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Abstract—The three level neutral-point clamped (3L-NPC)
topology is one of the most widely used multilevel topologies
in the low and medium voltage applications and also one of
the most commercialized topologies. Although it offers many
benefits compared to the conventional two level topology, it
suffers from a considerable unequal loss distribution among the
inner and outer switches and the clamping diodes. To solve this
problem, we are proposing a control algorithm based on the
finite control set model predictive control (FCS-MPC) that can
provide a more balanced stress distribution. For implementing
the proposed control algorithm no additional measurements are
required nor thermal models of the semiconductor devices. The
algorithm benefits are even more noticeable during low voltage
ride through (LVRT) scenarios when the output voltage level of
the converter is low and the current amplitude is high. Obtained
simulation results confirm the positive effects on the thermal
redistribution and also the junction temperatures of the most
stressed devices are reduced. Effects of the algorithm are also
verified on an experimental set-up.

I. INTRODUCTION

Since it was first introduced in 1981 as an alternative to

the conventional voltage source inverter [1], the neutral point

clamped (NPC) topology has been widely used in medium

voltage applications and nowadays also in low voltage appli-

cations [2], [3]. As it can provide a lower harmonic distortion

of the output voltage and can follow the high power rating

trend of renewable energy sources, power electronics converter

manufacturers have implemented this topology into their so-

lutions for interconnection of the renewable energy sources

or to supply the variable speed drives [4]–[6]. Although the

topology offers many benefits compared to the conventional

two level voltage source topology [7], the stress redistribution

analysis of the semiconductor devices reveals an unequal stress

distribution between the outer and inner switches and a high

stress on the clamping didoes. Unequal stress distribution

limits the maximum output power of the converter since the

power is limited by the maximum permitted thermal stress

of the most stressed semiconductor device. Moreover, it will

limit the permitted switching frequency and reliability of the

converter. The issue of unequal stress distribution is even more

evident under low voltage ride through (LVRT) scenarios [8].

In 2001 the active neutral point clamped (ANPC) topology

was introduced to eliminate this disadvantage [7], [9]. The

clamping diodes were replaced by the active switches but

with additional cost of two extra switches, power supplies and

gate-drive units. Even though a new topology was introduced,

the efforts of solving the thermal redistribution problem by

developing a more advanced control algorithm with a better

semiconductor stress distribution was still pursued by research

groups. Solutions based on two-level modulations for lower

modulation indexes were proposed in [10]. The proposed

strategy benefits the inherent redundancy among switching

states in multilevel inverters to optimally relieve the thermally

stressed device. Another possibility to balance the lifetimes

of the power devices is an asymmetric power device rating

selection method as proposed in [11]. Using the chip size de-

pendent analytical power loss and thermal impedance models,

proper chip size for an even temperature distribution in the

NPC inverter can be selected. The authors in [8] proposed

special space vector modulation (SVM) sequences for LVRT

scenarios by reducing the dwelling time of the zero voltage

vectors and commutations that involve zero voltage level.

The approach was further developed for application using

moderate modulation indexes [12]. Another SVPWM method

that takes advantage of the redundant space voltage vectors is

proposed in [13]. The proposed algorithm continuously evalu-

ates the cost function of the junction temperature of thermally-

overheated device for all possible switching sequences set

in order to find the optimal relieving switching sequence. A

similar concept but with a much simpler implementation is

also developed for a carrier-based thermal stresses relief PWM

(TSRPWM) method in [14].

All of the before mentioned solutions are based on the linear

control algorithms that have limited flexibility and transient

response speed due to most common cascaded organization

of control loops. On the other hand, model predictive control

(MPC) algorithms have emerged as one of the most straight-

forward solutions for controlling the power converters. In

particular, the finite control set model predictive control (FCS-

MPC) algorithm has gathered a lot of attention in the power

electronics community due to the simple implementation. The

control is based on calculating the predictions of the system

values using the discrete system model and afterwards solving

the optimization problem. For all possible converter’s state

variables a user-defined cost function is evaluated and the

switching state that will produce the minimal cost function



value is then applied. Different control objectives can easily

be implemented in the cost function such as minimization of

the reference tracking error [15], switching loss minimiza-

tion [16], harmonics elimination [17], [18], common-mode

voltage minimization [19], active thermal control [20] and

the device junction temperature spread [21]. Considering the

aforementioned problem of the NPC topology, particularly

the last two objectives are very interesting for application. In

[20] a model for on-line junction temperature estimation is

implemented by introducing a new term in the cost function

that evaluates the amount of thermal swing. To implement

this objective thermal models of the semiconductor devices

are needed. The authors further developed the approach in

[21] by including the lifetime estimation in the cost function.

