [unit] Value

M [kg] 9.309 × 104

I [kg m2] 8.259 × 105

XG [m] -1.441
ZG [m] -4.028
Ra [m] 2.94
Rf [m] 5.88

width d [m] 7.056
XO [m] 0
ZO [m] -3.146
XB [m] -0.539
ZB [m] -2.756

α [deg] 50.5
γ [deg] 150
∀ [m3] 242.72

water depth h [m] 20

for j = 6+n,n = 1, . . . ,N, and where Sw and ∀ are the total water plane area and displaced volume of the whole
system, ZB is the Z-coordinate of the centre of buoyancy of the whole system, Swn and ∀n are the water plane area
and displaced volume of duck n, while znB and ZBn are the zn- and Z-coordinates of the duck’s centre of buoyancy.

The total restoring stiffness includes the contributions due to gravity and any reaction force on the axis of rotation.
It also must take into account any displacement of the duck’s centre of rotation due to the rigid body modes of the
whole system. Thus, C = K except for

C51 =C j1 = 0 (56)
C55 = K55−MgZG (57)

C5 j =C j5 = K5 j−2MDgznG cosθn (58)
C j j = K j j−2MDgznG, (59)

where j = 6+n,n = 1, . . . ,N.

For simplicity, we assume that the platform is transparent to the waves and we neglect the gaps between neigh-
bouring ducks on each arm. Thus, defining

Yln ≡ X tanθn +[a+d(n−1)]/cosθn (60)
Yrn ≡ X tanθn +(a+dn)/cosθn, (61)

where a is defined in Fig. 8, we have

Yln ≤ |Y | ≤ Yrn for X ∈ Dn
⋃

DN+n,n = 1, . . . ,N. (62)

Furthermore, the XY -coordinates of the origin of duck n, for n = 1, . . . ,N, are given as

XOn =−[a+d(n−1/2)]sinθn (63)
YOn = [a+d(n−1/2)]cosθn. (64)

5. Results and discussion

5.1. A single duck

We consider a single duck with parameters given in Table 1. The submerged geometry is shown in Fig. 9. At rest,
there is an upward force of 1.53 MN on the axis of rotation due to net buoyancy. The incident waves propagate
along the X-axis (β = 0). The added mass, radiation damping, and wave excitation force coefficients for the given
geometry are calculated numerically using a panel method [20].

The effects of applying different negative stiffnesses on the single duck are shown in Fig. 10. Here, the PTO
damping is kept constant and is equal to 106 Nms. Applying the negative stiffness is seen to improve the power

9
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Figure 9. Panel model of a single duck with dimensions specified in table 1. The interior free surface is panelled
for the purpose of removing irregular frequency effects.

capture. The peak period is lengthened, and the power curve is broadened. The undamped and uncoupled pitch
resonance periods of the duck for the different negative stiffnesses can be obtained by finding the period at which
the total reactance of the system is zero in each case. From this analysis, we find that the resonance period is
lengthened from 3.40 s without negative stiffness to 4.84 s, 6.06 s, 7.16 s, and 8.61 s with negative stiffness. This
improved power performance however comes at the price of larger pitch displacement and reaction moment on
the support structure. Nevertheless, the surge reaction force stays about the same, while the increase in the heave
reaction force is not as significant as that in pitch.

The linearised negative stiffness in pitch due to a negative spring with a spring rate K, original length L0, and
compressed length Lc has been derived earlier. Thus,

CPTO = K (1−L0/Lc)(Lc +R)R, (65)

where R is the distance between the duck’s rotation axis and the point of application of the spring force (see
Fig. 4). Assuming R = Lc = 4 m, we can obtain the required spring rate K as a function of the original length
L0, for different negative stiffness CPTO values (see Fig. 11). For L0/Lc = 1.5, the required spring rate is K =
8.125×104 N/m to obtain a negative stiffness value of CPTO =−1.3×106 Nm, and K = 1.75×105 N/m to obtain
CPTO =−2.8×106 Nm.

The predictions shown in Fig. 10 must be treated as optimistic predictions. As seen from Fig. 12, the linearised
restoring moment due to the negative spring arrangement becomes less accurate with increasing pitch displace-
ment, and the range of validity of the linearised theory becomes narrower with increasing negative stiffness.

