Abstract—This paper represents the design of a compact dielectric resonator antenna (DRA) for the future fifth generation (5G) applications. The antenna consists of a cylindrical-ring dielectric resonator (DR) mounted on a low-cost FR-4 surface, and a full ground plane. The antenna is fed by a coaxial probe with its inner conductor located adjacent to the DR. The antenna has good performance in terms of input-matching, gain and efficiency characteristics. The variation of the antenna properties in terms of gain and efficiency are less than 2 and -0.5 dB across its impedance pass-band (20 to 35 GHz for $S_{11}<-10$ dB). Using the proposed DRA design, the radiation characteristics of 2×2, 4×4, and 8×8 planar arrays are investigated. In addition, the fundamental properties of the 1×8 linear array have been discussed. Simulations have been done to validate the feasibility of the proposed DRA for the future 5G wireless networks.

Keywords—coaxial-fed DRA; future communications; mm-Wave applications

I. INTRODUCTION

In the last decade, dielectric resonator antennas (DRAs) have received considerable amount of research efforts owing to their attractive features such as compact size, high radiation efficiency, wide bandwidth, easy excitation [1-3]. DRAs are available in various shapes and can be fed through multiple feeding mechanisms [4]. Due to these attractive advantages, they could be highly suitable for the development of the future wireless communications.

Compared with the current and previous generations (1G to 4G) of wireless communications, fifth generation (5G) networks are expected to use the millimeter (mm-Wave) frequency bands (beyond 10 GHz) due to the growing need for wider bandwidths and higher data rates [5-7]. Moving to the mm-Wave frequencies requires careful considerations in the design of antennas [8]. Our work represents an initial study on the design of DRAs for the future 5G applications.

A compact cylindrical-ring DR with dielectric constant of 10 has been used as a main radiator in the proposed design. The antenna is designed on a low-cost FR-4 substrate and fed by a coaxial probe. It is working in the frequency range of 20 to 35 GHz. The simulated results show that the proposed DRA exhibits good features in terms of different parameters. The configuration of the proposed DRA, its impedance bandwidth, and radiation properties have been presented and investigated in Section II. The performances of the linear and planar arrays with different number of DRA radiators (2×2, 4×4, and 8×8) have been described in Sections III and IV, respectively. Last Section concludes the presented study.

II. THE PROPOSED DRA

Figure 1 displays the configuration of the proposed DRA fed by a coaxial probe. The inner conductor of the coaxial cable is located adjacent to the DR for signal transition. It can also be located within the DR. The length of the protruded inner conductor has a significant impact on the antenna performance. An FR-4 dielectric with 1 mm thickness and permittivity of 4.3 is used as the substrate. It has the same dimension as the ground plane, occupying an area of $W_S \times L_S$. The employed DR has a low permittivity (ε_{rd}) of 10 and a loss tangent (δ) of 0.0001 which is located at the center of the substrate. The low permittivity ($10 \leq \varepsilon_{rd} \leq 100$) of DR can help achieve wide bandwidth [9-10]. The parameter values of the designed antenna and its linear array are specified in Table 1.

![Figure 1. The proposed coaxial-fed DRA, (a) 3D schematic, (b) front profile, and (c) back profile (Full-GND).](image)

Table 1. Parameters of the Designed Antenna and Linear Arrays

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_S</td>
<td>12 mm</td>
</tr>
<tr>
<td>L_S</td>
<td>8 mm</td>
</tr>
<tr>
<td>h_S</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>D_1</td>
<td>2 mm</td>
</tr>
<tr>
<td>D_2</td>
<td>4 mm</td>
</tr>
<tr>
<td>D_3</td>
<td>8 mm</td>
</tr>
<tr>
<td>L_C</td>
<td>2 mm</td>
</tr>
<tr>
<td>C</td>
<td>3 mm</td>
</tr>
</tbody>
</table>
TABLE I. VALUES OF THE PROPOSED DRA PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>W_s=</th>
<th>L_s</th>
<th>h_s</th>
<th>W_a</th>
<th>L_a</th>
<th>L_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (mm)</td>
<td>5.5</td>
<td>5.5</td>
<td>1</td>
<td>44</td>
<td>5.5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>L_c</th>
<th>L_i</th>
<th>D</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (mm)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>0.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>

The simulated S_{11} characteristic of the antenna is depicted in Fig. 2. As shown, the impedance bandwidth of the proposed DRA for -10 dB is from 20 GHz to 35 GHz which is equivalent to a > 50% fractional bandwidth (FBW). However, the antenna bandwidth and its impedance-matching can be tuned by adjusting the values of the critical parameters such as the inner conductor length and the inner diameter of DR.