Using the Miners rule the accumulated damage is calculated

for each sampling period. However, this objective demands a

lot of information about the semiconductor devices, some of

them are provided in data-sheets and manuals but for some re-

liability experiments are needed. In our paper we present FCS-

MPC based algorithm with thermal redistribution that does

not need any information about the semiconductor devices

nor measurements. Therefore, the algorithm has a simpler

implementation as there is no need for additional calculations

nor thermal modeling of the devices. The computational effort

of the algorithm is also not significantly higher then that of

a algorithm with a conventional cost function as presented in

[22]. A more equalized stress distribution is achieved between

the outer and inner semiconductor switches and the stress on

the clamping diodes is also relived.

This paper is organized as follows. In Section II the system

model and the FCS-MPC algorithm are described. The pro-

posed algorithm for thermal stress redistribution is explained

in Section III. The obtained semiconductor thermal redistribu-

tions for conventional and proposed algorithm are presented in

Section IV. In Section V the effects of the proposed algorithm

are experimentally validated. In the last section conclusions

and aspects for future research are provided.

II. SYSTEM MODEL

The three level NPC converter has 27 allowed switch-

ing states which can produce 19 different voltage vec-

tors. The vectors are typically classified into zero vec-

tors (V0 − V3), small vectors in the inner hexagon (V4 −
V15), medium (V17,V19,V21,V23,V25,V27) and large vectors

(V16,V18,V20,V22,V24,V26) in the outer hexagon as seen in

the Fig. 1. As the applied FCS-MPC algorithm is not using a

modulator, one of these vectors will be applied to the converter

output for the duration of the whole sampling period Ts.

A. Electrical model

The FCS-MPC algorithm will be evaluated on a 3L-NPC

converter in standalone operation with an LC output filter and

a resistive load as seen in Fig. 2. During the execution of FCS-

MPC for all 27 possible inverter voltage vectors, future system

voltages and currents are calculated using differential equa-

tions which describe the AC and DC side system dynamics.

V18 : ppn [0]

V17 : p0n [i ]

V16 : pnn[0]

V25 : 0np [i ] V26 : pnp [0]V24 : nnp [0]

V23 : n0p [i ]

V22 : npp [0]

V20 : npn [0] V19 : 0pn [i ]

V4 :  p00 [-i ]
 V5 : 0nn [i ]

V6 : pp0[i ]
 V7 :  00n[-i ]

V8 : 0p0 [-i ]  
V9 : n0n [i ]

V12 : 00p [i ]
   V13 : nn0 [-i ]

V14 : p0p [i ]  
V15 : 0n0 [-i ]

V21 : np0 [i ]
V10 : 0pp [i ]   

V11 : n00 [-i ]

V1 : 000 [0]
V2 : ppp[0]

 V3 : nnn[0] V27 : 
pn0 [i ]

β 

α 

Fig. 1. Voltage vectors, switching states and neutral point current that can be
generated by an 3L-NPC converter.

These system equations are discretized using the Euler forward

method. On the AC side future values of the filter current and

capacitor voltage are needed and on the DC side the future

values of the DC-link capacitor voltages. The values of the

filter current ifαβ and capacitor voltage vcαβ are calculated

using the following differential equations in the stationary αβ
frame:

ifαβ(t) = Cf
dvcαβ(t)

dt
+ ioαβ(t) (1)

viαβ(t) = Lf
difαβ(t)

dt
+ vcαβ(t) (2)

where ioαβ and viαβ are the load current and inverter output

voltage, Lf and Cf are the filter inductance and capacitance.

Future values of the DC-link capacitor voltages vdc1,2 are

obtained using the DC link capacitor charging equations:

vdc1,2(t) = Cdc1,2
didc1,2(t)

dt
(3)

idc1(t) = idc(t)−
∑

x

(H1xifx(t)) (4)

idc2(t) = idc(t) +
∑

x

(H2xifx(t)) (5)

where Cdc1 and Cdc2 are the capacitances of the DC-link

capacitors and idc1,2(t) are respective charging currents. idc(t)
is the DC source current, ifabc(t) the inverter phase current,

H1x and H2x are indicator functions. H1x will return 1 if

the phase leg x ∈ a, b, c is connected to Vdc/2 while H2x

returns 1 if the phase leg is connected to −Vdc/2 otherwise

the function values are 0. The product of the indicator function

and respective inverter phase current represents the neutral

point current iN . Depending on the applied redundant small

inverter voltage vector the sign of this current can be positive

meaning that the capacitor voltage will rise or if it is negative

the voltage will drop. The key of the DC-link balancing is

to properly use the small redundant vectors (V4 − V15) and
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Fig. 2. Simplified system model scheme of stand-alone 3L-NPC converter
using model predictive control.

keep the neutral point voltage balanced. Therefore, to ensure

proper operation of the system, balancing of the DC-link

voltage capacitors must be included in the cost function of the

FCS-MPC algorithm. For each prediction the cost function is

evaluated and the converter switching state that minimizes the

cost function is selected and applied to the converter output.