5.2. Two lines of ducks meeting at an angle

For the two lines of ducks, each duck has the same mean geometry as that of the single duck described in the
previous section. However, the entire system is now assumed to be freely floating, so there is no force on the axes
of rotation when the system is at rest. This means that we must increase the mass of each duck to balance its
buoyancy and shift its centre of gravity so that xnG = xnB. The vertical coordinate of the centre of gravity znG is
assumed to be higher than that in the previous case. With this modification of the mass properties, the undamped
and uncoupled pitch resonance periods of each duck are now 4.56 s without negative spring, and 5.67 s, 6.88 s,
7.90 s, and 9.08 s with the same values of negative stiffness as in the previous case. The total moment of inertia
I and horizontal coordinate of the centre of gravity XG of the entire system depend on the angle between the two
lines.

As a case study we analyse two lines of ten ducks (N = 10) meeting at 120 degrees. The panel model is shown
in Fig. 13. The incident waves propagate along the X-axis. To each duck, we apply the same set of negative
stiffnesses as in the single duck case. The entire system is freely floating.

The response of the device is shown in Fig. 14, where results pertaining to individual ducks, i.e. the reaction
moment Freact,n and the duck displacement ξn, are averaged over all ducks. We find that applying negative stiffness
in this case actually degrades the power performance of the device and increases the reaction moment on each
duck. The only advantage, it seems, is that the displacements of the platform are reduced. It is worth noting that
for this configuration the pitch natural period of the whole system is 7.12 s while the heave natural period is 6.60 s.

10



upper bound

-2.1

-2.5

-2.8

Figure 10. Mean absorbed power, pitch displacement amplitude, and reaction force (moment) amplitudes in surge,
heave and pitch, for a single duck with parameters given in Table 1, a constant PTO damping of 106 Nms, and
different negative stiffnesses as indicated (in 106 Nm), and for incident wave amplitude of 1 m. On the mean
power plot, the upper bound when the pitch displacement is not allowed to exceed 45◦ for all wave periods is also
shown.
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-2.5 -2.8

Figure 11. Required spring rate as a function of original-to-compressed spring length ratio, for R = Lc = 4 m and
different negative stiffness values (in 106 Nm) as indicated.

Figure 12. Ratio of linearised restoring moment to ‘exact’ restoring moment, as function of pitch displacement,
for R = Lc = 4 m, L0/Lc = 1.5, and different negative stiffness values (in 106 Nm) as indicated.
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Table 2. Parameters of the two lines of ducks. Each duck has the same geometry as that of the single duck
discussed in section 5.1, so the rest of the parameters in Table 1 applies to each duck.

Parameter [unit] Value

a [m] 5.292
MD [kg] 2.488 × 105

ID [kg m2] 1.529 × 106

xnG [m] -0.539
ZnG [m] -3.587

Figure 13. Panel model of two lines of ten ducks meeting at 120 degrees.

The amplified displacements of the platform around these periods appear to be responsible for the sharp decline of
the absorbed power at around 7 s. For wave periods greater than 7 s, the motion of the platform follows the waves
and therefore a stable reference for the ducks to react against is lost.

We confirm that this is indeed the case by analysing the same system, but with the platform fixed. In this case a
stable reference exists and the negative spring works effectively in improving the power performance (Fig. 15).
The change in the device response with increasing negative stiffness is similar to that for the single duck (see
Fig. 10), whose rotation axis is also fixed.

6. Conclusion

The effects of a negative stiffness mechanism on pitching wave energy devices have been investigated through
a numerical study. Our study confirms that negative stiffness lengthens the resonance period and broadens the
resonance bandwidth of pitching devices, at the price of larger displacements and reaction forces. The mechanism
is most effective when the pitch rotation axis is fixed. It becomes less effective when the axis is allowed to move.

As is often the case with results obtained from linear analyses, the results presented herein must be treated as
optimistic estimates. A natural extension of this study would be to include the exact nonlinear expression of the
negative stiffness in a time-domain model, which may also include the nonlinear dependence of the hydrostatic
restoring moment on the pitch displacement, and losses, which so far have been neglected. These may give a more
conservative estimate of the effects of the negative stiffness mechanism on these devices, although we believe that
they would not change our main conclusion.
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Figure 14. Mean absorbed power, reaction moment amplitudes, and displacement amplitudes for a system con-
sisting of two lines of ten ducks (N = 10) meeting at 120 degrees, with parameters given in Table 2, a constant
PTO damping of 106 Nms, and different negative stiffnesses (in 106 Nm), and for incident wave amplitude of 1 m.
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Figure 15. Mean absorbed power, duck displacement amplitudes, and reaction force (moment) amplitudes for a
system identical to that in Fig. 14 but with the platform not allowed to move.
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