From this result, it can be observed that for $L_i=1$ mm & $D=1$ mm, the antenna has a good impedance matching at the desired frequency range of 20-35 GHz. According to the H-field distribution for the presented antenna at the center frequency of the antenna response (27 GHz) shown Fig. 4, the strong distribution arises around the inner conductor and the DR. Therefore, a significant impact of the inner conductor on the antenna performance can be found.

![Fig. 4. Simulated H-field distribution of the DRA at 27.5 GHz.](image)

Due to the wide bandwidth, the radiation patterns of the proposed antenna at lower, middle, and upper frequencies (23, 27, and 31 GHz, respectively) are studied and illustrated in Fig. 5. In addition, their 2D-polar patterns have been represented in Fig. 6. Based on the simulations, similar performances with good realized gain values have been obtained for the proposed antenna.

![Fig. 5. 3D radiation patterns of the DRA at (a) 23 GHz, (b) 27 GHz, and (c) 31 GHz.](image)

![Fig. 6. 2D-polar radiation patterns of the antenna at different frequencies.](image)
Furthermore, as shown in Fig. 6, the antenna has low back-lobes at different frequencies in the operation band which indicates a consistent performance behavior versus frequency. In order to demonstrate that the antenna actually radiates over its operation band, its radiation properties in terms of maximum gain, radiation and total efficiencies are presented in Fig. 7. More than -0.5 efficiencies and 4 dBi maximum gain have been obtained in the operation frequency band. As shown, the antenna has good performance with low variations on the parameters values.

Figure 9 shows the simulated S parameters of the array. As shown, the array has a good performance in the frequency range from 20 to 35 GHz with a mutual coupling (S_{21}) less than -14 dB between the radiators.

The radiation beams of the linear array with the directivity values at 0, 30, and 60 degrees are shown in Fig. 10. As can be observed, the designed array has good beam steering property with high-level directivities and low back-lobes. The simulated realized gains (IEEE gain \times mismatch losses) of the linear DRA array at different angles are illustrated in Fig. 11. It can be seen that the array has good gain levels at different scanning angles.

III. 1×8 LINEAR ARRAY OF THE PROPOSED DRA

The configuration of the DRA array is displayed in Fig. 8. It consists of eight element DRAs arranged in a linear form with interval of $d=\lambda/2$ (center frequency at 27 GHz).

Simulated directivity and radiation efficiency characteristics of the array versus scanning angle are shown in Fig. 12. As can be seen, the radiation efficiency of the antenna is higher than -0.25 dB (95%). In addition, the antenna directivity is more than 11 dBi at the different scanning angles. It should be noted that due to the symmetric radiation patterns of the array elements, the performance for minus (-) angles are not shown.

Figure 11. Simulated realized gains of the linear array.

Simulated directivity and efficiency properties of the DRA array versus scanning angle.
IV. PLANAR DRA ARRAYS

In this section, the radiation performances of the planar arrays with three different numbers of the DRAs have been investigated. Figure 13 shows the configurations of the DRA arrays in size of 2×2, 4×4, and 8×8.

![Planar DRA Arrays](image)

Fig. 13. The planar arrays, (a) 2×2, (b) 4×4, and (c) 8×8.

Figure 14 illustrates the radiation beams of the planar DRA arrays when their beams are tilted to 0° elevation. It is clear that the planar arrays of the DRA have good radiation behaviors with high-level gains and directive patterns at different frequencies of the operation band. The investigated planar arrays also have high efficiency characteristics.

V. CONCLUSION

This paper presents a new compact design of the DRA with broad bandwidth for future 5G systems. The antenna is designed on a low-cost FR-4 substrate and fed by a coaxial probe. The operation frequency range of the antenna is from 20 GHz to 35 GHz. Furthermore, using the proposed design, the performances of DRA arrays with different number of radiation elements are investigated and good results have been obtained. Simulated results show that the proposed DRA is highly suitable for the development of the future wireless communications. In addition, the proposed arrays have a low profile with symmetric configurations and could be integrated with wireless devices.

REFERENCES