In the experimental application the execution of the algorithm

will introduce a delay in the system. A compensation of this

delay is needed to remove the negative effects on the algorithm

performance as shown in [23]. Using the forward Euler method

as presented in [15] the discrete-time model of the system was

obtained.

B. Thermal model

To evaluate the thermal distributions of 3L-NPC converter

using PLECS Blockset in Simulink, thermal models of IGBT

switches and diodes are needed. Thermal impedance of the

devices are modeled as a four layer Foster RC network, as

shown in Fig. 3, the Foster RC model is based on mea-

surements of the temperature dynamics and it depends on

the material and structure of the device. The parameters of

the model are obtained by fitting the mathematical curve to

temperature measurements, and therefore they do not have any

physical meaning [24]. In Fig. 3, Tj represents the junction

temperature of the device and Tc the case temperature. To

perform simulations the Foster network needs to be transfered

to an equivalent Cauer network. All thermal parameters of

the SKiiP 28MLI07E3V1 modules used in the experimental

set-up can be found in the manufacturer datasheet [25]. The

parameters were obtained by fitting the analytical function to

the transient thermal impedance graph:

Zth(j−c)(t) =
4∑

i=1

Rith(1− e
(− t

τi
)
) (6)

The obtained values are presented in Table I. The heatsink of

the experimental set up provides an Rth = 0.06 K/W at a 5

m/s airflow of the fan [26].

Fig. 3. Foster thermal network for transistor and diode ZT/D(j−c).

TABLE I
PARAMETERS OF THE THERMAL IMPEDANCE FOR ZT/D(j−c)

Layer 1 2 3 4

RiT (K/W ) 0.31 0.18 0.057 0.0075

τiT (ms) 230 80 1 0.6

RiD(K/W ) 0.4 0.27 0.066 0.023

τiD(ms) 230 86 1 0.8

Proposed
FCS-MPC cost function 

for NPC converter

Voltage reference tracking 
(vc

*(k), vc
P(k))

NP voltage 
balancing

(vdc1
P(k),vdc2

P(k))

Thermal stress redistribution
(if (k), Sx1(k), S’x2(k), 
Sx1(k-1), S’x2(k-1))

S (k)

Fig. 4. Proposed cost function for the FS-MPC algorithm.

III. PROPOSED FS-MPC ALGORITHM

The conventional cost function of a FCS-MPC algorithm

for a standalone 3L-NPC converter includes two objectives:

minimization of the reference tracking error and neutral point

voltage balancing. In the algorithm this is formulated as

follows:

g = (v∗cα − vPcα)
2 + (v∗cβ − vPcβ)

2 + λdc · gdc (7)

gdc = (vPdc1 − vPdc2)
2 (8)

where v∗cα and v∗cβ represent the real and imaginary parts of

the reference voltage vector v∗c (k) = v∗cα + jv∗cβ , vPcα and vPcβ
the real and imaginary parts of the predicted voltage vector

vPc (k + 1) = vPcα + jvPcβ . Weighting factor λdc is used to

tune the DC-link balancing part gdc. The purpose of gdc is to

select the switching combination that will produce minimum

difference between the predicted capacitor voltages vPdc1(k+1)
and vPdc2(k + 1) .

In our algorithm in Fig. 4 we propose to include an

additional term in the cost function with the aim to balance the



stress applied to the converter switches. It is quite straightfor-

ward that if the amplitude of the current flowing through the

semiconductor device is high, if possible the control algorithm

should avoid switching that device. In Fig. 1 we can see

that the FCS-MPC algorithm has the possibility to select 27

switching states from which 8 are redundant. Therefore, it

is possible to use these redundant switching states to avoid

switching the device with high current. This can be very

beneficial in cases when the amplitude modulation index is

low and the current is high like the low voltage ride trough

(LVRT) scenarios in renewable energy systems. In this case as

the output voltage is low, small and zero vectors are utilized

more often and as each vector has a redundant switching

combination they can be used to avoid the switching when

the amplitude of the current is high in that phase. There are

of course unavoidable drawbacks of this objective, avoiding

the switching will increase the THD of the output voltage.

For this reason a proper balance of the objectives needs to be

maintained i.e. the cost of a little higher THD may prolong

the lifetime of the most stressed devices as the stress will be

more equally redistributed among the devices.

To include the thermal redistribution objective in the cost

function, two pieces of information are needed for all three

phases of the converter: amplitude of the converter current

i.e. filter current if and the switching state in the previous

sampling period. The first one is already provided in the

conventional algorithm and the second one can easily be

accessed in the algorithm, thus no additional measurements

or semiconductor parameters are needed to implement this

objective. The objective is translated into a cost function in

the following way:

gt = |Ifa(k)| · na + |Ifb(k)| · nb + |Ifc(k)| · nc (9)

nx = |Sx1(k − 1)− Sx1(k)|+ |S′
x2(k − 1)− S′

x2(k)| (10)

where Ifx(k) is the measured filter current amplitude for phase

x ∈ a, b, c, Sx1(k) and S′
x2(k) are the new potential switching

states and S′
x1(k− 1) and S′

x1(k− 1) is the applied switching

state from the previous sampling period. Thus, the proposed

algorithm has the following cost function:

g = (v∗cα − vPcα)
2 + (v∗cβ − vPcβ)

2 + λdcgdc + λtgt (11)

where λt is the weighting factor of the thermal redistribution

objective. Three performance variables have to be defined

to select the weighting factors: THD of the output voltage,

voltage difference of the DC-link capacitors and the difference

between the junction temperatures of the devices. For this rea-

son multiple simulations were run to determine the optimum

selection of the weighting factors.

IV. ANALYSIS OF SEMICONDUCTOR STRESS

REDISTRIBUTION

A simulation model of the described three phase 3L-NPC

converter with an output LC filter was created in Simulink

with the parameters given in Table II. Using the PLECS

Blockset, the thermal models of the semiconductor devices

were designed based on the manufacturer datasheets [25],

[26]. The simulations were performed using a conventional

cost function (7) and a proposed cost function (11). Due

to the normally large thermal capacitance, the initial heat

sink temperature is set to 80°C for high current and to 50

°C for low current operation to shorten the simulation time

needed to reach the steady state operation. Simulation results

for two scenarios are provided: high amplitude modulation

index and low amplitude modulation index. The weighting

factors in the cost functions (λdc = 1, λt = 0.05) were

determined by running multiple simulations. A concept for

selecting weighting factors presented in [27] can be used to

find the optimum solution. For this system the THD, DC-link

balance and junction temperature difference can be defined as

the performance metrics.

TABLE II
SYSTEM PARAMETERS

Parameter Value

DC link voltage Vdc = 700 V

DC link capacitors Cdc1,2 = 4 mF

Output filter parameters Lf = 2.4 mH, Cf = 15 μF

Algorithm sampling time Ts = 25 μs

Weighting factors λdc = 1, λt = 0.05

A. High modulation index

The reference phase to phase voltage in the simulation is

set to the 400 V and the value of the linear resistive load

Rload in first simulation is set to 3.25 Ω and in the second

6.5 Ω, therefore the respective load current amplitudes are

approximately 100 A and 50 A. The redistribution of the

mean junction temperatures (Tj) is shown in Fig. 5 and

Fig. 6. It can be observed that for the conventional cost

function (λt = 0) there is a significant temperature difference

between the outer (T1,T2) and inner (T ′
1,T

′
2) IGBTs, also the

clamping diodes (D3,D4) are put under higher thermal stress

than the free-wheeling diodes (D1,D
′
2,D

′
1,D2). When λt is

set to 0.05 the redistribution of the thermal stress changes

making the diffrence between the Tj of IGBT switches lower.

Furthermore, the clamping diodes are also relived. The price

for this temperature drop is seen in a slightly higher THD of

the output voltage (+0.12%).

B. Low modulation index

In this case, the reference phase to phase voltage is de-

creased to 280 V and the value of the linear resistive load

Rload in the first simulation is set to 4.6 Ω and in the second

to 2.3 Ω to simulate the same current conditions like in

Subsection IV-A. The positive effect of using the thermal

redistribution algorithm is even more evident during the low

voltage operation. For all semiconductor devices a significant

Tj temperature drop can be noticed in Fig. 7 and Fig. 8. Under

extreme conditions like shown in the Fig. 7, a perfect balance

between Tj of the IGBTs can not be achieved, nevertheless
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Fig. 6. Mean junction temperature comparison for different weighting factors
λt; Vc = 400 V Io = 50 A.

compared to the conventional solution the decrease of the Tj

difference between the IGBTs is still noticeable. In Table III

calculated THD of the output voltage for all simulated cases

is presented. The increased THD is seen for the proposed cost

function during the high current operation as this algorithm

favors less switching state transitions when the converter

current is high. For low current the impact on the voltage

THD is minimum.

V. EXPERIMENTAL VALIDATION

Validation of the proposed cost function was performed on

the experimental set-up shown in Fig. 9 which includes a

Semikron 3L SKiiP28MLI07E3V1 Evaluation Inverter, Micro-

LabBox DS1202 PowerPC DualCore 2 GHz processor board

and DS1302 I/O board from dSpace. The total turn around

time including the execution of the algorithm and the A/D

conversion of the measurement channels is approximately 22

μs. As a result of offline converter model discretization i.e.

the system matrixes of the discrete model are calculated prior

to execution of the controller, the execution of the algorithm
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Fig. 7. Mean junction temperature comparison for different weighting factors
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TABLE III
EVALUATED OPERATION CONDITIONS OF A 3L-NPC CONVERTER WITH

AND WITHOUT THERMAL REDISTRIBUTION

Vref (V) Io (A) λt Voltage
THD (%)

ΔTj1,2′ (°C) TjD3 (°C)

400 50 0 0.5 2 44.5

400 50 0.05 0.53 0.8 43.6

400 100 0 0.35 4.5 70.3

400 100 0.05 0.47 0.2 67.3

280 50 0 0.51 3 50

280 50 0.05 0.52 0.3 48

280 100 0 0.35 7.7 80

280 100 0.05 0.53 4 73.3

is very fast. To compensate this delay of approximately 22 μs
the predicted values are calculated one step further ahead and

applied at the beginning of the next time sampling interval as

demonstrated in [23].

Due to the fact that junction temperatures are not provided

for the available compact 3L-NPC converter [26] only effects



Fig. 9. 3L-NPC experimental set-up.

(a) Conventional cost function (λdc= 1, λt=0)

(b) Proposed cost function (λdc= 1, λt=0.9)

Fig. 10. Measured output voltage vcabc from the 3L-NPC experimental set-
up.

on the output voltage and DC-link capacitor voltages could be

observed. The simulation results have shown that the effect

on the output THD should be minor, therefore the inclusion

of the thermal redistribution objective should not significantly

increase the THD of the measured capacitor voltage. The

reference voltage was set to 230 V and the DC-link voltage

was set to 510 V. The filter parameters are equal to the values

used in the simulation model (Lf = 2.4 mH and Cf = 15 μF)

while the used load resistance Rload was 30 Ω. As it can

Fig. 11. Measured DC-link capacitor voltage vdc1,2 3L-NPC experimental
set-up when λdc= 1, λt=0.9.

be noted from the measured capacitor voltage in Fig. 10, if

the thermal redistribution objective was included in the cost

function, the THD didn’t significantly increase. The calculated

THD for the conventional cost function was 1.29% while for

the proposed cost function it was 1.35%. The effects of the

proposed cost function are also exhibited in the switching

frequency. As the objective of the proposed cost function is

to avoid switching in periods of high current, the measured

average switching frequency was around 5 kHz, while for the

conventional cost function it was 7 kHz. In Fig. 11 it can be

seen that the DC-link balance was also preserved during the

operation with the proposed cost function.

VI. CONCLUSION

A finite set MPC based algorithm with balanced semicon-

ductor thermal redistribution for 3L-NPC converter is pro-

posed. The main objective of the algorithm is to prevent the

switching events during high current intervals. The algorithm

implementation is very simple as no additional information

about the semiconductor devices nor additional measurements

are needed. The computational effort of the algorithm is also

not increased compared to the conventional cost function for

3L-NPC converters. Two operation modes of the converter

were investigated. Under both high and low amplitude index

the difference between the mean temperatures of the IGBT

switches was lowered and the clamping diode was also relived.

The THD of the controlled voltage was not significantly

increased, which was also proved on an experimental set-up.

The algorithm benefits are most noticeable during the LVRT

scenarios when the modulation index is low and the current

flowing through devices is high.

In the future work, experiments on the open module con-

verter will be performed to confirm the temperature redistribu-

tion effects obtained in the simulations. The module lifetime

estimation for the proposed algorithm will also be investigated

as it is expected that the balanced redistribution of thermal

stress will increase the lifetime of the converter modules.
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